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ABSTRACT The rearrangement of objects is an essential task in daily human life. Subconsciously, humans
break down such tasks into three components: perception, reasoning, and execution, which are automatically
resolved. This process represents a significant challenge for robots, as they must apply complex logic to
treat all the information and successfully execute the task. In this research, we propose a solution to perform
this task in a human-like manner. For that purpose, we developed a modular framework that provides the
capability to observe and understand the scene, imagine the best solution and execute it, following human-
like reasoning. This is done by combining a zero-shot deep learning model for perception, a zero-shot large
diffusion model to provide an ordered and realistic final scene and a Learning fromDemonstration algorithm
for execution. To test the performance, we conducted several experiments to check the correct resolution
of 2D rearrangement tasks. For that purpose, we have tested the feasibility of the final generated scene,
the ability to generate the trajectory by means of human demonstrations and, finally, we have carried out
experiments with two different robots in a simulated and a real environment. The results obtained prove
the adaptability of our framework to different environments, objects and robots. Moreover, the success rate
of solutions provided and the error in the position and orientation demonstrate a significant advance in the
accuracy and effectiveness of solving rearrangement tasks.

INDEX TERMS Rearrangement task, robot perception, instance segmentation, diffusion model, prompt
generation, learning from demonstration, imitation learning.

I. INTRODUCTION
For humans, performing certain tasks can be so simple that
we can do them automatically, almost without thinking.
However, for a robot, these same tasks can pose a significant
challenge. Tasks such as moving obstacles to reach an object
or rearranging objects in a space are complex for robots.
The task of rearranging objects in a space is particularly

The associate editor coordinating the review of this manuscript and

approving it for publication was Jason Gu .

relevant since it is a process that humans have internalised
and automated. However, it requires a series of steps for
proper execution, such as locating the objects, establishing
a final scene, determining the order of execution for different
objects, and the precise manipulation of various objects, each
with distinct sizes and shapes.

In this context, there are many approaches to this problem,
which is present in a large part of people’s everyday tasks.
Usually, it has been solved by dividing the process into a cer-
tain number of steps, using stored final positions provided by
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FIGURE 1. Workflow of our method which introduces a three-step process for robotic rearrangement. It begins by recognising and processing the cluttered
initial scene into individual object during the Observation phase. Subsequently, these objects undergo a transition to the Imagination phase, employing
Stabble DiffusionXL [4] to generate the goal positions and orientations. Finally after the matching process and the confirmation that configurations are
possible, in the Execution phase, robotic action policies are generated by matching the initial and goal scenes learning the movement model via Learning
from Demonstrations (LfD) provided just one time by the user. Our method boasts characteristics such as being open-source, adaptive and autonomous.

users [1], [2], [3] and pre-programmedmovements. However,
the ideal execution requires the robot to operate completely
autonomously. This implies that the robot must be able to
understand the initial scene, identify the objects and locate
them in space, reproduce a coherent final configuration,
and rearrange the objects to adopt the new configuration
without human intervention. Subsequently, as an alternative
to the use of human data, there is an increasing reliance
on vision-based methods, which can be divided into three
distinct approaches: utilising known methods of geometric
and semantic target states, sequential object pose estimation,
and zero-shot rearrangement with large models.

Generally, in goal-driven methods [5], the effectiveness of
these preconditions has a notable impact on the precision
of the reorganisation. When the target state is unavailable,
these methods are not suitable for real-world applica-
tions.Additionally, in pose estimation-based approaches [6],
[7], despite their well-aligned sequential design with robotic
manipulations, there is a potential vulnerability to cumulative
errors in autoregressive predictions. In the last type of
methods, is where the use of diffusion models that are able
to generate images such as OpenAI‘s DALL-E [8] or Stable
Difussion [9] would come in. These models, having been
trained through a large amount of human data both in image
and video format as well as in text format coming from
the Internet. This makes them capable of generating through
simple prompts a large number of images similar to those that
a human could imagine.

But in rearrangement tasks, it is not only the process of
generating the end points that is important, but also the logic
of the movements and their execution. Most of the work
that focuses on this type of task neglects this aspect, making
use only of pre-programmed movements, which generates
sub-optimal movements that are not capable of working in
a way that is similar to what a human would do [10], [11].
Hence, considering the limitations and advantages of

the methods developed to date, this work introduces a
new proposal for environmental rearrangement tasks. Our

framework involves the use of open-source tools to solve
rearrangement tasks. For that purpose, we have developed
a novel framework, that is composed of several modules
performing different tasks, similar to the functioning of the
human mind. The first module designed is dedicated to
observing and understanding the environment, detecting its
elements. The second module focuses on envisioning the
final configuration of these elements, and the last module
controls themovements to be executed. Thewhole framework
combines state-of-the-art and self-deployed algorithms that
are interconnected in a novel way. A visual idea of our
proposal is shown in Fig. 1.

The first created module combines a Convolutional Neural
Network (CNN) for object detection and localization with
a self algorithm to extract the poses of each detected
object. To this end, we use the YOLO (You Only Look
Once) [12] network with weights pretrained on COCO
(CommonObjects in Context) [13], a dataset with a multitude
of everyday objects.

The second module is responsible for generating a
description of the scene from the detected objects. Moreover,
a Latent Diffusion Model (LDM) [4], capable of generating
multiple images based on the description of the initial scene
obtained by the preceding module is used. In this case,
we have employed Stable Diffusion. The obtained images
are verified to match the number of initially detected objects,
and if not, they are adapted to match through an automatic
selection of the most similar images and a subsequent
filtering process to remove extra elements.

In the third module, the necessary movement order is ver-
ified to avoid collisions, and a Learning from Demonstration
(LfD) [14] algorithm using probability fusion is applied.
The learning algorithm developed by us enables learning
the movement model and is responsible for generating the
required movements for an specific task. To perform
this process of learning from multiple demonstrations and
generalizing to new situations, we have used an algorithm
based on Task-Parameterized Gaussian Mixture Models
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(TPGMM) [15], modified by us to automatically estimate
the task parameters that are truly relevant for solving a new
situation. Depending on the movement to be performed,
the algorithm filters parameterized tasks and retains only
the relevant parameters for each type of movement. This
process is carried out through an iterative evaluation using a
custom cost function developed via a probabilistic evaluation
based on the Kullback-Leibler (KL) [16] divergence between
the different task parameters. Based on the results of this
evaluation, the algorithm decides whether to eliminate or
retain the evaluated task parameters, thereby modifying the
learned model.

Finally, to verify the correct performance of our proposal,
a series of experiments have been conducted to assess
the framework’s functionality both quantitatively and qual-
itatively. These experiments include the rearrangement of
different types of objects (utensils, fruit, office supplies), and
the verification of configurations and movements generated
compared to those performed by a human. Additionally,
an evaluation of our LfD method has been conducted
against other state-of-the-art learning algorithms. The main
contributions presented and developed in the paper are:
• A modular Python framework designed to execute
reordering tasks, ranging from visual perception to
actual execution by a real-world robot, aiming to
replicate human imagination capabilities.

• An estimator of object orientations that refines the
initially detected orientation according to the pointing
direction of each object.

• A multi prompt generator that uses the detected
information to create instructions to the final scenes
generation. In addition, a selector of valid among all the
possible final scenes has been developed.

• A collision checker that generates the ordered list of
objects to avoid collisions during manipulation.

• A LfD algorithm based on the selection of relevant
frames using TPGMM has been designed for the
generation of movements and the sequencing of this
process trying to replicate how a human would solve
these tasks.

• A combination of zero-shot techniques such as
YOLO [12] and StableDiffusion [9], with our own
methods to create an application capable of solving
reordering tasks without the need for specific task
training.

• A fully autonomous framework, in which no person
is needed for the generation of the final position or the
generation of relations between objects. Additionally,
it can be applied to different types of robots, regardless
of their physical constraints.

Our framework is open source, as we use our own
code and open source tools such as YOLO or Stable
Diffusion. A detailed tutorial of how it works, is fully pro-
vided onGitHub (https://github.com/AdrianPrados/Robotic-
Rearreagment-of-Everyday-Objects). Additionally, you can
watch videos of the method developed for the rearrangement

tasks with the ADAM robot in simulation (https://youtu.be/
gyn1992YxhI) and with the TIAGo robot in a real-world
environment (https://youtu.be/IwdsndI9cW0).

II. RELATED WORK
A. OBJECT POSE ESTIMATION
Visual perception plays a crucial role in robotics, particularly
in the realm of object recognition, when addressing the
management of domestic environments. The detection and
estimation of object positions is of great relevance for
manipulation tasks as it is necessary to know where and
how the different objects to be worked with are located in
the environment. The intricacies and diversity inherent in
human homes demand a resilient visual perception model
with the ability to differentiate among a broad spectrum of
objects.

Due to re-training object detection and position estimation
models can be an arduous task, it is common to use zero-shot
learning or pre-trained algorithms with a large amount of data
accessible to everyone. Some examples of these algorithms
are [17] which allows not only to obtain the pose of a given
object but also to determine which are the transformations for
a given movement of this object, the algorithm ZePHyR [18]
which allows new data to be entered into the dataset very
quickly, taking into account factors such as colour and
texture. Other algorithms use the information obtained from
an object detector to estimate the pose of detected item, for
instance, in the algorithm ZS6D [19] that through Vision
Transformers is able to estimate the POSE of detected
elements in real time, or YOLO-6D+ [20] an approach that
extends YOLO to learn the 3D shape of an object from a
single RGB image.

Among the different zero-shot models utilised for object
recognition, the You Only Look Once (YOLO) model
has become a preferred option due to its efficiency and
effectiveness [21], [22]. YOLO’s distinctive ability to esti-
mate classification scores and bounding boxes directly from
input images has positioned it as a valuable tool in home
manipulation applications [23].

In our work, we have specifically use the YOLOv8 [24]
model to identify objects without the need to train a specific
model by creating a set of estimates relevant to our project.
This provides us with a set of critical geometric data,
which allows us to infer essential parameters such as the
position, orientation, width and length of each element. This
customisation enhances the utility of the model beyond mere
object recognition, contributing to a more comprehensive
understanding of the object’s spatial characteristics for the
rearrangement task.

B. OBJECT REARRANGEMENT
Object rearrangement tasks consist of two fundamental
components: the estimation of an endpoint and the transition
between the estimated position of the initial objects and the
final point of arrival.
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First of all, certain approaches for the estimation of
endpoints consider the forecasting of goal poses as a classi-
fication challenge, involving the selection from a predefined
set of discrete options for placing an object. In the context
of rearranging spaces on a household scale, employing a
pre-trained language model allows for the prediction of goal
receptacles, such as tables [3], and the automatic detection of
out-of-place objects [25]. On a room level, the appropriate
drawer or shelf can be classified, with considerations for
individual preferences [26], [27].
Another method of obtaining endpoints is based on

prediction at a more detailed level from a dense set of
target positions. For this, using graph neural networks [28]
or a preference-aware transformer [29], we can generate
high-resolution images that indicate where objects should be
placed. This does not require a set of predefined discrete
user-defined options to be predefined as is the case with
the previously described methods and allows more accurate
poses to be predicted than is possible with language.

Once the end points and the positions of the initial objects
have been estimated, the second step begins, which is to
obtain the transitions. One of the most common methods
is scene graphs. These graphs provide a rich symbolic and
semantic representation of scenes [30], allowing relationships
between objects and their relative positions to be established
more explicitly than language [31]. One of the most widely
used ways to compactly generate these relationships is
through spatial grounding [32], predicted from images [33].
Recent research in robotic manipulation presents work
that leverages scene graphs in planning for rearrangement
tasks [34], [35]. Other approaches of scene graphs that have
been studied in current work include using optical flow, as the
IFOR algorithm [5], or feature cosine similarity [36].

Another way of solving rearrangement tasks that is highly
applied today are methods for predicting continuous poses of
objects.These methods typically use a dataset of exemplary
layouts provided by users. Those kind of algorithms can
learn spatial preferences with a Variational Autoencoder
graph [1]. There are also works that make use of a language-
conditioned reorganisation, where an auto-regressive trans-
former is employed [6], or a diffusion model on poses
which can be combined with learned discriminators to avoid
collisions [7]. Other methods predict continuous target states
by iterative de-noising [37], or perform collision avoidance
during the reorganisation process using gradient fields as the
TarGF algorithm [38]. Other reorganisation approaches use
complete demonstrations given by users as CliPORT [39] or
transporter networks presented in [40], or apply priors such
as human pose context [41].
Although all the previously explained methods allow to

solve the reorganisation problem in a correct way, there
is a limitation that comes from the complexity in real
environments of the graph-based methods and the need for a
large amount of data. In all cases, additional data collection is
necessary for each of the environments, which restricts their
application to certain environments.

Our proposed framework does not necessitate the collec-
tion and training of a dataset of reordering examples. Instead,
we demonstrate that leveraging existing web-scale diffusion
models allows for zero-shot rearrangement. Such models are
used both for the extraction of the relevant position and
orientation data and for the estimation of related factors such
as object relationships in a similar process to the human
imagination.

C. DIFFUSION MODELS AND IMAGE GENERATION FOR
ROBOTIC MANIPULATION
Diffusion models have become the state-of-the-art in image
generation. They are based on the idea of learning by reserv-
ing a process and then perturbing it by introducing noise
(i.e. diffusion) to generate different samples [42]. This virtue
makes them perfect algorithms for image generation [43],
[44]. As a result, multiple solutions for this purpose have been
appearing in recent years [4], [8].

Text-to-image Diffusion Models not only work for image
generation, they also support image editing, starting from an
initial image with a prompt indicating the modifications to be
made (i.e. img2img) [45], and generating a new image with
these modifications. Moreover, changes can be made only
in some areas of the image (i.e. inpainting) [46], providing
the mask of what has to be changed with its descriptive
prompt, obtaining as a result a new image that combines the
information of the initial image with the modifications in the
indicated mask.

Many applications have appeared with the use of these
models. For example, there are solutions for photo editing,
allowing to obtain the desired results even with elements
that are not in the original image [47], [48]. Meanwhile,
in the research field, their application has focused on the
generation of datasets [49], [50] and providing robots with
‘‘imagination’’ [7], [51]. This last idea is one of the basic
concepts of our proposal. In the task of rearranging objects,
some proposals replicate the imagination by making use
of the information of the objects (using Point Clouds)
and high-level language goals [7], others use inpainting
techniques to rearrange the objects in the scene [51].

Taking all these techniques into account, our proposal
consists of using a text-to-image technique, without using
additional information or intervening in the process. Adding
some extra validation steps in the process, we ensure that
a correct image is obtained to solve the rearrangement
task. Being able to generate a large number of images,
subsequently analysed, in order to use the best matching
one. These images are generated by StableDiffusionXL [4]
using only pre-trained weights, so we have a zero-shot
configuration. That maintains the open-source spirit and non-
human intervention of our method.

D. ROBOTIC LEARNING OF MANIPULATION TASKS
Classical approaches to the manipulation process in object
reorganisation tasks employ pick and place actions [52],

VOLUME 12, 2024 92101



A. Mendez et al.: Everyday Objects Rearrangement in a Human-Like Manner

[53] and focus on using motion planners [54], [55]. More
recent work attempts to leverage non-prehensile actions for
more efficient solutions [56], [57] in confined spaces like
tables. The reorganisation of elements in the environment
poses problems such as obstructions caused by clutter in
a single-camera configuration, limitations in the face of
unexpected environmental modifications, or the lack of
complete knowledge of the environment [58], [59].
In an attempt to overcome these limitations, robotics

is moving towards the use of learning techniques. Within
this field, numerous improvements have been developed
for performing human and everyday tasks [60], [61] such
as cleaning and polishing, stacking, assembling parts into
holes, or pick-and-place tasks [62], [63]. For rearrangement
tasks, some works have proposed a deep reinforcement
learning approach [64], while others have introduced
transformer-based algorithms like the Transporter Network
for vision-based manipulation tasks [40].
Other approaches focus on the use of learning techniques

based on human data, such as Imitation Learning or Learning
from Demonstrations. One example is TarGF [38], which
is based on gradient descent and uses target examples
provided by experts. Other examples include the work
presented in [65], which uses inverse reinforcement learning
for non-prehensile multi-object rearrangement, or the NeRP
algorithm presented in [66], which also utilises user informa-
tion for goal state selection via a neural network.

While these works have contributed significantly to
robot manipulation in specific to rearrangement tasks, our
work aims to design a rearrangement framework based on
Learning from Demonstration. In our algorithm, a mixture of
probabilities is applied based on the movement information.
Each trajectory demonstrated by the users is composed
by a probabilistic representation using Gaussian models.
These Gaussians are combined to obtain the zones with the
highest probability of movement using the means (centre of
the Gaussians) and the covariances that define the size of
the Gaussians. This allows the algorithm to reorder these
Gaussians to learn the highest probability of the movements
to be performed, thus avoiding collisions with objects in the
environment and adapting to the specific characteristics of the
environment where the task is performed.

E. OBJECT REARRANGEMENT IN ROBOTICS
Nowadays, different types of robotic implementations have
been increasingly developed that focus on solving problems
of reorganising elements of the domestic environment.

An example of robotic object rearrangement is presented
in [67] a framework via multi-view fusion that is able to
estimate the local similarities using a dataset an a goal image
provided by the users. Another example is StructDiffusion,
presented in [7], a language-guided framework that allows the
user the creation of physically-valid structures using unseen
objects by just generating an specific order. The framework
ROSIE [68] is able to make a fusion of the techniques of the

two algorithms previously explained, where the robot collects
an image and the user, through a prompt, is able to generate
a series of modifications on the initial image. The Knolling
Bot framework [69] makes an encoding and decoding process
through transformers of the elements detected by a camera
and through a reordering process is able to establish an order
to generate the order specified by the user.

Some other frameworks such as CACTI [70] or RoboA-
gent [71] focus not only on solving specific tasks, but also on
task generalisation. To do so, theymake use of techniques that
allow data augmentation and training with this data. To do
so, they make use of highly complex datasets both for the
process of generating the movements and for the estimation
of the correct positions of each of the elements to be
reorganised.

A common factor in all of the works presented is that they
are not completely autonomous. The user is still required
to generate the final positions, to set the desired prompt or
to validate the intake of a large amount of data from the
environment. This makes those methods limited and unable
to work in a truly autonomous way.

Some works in the state of the art have observed these
limitations and have focused on trying to solve them. One of
the most representative examples is the one presented in the
SG-Bot framework [72] where, by means of an observation
process, it extracts the elements on a table, and through the
generation of automatic prompts, it is able to establish a
scene graph where it establishes the reordering process and
the relationship between the elements. Another representative
example is the one presented in Dall-E-Bot [51], which,
by means of camera-based element detection and without
any specific training, is able to generate the position of the
element.

Despite their correct operation, both works have different
limitations. In the first case, the generation of graphs is
associated with a series of relationships that may not be
equal for all cases, and depending on certain objects in the
domestic environment, they can havemultiple interpretations.
In the second case, for the inpainting process generation,
Dall-E-Bot requires fixed elements such as a plate or tablet;
therefore, it is not entirely reconfigurable. Additionally,
in bothmethods, little importance is given to themanipulation
process of the elements in the environment, and in both cases,
they make use of a series of pre-programmed movements,
making the relocation process less than optimal.

All these problems are addressed in our framework
presented in this paper. As other state-of-the-art implemen-
tations, our framework is based on the use of different
zero-shot learning methods, such as YOLO [24] and Sta-
bleDiffusion [4], used to generate the final positions of the
detected objects in the working environment. As a novelty,
these zero-shot learning methods are combined with our
own algorithms, such as an object orientation estimator,
which determines the manipulation orientations of objects,
an automatic prompt generator that uses this information to
create descriptions of the final scenes, and a collision checker
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that generates a list of the order of object manipulation to
avoid collisions.

Additionally, for manipulation, we have developed an
LfD algorithm based on the use of Task Parameterized
Gaussian Mixture Models (TPGMM), which autonomously
utilises only relevant information, thereby obtaining smooth
movement paths that follow the learned human information.
None of theworks presented in the state of the art, such as SG-
Bot [72] or Dall-E-Bot [51], on object rearrangement utilise
these techniques in a combined manner.

Moreover, our method is completely autonomous, mean-
ing it does not rely on any user-provided information.
This characteristic is significant and distinguishes our
work from others, as RoboAgent [71], which depend on
the user selecting certain parameters for the specified
task.

III. METHOD DESCRIPTION
To address the problem of object rearrangement by a robot,
we present an algorithm that combines different artificial
intelligence techniques based on diffusion models as well as
Learning from Demonstration algorithms, allowing the entire
process to be carried out in a way that resembles how a human
would do it.

For this purpose, we propose to make use of a framework
with different modules based on the prediction of the final
positions and orientations using a method based on the
observation of the environment by an RGB-D camera (using
a top-down view of the environment perpendicular to the
workspace, covering the workspace of the robotic arms of
the models used), an imagination by zero-shot information
image generationmodels and a Learning fromDemonstration
process used for the manipulation of the elements as a human
would do.

The novelty of this framework that we have developed
lies in the combination of different artificial intelligence
techniques used in current robotics, as well as the creation
of a proprietary learning algorithm that allows Learning from
Demonstrations and relevant parameters such as position
and orientation, determining how the robot should move in
new situations. The modular pipeline presented is shown in
Fig. 2.

A. OBSERVATION
This process starts with the acquisition of an top-view image
I by the RGB-D camera (perpendicularly to the environment
and covers the manipulator’s workspace) where the robot will
detect the elements placed on the table capturing the initial
state So. After this, the method will obtain in first instance the
classes of the detected objects using YOLO v8. Additionally,
a process of obtaining relevant geometric information (such
as angle, direction and position in the image) created by us,
that defines each of the objects of the classes separately will
be performed. For this purpose, a mask generation process is
applied and additionally, a handle detection process. This is
necessary because the robot will act as a human manipulating

the objects by these handles if they exist. This information
will be sent to the next module for the process to continue
running. This module and all its features are explained in
depth in Sect. III-D

B. IMAGINATION
The data extracted from the image is received by the
imagination module. With the poses received, we have
developed a prompt generator that use the input information
to generate a list of different prompts P using the quantities
and different class objects detected for that purpose. These
P prompts are passed to Stable Diffusion model which,
through the information used for its training and without
modifying the data. This generates a series of realistic images
presenting different types of solutions on how the elements
of the working environment can be rearranged. After this,
we have developed an algorithm that automatically searches
for the image that most closely resembles the I. In order
to do this, it will first search for images that have the same
number of objects as the initial state. If it does not obtain any
image that is exactly the same, it will look for the most similar
image possible (with as few variations of external elements
as possible) and then it will carry out a filtering process
by means of an inpainting process that will eliminate these
extra elements. The image generated by Stable Diffusion and
selected and filtered by our algorithmwill be used to establish
the final positions and orientations of the final Sf state. This
knowledge will be sent (along with the initial state data So)
to the trajectory execution platform. This module is fully
explained in Sect. III-E

C. EXECUTION
To perform a correct rearrangement process, the objects in
the So state must end up as the objects in the Sf state.
The transition between the two states is not direct, as the
rearrangement tasks are set up in a series of sub-tasks that
allow the whole scene to be shaped correctly. To make
this process in a human-like manner, we have developed
a framework, by means of Learning from Demonstration,
is able to perform each of the established sub-tasks. For
this purpose, our algorithm based on TPGMM [73] has
been created, to which a relevant frame selector has been
added to optimise and improve the result for each of the
actions and tasks to be performed. Prior to this process it is
important to establish the optimal order of resolution, which
is considered to be the order in which the objects between
state transitions do not collide. For this purpose, we have
implemented and algorithm that generates a logic order of
the element before the manipulation. this algorithm select
autonomously which is the best order to rearrange the list
of objects to not have collisions between then when and
object is placed in a final position.The Execution module
and the algorithm for Learning fromDemonstrations are fully
defined in Sect. III-F. Once this Execution process is finished,
the task is considered as successfully completed by obtaining
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FIGURE 2. General scheme the method’s functioning. The process goes: Observation → Imagination → Execution. Each of the modules send to the next
information described in the image (text over the arrows).Observation, this module consist of object detection and localisation. The module start with
and object detection (A) and a direction estimator (B and C) that gives us the position and direction to grasp. Imagination, a prompt is constructed from
the detected objects(D), which is used for the creation of the final scenes (E) using diffusion models. Then, the algorithm selects a matching scene, and
inpaints the image to filter possible errors(F). Execution, this module is composed by the collision checker (G) that generate the order to be executed the
rearrangement task and the sequencer by LfD (H) that generates the path to be executed. After that, the movement information can be send them to the
robot, either simulated (I) or real (J).

an organisation in the real environment equal to that obtained
by the Imagination module, starting from the state obtained
in the Observation module.

A number of assumptions have been taken into account for
certain aspects of the rearrangement process. The detection
of the handle assumes that it must have a different colour,
otherwise the detection cannot be taken into account as a
handle but as part of the item itself. This assumption has
been made due to the robustness of our algorithm decrease
considerably in this situation. As for the selection algorithm,
even though it iterates until it finds an image that can be
a suitable solution even if it is necessary to discard several
elements of the image (Approx Solution). There is always
a little chance to not find a feasible solution. It is assumed
that executing the imagination module again with a different
seed to generate new images solves this issue. Finally,
in relation to the workspace, it is defined by the maximum
reachability of the robotic platform used. The camera is
located in a top view configuration that covers all this
workspace.

D. OBSERVATION
When humans want to manipulate something the perception
of the scene initiates the action, the purpose of this
Observation module is to replicate this human ability.
By using different computer vision techniques and deep
learning models, it is possible to make an accurate object
localisation and the prompt generation, that replicates the
human perception. This process will be elaborated in detail
in the following sections.

The first objective of the observation module is to correctly
locate the objects in the scene, as without this information,
the reorganization task cannot be completed. For proper
manipulation and to carry out the rearrangement process,
it is essential to accurately estimate the grasping point and
orientation for each object in the environment. Considering
that during this rearrangement task there are no changes in
the scene, if this happens the task needs to be restarted.
To achieve this, we have designed an algorithm that begins
by processing the image and obtaining an instance segmen-
tation of the scene for each of its elements. Subsequently,
it extracts the Oriented Bounding Box (OBB) and concludes
with the estimation of the object’s direction, taking into
account its centroid and the object’s handle, when applicable
(Fig. 3).
Instance segmentation is performed using a zero-shot

CNN, specifically the state-of-the-art YOLOv8 network [24].
Since our task requires precise object detection, we use the
weights of the yolov8x-seg model, which provides the best
results. The input to YOLO is the image I of the initial state
So. Class identifications and segmented masks of the objects
are provided in the output. The algorithm then proceeds
with OBB extraction, using the minAreaRect() function from
the OpenCV library [74]. This function finds the rotated
rectangle of minimum area enclosing the segmented mask
of the detected objects, providing information about the
orientation and size of the object. However, this orientation
is influenced by the object’s direction (i.e., the usable part of
the object defines the direction), so there is an additional step
to refine this value. An example would be a knife where the
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blade (the part used for cutting) defines the object’s direction
and modifies the orientation of the OBB.

To extract the object’s direction, the first question is
to determine if the object has a handle or not. Handle
detection is done by dividing the object’s mask into two
groups, assuming that the handle and the rest of the object
have different colours, since most of the objects with
handle share this characteristic. The chosen algorithm for
clustering is K-means in the HSV colour space, using H
(Hue) and S (Saturation) channels, aiming to achieve robust
detection independent of scene illumination. At this point,
the algorithm makes a comparison: if there is a handle,
the object’s centre and the handle’s centroid are compared.
Otherwise, the object’s centroid and its centre are compared.
In the first case, if the handle’s centroid is below the object’s
centre, the object’s direction is upwards. In the second case,
the direction is upwards when the object’s centroid is above
the centre.

FIGURE 3. Example of object detection. Green OBB represents detected
object and blue OBB represents final configuration. Blue point means
centroid and red points means handle’s centroid (grasping point).
(a) Upwards blade example. The OBB angle (green) estimates the
alignment as a function of the direction of the blade (upwards). The
handling angle is obtained in this case by adding 90◦ to the OBB angle,
(b) Downwards blade example. The OBB angle (green) estimates the
alignment as a function of the direction of the blade (downwards). The
handling angle is obtained in this case by subtracting 90◦ to the OBB
angle.

Taking into account whether the object is upwards or
downwards, along with the angle information provided by the
OBB, it is possible to extract the actual angle of the object
between 0 and 360 degrees. However, it should be noted
that this angle is the one used to grasp the object, not the
angle at which the movement path is calculated (denoted as
manipulation angle, Hang). For this purpose, an additional
adjustment of the angle measurement is made by applying
a 90◦ clockwise or counterclockwise turn, depending on
the object’s position in the final state Sf . To produce a
smooth, human-like path, the start and end Hang of the path
must be opposite each other. A visual example of the object
localisation process is presented in Fig. 3.

Simultaneously, this algorithm extracts the depth distance
of the centroid of each object to get theZ coordinate of the 3D
grasping point. In order to do this, the centroid points Co are
stored and used to find the distance between these points and
the robot. This distance is measured by the Realsense D435,
the RGBD sensor of the robot.

Finally the algorithm creates an array that contains all this
information (class name, centroid’s, size and angle) of the
detected objects in the initial state So. The grasping strategy

Algorithm 1 Object Localisation
Input: Image I
Output: Detected objects data: (position C⃗o, OBB orienta-

tion O⃗o, manipulation orientation H⃗ang, Size, and Class
Names)
1. Instance segmentation

1: Camera initialization
2: Load YOLO model: Yolom
3: Predict: results← Yolom.predict(I)

2. Extract OBB for each object
4: masks← results.mask()
5: for mask in masks do
6: Binarize image with mask
7: contours← mask.xy()
8: OBBang,Objcentre,Objcentroid ← minAreaRect()
9: Hmask ,Hcentroid ← ObjHandle(mask)
10: if Hmask then
11: C⃗o← Hcentroid
12: if Hcentroid > Objcentre then
13: Direction = Upwards
14: else
15: Direction = Downwards
16: end if
17: else
18: C⃗o← Objcentroid
19: if Objcentroid > Objcentre then
20: Direction = Downwards
21: else
22: Direction = Upwards
23: end if
24: end if
25: O⃗o← AngleRefine(OBBang,Direction[i])
26: H⃗ang← AngleMan(O⃗o,Direction[i])
27: end for

3. Depth estimation for grasping point
28: Z ← DistanceMeasurement(C⃗o)
29: return C⃗o,O⃗o, H⃗ang, Size[i], Z and ClassNames[i]

consists of approximating straight to the object from a top
position while taking into account the centroid point, its size
and angle.This process is repeated one more time with the
image selected as the final state Sf . The complete algorithm
is presented in Alg. 1.With the detected elements, the method
is ready to skip to the next process, the imagination module.

E. IMAGINATION
After the observation, humans imagine which can be the best
solution. In this module we try to replicate this human ability
to create a final state that solves the rearrangement task. Here
our framework generates the image of the final scene where
the objects should be positioned in an ordered way (within the
different ways of placing ordered elements that may exist).
For that purpose, the algorithm generates a list of prompts
that makes use of the detected objects and their quantities.
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This prompts synthesises the necessary information to be
rearranged in the final environment.

To achieve this, the images are generated by Stable
DiffusionXL [4] a Latent DiffusionModel that is trainedwith
a huge set of images and captions and which uses as input the
prompts generated from the initial scene. Themodule consists
of two parts, the first one is the selection algorithm that finds
the best result between all the generated images, while the
second one, is the inpainting process that is used to filter noise
and irrelevant objects of the selected image. Fig. 4 presents an
example of the images that can be obtained.

FIGURE 4. Example of images obtained with the Imagination module.
There are three different scenes, cutlery, fruits and desktop, with two
images for each. Top images are the output of the selection algorithm,
which choose between all the generated images for the best solution.
Bottom images are the output of the inpainting process done to filter
extra information that do not fit with the desire solution.

1) PROMPT GENERATION
The first objective consists of a prompt generation that
describes the scene. For that purpose, we have developed
an algorithm that works like a fill in the gap exercise. After
the object detection, our method has information about the
class names of the objects detected, with this information
it is possible to extract the count of objects that belong
to the same class. Then, the algorithm makes the fill in
the gap composition using the class names and its count
with predefined sentences and adjectives that came from a
database. Fig. 5 presents a graphical example of that process.

FIGURE 5. Visual scheme of the prompt generation process. The class
names and count of the detected objects are the input. Then, our
algorithm does a fill in the gap composition to generate the prompts.
At the end, the algorithm returns a list that contains all these prompts.

It should be noted that this database can be modified by the
user, and adapt the application to other setups or environment

specifications. Moreover, these prompts are combined with a
set of negative prompts (that are taken into account in order
not to generate elements or configurations that impede the
correct understanding of the scene) in order to improve the
final result.

2) SELECTION ALGORITHM
Although Stable Diffusion (SD) generates multiple valid
solutions of organized environments, it sometimes produces
images that are not entirely suitable for the rearrangement
task. These images may contain elements that overlap in
the image, making object detection difficult. SD can also
generate unwanted duplicate elements or additional elements
that were not explicitly requested by the input prompt. This
is why an image selection algorithm has been developed to
obtain the option that best matches and adapts to the prompt
specified by the algorithm. The process is divided into two
steps. The first step is based on searching for an exact solution
(i.e., with the exact same number of elements). If none of the
images generated by Stable Diffusion can generate such an
exact solution, the algorithm then searches for images with
the minimum possible difference.

The selection algorithm begins by iterating over each
image generated by Stable Diffusion If , searching for
an exact match using a checkExact function. Within this
function, object detection is performed using YOLOv8 on the
study image, generating masks for each of the objects in that
image. After this, we obtain a list of objects that is compared
with the original list of objects obtained in the initial image
I. In case they exactly match in both the number of objects
and class identities, it is considered an exact match, indicating
that Stable Diffusion has generated an image with the same
objects as the required image. If this occurs, the algorithm
follows the same process described in Sect III-D, obtaining all
the necessary information for the motion generation process
through imitation learning. If the two lists do not match in
length or have different identifiers for their elements, the
algorithm continues iterating through the rest of the generated
images to find a correct option. If, after iterating through all
the images, there is no solution, it moves to the second part
of the process, where it looks for an image with the minimal
possible variations compared to the initial image I.

To achieve this, it uses the checkAprox function, which
iteratively searches through all images, incrementing the
length of the list by one. For example, if it is searching in
a list of dimension 3, consisting of a fork, a knife, and a
spoon, the algorithm looks for an image that has an additional
element, making it a dimension 4 list. The additional object
can be a repeated element, in which case the algorithm only
takes into account the mask of the first detected element and
the rest of the duplicated objects are discarded, or a different
one, which is not taken into account. The first image that
meets this criterion is chosen as the most approximate option
for If . This process is iteratively repeated indefinitely. The
algorithm tends to converge with at least one approximate
solution in the vast majority of cases. Since it starts by looking
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for exact solutions and then slightly varying approximate
solutions, the algorithm iterates quickly, allowing for an
efficient search in terms of time.

After this process, and once the image has been selected
as valid (as the ones presented in Fig. 4), the information
retrieval process for the required data is carried out, followed
by a filtering process using an inpainting process to obtain an
image with exactly the same characteristics as those required
by the input prompt.

3) INPAINTING
Once the selection algorithm is finished, the imagination
module continues with an inpainting process to filter all the
non-relevant objects and noise that can exists in the selected
image. This step is necessary due to a YOLO limitation
caused by the number of classes that is able to detect, for
example a plate or noise elements created by StableDiffusion.
The inpainting process is done with the cv2.inpaint() function
of OpenCV using the mask extracted with YOLO and
one image randomly selected from a database that can be
modified by the user. A visual result of this step can be seen
on Fig. 4.

After completing the inpainting process, it is necessary to
rescale the image generated by Stable Diffusion to maintain
the aspect ratios with the image of the initial scene. This
process allows for easier alignment between both images,
thus reducing the potential source of error in the relationship
between the real and imagined images. When this process
is done, the framework is ready to run the execution
module, extract the order of movements with the collision
checker and the path needed to complete the rearrangement
task.

F. EXECUTION
Once the initial and final configuration of each of the objects
in the environment is known, it is necessary to carry out the
process of physical manipulation of these objects. To do this,
the execution module developed first estimates the correct
order to solve the task and then, by means of an algorithm
based on the mimicry of human movements through the
learning of different trajectories, performs the execution of
the different elements of the environment.

1) COLLISION CHECKER
Before carrying out the reordering process of the elements,
it is necessary to establish that the movements to be
performed are possible and do not generate collisions. For
this, we have designed an algorithm that, before the execution
of the rearrangement orders, iteratively checks each of the
final locations that the objects will have (Fig. 6).

Our method generates the execution order that establish
which objects will move first, checking that the estimated
final position of each of the objects does not collide with
another object in the scene. To achieve this, having the
data obtained from the initial state So and final state Sf ,
we evaluate each of the possible actions to be taken. In this

FIGURE 6. Collision Checker execution. In (b-f), the red object indicates
the desired final pose and the blue ones the rest of the elements with
which it is compared. (a) Initial state with an specific ordered list
L = [1, 2, 3, 4] estimated by the ordered detected with YOLO,
(b) Checking object 1: no collision. The object is left in the final position
for further comparisons (in this case coincides with the initial position),
(c) Checking object 2: no collision. The object is left in the final position
for further comparisons, (d) Checking object 3: collision. The object is not
moved from its initial position for further comparisons and is placed at
the end of the list to move the other elements to ensure the possible
solution, (e) Checking object 4: no collision. The object is left in the final
position for further comparisons, (f) Re-checking object 3: no collision.
The object is re-evaluated, ensuring that there is no collision as all other
objects have been moved. Final list L = [1, 2, 4, 3].

process, we use the size of the Oriented Bounding Box (OBB)
of each of the masks for individual objects in both So and
Sf . These OBBs are positioned in their initial state, where
the centroid Co establish the position and the orientation Oo
establish the angle of the mask. The initial elements follow
a predetermined order based on the detection order. Starting
with the first element on the initial list, it is placed at the
required final position Cf with the final arrival orientation
Of . After positioning it, collision is checked by examining
whether the OBBs of the moved element and the remaining
elements in the list intersect with each other, or if the
repositioned element is placed within another element in
the list. If this does not occur, the algorithm considers the
positioning as correct, leaves the checked element in its
position in the list, and proceeds with the rest of the elements
in the list.

In case of a collision, the object is placed at the end of
the list since the algorithm considers it necessary to reorder
the other object first to avoid the collision. The algorithm
will continue iterating through the rest of the objects until
it comes back to reevaluate the collision of that first object.
The process will be repeated until the entire list is reordered,
obtaining an order in which there are no collisions between
objects. The complete process of operation is shown in
Fig. 7 applying the algorithm in a real environment for the
rearranging of 3 different objects: scissors, a remote, and a
cell phone.

First, the algorithm receives an initial list generated by the
detection order of YOLO. This list may be correct or not,
and this is verified with the collision check. The algorithm
first evaluates the order of the list given by YOLO (in this
case, cell phone, scissors, and remote) and attempts to move
the objects to the final position (obtained from the image
generated by Stable Diffusion) one by one following this
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FIGURE 7. Example of the execution of the reordering algorithm by
detecting objects in the real environment (a) using YOLO, to obtain the
final positions generated by Stable Diffusion. The list obtained with YOLO
(b) is used to check the collision order (c-f). Once the algorithm selects
the order (g) it is send to the manipulation module to reorder the final
scene as the one created with Stable Diffusion (h).

order. If the object, when moved (red-coloured OBB), to the
final position does not collide, the movement will be possible,
and therefore, its order in the list will not be modified. On the
contrary, if there is a collision, the object that has been
attempted to move will be placed at the end of the list to
rearrange the rest of the elements before it.

The list given by YOLO indicates that the first element
to be evaluated is the cell phone. This object is evaluated
in its final position, checking for collisions with the rest of
the objects. Since there is a collision with the scissors, that
movement is not possible until the scissors are displaced,
so the cell phone will not move from its initial position and
will be rearranged at the end of the list. This process is
iterative, so it will be repeated for each of the objects in the
environment that need to be rearranged.

2) PROGRAMMING BY DEMONSTRATION WITH TPGMM
The task-parameterized Gaussian mixture models (TPGMM)
[73] have been proposed in recent decades as an approach to
robot programming through demonstration. In this process,
TPGMM models, probabilistically encode the relevance of
candidate frames of reference, which can change during the
task. This relevance also considers the learning of orientation
data along with position data, i.e., the complete pose [75],
allowing for a much more comprehensive parameterization
of tasks. In the field of learning by demonstration in robotics,
several works based on this idea have been developed,
as presented in [15] where has been used to encode the
complete pose of the end-effector of a soft robot, and
in [76], in which a TPGMM synthetic data generation
algorithm is presented to cope with partial availability of task
parameters.

In TPGMM, the task parameters are treated asP coordinate
systems, defined at time step t by {bj,Aj}Pj=1, where bj and
Aj represent, respectively, the origin of the j-th reference
frame and a set of basis vectors {e1, e2, . . .} forming the
transformation matrix A = [e1e2 . . .]. All task parameters are
specified in advance by the operator, according to the task
and based on the operator’s prior knowledge. In this way, the
user decides where to establish and specifies that all chosen
parameters are relevant for solving a specific task.

Each of the demonstrations, denoted as m ∈ 1, . . . ,M ,
contains a quantity of T data points of dimension D {ξ} ∈
RD×T , which are encoded in P different reference frames,
resulting in a third-order tensor dataset: RD×T×P. This
dataset is composed of P trajectory samples projected onto
P candidate frames, corresponding to matrices composed of
D-dimensional observations at T time steps. The parameters
of the TPGMM model are defined as {πi, {µ

(j)
i , 6

(j)
i }

P
j=1}

K
i=1,

where πi are the mixing coefficients, µ
(j)
i and 6

(j)
i are the

centre and covariance matrix of the i-th Gaussian component
in frame j in a TPGMM with K components.

The learning of TPGMM model parameters involves
maximising the log-likelihood under the constraint that data
in the reference frames originate from the same source.
This leads to the Expectation-Maximization (EM) algorithm
(defined by Equation. 1, 2, 3) for iteratively updating the
model parameters until convergence. In these equations, the
superscript t represents EM iterations. The initialisation of
model parameters is done using a k-means procedure.

E-step:

γt,i =
πi

∏P
j=1N (X tj |µ

(j)
i , 6

(j)
i )∑K

k=1 πk
∏P

j=1N (X jt |µ
(j)
k , 6

(j)
k )

(1)

M-step:

πi =

∑T
t=1 γt,i

T
, µ

(j)
i =

∑T
t=1 γt,iX

(j)
t∑T

t=1 γt,i
(2)

6
(j)
i =

∑T
t=1 γt,i(X

(j)
t − µ

(j)
i (X (j)

t − µ
(j)
i )T∑T

t=1 γt,i
(3)

The learned model can be used to reproduce new
trajectories for new situations (new positions and orientations
of reference frames), thus generalizing the learned optimal
model. To perform this process, in the first step, the model
retrieves a Gaussian Mixture Model (GMM) at each time
step t by calculating the product of linearly transformed
Gaussians:

N (µt,i, 6t,i) ∝
P∏
j=1

N (At,jµ
(j)
i + bt,j,At,j6

(j)
i A

T
t,j) (4)

Afterward, Gaussian Mixture Regression (GMR) [77] is
used to reproduce the new trajectory based on the learned
model for the new task parameters. The use of GMR
allows leveraging the joint probability density function of the
data (input and output) described by TPGMM. The sets of
dimensions spanned by the input variables (I) and output
variables (O) are defined, respectively, at each time iteration
t . As a result, the data point ξt is decomposed into input data
ξIt and output data ξOt . Consequently,ξt , µi, and 6i can be
redefined as:

ξt =

[
ξIt
ξOt

]
, µi =

[
µIt
µOt

]
, 6i =

[
6Ii 6IOi

6OIi 6Oi

]
. (5)

The temporal GMM deduced in Equation. 4 encodes the
joint distribution P(ξI , ξO) ∼

∑K
i=1 πiN (µi, 6i) of the
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dataset ξ . If we apply this definition for each reproduction
step t , P(ξIt |ξ

O
t ) can be computed as the conditional

distribution:

P(ξIt |ξOt ) ∼
K∑
i=1

hi(ξIt )N (µ̂Oi (ξIt ), 6̂
O
i ), (6)

where:

µ̂Oi (ξIt ) = µOi +6OIi 6Ii
−1

(ξIt − µIi ), (7)

6̂Oi = µOi −6OIi 6Ii
−1

6IOi , (8)

and

hi(ξIt ) =
πiN (ξIt |µ

IO
i , 6IOi )∑K

k=1 πkN (ξIt |µ
IO
k , 6IOk )

(9)

Following this process, the estimated ξ̂Ot =
∑K

i=1 hi(ξ
I
t )µ

O
i

can be applied as a command for the position of the robot’s
end-effector to follow. The covariance information could also
be used to determine the stiffness of the robot’s end-effector.
This allows for controlling the generation of movements of a
robotic manipulator through learning an optimal movement
model using TPGMM and a set of user-provided data, along
with its relevant parameters.

3) MODIFIED TPGMM ALGORITHM BASED ON RELEVANT
TASK PARAMETERS
The use of TPGMM is highly widespread in the field of
learning tasks through human imitation. Despite this, it is
not a perfect method, and in recent years, methods based
on this idea have been developed to optimize the algorithm.
The main limitations of the method arise from the user’s
choice of relevant parameters. Manual selection can lead
to suboptimal learning of movement policies, as the user
may choose task-irrelevant frames for solving a specific task.
Another major limitation is the presence of redundant frames.
Redundancy negatively affects the selection of an optimal
model since TPGMM is unable to distinguish between
two possible solutions to the same problem, resulting in
movements that attempt to consider both solutions equally at
the same time.

To address those problems, works such as those presented
in [78] and [79] have sought to select relevant frames by
generating an importance score based on the covariance
matrices of each frame. Frameswith a value below a threshold
are categorized as irrelevant frames.

Other algorithms [80] leverage this idea and rely on
generating probabilistic weights to categorize the relevance
of frames, allowing for the filtering of necessary information.
In both cases, the algorithm focuses solely on filtering out
irrelevant data, potentially overlooking redundant frames that
could negatively impact solutions.

To tackle this, there are works, like those presented in [81],
that, using a reinforcement learning process, estimate relevant
and non-redundant frames that minimize a specified cost
function. This process is slow and cannot be applied in real-
time. Other works such as [82] introduce a visual selection of

relevant frames based on the morphology of the object, but it
requires slow and costly offline training using reinforcement
learning techniques to obtain a applicable model.

To address the issues of irrelevant and redundant frames,
we have created a proprietary algorithm based on the use
of Kullback-Leiberg Divergence (KL divergence) [16]. As a
novelty, we have implemented a cost function based on this
widely used mathematical tool in pattern recognition that
allows the method to establish the similarity between two
probability density functions denoted as f (x) and g(x), such
that:

D(f ||g) =
∫
f (x) log

f (x)
g(x)

dx (10)

Applying that equation for two gaussians f̂ and ĝ, the

KL divergence has a closed expression where log
|
∑

ĝ |

|
∑

f̂ |

represents the difference in variability is between the two
distributions through the covariance matrices, Tr[

∑
ĝ
−1 ∑

f̂ ]
represents the trace of the multiplication of the inverse of
the covariance matrix of ĝ by the covariance matrix of f̂ , δ

denotes the distribution dimension (expressed by the number
of characteristics) and (µf̂ − µĝ)T

∑
ĝ
−1(µf̂ − µĝ) allows to

estimate the difference between themean of each distribution.
Our algorithm uses this equation to estimate, through a cost
function, the values of relevant frames and also eliminate data
redundancy. The complete algorithm is presented in Alg. 2.

D(ĝ||f̂ ) =
1
2
[log
|
∑

ĝ |

|
∑

f̂ |
+ Tr[

∑
ĝ

−1 ∑
f̂

]− δ

+ (µf̂ − µĝ)
T
∑
ĝ

−1
(µf̂ − µĝ)] (11)

The algorithm starts with the initialisation of parame-
ters providing information about the number of samples
(nbSamples), the amount of path data (nbData), and the
number of frames (nbFrames). Depending on the type of
movement (left to right or vice versa) and the distance
between the frames detected by the algorithm, a specific
dataset is used for each movement. To achieve this, four
different datasets have been recorded by the human, each
with 25 demonstrations. The datasets are divided into two
groups: data from left to right and from right to left. Within
these groups, there is a further division into two subgroups:
those considered long movements (nbData = 200) and short
movements (nbData = 50). The use of oriented datasets
(name we have given to those datasets that uniquely store
a series of movements depending on the starting point of
their initial frame) greatly reduces errors, especially related
to redundant movements, thereby minimising a potential
source of error. Choosing two movements based on distances
helps avoid problems derived from the operation of TPGMM
in generating the solution. This algorithm always generates
a path of length nbData. Therefore, if we use paths with
200 points for very close points, the generated solutions
try to introduce 200 path points into very confined spaces,
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Algorithm 2 Optimization of Task-Parameterized Move-
ments
Input: So data: (position C⃗o and initial manipulation angle

Hoang ), Sf data re-ordered: (position C⃗f , and final
manipulation angleHfang ), distance d and direction θ

Output: Movement path:M
1. Initialization and data aggregation

1: Initialization: nbSamples, nbFrames, nbData;
2: Demo selec: nbData, nbSamples← dataset(d, θ);
3: for t = 1 . . . nbData do
4: for m = 1 . . . nbSamples do
5: TPs from users: slist ← {bj,Aj}nbFramesj=t
6: end for
7: end for

2. Model fitting
8: Set number of Gaussianas nbStates
9: mTPGMM ← initTPGMM (nbStates, nbFrames)

10: mTPGMM ← {πi, {µ
(j)
i , 6

(j)
i }

nbFrames
j=1 }

nbStates
i=1

3. Extraction of irrelevant and redundant frames
11: New paramaters Po & Pf : nslist ← {bj,Aj}nbFramesj=1 ;

12: EM & GMR:Mtrial ← repro(nslist,mTPGMM );
13: for m = 1 . . . nbSamples do
14: for s = 1 . . . nbSates do
15: KL div.:kl ← D(mTPGMM (m, s)||Mtrial(m, s))
16: end for ▷ Eq. 11
17: end for
18: Filter redundant frames (Pred ) by multicollinearity
19: Specified relevant frames (Pr ) and irrelevant frames (Pi)
20: Update: newmTPGMM ← {πi, {µ

(j)
i , 6

(j)
i }

Pr
j=1}

nbStates
i=1 ;

4. Reproduction
21: EM & GMR:M← repro(nslist, newmTPGMM );
22: returnM

resulting in sub-optimal solutions with many curvatures that
can negatively affect the generation of movements on the
actual robot. To address this issue, four datasets covering all
options in our environment have been generated. A series of
practical demonstrations, to prove the efficiency, is presented
in detail in Sect. IV-B.

After the selection based on distance and direction of
movement (data extracted in previous modules), we read
the data previously collected by users and store it in slist .
Data collection in this algorithm can be done kinesthetically
(moving the robot arm directly and collecting data from
the end effector) [83], through a proprietary algorithm for
detecting and recognising human movements through an
RGBD camera [84], [85] or by using a program that allows
generating data by painting a path with the mouse on the
screen.

Once this process is finished, the algorithm performs
model fitting, obtaining an initial model that uses all the
frames from the demonstrations as relevant. After this model
fitting process, the elimination of irrelevant and redundant
frames is carried out. To do this, we use the initial model and,
using the data obtained by the camera and Stable Diffusion,

establish the new frames on which we generate an initial
solution. This solution, Mtrial , is the one we will use to
estimate theKL divergence. To do this, first, we compare each
of the Gaussians that make up the solution for the new frames
with each of the Gaussians from the frames used to generate
the model.

The result of this calculation can give two outcomes:
(a) if KL returns that the covariance matrix is not positive
definite. This error is derived from the multicollinearity of
the data, which indicates a high correlation between the
studied Gaussians. If this is the case, we are dealing with
a redundancy in the frames, meaning that when comparing
each frame with each other, we find that the influence on
the result we are generating is the same, but we have two
distinct solutions for the same case. In this case, those frames
are filtered as redundant frames (Pred ). (b) if KL returns
a numerical value. The greater the dependence between
the Gaussians, the closer the KL divergence value will be
to 0 (0 being exactly the same Gaussian). These values are
summed up to obtain an average value for each demonstration
based on the relevance of the solution for the new frames.
To distinguish the relevance between relevant frames (Pr )
and irrelevant frames (Pi), a variable threshold is used that
aims to reduce values above 60% of the maximum value for
each case. This threshold has been obtained experimentally
to maintain a balance between relevant and irrelevant
frames, regardless of the number of added demonstrations.
This way, we keep (normalized between 0 and 1) values
below 0.6, with 1 normalized over the maximum value
of the values for each solution path. This allows the
threshold to adapt automatically without depending on the
user.

After obtaining the relevant frames, we relearn the model,
but this time considering only those frames. We generate
the solution for the same points detected by the camera and
generated by Stable Diffusion, resulting in the final pathM.
In Sect. IV-B, a series of experiments are presented to verify
the efficiency of the Learning fromDemonstrations algorithm
proposed in this work.

IV. EXPERIMENTAL RESULTS
A. STABLE DIFFUSION EXPERIMENTS
In this section the imagination module will be tested in
order to check its performance. To this end, there are two
main experiments that make a quantitative analysis. First, the
selection of the mode used to generate the images will be
discussed. Second, a test to get the minimum execution time
maintaining a certain successful rate. These experiments were
made in a computer with the Intel i9 12900K CPU and a
NVIDIA 3080 GPU with 10GB of vRAM.

The selection of the mode used in the deep learning model
during the image generation is a crucial decision, because it
affects the final result and the execution time. In our proposal,
we use two different modes using base model and with LoRA
acceleration [86]. The comparison consist of the generation
of 100 images, using the same hardware and checking the
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solutions provided. The results of the test are collected in
Table 1. In this test, the images are classified into exact
images, approx images and invalid images. Exact images
refers to an image that contains the same objects that the
objects detected on the initial state (So). Otherwise, Approx
images refers to an image that presents a solution containing
the objects detected in the initial state (So), with one of those
objects repeated. Finally, Invalid images will be those in
which the required elements are not generated (for example,
missing any of the detected objects) or those in which the
generated images are not realistic enough and cannot be
correctly detected by the algorithm. For this experiment we
have defined that a correct solution is the union between
Exact and Approx images. In Table 1, can be seen that the
successful rate is similar in both cases, around a 30%, that
means that 1 of every 3 images provide a valid solution.
With LoRA, the algorithm generates more exact images
and the execution time is significantly lower, as much as
3.5 times.

TABLE 1. Comparison of the success rate of the modes used to generate
100 images with each mode.

The main objective of this work is to achieve the best
solution in the shortest amount of time. For this purpose,
in the second test with LoRA acceleration we make a few
images generation with different objects and different batch
size. Fig. 8 presents a bar chart that collects the results
obtained. In this test there are four scenes, Scene 1 correspond
to One spoon, one fork and one knife. Scene 2 refers to
Two forks and two knives. Scene 3 is for One mouse and
one apple. And Scene 4 correspond to Two apples. About
the configuration, is the same throughout the test except
in the number of inference steps used to generate the
images.

This value increases from one image to the next according
to an step that can add 1 or 2 to the inference steps used
to generate the image. Also there are three batch sizes: 30,
20 and 10. The execution time is similar in all the scenes,
it only depends on the batch size and the step used to generate
the images. For a batch size of 30 images, the execution
time takes about 126s with a step of 1, while with a step
of 2 takes 141s, being the longest. In the case of a batch
size of 20 images, the execution time with a step of 1 is
80s or 87s using a step of 2. For a batch size of 10 images,
the execution time is the shortest, taking about 39s with a
step of 1, and 40s with a step of 2. Analysing the results
presented in Fig. 8, can be concluded that work with a small
batch size for the image generation is better. The success rate

FIGURE 8. Summary graph with image generation results with different
objects and batch sizes.

outreach a value over 38% in almost every cases and the
inference time is the shortest. From the results obtained we
conclude that the success rate does not increase in proportion
to the number of images generated. Using a batch size greater
than 10, we observe that the number of solutions increases
slightly while the execution time is considerably longer. That
makes the execution time-success rate ratio less efficient. All
these rates are collected in Table. 2. The results provided
generating only 10 images with an step of 2 for increasing
the inference steps between images fits for our proposal.
Since our objective is to have only one valid solution for
the rearrangement task, and the average success rate among
the four scenes with this configuration is 42%, providing
in almost all cases around 4 possible solutions we use a
batch size of 10 images.In other applications, where multiple
solutions are necessary and execution time is not a constraint,
the best batch size is the highest. This is because it provides
a larger number of valid solutions, even though the overall
success rate decreases slightly.

B. LEARNING FROM DEMONSTRATIONS EXPERIMENTS
In this section, the advantages of the presented algorithm
over the widely used classical Task Parameterized Gaussian
Mixture Models (TPGMM) have been empirically tested
through different experiments. Firstly, in Fig. 9, the results
of applying the described algorithm considering all param-
eters as relevant and considering the relevant parameters
after filtering through the study of their Kullback-Leibler
divergence are presented. The experiment has been conducted
with the same dataset for both cases. To assess effectiveness,
100 examples have been generated, taking into account initial
and final positions within a workspace ranging from [-1.2,
1.2] for both axes and orientations ranging from symbol 0◦ to
360◦. Our algorithm shows better results in the execution of
the generated tasks, as it is able to achieve higher efficiency
in terms of obtaining feasible solution paths. These paths are
those that do not generate movements beyond the workspace
limits, implying reaching the physical range limits of the
arm’s movement and considering the input and output frame
orientations. Our algorithm is capable of generating a greater
number of correct data, achieving a success rate of 96%
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TABLE 2. Success rates of image generation sets in different scenes and conditions.

efficiency in the tests conducted, while the experiment carried
out with the classical TPGMMhas an efficiency of 47%. This
can be observed in more detail in Figure. 9c and Fig. 9d,
it is apparent how the classical TPGMM is unable to generate
a valid solution for those frames, while our algorithm
is capable of providing a correct, executable, and natural
solution, mimicking what a human could perform. In cases
where TPGMM can generate a valid solution (Fig. 9b), our
algorithm tends to improve the results by generating much
smoother and more natural solutions.

FIGURE 9. Demonstration of optimization of task-parameterized
movements.(a) Demonstrations generated by the user. Green circles
represent the initial frame and blue circles the final frames, (b-g)
Examples of execution of our algorithm. Top images (b,c and d)
represents the different cases using classic TPGMM. It can be seen that
some cases don’t generate a correct path. Bottom images (e,f and g)
represents the same frames after our filtering process to eliminate
irrelevant and redundant frames. Our algorithm is able to generate a
correct path where classical TPGMM can’t and also is able to filter the
paths to generate smoother solutions.

The algorithm presented in this work has two additional
characteristics related to the selection of demonstration
data: the choice of movement orientation and the distance
of the generated path. When working with environment
rearrangement processes, we have considered the division
into two major groups: left-to-right movements and right-to-
left movements. We categorize movements based on the zone

from which they start (left or right), regardless of whether
they end in the opposite zone or the same. The division
of demonstration data into two groups and their selection
through the algorithm (Alg. 2) shows improvements in data
filtering and avoids problems arising from the quantity of data
with opposite movements, which generates highly redundant
data. If we teach parametrized tasks to perform a movement
in one direction and also a similar movement oriented in the
opposite direction, the algorithm is unable to recognize it as
a redundant frame and therefore cannot be filtered unless it
is irrelevant for task resolution. It is due to this issue that the
proposal was made to divide into two datasets and choose
which one to use based on the frames and where they are
detected. The efficiency of this division can be observed in
Fig. 10.

To perform the comparison, 100 tests (for each case)
have been conducted with frames with random positions and
orientations within the workspace (similarly to the previous
experiment). The comparisons were made by recording three
different datasets: one with left-to-right oriented movements,
another with right-to-left oriented movements, and finally
a dataset with mixed movements. To check the efficiency
of the dataset orientation choice, the same number of data
points was used in all cases (25 in each dataset). For the tests
of left-to-right oriented movements, it can be observed that
using a dataset with oriented data (Fig. 10a) generates correct
data with a success rate (estimated similarly to the previous
case) of 96%. If we look at the case with the mixed dataset
(Fig. 10b), we observe that, despite using our algorithm that
removes redundancies and irrelevant elements, it is unable to
find a solution for all cases. Teaching situations of similar
movement with frames oriented in the opposite direction
generates redundancies (since the generated movement or
path is the same), but they are not detected by the
algorithm, resulting in suboptimal solutions that prevent
proper functionality. The success rate of using combined
datasets drops to 68%, indicating that using separated datasets
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FIGURE 10. Comparison between oriented and not-oriented datasets.
Each column represent a different task parameters. Each row represents
the same task. Green circles represent the initial frame and blue circles
the final frames. (a) Solutions for left to right tasks, (b) Solutions with
mixed data for left to right tasks, (c) Solutions for right to left tasks,
(d) Solutions with mixed data, same as used in (b), for right to left tasks.

significantly improves the results. Additionally, tests have
been conducted with right-to-left movement data, using a
dataset with oriented data (Fig. 10c) and another with the
same mixed data as in the previous case (Fig. 10d). The
result obtained in this case is the same as in the left-to-
right movement, where the use of oriented datasets shows
better results in terms of success rate and optimization of
movements for use in the robot.

In addition to the use of oriented movement datasets, it is
crucial, for the correct development of rearrangement tasks,
to generate paths of the correct length. Since the TPGMM
algorithm generates a solution of the same length as the
data provided in human demonstrations, it happens that for
very close data points, the algorithm generates a path where
it is physically impossible to fit the specified number of
points. This results in paths starting to create curves and
solutions that are not optimal. In our case, the paths in
the datasets have a length of 200 points each. The solution
to enable shorter movements is to reduce the number of
points per path. In this case, it was decided to reduce it
to 50 points per path, attempting to have a single dataset.
This creates the opposite situation, where for very long
movements, the generated paths are very straight and with
spikes, making them unnatural. To address this issue, it was
decided to use both datasets with long lengths (and oriented)
and datasets with short lengths (and oriented). Depending on
the distance between the initial frame and the final frame,
the choice would be made to use the long ones (200 points
per solution) or the short ones (50 points per solution), being
more adaptable for different cases. The use of dynamic data

(mixing data with 50 points and 200 points) is not possible
since the model is unable to perform the TPGMM model
initialization process. The result of using short versus long
datasets for situations where the frames are close can be
observed in Fig. 11.

To assess its efficiency, we conducted 100 tests with
different frame positions and orientations for each oriented
dataset. The results show varying outcomes depending on the
test distances (Table 3). If the distance between frames is less
than 100 units, the algorithm using long datasets is unable to
generate any correct solutions. If we use values up to 150 units
of distance, the algorithm using long datasets can generate
a 75% success rate. Beyond 200 units, the path solution
returns to its 96% success rate. Therefore, experimentally,
it is found that when the distance between frames is less
than 200 units, it is optimal to use the short dataset as
it generates higher success percentages, as described in
Table 3.

FIGURE 11. Comparison between short and long length datasets. Each
column represent a different task aprameters. Each row represents the
same task. Green circles represent the initial frame and blue circles the
final frames. (a) Examples of solutions using long length datataset.
The method is unable to generate a solution that fit in the space between
frames. (b) Examples of solutions using sort length datataset. The method
is able to generate a correct solution that fit in the space between frames.

TABLE 3. Comparison of the success rate of the datasets as a function of
the distance in units (un.) between frames.

To assess the efficiency of the LfD presented, we con-
ducted a quantitative comparison against widely used
algorithms within the LfD domain using a dataset with
real-world data captured through movement capture for
two tasks in a real environment: the shooting puck task
and the sweeping task. The algorithms against which we
have compared include the base TPGMM, Probabilistic
Movement Primitives (ProMPs) [87], that directly learns
a probabilistic model from demonstrated trajectories, local
Kernelized Movement Primitives (KMPs) [88] that reduce
the use of manual basis functions using kernel techniques,
and Task-Parameterized Probabilistic Movement Primitives
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FIGURE 12. Experiment with real data from [89]. Each of the rows shows different experiments between the LfD algorithms compared against our
implementation. (a) Three different examples for Shooting Puck task (full row), (b) Three different examples for Sweeping task (full row).

(TP-ProMP) [89], which relies on using multiple local
references to a ProMP model.

For the evaluation of tasks in the real environment,
all methods were compared for two real-world tasks. For
the Shooting Puck task, demonstrations were captured by the
user shooting the puck towards a net on the table. For the
Sweeping task, demonstrations were solely performed with
a specific oriented movement (from right to left), simulating
the task of dragging trash towards a user-placed receptacle.
The visual results of all algorithms can be observed in
Fig. 12, where each method is depicted based on the captured
demonstrations.

To validate the efficiency of the algorithms, we selected
N demonstrations from the dataset as the training set
and 1 demonstration as the test trajectory, replicating the
experiments presented in [89]. To evaluate the predictive
accuracy, we employed the Euclidean distance as a posi-
tion similarity measure. For orientation, the norm of the
quaternion difference was used as the metric. The mean of
these metrics over the trajectory is reported, providing a
straightforward and comprehensive reflection of performance
throughout the entire trajectory. The position similarity
measure is presented at critical points (start and end).
This process was iterated 100 times, and the average,
along with the standard deviation, was computed for a
robust assessment of predictive performance. The results
are presented in Table 4. These results show a significant
improvement compared to the rest of the methods, both at
critical points (start and end) and in the overall trajectory
mean and final orientations. By considering only the truly
relevant information for the new frames of the task to be
performed and by eliminating existing redundancies between
the data, the presented imitation learning method is capable

of generating trajectories with very small errors, effectively
solving tasks with new endpoints and starting points not
demonstrated by the user.

C. ROBOT EXPERIMENTS
In order to test the real performance of our proposal,
some experiments have been conducted with two different
robots to prove the ability of the method to be used in
different platforms. One of them has non-anthropomorphic
arms (ADAM) and the other has anthropomorphic arms
(TIAGo). The experiments involve solving various object
rearrangement tasks in both a simulated and a real
environment.

The simulated environment is where the test with the
ADAM robot [90], [91] is carried out. This robot is a
mobile bimanipulator platform designed to provide personal
assistance to elderly individuals in performing physical tasks
indoors. ADAM serves as a development platform for various
tasks, such as social navigation [92], detection and filtering
of reflective surface for mapping indoor environments [93] or
learning manipulation through user demonstrations [83]. The
robot has two UR3 arms positioned at the top of the robot
torso, arranged in a configuration similar to human despite
having non-anthropomorphic manipulators.

For the development of tests in simulation, an environment
has been created in Matlab where the simulated model of
the robot has been used to replicate the movements of the
solution path. A robotiq 2F85 gripper has been added to the
end effector of the robot to verify that the grip orientation
configurations were correct. To generate the configurations,
a custom inverse kinematics algorithm has been applied based
on searching for the optimal arm configuration from both
exact solutions of inverse kinematics and solutions that do
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TABLE 4. Mean ± SD distance from ground truth for LfD algorithms.

TABLE 5. Table of errors in positioning and orientation of rearrangement experiments.

not generate collisions with the elements of the environment
or the robot’s own body. For the simulation, demonstration
data has been collected using the TAICHI algorithm [84],
[85], through which a series of different data points have been
captured for each type of movement using an RGBD camera.
It is important to note that, since the TPGMM operates in
a simulated environment, a re-targeting process of the path
points for the physical and mechanical limits of the ADAM
robot is necessary. The result of the simulation, illustrating
the functioning of the entire framework, can be observed in
the following video: https://youtu.be/gyn1992YxhI. In the
simulation experiment, we focused on visualising the paths
and hid the object models to avoid interference with this
process. These models were used to calculate the efficiency
of the method presented in the Table 4.

The tests in the real environment have been conducted
using the TIAGo robot [94]. This robotic platform is one
of the most widely used for household task resolution [95]
and has also been extensively utilised for the development
and testing of imitation learning algorithms [96]. The robot
has two arms with an anthropomorphic composition, having
a structure practically identical to that of the human arm.
In this case, the demonstrations were performed through
a kinesthetic process, where we directly captured the data
using TIAGo’s own arm. Once demonstrations dataset was
generated, the process was carried out in two different
scenarios. The operation of an example of one test on the
real environment can be observed in the following video:
https://youtu.be/IwdsndI9cW0. An example of the tests

carried out in simulation and in the real environment is
presented in Fig. 13.
The experiments with the robot in the real environment

were carried out with the TIAGo robot base fixed and facing
thework table. This allows us to have a stable global reference
with respect to the robot itself. Additionally, it is necessary
to carry out a configuration generation process (both for the
ADAM robot and for TIAGo). This process is specific to
each robot and allows the paths generated to be adapted to
the configurations of the different robotic arms that exist in
the state of the art, which allows them to be generalised.
This has not been included as part of the framework so that
any user can make use of our method regardless of the robot
used.

To assess efficiency in various tests conducted both in
simulation and in the real environment, we have evaluated the
error in the final placement of objects, considering the image
generated by StableDiffusion as the ground truth. In this
regard, Table 5 presents the position errors for each object
and the orientation error for three of the conducted tests.

The position errors in both X and Y do not exceed 2 cm
in any case, ensuring that the robots can replicate with great
fidelity the learned paths, easily achievable by robotic arms.
Additionally, it is noted that the maximum error obtained in
the experiments is 0.056 radians, indicating that the robots
can accurately follow the orientations of different objects,
and the developed algorithm generates feasible solutions for
robotic arms. In this way, we observe in a general sense that
the robots are capable of solving various types of tasks with
objects of different shapes, sizes, and textures in a stable
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manner, obtaining systematic and small errors in the majority
of experiments.

FIGURE 13. Tasks performed in simulation with the ADAM robot
presented in top row (a) and in the real environment presented in down
row with the TIAGo robot (b). For simplicity, objects are not displayed in
simulation. In the real environment experiment, the entire process
operation is observed, including the object grasping procedure.

V. CONCLUSION AND FUTURE WORK
This work introduces an object reconfiguration framework
in a robot’s working environment. The proposed framework
novelty comes from the combination of state-of-the-art
zero-shot models for image detection and generation with
self-developed algorithms. Our own implementations in this
work are the object direction estimator, the multi prompt
generator, the final scenes selector, the collision checker
and the Learning from Demonstrations algorithm for path
generation. Moreover, the modular design of our framework
allows it to be optimised or used individually, adapting it to
various tasks or projects. To test its performance, we have
made experiments with the ADAM robot (simulation) and
the TIAGo robot (real environment). These results include
accurate object detection, generation of realistic solutions,
and smooth and natural movements. During both test,
experimental errors in position and orientation were low, with
a position error lower than 2 cm and an orientation error
smaller than 0.056 radians. We also highlight the virtues of
each modules:
• The perception module, which uses YOLOv8 and our
own developed algorithms, is effective in identifying
object positions and orientations. Its robustness is
maintained under various conditions, such as different
object types, sizes, distances and partial occlusions.

• The imagination module, based on our automatic
generator of prompts and StableDiffusion accelerated
by LoRa, generates useful instructions to obtain ordered
images. Moreover, the self-developed algorithm selects
the best solution without user intervention.

• The execution module, with our Learning from Demon-
stration algorithm, ensures safe and precise movements
done in a human-like way, surpassing traditional meth-
ods in a variety of tasks.

Despite the advantages and innovations presented, each
module has its limitations and can be improved. In the

observation module, the combination with other neural
networks could increase the accuracy of object detection.
In the imagination module, the main limitation is to generate
cues that faithfully represent all features of the environment.
One possible approach is the semantic extraction of spatial
relationships between objects (e.g., ‘next to’, ‘on’, ‘left’),
which could generate more controlled solutions. In addition,
the selection of duplicate objects could be improved by an
algorithm that chooses the best positioned one and eliminates
the remaining ones. In the execution module, the use of both
arms could increase efficiency in repositioning, allowing the
robot to consider the position of objects and execute the
movement more optimally and quickly.

Other relevant improvement consist of an integration of
a human-robot interaction. This could be done using voice
instructions that tell the robot how to set the scene (refining
the generated prompt), or directly interacting with the robot
in a collaborative loop where the user can place an object to
help the robot rearrange the remaining objects.
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