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ABSTRACT Hardware implementations represent the major challenges when digital signal processors for
ultra-wideband (UWB) signals must be developed. Due to the limitation of the maximum clock rate in digital
devices, systems with high sampling rates (above GHz) cannot easily be implemented. In the literature,
several works propose parallel architectures for the implementation of UWB. They are implemented on
Field-Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs) and try
to overcome the limitation on the maximum clock frequency. In this work, a novel parallel architecture
for digital UWB equalizer and an optimized version of the Least Mean Square Block (LMS) based on
the Fast FIR Algorithms (FFA) are presented. Circuit simulations show that the proposed equalizer can
process a UWB signal with a bandwidth reaching several GHz, using the typical clock frequencies available
in FPGAs. The proposed version of the Block LMS is compared with the Fast Block LMS in terms of
computational complexity. It exhibits better results and greater hardware design flexibility. Finally, the
hardware implementation based on a Xilinx Kintex Ultrascale to process a UWB signal sampled at 1.6GHz
is described.

INDEX TERMS RF sampling, equalization, fast FIR algorithm (FFA), fast block least mean square (LMS),
channel estimation.

I. INTRODUCTION
In the last decades, Analog-to-Digital Converters (ADC) and
Digital-to-Analog Converters (DAC) have become capable
of processing Radio Frequency (RF) signals with a band-
width over the GHz. These converters are based on new
technologies and are referred to as RF-Sampling, allow for
the replacement of the Intermediate Frequency (IF) analog
subsystem with a digital subsystem [1], reducing material
costs, design time,despiteer. Furthermore, the flexibility of
RF converters allows for a radio system design suitable for
various applications, such as Software Defined Radio (SDR),
wideband communication, and radar. Notable applications
include positioning in new 6G technology, penetrating radar
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and high-resolution radar, used in fields like through-wall
tracing, anti-terrorism stabilization, earthquake and disaster
relief, archaeological discoveries, geological surveys and life
sign detection [2], [3], [4], [5], [6], [7]. As discussed below,
these RF converters allow for the implementation digital
systems with very high bandwidth and throughput.

When the bandwidth of a signal is very wide, it can be
considered as an Ultra-Wideband (UWB) signal. We can
use the term UWB when the signal satisfies one of the two
following conditions [8]: (1) the signal bandwidth is greater
than 20% of its carrier frequency, or (2) the signal bandwidth
is greater than 0.5 GHz.

UWB systems can take advantage of the ability of RF
converters to digitize broadband signals [9]. Making a
UWB analogue front-end, which is characterized by a good
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frequency response both for magnitude and phase, is becom-
ing increasingly difficult. Therefore, an equalizer system is
often necessary to mitigate signal distortions, compensate for
channel frequency-dependent losses, and optimize channel
overall performance [10], [11]. Typically, equalizers can be
implemented by using digital devices based on Digital Pre-
Distortion (DPD). They use different algorithms such as the
Recursive Prediction Error Method (RPEM) [12] and the
Least Mean Square (LMS) approach [13]. These algorithms
can estimate a transfer function capable of compensating
for the distortions of an unknown system. Generally, the
unknown system is an analog component, and the transfer
function obtained from the above algorithms is an estimate
of the inverse of the unknown system transfer function.
Equalizers also involve the use of a digital filter based on
Finite Impulse Response (FIR) or Infinite Impulse Response
(IIR) architectures that implement the estimated transfer
function [14], [15].

The implementation of digital equalizers involves the
use of digital devices such as Field-Programmable Gate
Arrays (FPGAs) andApplication-Specific Integrated Circuits
(ASICs), but the hardware implementation becomes a critical
aspect when UWB signals are involved. This is because
the devices cannot reach the clock frequency required to
process a high sample rate beyond GHz [16]. To overcome
this limitation, conventional systems must perform parallel
processing through the design of parallel digital architectures,
as shown in [17] and [18]. Therefore, modern converters
use a high clock frequency to sample the UWB signal and
a low clock frequency for digital devices to process the
signal. Devices receive the signal represented as a burst of L
samples at each clock cycle and, in this way, they can process
the signal through parallel architectures, preserving the high
sample rate of the signal. Consequently, the sampled signal
is treated in the digital devices as an L-block of samples,
and the digital equalizer must be designed through a parallel
architecture to process the signal in real-time operation. Since
the design of an analog front-end for a UWB application,
which guarantees good performances in terms of magnitude
and phase responses, is not easily achievable, this solution
for the design of a digital equalizer for UWB signals that
compensates the magnitude and phase distortions caused by
the analog front-end.

To design a parallel architecture for a digital equalizer,
several block-based algorithms such as the Block LMS and
the Fast Block LMS [14] are considered. These algorithms
can treat the signal as a block of L samples [14], [19], [20].
Consequently, they are useful to estimate the inverse transfer
function of the analog component and to implement a digital
equalizer for UWB signals.

In this work, we present a novel parallel architecture
for digital UWB equalizer named Parallel Indirect Learning
Architecture (PILA), based on the Indirect Learning Archi-
tecture (ILA) [21], which is used to compensate for the
distortions of an analog component by estimating its inverse
transfer function. Moreover, within the digital equalizer,

we present the Parallel LMS (PLMS), an optimized version
of the Block LMS algorithm. We highlight that PLMS is
investigated considering complex data numbers, if compared
to the literature where conventional block algorithms are
analyzed considering real data [14], [19], [20]. Unlike
traditional block-based algorithms, PLMS is based on the
Fast FIR filtering Algorithms (FFA) that allow to increase
the parallel computation and to reduce the computational
complexity of the algorithms in terms of multiplications and
sums [22], [23]. We prove that the PLMS exhibits better
performance in terms of complexity, if compared to the Block
LMS algorithm and the Fast Block LMS algorithm, based
on time and frequency domain approaches, respectively [14],
[20], and [24]. Finally, the hardware implementation of the
PILA, composed of a parallel filter and the PLMS, shows that
a digital system for UWB applications needs large resource
utilization, which can be reduced by the FFA. Despite a
thorough review of the literature on LMS-based equalizers,
none of the recent work has addressed the problem of digital
equalization operating with UWB signals considering the
algorithms we reviewed. This emphasizes the innovation of
our approach and the results obtained.

A. PAPER ORGANIZATION
The paper is organized as follows.

Section II gives an overview of the digital equalization
based on the ILA architecture and the Block LMS algorithm
in the time domain.

Section III shows the parallel filtering and the FFA in terms
of architectures and computational complexity.

Section IV describes PILA and PLMS.
Section V shows the results of the numerical simulation,

the computational complexity, and the hardware implemen-
tation.

Section VI draws the conclusions of this work.

II. EQUALIZATION AND CHANNEL ESTIMATION
A. INDIRECT ARCHITECTURE (ILA)
Digital equalization is a process used to compensate the
signal distortions introduced by the analog front-end such as
the power amplifier. For the sake of simplicity, the analog
component will be treated as an unknown system. Several
equalizer architectures have been proposed in the literature,
providing different advantages in terms of hardware imple-
mentation and equalization performance. One of the most
widely used equalizers is ILA [21]. To equalize an unknown
system, the ILA employs an estimator block and a predistorter
digital filter, as illustrated in Fig. 1.
The estimator block is implemented through an algorithm

that evaluates the inverse transfer function of the unknown
system represented by the set of coefficients ŵ[n]. Estimation
is performed by observing the input d[n] and the output
u[n] of the unknown system. Therefore, the algorithm finds
a set of coefficients related to the inverse transfer function,
which depends on the digital filter structure (FIR or IIR).

VOLUME 12, 2024 92561



L. Canese et al.: Novel Digital Equalizer Based on RF Sampling Beyond GHz

FIGURE 1. Indirect learning architecture.

The estimator generates y[n], which is an estimation of d[n],
using the signal u[n] and the estimated coefficients ŵ[n].
Consequently, the error signal e[n], obtained by the difference
of the signal d[n] with y[n], is used to adjust the computed
coefficients. The error is minimized at each iteration of the
system and a copy of the estimated inverse transfer function
is shared with the digital filter predistorter [25]. The sharing
allows to compensate for the distortions introduced by the
unknown system by applying a predistortion to the signal
x[n]. This improves the performance of the channel. Finally,
u[n] will be a copy of the input signal x[n].

A critical aspect of the architecture is the estimator
because it estimates the coefficients ŵ[n]. This block can
be implemented through several algorithms as the LMS
algorithm treated in the next section.

B. LMS ALGORITHM
LMS algorithm is based on theMethod of Stochastic Gradient
Descent (SGD) [14], a method used to minimize a cost
function typically defined as the mean square error J [n] =

E{|e[n]|2}, where E is the statistical expectation operator and
e[n] is an error signal. The SGD algorithm uses an FIR filter
to model the unknown transfer function and is summarized as
follows [26]:

y[n] = ŵT [n]u[n]

e[n] = d[n] − y[n]

ŵ[n+ 1] = ŵ[n] − µ∇J [n]. (1)

where ŵ[n] = [ŵ0[n], . . . , ŵN−1[n]]T is the set of the
estimated coefficients of the N-length FIR filter, u[n] =

[u[n], . . . , u[n−(N−1)]]T is the input vector (regressor), d[n]
is the desired signal that is delayed of D = ⌊N/2⌋ samples to
consider the fixed latency of the unknown system represented
as a FIR filter, y[n] is the estimation of the desired signal, µ
is the step-size parameter, and ∇J [n] is the gradient of the
cost function. SGD updates the coefficients ŵ[n] until ∇J [n]
reaches a minimum value.

The gradient of the cost function ∇J [n] can be solved with
respect to the complex variables wi[n], as shown in [26]:

∇J [n] = ∇E{|e[n]|2} = E{∇|e[n]|2}

= E{e[n]∇e∗[n]} = −E{e[n]u∗[n]}. (2)

FIGURE 2. Architecture of the LMS algorithm.

Generally, the expectation E{e[n]u∗[n]} is not known and
is replaced by a mean [26]:

Ê{e[n]u∗[n]} =
1
K

K−1∑
i=0

e[n− i]u∗[n− i] (3)

where K is the number of samples used for the estimation.
Using the expectation (3) in (2) for the simple case K = 1,
equation (1) becomes the LMS algorithm:

y[n] = ŵT [n]u[n]

e[n] = d[n] − y[n]

ŵ[n+ 1] = ŵ[n] + µe[n]u∗[n] (4)

which is represented by the architecture shown in Fig. 2,
where LMS Law Update is the block that estimates the new
FIR filter coefficients ŵ[n+ 1].

C. BLOCK LMS ALGORITHM
The conventional LMS cannot be used when the signal is
represented as a block of L samples. Consequently, we need
to introduce the Block LMS algorithm to process a block of
L samples at each clock cycle [14], [19], [20]. As follows,
the Block LMS algorithm is obtained by manipulating the
equations from (1) to (4).

First, SGD (1) must be represented using the time domain
parallel notation to process a block of L samples. Filtering
between the regressor u[n] and the estimated coefficients
ŵ[n] becomes

Y [n] = ŵ[n] ⊛ U [n]

(5)

whereU [n] and Y [n] are the block representations of u[n] and
y[n] respectively:

U [n] = [u[kL], u[kL + 1], . . . , u[kL + L − 1]]

Y [n] = [y[kL], y[kL + 1], . . . , y[kL + L − 1]] (6)

92562 VOLUME 12, 2024



L. Canese et al.: Novel Digital Equalizer Based on RF Sampling Beyond GHz

FIGURE 3. Block LMS architecture.

considering k as the block index related to the original
sample n:

n = kL + i, i = 0, 1, . . . ,L − 1

k = 0, 1, 2, . . . . (7)

We want to highlight and to anticipate that the time domain
parallel filtering is shown in detail in the next sections
because it allows for the optimization of the computational
complexity of the filtering.

The error signal represented with a block of L samples
becomes:

E[n] = D[n] − Y [n] (8)

whereD[n] andE[n] are the block representations of d[n] and
e[n] respectively:

D[n] = [d[kL], d[kL + 1], . . . , d[kL + L − 1]]

E[n] = [e[kL], e[kL + 1], . . . , e[kL + L − 1]]. (9)

Subsequently, the gradient of the cost function in (2) can
be replaced using (3) with K = L and considering the block
notation:

Ê{e[n]u∗[n]} =
1
L

L−1∑
i=0

e[n− i]u∗[n− i]

=
1
L
AH [n]E[n] (10)

where (.)H represents the conjugate transpose. AH [n] has
dimensions N × L and is defined as:

AT
= [u[kL],u[kL + 1], . . . ,u[kL + L − 1]]. (11)

Finally, the block diagram of the Block LMS, composed
of the parallel Fir filter and the Block LMS Law Update,
is shown in Fig. 3 and summarized as follows:

Y [n] = ŵ[n] ⊛ U [n]

E[n] = D[n] − Y [n]

ŵ[n+ 1] = ŵ[n] +
µ

L
AH [n]E[n]. (12)

FIGURE 4. Comparison between a conventional FIR filter (a), and its
4-parallel version (b).

III. PARALLEL FILTER STRUCTURES
A. TIME DOMAIN PARALLEL FILTERING
In the literature, time domain parallel filtering is treated
in several works [27], [28] showing different parallel
architectures to process a block of L samples. Generally,
a parallel filter involves a high number of multiplications
equal to N × L, where N is the number of the coefficients
of the FIR filter, and L is the parallel factor that corresponds
to the number of the polyphase components of x[n]. In this
work, we consider the parallel factor and the block size L of
the input signal as the same thing.

To explain the difference between a conventional FIR filter
structure and its parallel structure, we show in Fig. 4 (a) an
example of a conventional FIR filter and its 4-parallel version.

The inputs x[4n+ i] and outputs y[4n+ i] of Fig. 4 (b) are
obtained by the polyphase decomposition of x[n] and y[n] of
Fig. 4 (a). Using the same approach, the coefficients of Hi(z)
of Fig.4 (b) are obtained by the polyphase decomposition of
the prototype filter H (z) [29].

From here, the polyphase components of the inputs and
outputs are represented by the notation (13) and the related
Z transform shown in (14):

x[Ln+ i] = xi[n]

y[Ln+ i] = yi[n] (13)

Xi(z) = Z {xi[n]}

Yi(z) = Z {yi[n]} (14)

where i ∈ [0,L − 1].
The Z transform equations are introduced because opti-

mized filter structures are investigated using the Z trans-
form [22], [23], [27]. Finally, we show the general form of
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the parallel filtering represented by the matrix notation:


Y0(z)
Y1(z)

...

YL−1(z)

 ==


H0(z) HL−1(z)z−1 . . . H1(z)z−1

H1(z) H0(z) . . . H2(z)z−1

...
...

...

HL−1(z) HL−2(z) . . . H0(z)




X0(z)
X1(z)

...

XL−1(z)

 (15)

where the coefficients Hi(z) are obtained by the polyphase
decomposition of the prototype filter H (z).

B. FAST FIR FILTERING ALGORITHM
The parallel filter shown in (15) involves a high number of
multiplications equal to N × L, where N is the length of
H (z) which is supposed to be a FIR filter. Several works
based on Fast FIR Filtering Algorithms (FFA) or Fast FIR
Algorithms [22], [23], [30] take into account the matrix
product (15) to improve the computational complexity by
reducing the number of FIR filters of Fig. 4 (b). This analysis
allows one to reduce the number of the required multiplica-
tions. Since the computational cost of the multiplication is
more expensive than the sum [31], we want to investigate
this algorithm to improve the Block LMS equations in
terms of computational and hardware complexity. There are
also other works that analyze the symmetry of the impulse
response of H (z) to obtain optimized architectures [32], [33].
These structures cannot be used in an equalizer because
the estimator algorithm does not guarantee the symmetry
of the estimated coefficients. Consequently, we show how
to manipulate (15) to obtain an optimized parallel filter
architecture and, in the following sections, the same approach
will be used to reduce the computational complexity of the
Block LMS shown in (12).
As follows, the FFA for L = 2 is shown. There are

several algorithms to implement an efficient structure and,
generally, the FFA based on the Winograd algorithm is the
most used [34]. In this section, the Winograd algorithm is
described using the matrix representation since it allows for a
better understanding of the PLMS analysis shown in the next
sections.
We want to anticipate that, for PLMS, the filtering Y [n]

and the matrix product AH [n]E[n] of (12) are improved in
terms of computational complexity by using the Winograd
algorithm. Typically, FFA algorithms are analyzed in the
literature to optimize parallel filtering, but they are not
investigated to improve a matrix product, as shown in the
PLMS section.

FIGURE 5. Optimized 2-Parallel Filter. The architecture is arranged to
highlight the matrices of (16).

The Winograd algorithm for L = 2 is shown in (16):[
s0
s1

]
=

[
g1 g0
g2 g1

] [
f0
f1

]
=

=

[
1 1 0
0 1 1

] f1 0 0
0 f0 + f1 0
0 0 f0

 1 −1 0
0 1 0
0 −1 1

 g0g1
g2

 =

= P · F · T · G (16)

where P and T are called pre-processing matrix and post-
processing matrix respectively, while F and G contain the
values of the original matrix.

The Winograd algorithm can be used by writing the matrix
equation (15) for L = 2 as follow:[

Y0(z)
Y1(z)

]
=

[
H0(z) H1(z)z−1

H1(z) H0(z)

] [
X0(z)
X1(z)

]
=

=

[
X0(z) X1(z)z−1

X1(z) X0(z)

] [
H0(z)
H1(z)

]
. (17)

By comparing (16) and (17), we obtain:[
Y0(z)
Y1(z)

]
=

[
1 1 0
0 1 1

] H1(z) 0 0
0 H0(z) + H1(z) 0
0 0 H0(z)


1 −1 0
0 1 0
0 −1 1

 X1(z)z−1

X0(z)
X1(z)

 (18)

by assuming [s0, s1] = [Y0(z),Y1(z)], [f0, f1] =

[H0(z),H1(z)] and [g0, g1, g2] = [X1z−1,X0,X1]. The
optimized parallel filter for L = 2 is shown in Fig. 5.
The optimized structure of Fig. 5 is composed of only

3 subfilters Hi(z) rather than 4 subfilters, as shown in
equation (17). In this way, we reduce the multiplications
related to one subfilter, and also the sums related to the
same subfilter at the cost of an increase of 4 adders of
the pre-processing and post-processing matrices. When the
coefficients of H (z) and the components xi[n] are complex
signals, this optimization saves a lot of resources that can
be used to extend the length of the filter H (z) improving the
performance of the equalizer.
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C. ITERATIVE METHOD
The L-parallel filter structures can be designed using several
algorithms such as Cook-Toom and Winograd [34]. When
the parallel factor L is very large, the structures obtained by
these algorithms are not well optimized. As shown in (16),
the pre-processing and post-processing matrices involve only
sums for L = 2. For large values of L, the P and
T matrices also involve several constant multiplications.
Therefore, a better filter structure that involves only sums
in the pre-processing and post-processing matrices, can be
obtained by iterating the Winograd approach for L = 2 [22].
In this approach, the optimized 2-parallel filter is consid-

ered as the building block.We can iterate the block to obtain a
L-parallel filter where the matrix P and T involve only sums.
An example is the case L = 4:

s0
s1
s2
s3

 =


g3 g2 g1 g0
g4 g3 g2 g1
g5 g4 g3 g2
g6 g5 g4 g3



f0
f1
f2
f3

 (19)

We can partition (19) into 2-by-2 blocks to obtain a similar
form of (16):[

s0
s1

]
=

[
g1 g0
g2 g1

] [
f0
f1

]
=

=

[
I I 0
0 I I

] f1 0 0
0 f0 + f1 0
0 0 f0

 I −I 0
0 I 0
0 −I I

 g0
g1
g2

 (20)

where

g0 =

[
g1 g0
g2 g1

]
g1 =

[
g3 g2
g4 g3

]
g2 =

[
g5 g4
g6 g5

]
s0 =

[
s0 s1

]T s1 =
[
s2 s3

]T
f0 =

[
f0 f1

]T f1 =
[
f2 f3

]T
. (21)

By using the same approach of L = 2, we obtain for L = 4:[
Y0(z)
Y1(z)

]
=

[
I I 0
0 I I

] H1(z) 0 0
0 H0(z) + H1(z) 0
0 0 H0(z)


I −I 0
0 I 0
0 −I I

 X1z−1

X0
X1

 (22)

where:

H0(z) =

[
H0(z) H3(z)z−1

H1(z) H0(z)

]
H1(z) =

[
H2(z) H1(z)
H3(z) H2(z)

]
Y0(z) =

[
Y0(z) Y1(z)

]T Y1(z) =
[
Y2(z) Y3(z)

]T
X0(z) =

[
X0(z) X1(z)

]T X1(z) =
[
X2(z) X3(z)

]T
.

(23)

Each matrix transfer function can be implemented by the
optimized structure in Fig. 5, which involves three scalar
transfer functions, for a total of 9 scalar transfer functions for
the 4-parallel filter [22].

FIGURE 6. Parallel Indirect Learning Architecture (PILA).

As shown in [22], the iterative approach can be used for the
general case L = 2m for m integer and allows one reduce the
number of scalar transfer functions from L × L to 3m. The
number of multiplications and sums related to the transfer
functions is reduced thet a cost of a small increase of the sums
for the pre-processing and post-processing matrices.

IV. PROPOSED ARCHITECTURE
A. PARALLEL INDIRECT LEARNING ARCHITECTURE (PILA)
ILA is an often used equalizer and is obtained by merging the
analog front-end with a digital device. When a UWB signal is
involved, digital devices such as the FPGAs cannot be used to
implement a conventional equalizer architectures with a clock
frequency beyond GHz. For this reason, the architecture of
Fig. 1 must be converted to a parallel architecture that allows
for the parallel processing of UWB signals. This solution
allows for the use of digital devices such as FPGA and ASIC
for the equalization process. To preserve the high sample rate
of the UWB signal, the digital device treats the signal as a
block of L samples with a clock frequency of Fclk = Fs/L,
where Fs is the sampling frequency used to sample the UWB
signal by the RF converters. Therefore, we present PILA, the
parallel version of ILA, that performs the parallel processing
as shown in Fig. 6.

Compared to Fig. 1, we highlight that the unknown system
is an analog component, and we introduce the RF converters
that represent the conversion from the digital domain to the
analog domain and vice versa. The meaning of the signals
is the same as in Fig. 1 and the difference consists of their
parallel representation. The digital filter is replaced with a
parallel FIR filter optimized by FFA, while the estimator is
the critical block of the architecture and it is implemented by
the PLMS as shown in the next section.

B. PARALLEL LMS (PLMS)
PLMS is an optimized algorithm of the Block LMS
summarized in (12) and shown in Fig. 3. The computational
complexity of the Block LMS is improved by the FFA that
reduces the number of required multiplications involving an
improvement in terms of hardware implementation.

The first improvement concerns the filtering of (5) and is
obtained by the FFA which reduces the number of transfer
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functions implemented, as explained in the previous section
and in [22], [23], [27], and [30].

The second improvement is less obvious and is related to
the matrix product AH [n]E[n] of (12). To prove that FFA can
be used, we consider the Z transform of the matrix product
for the case N = 2 and N = 4 with L = 2, where N is the
number of the coefficients ŵ[n].

The first example is the case L = 2 and N = 2. First, the
matrix AH [n] and the vector E[n] must be represented by the
Z transform. Since L = 2, the signal u[n] is treated as a block
composed of 2 samples, we consider two input signals u0[n]
and u1[n]. Consequently, also the vector E[n] is composed of
2 error signals e0[n] and e1[n]. The Z-trasforms of the signals
are Z{ui[n]} = Ui(z) and Z{ei[n]} = Ei(z) for i ∈ [0, 1],
they can be used to consider the Z transform of the matrix
product. We highlight that the matrix AH [n] is composed of
the elements [u[n], u[n−1], u[n+1]], and their Z transforms
corresponds to Z{u[n]} = U0(z), Z{u[n + 1]} = U1(z) and
Z{u[n − 1]} = U1(z)z−1. At this point, if (12) is compared
with (16), we obtain:

AH (z)E(z) =

[
U∗

0 (z) U∗

1 (z)
U∗

1 (z)z
−1 U∗

0 (z)

] [
E0(z)
E1(z)

]
=

=

[
1 1 0
0 1 1

] E1(z) 0 0
0 E0(z) + E1(z) 0
0 0 E0(z)


1 −1 0
0 1 0
0 −1 1

  U∗

1 (z)
U∗

0 (z)
U∗

1 (z)z
−1

 (24)

where [g0, g1, g2] = [U∗

1 (z),U
∗

0 (z),U
∗

1 (z)z
−1] and [f0, f1] =

[E0(z),E1(z)]. In this case, we highlight that Ei(z) are
scalar values and are not transfer functions that involve
several multiplications. Consequently, the multiplications are
reduced from 4 to 3.

The second example is the case L = 2 and N = 4 and is
less obvious than the case N = 2:

AH (z)E(z) =


U∗

0 (z) U∗

1 (z)
U∗

1 (z)z
−1 U∗

0 (z)
U∗

0 (z)z
−1 U∗

1 (z)z
−1

U∗

1 (z)z
−2 U∗

0 (z)z
−1

 [
E0(z)
E1(z)

]
. (25)

The matrix AH (z) can be partitioned into 2-by-2 blocks to
obtain a similar form of (24) allowing the use of the FFA:

AH (z)E(z) =

[
A0

H (z)
A1

H (z)

] [
E0(z)
E1(z)

]
(26)

where:

A0
H (z) =

[
U∗

0 (z) U∗

1 (z)
U∗

1 (z)z
−1 U∗

0 (z)

]
A1

H (z) =

[
U∗

0 (z)z
−1 U∗

1 (z)z
−1

U∗

1 (z)z
−2 U∗

0 (z)z
−1

]
. (27)

By comparing (26) with (24), we see that FFA can be applied
to A0

H (z) and A1
H (z) optimizing the matrix product (25).

For the general case L = 2m, the matrix productAH (z)E(z)
can be optimized by partioning the AH (z) into L-by-L blocks

AH
i (z) where i ∈ [0, . . . , ⌈N/L⌉ − 1], and applying the FFA

for each block.

V. RESULTS
The performance of the proposed equalizer is investigated by
Fixed-Point (FXP) simulations. The purpose of the analysis
consists to show the operation of the digital equalizer
composed on PILA and the PLMS shown in Fig. 6.

Several FXP simulations are performed by using Simulink
and considering an analog component characterized by an
IIR filter. The simulated analog component represents any
cascade of analog components that lie between the Analog
Digital Converter (ADC) and the antennas. The simulation
is thus aimed at demonstrating the system’s effectiveness in
real-world scenarios. By the simulation we highlight: (a) the
error reduction of the LMS algorithm, (b) the compensations
obtained by the equalizer, and (c) the quality improvement
of the transmitted signal supposing to have a 16-QAM
(Quadrature Amplitude Modulation) signal.

The Simulink results are also validated through the
Mathworks FPGA-In-The-Loop approach that provides the
same results as the Simulink FXP simulations.

A. NUMERICAL SIMULATIONS
The PILA and PLMS performances are analyzed by several
fixed-point (FXP) simulations in Simulink environment. The
experimental setup is a transmitter based on Fig. 6 where the
RF DAC and RF ADC are replaced by a parallel-to-serial
and a serial-to-parallel blocks, respectively. The transmitter is
designedwith a parallel factor of L = 8 and a clock frequency
of 200; [MHz] to accommodate a UWB signal sampled by
the converters at a sample frequency of 1.6; [GHz]. X [n]
is a 16-QAM signal generated by a binary source with a
bit-rate of 3.2; [Gbps], shaped by a Raised Cosine Filter with
a roll-off of 0.25, and represented by 2 samples per symbol.
The analog component is modeled as a channel composed of
a cascade of an IIR filter, which introduces amplitude and
phase distortions, and a noise generator, which sets a signal-
to-noise ratio (SNR) of 50; [dB]. The Signal-to-Noise Ratio
(SNR) value is very high because the noise introduced by
the analog feedback path can be supposed to be very small
for a transmitter. The estimator is based on the PLMS shown
in the previous sections, and itestimates the inverse transfer
function of the IIR filter using the coefficients 32.

FXP simulations are performed for different step-size
values. We evaluated the performance in terms of the error
E[n] and the Modulation Error Ratio (MER) since the
modulation type is a 16-QAM. The results are shown in Fig. 7
and 8.

The plots show that the convergence time is shorter for
large values µ and that performance is improved for each
iteration. Since the SNR is very high, the curves converge
at the same value with increasing time for both figures.
Consequently, a large µ can improve the analog channel
estimation exhibiting a small convergence time, a small error
and a largeMER. Additionally, we evaluated the performance
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FIGURE 7. Experimental error for several µ values.

FIGURE 8. Experimental MER for several µ values.

FIGURE 9. Experimental error for several SNR values.

in terms of the error E[n] for different SNR values. The
results shown in Fig. 9 illustrate how the error decreases as
the signal-to-noise ratio increases.

To prove the correct operation of the digital equalizer,
we show the constellations of the unequalized and equalized
signal U [n] in Fig. 10 and 11, evaluated for µ = 0.0625 and
a simulation time of 100 [µs]. In both figures, the red crosses
represent the reference constellation, and the blue points
represent the constellation obtained by the signal U [n] of
Fig. 6. In Fig. 10, the blue constellation is strongly distorted
and also rotated compared to the reference constellation.
In Fig. 11, the distortions are compensated and the blue
constellation matches with the reference constellation.

The same simulation is performed to evaluate the cascade
of the estimated filters with the IIR approach. We show the

FIGURE 10. Experimental unequalized constellation.

FIGURE 11. Experimental equalized constellation evaluated for
µ = 0.0625 and a simulation time of 100 [µs].

FIGURE 12. Comparison of the frequency response between the IIR filter
(blue line) and the filters cascade (red line) evaluated for µ = 0.0625 and
a simulation time of 100 [µs].

frequency response to evaluate the magnitude distortion in
Fig. 12 and 13, and the group delay response to evaluate the
phase distortion in Fig. 14 and 15.

Fig. 12 shows that the frequency response of the cascade
(orange line) of the predistorter (Parallel FIR) with the IIR
filter matches with the response of the analog component.
Fig. 13 shows the amplitude ranging from −1 to +1 dB of
the Fig. 12. The magnitude ripple of the analog component
(blue line) is compensated by the digital equalizer exhibiting
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FIGURE 13. Zoomed frequency response comparison between the IIR
filter (blue line) and the filters cascade (red line) evaluated for
µ = 0.0625 and a simulation time of 100 [µs].

FIGURE 14. Group delay response comparison between the IIR filter
(blue line) and the filters cascade (red line) evaluated for µ = 0.0625 and
a simulation time of 100 [µs].

FIGURE 15. Zoomed group delay response of the filters cascade (blue
line) evaluated for µ = 0.0625 and a simulation time of 100 [µs].

an almost flat response (red line) obtained by the cascade of
the filters.

Regarding phase distortions, Fig. 14 analyzes the phase
represented by its group delay. As can be observed, the
response of the analog component (blue line) is compensated
by the predistorter exhibiting a flat response (organge line).
Finally, Fig. 15 shows the group delay response obtained
by the cascade of the filters, which exhibits a ripple less
than 100 [ps] in the frequency range between −400 [MHz]
and +400 [MHz] that corresponds to the symbol rate of
800 [MSps].

At increasing time, the system tends to improve perfor-
mance by reducing the ripples of the magnitude and the group
delay responses of Fig. 13 and 15.

B. COMPUTATIONAL COMPLEXITY
PILA shows a reduced computational complexity in terms of
multiplications due to the FFA. The analysis is performed for
the general case L = 2m and N = 2k for m and k integers
with k = m. We highlight that the computational complexity
in the literature is analyzed in terms of real multiplications
considering real data, but, in this analysis, we consider the
complex multiplications because complex data are involved
in real world use cases. The analysis is partitioned into two
parts: (a) the predistorter parallel filter and (b) the comparison
between the PLMS, the Block LMS and the Fast Block
LMS [14].

The predistorter parallel FIR filter is improved by FFA
which reduces the required multiplications from N × L to
N/L × 3m, where N is the number of coefficients, L is the
block size, N/L is the number of coefficients of the scalar
transfer functions, and 3m is the number of scalar transfer
functions.

The computational complexity of the PLMS can be
analyzed considering the required multiplications of the
L-parallel filter and the matrix product AH [n]E[n]. The
L-parallel filter is performed by N/L × 3m complex
multiplications, and the matrix product can be split into L-
by-L blocks AH

i [n]. For the general case analyzed in this
work, the matrix product is composed of N/L blocks, and
3m complex multiplications are performed for each block.
Consequently, the complex multiplications required by the
PLMS are:

N
L
3m +

N
L
3m = 2

N
L
3m (28)

To compare the PLMS with the Block LMS and the Fast
Block LMS, we have to consider a block size of L = N
because the Block LMS and the Fast Block LMS are analyzed
in the literature considering the multiplications required to
process a block of N samples. Consequently, PLMS requires
a number of complex multiplications equal to:

2
N
L
3m = 2

N
L
3log2(L)

= 2
N
N
3log2(N )

= 2N log2(3) (29)

TheBlock LMS is shown in (12) and requires 2N 2 complex
multiplications:N 2 for the parallel filter andN 2 for thematrix
product.

Fast Block LMS is analyzed in several works considering
real data and its architecture is shown in [14]. The architecture
is composed of 5 M-point Fast Fourier Transforms (FFTs)
and 2M complex multiplications performed in the frequency
domain for the filtering and the gradient estimation. Typi-
cally, a M-point FFT is performed by M log2(M ) complex
multiplications [29], and considering the overlap-and-save
method, the required multiplications become 2N log2(2N )
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FIGURE 16. Comparison between the Block LMS, the Fast Block LMS and
the PLMS.

FIGURE 17. Comparison between the Fast Block LMS and the PLMS.

where M = 2N because the algorithm considers the 50%
overlap to obtain a most efficient structure [14]. By con-
sidering the 5 FFTs, the whole computational complexity
becomes:

5M log2(M ) + 2M = 10N log2(2N ) + 4N (30)

The comparison of the 3 algorithms is shown in Fig. 16.
As is well known in the literature, the Fast block LMS

is better than the Block LMS as it requires a lower
computational complexity. However, the PLMS exhibits a
better computational complexity than the Fast Block LMS as
shown in Fig. 17.

For N < 1024, PLMS requires fewer multiplications then
the Fast Block LMS. For a digital equalizer implemented
on a digital device as an FPGA or ASIC, the hardware
resources usage is a critical aspect and, consequently,
a parallel architecture of an equalizer characterized by a lot
of coefficients cannot be implemented. The results of Fig. 17
are also summarized in table 1.

Finally, the PLMS is better as it requires fewer multiplica-
tions for a block size of L = N and, consequently, it requires
less hardware resources. Another aspect of PLMS is the
flexibility of the design, because it allows the implementation
of an equalizer to estimate the coefficients N with a parallel
factor L < N . This advantage allows one to design
an equalizer with a reduced number of the implemented
multipliers, and, consequently, the hardware complexity
can be improved in terms of resources, area, and power.
In addition, the Fast Block LMS can be implemented with

TABLE 1. Complex multiplications estimation of the fast block LMS and
the PLMS.

TABLE 2. Resource utilization and dynamic power consumption of the
8-parallel filter optimized by the FFA.

a parallel factor L < N , but the hardware design of the FFTs
is not easily achievable in this case and involves an increase
in the design difficulty.

C. HARDWARE IMPLEMENTATION
The hardware complexity of PILA shown in Fig. 6 is
investigated considering a parallel factor of L = 8, a FPGA
clock frequency of 200 [MHz], a set of N = 32 coefficients,
and a Fixed-Point (FXP) dynamic of 14 bits. The parallel
factor and the FPGA clock frequency allows to process a
signal sampled at 1.6 [GHz]. The above parameters were
chosen to maximize the use of available FPGA hardware
resources by selecting a degree of parallelism that maximizes
the speed of sample processing, thereby making maximum
use of the available DSPs within the FPGA.

The architecture is partitioned into two blocks that are
analyzed separately: (a) the parallel FIR optimized by the
FFA and (b) the PLMS. For both analyses, the blocks are
coded in VHDL, at the Register Transfer Level (RTL),
and synthesized using Xilinx Vivado 2019.1 on a Virtex
Ultrascale xcku060-ffva1517. The VHDL code is generated
using the HDLCoder toolbox fromMathWorks. This toolbox
allows for the generation of portable and synthesizable
Verilog and VHDL code from Simulink RTL models.
The generated HDL code can be used for both FPGA
programming and ASIC development. Although the code
is suitable for ASIC implementations, the results presented
are specific to FPGA resources for the purpose of fast
prototyping. In Tables 2 and 3 resource utilization and
dynamic power consumption are shown.

As expected from the computational complexity anal-
ysis of the previous section, the tables show that the
(DSPs)employed to implement the multipliers and adders are
the most used resources and the major contributors to power
consumption. Considering a possible design requirement
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TABLE 3. Resource utilization and dynamic power consumption of the
PLMS.

for complex applications, where a more judicious use of
FPGA resources for other tasks is necessary, it is possible
to leverage the proposed architecture by decreasing the
degree of parallelism and selecting a different length for
the filter coefficients. Although we thoroughly reviewed the
literature on LMS-based equalizers, recent works have yet to
address the issue of digital equalization with UWB signals
in the context of the algorithms we examined. This subtly
underscores the novelty of our approach and the significance
of our findings.

FFA has reduced resource utilization, allowing for an
optimal FPGA implementation, and showing better hardware
design flexibility than the Fast Block LMS. Generally, the
M-point FFT implementation for the Fast Block LMS is
investigated as a fully parallel architecture with M inputs
and M outputs. The M-point FFT can also be implemented
by a hybrid architecture that involves a number of inputs
and outputs less than M, but this solution is not easily
implemented due to the increase in the complexity of the
hardware design. These problems highlight the advantages of
PLMS in terms of hardware resources and design complexity.

VI. CONCLUSION
In this paper, a novel parallel architecture for digital UWB
equalizer and an optimized Block LMS have been proposed.
The UWB equalizer, namely PILA, shows high design
flexibility due to the FFA that allows for the making of
flexible parallel architectures. PILA is the parallel version
of ILA, an architecture widely used for the equalization
process, and allows for the digital signal processing for UWB
signals by a parallel filter and the PLMS algorithm whose
architectures are optimized by FFA. PLMS is the main block
of PILA and it is an optimized version, obtained through
mathematical manipulations of the algorithm, of the Block
LMS. The computational complexity between the PLMS and
the Fast Block LMS, the improved version of the Block
LMS introduced in the literature, is analyzed considering
complex data. As result, the analysis shows that the PLMS
algorithm exhibits a lower computational complexity. Despite
a thorough review of the literature on LMS-based equalizers,
none of the recent work has addressed the problem of digital
equalization operating with UWB signals considering the
algorithms we reviewed. This emphasizes the innovation
of our approach and the results obtained. PLMS is also
validated by FPGA implementation considering a 16-QAM
signal with a bit-rate of 3.2 [Gbps], and a sampling frequency

of 1.6 [GHz] for the RF converters. The results show that a
generic UWB system involves high resource utilization that
can be reduced by using several algorithms such as the FFA.

Future research will focus on exploring advanced algo-
rithms to reduce complexity, improve efficiency, and achieve
less resource-intensive implementations. Emphasis will also
be placed on ensuring scalability and flexibility for diverse
applications, and conducting extensive real-world testing to
validate and refine performance.
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