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ABSTRACT This paper presents a novel resonance suppression method for mover-position-dependent
resonance. In industrial equipment and robots, increasing controller bandwidth for higher performance can
induce inherent resonances. Various filter-based methods have been developed and utilized to compensate
for the resonances. However, in applications, such as the belt-drive loads, where the resonance frequency
can change by two to three times depending on the position of the mover, suppressing the resonance using
fixed-parameter filters is not effective. This paper proposes a new resonance suppression method combining
a decoupled persistent oscillation compensator (DPOC) and a disturbance observer (DOB). In the proposed
method, the DPOC compensates for the mover-position-dependent resonance by attenuating the magnitude
of themeasured velocity signal within a specific frequency range, whereas the DOB compensates for external
disturbances. Therefore, the control system with the proposed method can enhance control performance by
automatically adapting to both resonance characteristics dependent on the mover position and the external
disturbances. The implementation of the proposed method in the discrete-time domain is also presented,
and its stability and robustness are analyzed. Experiments are performed on an industrial belt-drive servo
system to demonstrate the effectiveness of the proposed method. Using the proposed method leads to an 84%
reduction in overshoot and a 20% reduction in tack time compared with the results of using a well-tuned set
of fixed-parameter filters, demonstrating its superiority in resonance suppression.

INDEX TERMS Discrete-time systems, notch filters, resonance suppression, sliding mode control,
servosystems.

I. INTRODUCTION
In industrial equipment and robots, high-precision and
high-speed control performances are essential requirements.
To achieve these objectives, it is necessary to increase the
control bandwidth; however, this can amplify high-frequency
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noise or induce inherent resonances in the system. Such
resonances can lead to annoying noise for operators, reduced
productivity owing to increased tack time, and physical
damage to machinery. Therefore, detecting the presence of
resonance, estimating the resonance frequency, and suppress-
ing the resonance are very important topics. This paper
focuses on methods for suppressing resonances, particularly
in loads where resonance characteristics continuously change
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with the position of the mover, which in turn makes estimat-
ing the resonant frequency difficult.

Research on filter-based resonance suppression methods,
such as low-pass filters (LPFs) and notch filters (NFs), has
become popular for their straightforward design and ease
of implementation. Especially, NFs are widely utilized for
their precise ability to diminish signals within a narrow fre-
quency band around the notch frequencywhile allowing other
signals to pass through. These characteristics have led to
the successful implementation of NFs across a wide range
of industrial areas such as wafer scanners [1], biomedical
devices [2], power systems [3], and industrial servo sys-
tems [4], [5]. NF parameters can be set using the frequency
response of the system such as frequency response function
(FRF) measurements and fast Fourier transform (FFT) of
the current signal or velocity feedback [6], [7], [8]. In par-
ticular, FRF measurements have led to research on optimal
NF parameter tuning algorithms using multiple FRFs and
reinforcement learning because of their rich information [8].
Several researches have been conducted to estimate the fre-
quencies of resonances included in current data to configure
the NF parameters in real-time [9], [10], [11]. An adaptive
notch filter (ANF), which sets the notch frequency to the
estimated resonant frequency by the frequency estimator,
has been proposed and successfully applied in industrial
servo systems to suppress resonances [10], [12]. The above-
mentioned filter-based resonance suppression methods can
effectively suppress resonances when there is minimal vari-
ation in resonance characteristics depending on the mover
position. These resonance characteristics primarily appear in
the high-frequency range, typically above 1,000 Hz. How-
ever, when resonance characteristics continuously vary with
the mover position, it becomes challenging to suppress
resonances using fixed-parameter filter-based resonance sup-
pression methods. These resonance characteristics typically
occur in situations where the physical characteristics of the
load significantly vary with the mover position, such as belt
tension in belt-drive loads. These resonance characteristics
primarily appear in the mid-frequency range between 100 Hz
to 500 Hz. In these cases, skilled experts typically address the
situation by progressively adding NFs, sometimes up to five,
within the frequency bands where resonances are anticipated.
They continue this incremental approach until the resonances
are eliminated. However, using too many NFs can decrease
the stability of the system because an NF fundamentally
induces a phase lag in the frequency range lower than the
notch frequency. Therefore, the filter-based resonance sup-
pression methods have limitations in effectively suppressing
resonances that continuously vary with the mover position.
In the remainder of this paper, we refer to these mover-
position-dependent resonance characteristics as a persistent
oscillation (PO).

In addition to filter-based resonance suppression meth-
ods, various control structures suitable for PO suppression
have been developed. The DOB was originally designed to
estimate and compensate for external disturbances [13], and

research has actively explored modifying the DOB struc-
ture or tuning the Q-filter for resonance suppression [14],
[15], [16], [17]. In particular, Q-filter design methods for
resonance suppression have been actively researched [18],
[19]. Recently, a Q-filter designmethodwas developed where
the frequency response of the plant is used to establish the
plant model, and a suitable Q-filter for the plant model
is designed to suppress resonances [18]. In [19], the mag-
nitude of the Q-filter was enhanced in specific frequency
bands to better estimate and compensate for resonances.
However, thesemethods require accurate systemmodels. Fur-
thermore, designing an incorrect Q-filter leads to an increase
in high-frequency noise. Meanwhile, enhancing the damping
parameter of the system is also applicable for suppressing PO.
The velocity feedback structure is a prominent example
among thesemethods [20], [21], [22]. The difference between
the measured velocity and the velocity under nominal plant
conditions is converted into a current unit and fed back to
compensate for resonances [20]. The difference between the
estimated velocity from the state observer and the velocity
under nominal plant conditions is fed back to compensate
for the resonances [21], [22]. However, these methods do
not provide clear guidance on parameter settings. Recently,
research has focused on developing resonance suppression
methods involving neural networks [23], [24], [25], adaptive
control [26], [27] and iterative control [28], [29]. However,
these approaches face challenges to implement in indus-
trial applications for which they require tuning numerous
parameters, implementation of complex control structures,
and substantial computational resources.

To overcome the limitations of previous studies, this paper
introduces a new resonance suppression method for PO.
Overall, the main results of this paper are summarized as
follows:

1) A new resonance suppression method that combines
the DPOC and the DOB is introduced. The DPOC is
composed of three main stages: the ideal plant output
calculation stage, the PO calculation stage and the fil-
tering stage. The signal processed through these three
stages allows the attenuation of the magnitude of the
velocity signal in specific frequency bands to suppress
PO. Also, the DOB can handle external disturbances,
thereby enhancing the control system performance by
simultaneously compensating for both PO and external
disturbances.

2) To implement the proposed method in the discrete-time
domain, a decoupled disturbance compensator (DDC)
is utilized instead of the traditional DOB. The DDC
is a special type of discrete-time DOB in which the
sliding mode dynamics and the disturbance estimation
error dynamics are decoupled [30], [31]. Furthermore,
the stability and robustness of the system using the
proposed method are analyzed.

3) Experiments are conducted on a belt-drive servo sys-
tem. FRF measurements are obtained by changing the
position of the mover in the belt drive system, which
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shows that the resonance characteristics continuously
vary depending on the mover position. The proposed
method is compared with the resonance suppression
method using the ANF [10] to demonstrate the effec-
tiveness of the proposed method in PO suppression.

The rest of this paper is organized as follows. Section II
discusses the modeling of resonance in different frequency
bands and the challenges in suppressing PO. Section III
details the effects and designmethods of the combined DPOC
and DOB structure. Section IV discusses the implementation
of the proposed method in the discrete-time domain and its
stability and robustness. Section V presents the results of
experiments conducted on the industrial belt-drive servo sys-
tem to demonstrate the effectiveness of the proposed method
in PO suppression. Finally, Section VI briefly summarizes the
conclusions and future research directions.

II. MODELING OF RESONANCES
The causes of resonance and noise that can occur in industrial
equipment and robots can be broadly categorized into three
frequency bands: external disturbances in the low-frequency
range, noise in the high-frequency range, and unmodeled
higher-order dynamics. Figure 1 shows a block diagram of
a control system including resonance models. C(s) is the
controller, and H (s) are the filters such as LPF and NF.
θ ref(s) is the position reference, θ(s) is the measured position
(position feedback), f ext(s) is the external disturbances, and
n(s) is the noise from the sensor. The transfer function of the
plant model is given by:

P (s) = Pn (s) 1 (s) =
kt
Jns2

·

∏
i

Jn,is2 + Bn,is+ Kn,i
Jd,is2 + Bd,is+ Kd,i

(1)

where Pn(s) is the nominal plant model, and kt is the torque
constant. Jn = JM + JL is the nominal inertia, JM and JL
denote the motor inertia and the load inertia, respectively.
1(s) = 1r(s)1high(s)1var(s) is the unmodeled higher-order
dynamics. J is the inertia, B is the damping coefficient, and
K is the spring constant. The subscripts n,i and d,i represent
the i-th parameters of the numerator and denominator, respec-
tively. are the i-th inertia of the numerator and the i-th inertia
of the denominator, respectively.

At first, the external disturbances in the low-frequency
range under 100 Hz can arise because of changes in physical
components, such as the influence of surrounding devices,
mechanical wear and deformation. The external disturbances
can distort control inputs or increase the time required for the
system to converge to the desired state. It can be compensated
using integral control methods (e.g., proportional-integral
(PI) controller) or the DOB. The integral term of the PI
controller adjusts the control input magnitude in proportion
to the accumulated error, which allows it to compensate for
errors caused by disturbance. The DOB estimates distur-
bances based on control input and feedback signal, which
modifies control input to compensate for the disturbance.

Secondly, high-frequency noise that typically occurs in a
frequency range above 1,000 Hz can result from processes

FIGURE 1. Block diagram of control system with resonance models.

such as quantization error or sensor noise. High-frequency
noise can reduce the accuracy of feedback signals used in
control, which makes control challenging and potentially
causes sensor or actuator overloads that lead to malfunctions.
High-frequency noise is typically addressed using LPF.

The unmodelled higher-order dynamics can be further
divided into three categories: 1r(s), 1high(s) and 1var(s).
1r(s) represents dynamics that are unmodeled but have neg-
ligible impact on control performance and can be ignored.
1high(s) describes resonance models with relatively consis-
tent characteristics that do not significantly vary with the
mover position, as found in systems such as a ball-screw sys-
tem characterized by a relatively high-stiffness shaft. These
resonancemodels typically cause resonances in the frequency
range of 500 Hz to 1,000 Hz. 1high(s) can be easily com-
pensated by designing an NF as 1−1

high(s). The ANF-based
resonance suppression methods allow for setting the NF
close to 1−1

high(s) by estimating the resonance frequency
of 1high(s) [10], [12]. Lastly, 1var(s) describes modeling
errors including parametric uncertainty, and resonance mod-
els with mover-position-dependent resonance characteristics:
PO. The modeling errors can be compensated for by utiliz-
ing control methods such as robust control, adaptive control
and feedback control. The PO can be found in systems like
a belt-drive system characterized by a belt pulley where
the physical properties such as spring constant and damp-
ing coefficient vary substantially with the mover position.
The PO usually triggers mid-frequency range resonances
between 100 Hz and 500 Hz. 1var(s) can be compensated
using multiple NFs in the frequency ranges where the res-
onance is estimated to occur. However, using multiple NFs
can decrease the stability of the system since an NF induces
a phase lag in the frequency range lower than the notch
frequency.Moreover, even after settingNFs, other resonances
may occur when the operating range of the mover changes or
the controller gains are adjusted. This resonance is difficult
to suppress and may exhibit residual resonance even after an
NF is configured.

III. PROPOSED RESONANCE SUPPRESSION METHOD
A. DECOUPLED PERSISTENT OSCILLATION
COMPENSATOR
Figure 2 shows the block diagram of the control system
using the DPOC. As shown in Fig.2, DPOC is decoupled
from the controller, which allows separate design considera-
tions. The control system in Fig.2 assumes that the controller
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FIGURE 2. Block diagram of control system using DPOC.

is a proportional-derivative (PD) controller, and 1high(s) is
canceled by NFs. The DPOC consists of three main stages
to compensate for PO in the system: the ideal plant output
calculation stage, the PO calculation stage and the filtering
stage. In Fig.2, KP and KD are the proportional gain and the
derivative gain of the PD controller, respectively. uC (s) is the
output of the controller, uDPOC(s) is the output of the DPOC,
and u(s) is the control input to the plant. ω(s) is the measured
velocity, ωi(s) is the ideal plant output, and ωPO(s) is the
calculated PO which includes velocity error signals across
the entire frequency range. HIHPF(s) and HILPF(s) are the
high-pass filter (HPF) and the LPF in the ideal plant output
calculation stage, respectively. Hbias(s) is the HPF to remove
bias in the calculated PO. HLPF(s) is the LPF in the filtering
stage. KDPOC is the gain of the DPOC.
In the ideal plant output calculation stage, the plant velocity

under ideal conditions without resonance is calculated. The
resonance component in the velocity feedback is removed by
filtering through the HILPF(s). The velocity of the nominal
plant operating based on the current command is calculated
by filtering through the HIHPF(s). The cutoff frequencies of
the HILPF(s) and the HIHPF(s) are the same. Next, these two
velocity values are added to calculate the velocity when the
ideal plant operates without resonance. The ideal plant output
is expressed by the following equation:

ωi (s) = HILPF (s) · ω + HIHPF (s) · Pn (s) · s · u (s)

=
ωC

s+ ωC
ω (s) +

s
s+ ωC

·
kt
Jns

· u (s) , (2)

where fC = ωC /(2π) is the cutoff frequencies of the HILPF(s)
and the HIHPF(s). The continuous-time domain expression

of (2) is expressed as follows:

ω̇i (t) =
kt
J

· u (t) + ωC (ω (t) − ωi (t)) , (3)

which is the same as the typical state observer.
Secondly, ωPO(s) is computed in the PO calculation stage

by taking the difference between the ideal plant output and
the measured velocity.

ωPO (s) = ωi (s) − ω (s) , (4)

Equation (4) implies thatωPO(s) converges to zero under ideal
conditions when resonance does not occur.

Finally, in the filtering stage, ωPO(s) within specific fre-
quency ranges is extracted and fed back to the control system
in the current unit. With this configuration, it is intuitively
evident that the resonance components in a specific frequency
range can be attenuated by subtracting uDPOC(s) from uC (s).
Applying loop transformation to the block diagram of Fig.2

as in Fig.3 allows for the analysis of how the measured
velocity and the velocity when the nominal plant operates,
denoted as Pn(s).s.u(s), are utilized in the control system.
HDPOC(s) in Fig.3 is KDPOC · Hbias(s) · HLPF(s) · HIHPF(s).
When the DPOC is used, u(s) can be expressed as (5), shown
at the bottom of the next page. Equation 5 means that the
velocity feedback signal utilized in the controller is modified
from ω(s) to (1 – HDPOC(s))·ω(s) + HDPOC(s) · kt /(Jn.s) ·ω(s)
when the DPOC is applied. The measured velocity passes
through (1 – HDPOC(s)), and designing (1 – HDPOC(s)) with
a magnitude less than 0 dB allows for the attenuation of the
measured velocity in a specific frequency range. The velocity
signal in the frequency range with the reduced magnitude is
corrected to match the velocity when the system operates as a
nominal plant model. Therefore, the DPOC can compensate
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FIGURE 3. Equivalent block diagram of control system using DPOC.

for the PO by attenuating the velocity signal within a spe-
cific frequency range. Note that conventional compensators
such as lag-lead compensators can be designed to respond to
vibrations, but this approach is ad hoc. In contrast, the DPOC
represents a structured compensation strategy that utilizes
feedback signals to selectively attenuate the velocity signal
within a specific frequency band, offering more targeted and
effective suppression of vibrations compared to traditional
compensation methods.

B. DPOC DESIGN METHOD
Consider the following system model in the continuous-time
domain with a matched disturbance:

ẋ (t) = Ax (t) + Bu (t) + Bf (t) , (6)

where x(t) = [θ (t) ω(t)]T is the state vector, A = [0 1;0 0]
is the system matrix, B = [0 kt /Jn)]T is the input matrix,
and f(t) is the matched disturbance. The matched disturbance
contains unknown nonlinear terms such as parametric uncer-
tainties, unmodeled dynamics and external disturbances.
Using (3), (4) is expressed in the continuous-time domain as
follows:

ω̇PO (t)

= ω̇i (t) − ω̇ (t)

=

(
kt
Jn

· u (t) + ωC (ω (t) − ωi (t))
)

−
kt
Jn

· (u (t) + f (t))

= −ωC (ωi (t) − ω (t)) −
kt
Jn

· f (t) . (7)

In the presence of a matched disturbance, ωPO(s) does
not converge to zero even when the resonance does not

occur. In this case, the matched disturbance included in
the output of the DPOC may hinder the proper attenuation
of the measured velocity. Therefore, the filtering stage of
the DPOC should include an HPF to eliminate the bias,
Hbias(s), to ensure the proper functioning of the DPOC. (s)
is the HPF to remove bias in the calculated PO. HLPF(s)
is the LPF in the filtering stage. KDPOC is the gain of
the DPOC.

When applying the DPOC, the measured velocity passes
through (1 – HDPOC(s)), so the frequency characteristics of
(1 –HDPOC(s)) determine the frequency band and the amount
of which the magnitude of the measured velocity is atten-
uated. To attenuate only specific frequency bands in the
measured velocity, (1 – HDPOC(s)) should have frequency
characteristics similar to an NF. In this case, the measured
velocity can be attenuated in the stopband of (1 – HDPOC(s)).
Especially, setting the parameters of (1 – HDPOC(s)) so
that its stopband includes the resonant peak frequencies of
the 1var(s) can enhance the effectiveness of the DPOC by
increasing system damping.
Hbias(s), dedicated solely to bias removal, is set with a

low cutoff frequency to minimize its impact on the frequency
characteristics of (1 –HDPOC(s)). Instead,Hbias(s) is designed
as a 2nd-order Butterworth HPF to effectively eliminate the
influence of bias. HLPF(s) is designed as a first-order LPF to
match the order ofHIHPF(s). In this case, the cutoff frequency
of HIHPF(s) needs to be lower than that of HLPF(s) for (1 –
HDPOC(s)) to exhibit frequency characteristics similar to an
NF. Thus, in the frequency range from the cutoff frequency
of HIHPF(s) to that of HLPF(s), the DPOC can attenuate the
magnitude of the measured velocity signal. This frequency
band is called the ‘DPOC band’ in this paper. In summary,

u (s) = uC (s) − uDPOC (s)

= (KP + KDs) ·

(
θ ref (s) − θ (s)

)
− [KD · HDPOC (s) · (Pn (s) · s · u (s) − ω (s))]

= KP ·

(
θ ref (s) − θ (s)

)
+ KD ·

[
ωref (s) −

{
(1 − HDPOC (s)) · ω (s) + HDPOC (s) ·

kt
Jns

· u (s)
}]

(5)
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FIGURE 4. Bode plots of HDPOC(s) and (1 - HDPOC(s)).

the transfer function of HDPOC(s) is expressed as follows:

HDPOC (s)

= KDPOC · Hbias (s) · HLPF (s) · HIHPF (s)

= KDPOC ·
s2

s2 +
√
2ωbiass+ ω2

bias

·
ωL

s+ ωL
·

s
s+ ωH

, (8)

where fbias = ωbias/(2π ) is the cutoff frequency of Hbias(s),
fL = ωL /(2π) is the cutoff frequency of HLPF(s), and fH =

ωH /(2π ) is the cutoff frequency of the HIHPF(s). Figure 4
shows the Bode plots of HDPOC(s) and (1 – HDPOC(s)). The
parameters of the Bode plots are shown in Table 1. The Bode
plot of (1 –HDPOC(s)) in Fig. 4 shows that the (1 –HDPOC(s))
can attenuate the velocity signal in specific frequency ranges
including the DPOC band. Therefore, by setting the DPOC
band to include the resonant peak frequencies of the mover-
position-dependent resonance characteristics, the damping of
the resonance characteristics is automaticallymodifiable. The
proposed structure is designed to be linear and allows intu-
itive parameter setting based on frequency response, which
provides tuning convenience.

Meanwhile, the DPOC gain, KDPOC, determines the extent
to which the magnitude of the measured velocity is reduced
by DPOC. As the DPOC gain increases while keeping the
remaining parameters fixed, the magnitude of HDPOC(s) also
increases, which indicates that the amount of which the
measured velocity is attenuted by (1 – HDPOC(s)) becomes
larger. The detailed tuning method of KDPOC is covered in
Section III-C.

C. COMBINED DPOC AND DOB STRUCTURE
To compensate for both PO and external disturbances, the
combined DPOC and DOB structure is introduced. The con-
trol systems with the proposed method are shown in Fig. 5(a).
In Fig. 5(a), the blue line represents the signal flow of the
DPOC, while the red line represents the signal flow of the
DOB. QDOB(s) = ωQ /(s + ωQ) is the Q-filter of the DOB,
where fQ = ωQ/(2π) is the cutoff frequency of the Q-filter.
The linear DOB is used to analyze characteristics in the
frequency domain similar to DPOC and to apply the proposed
method to various loads even with only a nominal plant
model. The block diagram in Fig. 5(a) is equivalent to the

TABLE 1. Parameters of DPOC for simulation.

block diagram in Fig. 5(b), which implies using QDOB(s) –
QDPOC(s) in place of the typical Q-filter in a DOB. In this
paper, QDOB(s) – QDPOC(s) is referred to as the Q-filter
of the combined DPOC and DOB structure. QDPOC(s) is
defined as

QDPOC (s) = KD · HDPOC (s) · Pn (s) · s. (9)

Figure 6 shows the Bode plots of QDOB(s), QDPOC(s) and
QDOB(s) – QDPOC(s) when fQ is 48 Hz, and the parameters in
Table 1 are utilized. In the frequency range near the DPOC
band, QDOB(s) – QDPOC(s) is smaller in magnitude than
QDOB(s), which indicates that the DPOC attenuates the mag-
nitude of the feedback signal to compensate for the PO. Note
that designing the Q-filter as a second-order LPF enables the
reduction of the magnitude across the entire frequency range.
However, in this case, there is a risk of increased phase lag in
the low-frequency range, which could lead to a degradation in
control performance. Therefore, it is more advantageous for
PO suppression to reduce the phase lag in the low-frequency
range while decreasing the magnitude in specific frequency
bands, rather than reducing the magnitude across the entire
frequency range.

Assume that the position reference is zero, H (s) is the
bypass filter, and the plant is the same as the nominal plant.
The transfer function from the external disturbance and the
position feedback in the block diagram in Fig. 5(b) is given
by

θ (s)
f ext (s)

=
Pn (s) (1 − (QDOB (s) − QDPOC (s)))

(1 + Pn (s)C (s))
. (10)

When a constant external disturbance of magnitude ‘a’ is
applied, applying the final value theorem on the transfer func-
tion (10) results in (11), as shown at the bottom of the next
page. Therefore, using the DPOC and DOB together allows
for compensation of both PO and external disturbances.
When H (s) is the bypass filter, and there are no external
disturbances, the transfer function from the output of the
controller to the position feedback in the control system in
Fig.5(b) is given by (12), as shown at the bottom of the next
page. Figure 7 shows the poles and zeros of (12) as KDPOC
varies when applying the parameters from Tables 1 and 2.
The arrows in Fig.7 indicate the direction in which the poles
and zeros move as KDPOC increases. KDPOC at which the
poles of (12) exist on the imaginary axis is 0.87. As KDPOC
increases, the poles of (12) move toward the right half plane
(RHP). When KDPOC is larger than 0. 87, (12) becomes
unstable.
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FIGURE 5. (a) Block diagrams of control system using DPOC and DOB (b) equivalent block diagram using DPOC and
DOB.

Meanwhile, QDOB(s) – QDPOC(s) is equivalent to the fol-
lowing transfer function.

QDOB (s) − QDPOC (s)

=
ωQ

s+ ωQ
− KD ·

kt
Jns

·
KDPOCωLs3(

s2 +
√
2ωbiass+ ω2

bias

)
(s+ ωH ) (s+ ωL)

lim
s→0

sθ (s) = lim
s→0

[
s ·

Pn (s) (1 − (QDOB (s) − QDPOC (s)))
(1 + Pn (s)C (s))

f ext (s)
]

= lim
s→0

s ·

kt
Jns2

·

[
1 −

ωQ
s+ωQ

+ KD ·
kt
Jns

·
KDPOCωL s3(

s2+
√
2ωbiass+ω2

bias

)
(s+ωVO)(s+ωL )

]
1 +

kt
Jns2

(KP + KDs)
·
a
s



= lim
s→0


kt ·

[
1 −

ωQ
s+ωQ

+ KD ·
kt
Jns

·
KDPOCωL s3(

s2+
√
2ωbiass+ω2

bias

)
(s+ωVO)(s+ωL )

]
Jns2 + kt (KP + KDs)

· a

 = 0 (11)

θ (s)
uC (s)

=
Pn (s) · 1var (s)

1 − (QDOB (s) − QDPOC (s)) + Pn (s) · 1var (s) · (QDOB (s) − QDPOC (s)) · P−1
n (s)

= Pn (s) ·
1var (s)

1 + (QDOB (s) − QDPOC (s)) · [1var (s) − 1]
(12)
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FIGURE 6. Bode plots of QDOB(s), QDPOC(s), and QDOB(s) - QDPOC(s).

FIGURE 7. Poles and zeros of (12) for KDPOC variation.

=
γ4s4+

(
γ3−KVKTemp

)
s3+

(
γ2−KVKTempωQ

)
s2+γ1s+γ0(

s+ωQ
)
(s+ωL)(s+ ωH )

(
s+ ωbias,1

) (
s+ ωbias,2

)
=

b1s4 + b2s3 + b3s2 + b4s+ b5
s5 + a1s4 + a2s3 + a3s2 + a4s+ a5

, (13)

where KTemp = ktKDωL /Jn, γ4 = ωQ, γ3 = ωQ(ωbias +

ωL + ωH ), γ2 = ωQ(
√
2ωbias(ωL + ωH ) + ωLωH +

ω2
bias), γ1 = ωQ(

√
2 ωbiasωLωH + ω2

bias(ωL + ωH )), γ0

= ωQωLωHω2
bias, ωbias,1 = (

√
2ωbias – j

√
2ωbias)/2, and

ωbias,2 = (
√
2ωbias + j

√
2ωbias)/2. The transfer function (13)

may exhibit RHP zeros depending on the parameter con-
ditions. When there is an RHP zero in (13), the sign of
uDOB(s) – uDPOC(s) can change, making it difficult to pre-
dict control performance and leading to various issues such
as stability degradation and increased overshoot. Therefore,
it is necessary to set KDPOC to avoid the occurrence of
RHP zero in (13). The Routh-Hurwitz stability criterion

TABLE 2. Parameters of controller and plant for simulation.

is used to design KDPOC. The Routh-Hurwitz table of the
numerator of (13) is given in (14), as shown at the bottom
of the page. γ4 and γ0 are positive constants. Thus, all roots
of the numerator of (13) are negative when C1, C2 and C3
are all positive. Therefore, (13) has no RHP zero only if the
following three conditions are satisfied.

1) γ3/KTemp > KDPOC

2)

(
γ3 − KVKTemp

) (
γ2 − KVKTemp

)
− γ4γ1

γ3 − KVKTemp
=
K1

K2
> 0

3)
K1γ1 − γ0K 2

2

K1
> 0 (15)

If condition 1) is satisfied, then the numerator of condition
2) can be formulated as a second-order equation for KDPOC
as follows:

y1 (KDPOC)

=
(
γ3 − KDPOCKTemp

) (
γ2 − KDPOCKTemp

)
− γ1γ4

= K 2
TempK

2
DPOC − KTemp (γ2 + γ3)KDPOC + γ2γ3 − γ1γ4.

(16)

Here, when y1(KDPOC) has two imaginary roots, y1(KDPOC)
is always greater than zero. When y1(KDPOC) has a real
multiple root, y1(KDPOC) is always greater than zero except
for the real multiple root. When y1(KDPOC) has two real
roots, denoted as KDPOC,root1 and KDPOC,root2 in ascending
order, the conditions for y1(KDPOC) to be greater than zero
is given by 0 < KDPOC < KDPOC,root1 and KDPOC,root2 <

KDPOC. Using the same approach, the KDPOC range under
which condition 3) is always greater than 0 can be derived.
If condition 2) is satisfied, then the numerator of condition 3)
can be formulated as a second-order equation for KDPOC as
follows:

y2 (KDPOC)

s4 γ4 γ2 − KDPOCKTemp ωQ γ0
s3 γ3 − KDPOCKTemp = C0 γ1

s2 (γ3−KDPOCKTemp )(γ2−KDPOCKTemp )−γ4γ1
γ3−KDPOCKTemp

= C1 γ0

s1 ((γ3−KDPOCKTemp )(γ2−KDPOCKTemp )−γ4γ1)γ1−γ0(γ3−KDPOCKTemp )
2

(γ3−KDPOCKTemp )(γ2−KDPOCKTemp )−γ4γ1
= C2

s0 γ0

(14)
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FIGURE 8. (a) Block diagram of control system using DSMC with DPOC and DDC (b) equivalent block diagram of
control system using DSMC with DPOC and DDC.

= (γ1 − γ0)K 2
TempK

2
DPOC

− KTemp (γ1 (γ2 + γ3) − 2γ0γ3)KDPOC + γ1γ2γ3

− γ4γ
2
1 − γ0γ

2
3 . (17)

When y2(KDPOC) has two imaginary roots, y2(KDPOC) is
always greater than zero.When y2(KDPOC) has a real multiple
root, y2(KDPOC) is always greater than zero except for the real
multiple root. When y2(KDPOC) has two real roots, denoted
as KDPOC,root3 and KDPOC,root4 in ascending order, the condi-
tions for y2(KDPOC) to be greater than zero is given by 0 <

KDPOC < KDPOC,root3 and KDPOC,root4 < KDPOC. Therefore,
satisfying all conditions in (15) enables the determination of
the requirements for KDPOC to prevent RHP zeros in (13).

IV. PROPOSED METHOD IN DISCRETE-TIME DOMAIN
A. COMBINED DPOC AND DDC STRUCTURE
In most simple loads, such as ball-screw mechanisms,
PD controllers can provide excellent control performances.
However, their efficacy diminishes in complex equip-

ment and robots because of model uncertainties, external
disturbances and nonlinear system behaviors. In these com-
plex applications, using only PD controllers is insufficient,
which necessitates the integration of various control strate-
gies to enhance their effectiveness. Sliding mode control
(SMC) is an excellent alternative control method that ensures
state variables reach and maintain a predesigned sliding sur-
face, even under unmodeled dynamics, external disturbances
and parametric uncertainties. The SMC method can suffer
from chattering because of the nonlinearity of the switching
term; however, utilizing a boundary layer technique for the
switching function can reduce the nonlinearity and alleviate
the chattering. In the discrete-time domain, the invariant prop-
erty of continuous-time SMC is lost because of the limited
sampling period [30]. Instead, the state variables reach and
maintain values within a specific boundary, forming a quasi-
sliding mode. A discrete-time SMC (DSMC) is combined
with the DDC to enable the tracking error to zero and provide
robustness to unknown disturbances [30]. A recent study
has researched DSMC with DDC as an equivalent structure
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to DSMC with DOB in which DDC is a special type of
discrete-time DOB where sliding mode dynamics and the
disturbance estimation error dynamics are decoupled [31].
In this paper, the control law of DSMC with DDC method
is utilized for the following reasons: i) to improve robustness
to parametric uncertainties and external disturbances, and
ii) to implement the proposed method in the discrete-time
domain. Consider the following double integrator system in
the discrete-time domain system with a matched disturbance:

xk = Axk + Buk + Bfk , (18)

where xk = [θk ωk ]T is the state vector, A = [1 T ; 0 1]
is the system matrix, B = [ktT2/(2Jn) ktT /Jn]T, uk is the
input matrix, and fk is the matched disturbance. A switching
function is defined by

sk = Gek = G
(
xk − xrefk

)
, (19)

where G = [g1 g2] is the gain vector to design the slope of
the sliding manifold, ek = xk - xrefk is the error vector, and
xrefk = [θ refk ωref

k ]T is the reference vector. Then, the DSMC
with DDC laws are given by:

uk = −f̂k+(GB)−1
(
Gxrefk+1 − GAxk+qsk − ηsat (sk/φ)

)
,

(20)

f̂k = f̂k−1 + g (GB)−1 (sk − qsk−1 + ηsat (sk−1/φ)) ,

(21)

where f̂k is the estimated disturbance, q is the conver-
gence rate of reaching phase, η is the gain of discontinuous
control for disturbance rejection, 2φ is the thickness of
the quasi-sliding mode band, and g is the gain parameter
of DDC. According to [30], closed-loop slidingmode dynam-
ics and disturbance estimation error dynamics are satisfied as
follows:

sk+1 = qsk − ηsat (sk/φ) + GBf̃k , (22)

f̃k+1 = fk+1 − f̂k+1 = (1 − g) f̃k + fk+1 − fk , (23)

where f̃k = fk − f̂k is the disturbance estimation error. As evi-
dent from (22) and (23), the DDC satisfies the separation
principle, where the sliding mode dynamics and disturbance
estimation error dynamics are decoupled, allowing for the
independent design of each. The following assumption holds
for the entire paper.
Assumption 1: The changing rate of the disturbance is

bounded as |fk+1 − fk | < m, where m is a nonneg-
ative constant. It implies that the disturbance is slowly
varying.

Assumption 1 holds and parameters satisfy 0 < q< 1, 0 <

g< 1, 0< η/φ < q< 1, and η > (GB)m/g. Then, the absolute
value of disturbance estimation error is bounded by m/g, i.e.,∣∣∣f̃k ∣∣∣ < m/g, and the closed-loop sliding mode dynamics are
stable [30].

When the control law of DSMC is in sliding mode,
|sk | < φ, it is represented as follows:

uk = −f̂k + (GB)−1G
(
xrefk+1 − Axrefk

)
− (GB)−1G

(
A −

(
q−

η

φ

)
I2×2

)
ek

= −uDDCk + uFFk + uFdbkk ,

uDDCk = f̂k , uFFk = (GB)−1G
(
xrefk+1 − Axrefk

)
,

uFdbkk = −
[
KP,DSMC KD,DSMC

]
ek . (24)

Therefore, (20) can be decomposed into the DDC term, uDDCk ,
the feedforward term, uFFk , and the feedback term, uFdbkk ,
within the sliding mode. In the sliding mode, the feedback
term is equivalent to a PD controller, which means that the
analysis content from Section III is directly applicable. The
block diagrams of the control system using the DSMC with
DPOC and DDC are shown in Fig. 8(a). In Fig. 8(a), the blue
line represents the signal flow of the DPOC, while the red
line represents the signal flow of the DDC. The feedforward
term, which does not affect stability, has been omitted from
the block diagram. The Q-filter of the DOB and the Q-filter
of the DDC [31], QDDC(z), have the following relationship.

QDDC (z)

= QDOB (s) |s= z−1
Tz

=
ωQTz(

1 + ωQT
)
z− 1

=
gz

z− (1 − g)

(25)

The block diagram in Fig. 8(a) is equivalent to the block
diagram in Fig. 8(b). When the proposed method is utilized,
the estimated disturbance previously calculated by DDC,
uDDCk , transitions to the estimated disturbance by the pro-
posed method, uDDCk – uDPOCk . The Q-filter of the combined
DPOC and DDC structure is QDDC(z) – QDPOC(z). Similar
to (25), QDPOC(z) is defined as

QDPOC (z)

= KD,DSMC · KDPOC · Hbias (z) · HLPF (z) · HIHPF (z)

· Pn (z) ·
z− 1
Tz

= QDPOC (s)|s= z−1
Tz

. (26)

B. KEY FEATURES OF PROPOSED METHOD
In this section, it is demonstrated that the separation prin-
ciple, the stability of sliding mode dynamics and the robust
stability to disturbance of DSMC with DDC method in [30]
are all maintained even when using the proposed method
in the discrete-time domain. Using (13), the Q-filter of the
combinedDPOC andDDC structure can be organized as (27),
shown at the bottom of the next page. The poles of (27) are
defined as λ1 = 1 - ωQT /(1 + ωQT ), λ2 = 1 – ωLT /(1 +

ωLT ), λ3 = 1 – ωHT /(1 + ωHT ), λ4 = 1 – ωbias,1T /(1 +

ωbias,1T ), and λ5 = 1 – ωbias,2T /(1 + ωbias,2T ). (27) can also
organized as (28), shown at the bottom of the next page.
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Using (22) and (28), the estimated disturbance can be
expressed in the discrete-time domain as

f̂k = p1 f̂k−1 − p2 f̂k−2 + p3 f̂k−3 − p4 f̂k−4 + p5 f̂k−5

+ q1fk−1 − q2fk−2 + q3fk−3 − q4fk−4 + q5fk−5

= p1 f̂k−1 − p2 f̂k−2 + p3 f̂k−3 − p4 f̂k−4 + p5 f̂k−5

+ q1
(
f̃k−1 + f̂k−1

)
− q2

(
f̃k−2 + f̂k−2

)
+ q3

(
f̃k−3 + f̂k−3

)
− q4

(
f̃k−4 + f̂k−4

)
+ q5

(
f̃k−5 + f̂k−5

)
= (p1 + q1) f̂k−1 − (p2 + q2) f̂k−2 + (p3 + q3) f̂k−3

− (p4 + q4) f̂k−4 + (p5 + q5) f̂k−5

+ q1 f̃k−1 − q2 f̃k−2 + q3 f̃k−3 − q4 f̃k−4 + q5 f̃k−5 (29)

Theorem 1: Separation Principle: For the system (18),
choosing the control law (20) and the disturbance estimation
law (29), the following closed-loop sliding mode dynamics
and disturbance estimation error dynamics are

sk+1 = qsk − ηsat
(
sk
φ

)
+ GBf̃k , (30)

f̃k+1 = (fk+1 − fk)
− ((p2 + q2) − (p3 + q3) + (p4 + q4) − (p5 + q5))
× (fk − fk−1)

+ ((p3 + q3) − (p4 + q4) + (p5 + q5))

× (fk−1 − fk−2)

− ((p4 + q4) − (p5 + q5)) (fk−2 − fk−3)

+ (p5 + q5) (fk−3 − fk−4)

+ p1 f̃k − p2 f̃k−1 + p3 f̃k−2 − p4 f̃k−3 + p5 f̃k−4, (31)

where sliding mode dynamics and the disturbance estimation
dynamics are decoupled.
Proof: Equation (30) is the same as (22), and detailed

explanations can be found in [30]. Using (29) and (30), f̃k+1
is derived as follows:

f̃k+1 = fk+1 − f̂k+1

= fk+1 − (p1 + q1) fk + (p2 + q2) fk−1

− (p3 + q3) fk−2 + (p4 + q4) fk−3 − (p5 + q5) fk−4

+ p1 f̃k − p2 f̃k−1 + p3 f̃k−2 − p4 f̃k−3 + p5 f̃k−4

= (fk+1 − fk)

− ((p2 + q2) − (p3 + q3) + (p4 + q4) − (p5 + q5))

× (fk − fk−1)

+ ((p3 + q3) − (p4 + q4) + (p5 + q5)) (fk−1 − fk−2)

− ((p4 + q4) − (p5 + q5)) (fk−2 − fk−3)

+ (p5 + q5) (fk−3 − fk−4)

+ p1 f̃k − p2 f̃k−1 + p3 f̃k−2 − p4 f̃k−3 + p5 f̃k−4.

■
When the changing rate of the disturbance is bounded, the

absolute value of f̃k is also bounded as stated in Lemma 1
below.
Lemma 1: For (31), if Assumption 1 holds with |λ1| < 1,

|λ2| < 1, |λ3| < 1, |λ4| < 1, and |λ5| < 1, then there exists
some k0 such that∣∣∣f̃k ∣∣∣
<

(1−(p2+q2)+2 (p3+q3)−3 (p4+q4)+4 (p5+q5))
(1−p1+p2−p3+p4−p5)

· m

for all k > k0 regardless of f̃0.

UDDC (z) − UDPOC (z)
z−1F (z)

= QDDC (z) − QDPOC (z) = QDOB (s)|s= z−1
Tz

− QDPOC (s)|s= z−1
Tz

=
b1 ((z− 1) /Tz)4 + b2 ((z− 1) /Tz)3 + b3 ((z− 1) /Tz)2 + b4 ((z− 1) /Tz) + b5(

(z− 1) /Tz+ ωQ
)
((z− 1) /Tz+ ωL) ((z− 1) /Tz+ ωH )

(
(z− 1) /Tz+ ωbias,1

) (
(z− 1) /Tz+ ωbias,2

)
=

b1Tz (z− 1)4 + b2T 2z2 (z− 1)3 + b3T 3z3 (z− 1)2 + b4T 4z4 (z− 1) + b5T 5z5((
1 + ωQT

)
z− 1

)
((1 + ωLT ) z− 1) ((1 + ωHT ) z− 1)

((
1 + ωbias,1T

)
z− 1

) ((
1 + ωbias,2T

)
z− 1

) (27)

UDDC (z) − UDPOC (z)
z−1F (z)

= QDDC (z) − QDPOC (z) = QDOB (s)|s= z−1
Tz

− QDPOC (s)|s= z−1
Tz

=
b1 ((z− 1) /Tz)4 + b2 ((z− 1) /Tz)3 + b3 ((z− 1) /Tz)2 + b4 ((z− 1) /Tz) + b5

((z− 1) /Tz)5 + a1 ((z− 1) /Tz)4 + a2 ((z− 1) /Tz)3 + a3 ((z− 1) /Tz)2 + a4 ((z− 1) /Tz) + a5

=
b1Tz (z− 1)4 + b2T 2z2 (z− 1)3 + b3T 3z3 (z− 1)2 + b4T 4z4 (z− 1) + b5T 5z5

(z− 1)5 + a1Tz (z− 1)4 + a2T 2z2 (z− 1)3 + a3T 3z3 (z− 1)2 + a4T 4z4 (z− 1) + a5T 5z5

=
q1 − q2z−1

+ q3z−2
− q4z3 + q5z4

1 − p1z−1 + p2z−2 − p3z−3 + p4z−4 − p5z−5 (28)
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Proof: Divide f̃k into f̃1,k + f̃2,k with f̃1,0 = 0 and f̃2,0 = f̃0.
Then, (31) can be organized as

f̃1,k+1

= (fk+1 − fk)

− ((p2 + q2) − (p3 + q3) + (p4 + q4) − (p5 + q5))

× (fk − fk−1)

+ ((p3 + q3) − (p4 + q4) + (p5 + q5))

× (fk−1 − fk−2)

− ((p4 + q4) − (p5 + q5)) (fk−2 − fk−3)

+ (p5 + q5) (fk−3 − fk−4)

+ p1 f̃1,k − p2 f̃1,k−1 + p3 f̃1,k−2

− p4 f̃1,k−3 + p5 f̃1,k−4, (32)

f̃2,k+1 = p1 f̃2,k − p2 f̃2,k−1 + p3 f̃2,k−2 − p4 f̃2,k−3 + p5 f̃2,k−4.

(33)

If
∣∣∣f̃1,k ∣∣∣ <

(1−(p2+q2)+2(p3+q3)−3(p4+q4)+4(p5+q5))
(1−p1+p2−p3+p4−p5)

· m, the
inequality (34), as shown at the bottom of the next page,
holds. Therefore, the above inequality holds for all k >

0. Since all poles of (27) lie within the unit circle in the
z-domain, f̃2,k remains arbitrarily small at some time k0
regardless of f̃0. ■
Therefore, f̃k asymptotically converges to zero when the

disturbance is constant or slowly varying. In these conditions,
sk in (30) also asymptotically goes to zero [30]. The robust
stability of the sliding mode dynamics of the DSMC with
DPOC and DDC under external disturbances is presented in
Theorem 2.
Theorem 2: Robust Stability to Disturbance: For the sys-

tem (18), if Assumption 1 holds and the following conditions
are satisfied, the switching function enters into the small
region, i.e., |sk | <

(GB)Lm
1−q+(η/φ)

, where

L

=
(1−(p2+q2)+2 (p3+q3)−3 (p4+q4)+4 (p5+q5))

(1−p1+p2−p3+p4−p5)

and (GB)Lm
1−q+(η/φ)

< φ. It means that the sliding mode dynamics
are always guaranteed under disturbances.

Condition 1) 0< η/φ < q< 1, |λ1| < 1, |λ2| < 1, |λ3| < 1,
|λ4| < 1, and |λ5| < 1;
Condition 2) (GB)Lm < η.
Proof: The proof process is based on the methodologies

described in [31]. The switching function can be classified
into two cases: |sk | > φ and |sk | ≤ φ.

Case #1. |sk | > φ

If sk > φ, the switching function is upper bounded by s′k ,
whose dynamics are given by s′k+1 = qs′k − η + (GB)Lm.
When the initial value of the switching function s′k is equal to
s′0, the switching function can be represented by the following
sequence:

s′k = qk
(
s′0 −

(GB)Lm− η

1 − q

)
+

(GB)Lm− η

1 − q
. (35)

s′k converges to ((GB)Lm− η) / (1 − q), which is less
than zero fromAssumption 1, Condition 1) and 2). Therefore,
s′k eventually enters in |sk | < φ. In the same way, sk enters
|sk | < φ when sk < −φ.

Case #2. |sk | ≤ φ

If |sk | ≤ φ, then the switching function is sandwiched
between the following two sequences:

s′′k =

(
q−

η

φ

)k (
s′′0 −

(GB)Lm
1 − q+ η/φ

)
+

(GB)Lm
1 − q+ η/φ

,

(36)

s′′′k =

(
q−

η

φ

)k (
s′′′0 −

(GB)Lm
1 − q+ η/φ

)
−

(GB)Lm
1 − q+ η/φ

,

(37)

where s′′0 = s′′′0 = s0. From (36), (37), Assumption 1,
Condition 1) and 2), sk eventually enters in |sk | <

(GB)Lm
1−q+(η/φ)

.
From the Condition 2), the following inequalities hold:

(GB)Lm < η < η + φ (1 − q) , (38)

By dividing 1 − q + η/φ, which is larger than zero, the
inequality (GB)Lm

1−q+η/φ
< φ holds. Therefore, the sliding mode

dynamics are stable under the slowly varying disturbance. ■
In summary, Theorem 1 demonstrates that the proposed

method can be decoupled from the DSMC controller,
as shown in the block diagram of Fig. 8(b), which enables
separate design considerations. Lemma 1 demonstrates the
convergence of the disturbance estimation error dynamics
and the sliding mode dynamics under conditions of constant
or slowly varying disturbances. Finally, Theorem 2 shows
the robust stability of the DSMC method with the proposed
method under external disturbances.

V. EXPERIMENTS
Experiments are performed to validate the effectiveness
of the proposed method in an industrial belt-drive servo
system. Figure 9 shows the experimental setup. The setup
includes a 400 W AC servo motor (RS Automation, Korea),
a 23-bit optical incremental encoder (RSAutomation, Korea),
a 400 W servo driver (RS Automation, Korea), a coupling,
a mover, and a belt-drive load. The belt-drive load and the
servo motor are mechanically connected by the coupling.
The control block diagram for the experiments is the same
as the block diagram in Fig. 8. A second-order Butter-
worth LPF with a cutoff frequency of 2,000 Hz is used to
attenuate high-frequency noises, which is H (z) in the block
diagram in Fig. 8. The sampling period T is 0.125 ms, the
torque constant kt is 0.33 N·m/A, the motor inertia JM is
0.27 × 10−4 kg·m2, and the load inertia JL is
2.97 × 10−4 kg·m2. To show the resonance characteristics
that continuously vary with the position of the mover, the
Bode plots of the system are obtained by shifting the position
of the mover to positions A, B, and C in Fig. 9. Position
A is the starting point located 0.15 meters away from the
pulley where the servo motor is attached. Position B is the
location where the servo motor has completed 3.5 rotations
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FIGURE 9. Experimental setup.

FIGURE 10. Bode plots of experimental setup with position of mover.

from position A. Position C is the target position where
the servo motor has completed 7 rotations from position
A. Figure 10 shows the Bode plots of the system with the
position of the mover. As shown in Fig. 10, it can be observed
that the mover-position-dependent resonance characteristics
where the resonant peak frequency shifts from around 500 Hz
to 250 Hz as the mover moves from position A to C. The
effectiveness of the proposed method is demonstrated in
suppressing resonances, particularly under conditions where

FIGURE 11. Experimental results with low gain set (black-line in (a):
position reference, red-line: DSMC+DDC+ANF, blue-line: DSMC+

DPOC+DDC). (a) position data (b) current command to motor (c) velocity
feedback.

the PO exists in the experimental environment. The experi-
ments that utilize DSMC with DDC and ANF method in [10]
are also performed to compare the resonance suppression
performance. Both methods are implemented in the servo
driver. TheDPOCparameters are given in Table 3. TheDPOC
band is set from 200 Hz to 600 Hz to cover the frequency

−
(1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))

(1 − p1 + p2 − p3 + p4 − p5)
· m

< − (1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))
(
1 +

(p1 − p2 + p3 − p4 + p5)
(1 − p1 + p2 − p3 + p4 − p5)

)
m

= −m+ ((p2 + q2) − (p3 + q3) + (p4 + q4) − (p5 + q5))m

− ((p3 + q3) − (p4 + q4) + (p5 + q5))m+ ((p4 + q4) − (p5 + q5))m− (p5 + q5)m

− (p1 − p2 + p3 − p4 + p5)
(1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))

(1 − p1 + p2 − p3 + p4 − p5)
m

< f̃1,k+1

< m− ((p2 + q2) − (p3 + q3) + (p4 + q4) − (p5 + q5))m

+ ((p3 + q3) − (p4 + q4) + (p5 + q5))m− ((p4 + q4) − (p5 + q5))m+ (p5 + q5)m

+ (p1 − p2 + p3 − p4 + p5)
(1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))

(1 − p1 + p2 − p3 + p4 − p5)
m

= (1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))
(
1 +

(p1 − p2 + p3 − p4 + p5)
(1 − p1 + p2 − p3 + p4 − p5)

)
m

<
(1 − (p2 + q2) + 2 (p3 + q3) − 3 (p4 + q4) + 4 (p5 + q5))

(1 − p1 + p2 − p3 + p4 − p5)
m (34)
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FIGURE 12. Zoomed in plot of Fig. 11 (black-line in (a): position
reference, red-line: DSMC+DDC+ANF, blue-line: DSMC+DPOC+ DDC).

FIGURE 13. Experimental results with high gain set (black-line in (a):
position reference, red-line: DSMC+DDC+ANF, blue-line: DSMC+

DPOC+DDC). (a) position data (b) current command to motor (c) velocity
feedback.

ranges of resonant peak frequencies from position A to C.
The gain of DPOC was set to 0.6 based on the gain boundary
calculation to prevent the emergence of RHP zeros in the

FIGURE 14. Zoomed in plot of Fig. 13 (black-line in (a): position
reference, red-line: DSMC+DDC+ANF, blue-line: DSMC+DPOC+ DDC).

Q-filter of the proposed method. The transfer function of a
bi-quad NFs in the experiments are given as follows:

HNF (z) =

4∏
i=1

s2 +
(
1 − kdepth,i

) ωN ,i
QN ,i

s+ ωN ,i

s2 +
ωN ,i
QN ,i

s+ ωN ,i

∣∣∣∣∣
s= 2

T ·
z−1
z+1

,

(39)

where fN ,i = ωN ,i /(2π) is the notch frequency of the
i-th NF, QN ,i is the Q-factor of the i-th NF, and kdepth,i is
the depth parameter of the i-th NF. These NFs are cascaded
right after the Butterworth LPF. The parameters of the NF
set up using ANF are as shown in Table 4. The experiments
were conducted at both low and high gain settings as shown
in Table 5. By conducting experiments under various gain
conditions, it is demonstrated that the proposedmethod effec-
tively suppresses PO regardless of the gain condition. The
overshoot and tack time are measured to compare control
performances. The tack time is defined as the time difference
between the end time of the position reference to the time
when the position error is bounded within 500 counts. In the
experiments, the desired position is 7 turns, which corre-
sponds to 223× 7 counts. The desired velocity is 500 rev/min,
and the acceleration and deceleration time of reference are
both 100 ms.

Figure 11 illustrates the experimental results after setting
the system to the low gain set in Table 5, utilizing both the
DSMC with DDC and ANF method, and the DSMC with
DDC andDPOCmethod. The zoomed-in plots around the tar-
get position for Fig. 11 are shown in Fig. 12. When applying
the DSMC with DDC and ANF method, the tack time and
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TABLE 3. Parameters of DPOC for experiments.

TABLE 4. Parameters of NFs set by ANF.

TABLE 5. Parameter sets of controller for experiments.

overshoot are measured at 32.5 ms and 336 counts, respec-
tively. When applying the DSMC with DDC and DPOC
method, the tack time maintains 32.5 ms, but the overshoot
is reduced to 276 counts. In both cases, the system oper-
ates stably, and the tack time performances are similar; on
the other hand, applying the proposed method ensures fur-
ther stability and results in a lower overshoot. Figure 13
presents the experimental results after setting the system to
the high gain set in Table 5 and applying both methods.
Fig. 14 provides a magnified graph of the results near the
target position. When applying the DSMC with DDC and
ANF method, insufficient stability leads to the occurrence
of resonance, causing a delayed arrival at the target position
within 500 counts. The tack time is measured at 22.5 ms,
and the overshoot is 860 counts. On the other hand, applying
the DSMC with DDC and DPOC method ensures stability,
resulting in a smooth and stable operation without resonance.
The tack time is 18 ms, which is 4.5 ms faster compared to
the tack time when the DSMCwith DDC and ANF method is
utilized. The overshoot is significantly reduced to 136 counts,
which is 724 counts smaller than when using the comparative
method. The experimental results demonstrate that applying

the proposed method effectively compensates for the PO,
allowing for stable operation without resonance.

VI. CONCLUSION
This paper introduced a novel method for suppressing mover-
position-dependent resonance, overcoming the limitations of
fixed-parameter filters. The DPOC effectively compensated
for the mover-position-dependent resonance by attenuat-
ing the velocity signal within a specific frequency range,
while the DOB effectively managed external disturbances.
Utilizing the proposed method enhanced the control perfor-
mances by addressing both PO and external disturbances.
For discrete-time domain implementation, the DDC was uti-
lized as an alternative to the DOB. The analyses of the
robust stability of the DSMC with DPOC and DDC method
were conducted. Finally, experimental results in an industrial
belt-drive servo system demonstrated the effectiveness of the
proposed method in PO suppression. Future work is aimed
at developing a structure with similar characteristics without
the need to determine the DPOC gain boundary.
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