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ABSTRACT In this paper, we proposed the implementation of a simple and lightweight Atrial Fibrillation
detection based on an improved Variable Step Dynamic Threshold Local Binary Pattern algorithm. Using
feature selection based on correlation and statistical significance, we can reduce the input feature size
to just 44 features without significantly degrading classification accuracies. Tested on 15-second signal
segments from the MIT-BIH Atrial Fibrillation Database and combined with a support vector machine
classifier, the proposed method can achieve 99.14% sensitivity, 99.12% specificity, and 99.13% accuracy.
When the input signal length is 60 seconds, the sensitivity, specificity, and accuracy are 99.49%, 99.46%,
and 99.47%, respectively. The reduced input feature size results in a machine learning model size as small
as 132.86kB when the input signal length is 60 seconds. When implemented on an Arm Cortex M4-based
STM32F413ZHT3 microprocessor with 100MHz clock frequency, the proposed method can achieve similar
performance as a PC-based system with an average current consumption of just 27mA. The embedded
C program can fit in as small as 114.46kB of flash memory and complete one SVM inference as fast as
11.28ms. The results presented in this paper show that it is possible to do highly accurate machine learning
classification that can detect Atrial Fibrillation from ECG signals on a low-power, constrained resource
microcontroller. Our results will make developing a high quality, low cost, and low power wearable smart
medical electronic device for detecting atrial fibrillation from ECG signal much easier.

INDEX TERMS Health, cardiology, preventable disease, electrocardiogram, arrhythmia, atrial fibrillation,
machine learning.

I. INTRODUCTION
A. BACKGROUND
Atrial Fibrillation (AF) is one of the most common types
of arrhythmia in the world [1]. It has been associated
with increasing risk of other diseases, including poten-
tially deadly cardiovascular diseases such as stroke [2] or
non-cardiovascular diseases like dementia or Alzheimer’s
disease [3], [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabian Khateb .

Researchers have identified AF burden as an important
parameter in predicting AF-related risk of stroke. AF burden
is defined as the overall time spent in AF during a specified
period and is expected to change dynamically within a
minimum and a maximum range. For this reason, continuous
monitoring of the occurrence of AF is important in the
diagnosis and characterization of AF in a patient [5].

Conventionally, long-term monitoring of AF is done using
a wearable Holter device, capable of recording electrocar-
diogram (ECG) signals for a long period of time. A trained
medical expert will then check the long ECG recording for
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abnormal beats, including AF beats. This process is tedious
and time-consuming, which will be a huge burden to the
medical staff. Furthermore, in some countries, there are not
enough medical experts available who are trained to diagnose
cardiovascular diseases from ECG signals.

B. PREVIOUS WORKS ON DETECTION OF ATRIAL
FIBRILLATION BY MACHINE LEARNING
In order to solve the problems associated with conventional
methods, an automatic method of detecting atrial fibrillation
beats from ECG signals is necessary. Based on machine
learning, this algorithm can learn from expert annotated
signals and use the learned patterns to detect similar ECG
beats in new signals. Previous research has shown the
necessity and potential of using machine learning-based
analysis of ECG signals [4], [6], [7], [8], [9]

Due to its ability to automatically detect significant
features, several previous works have proposed deep
learning-based methods for detecting abnormalities, includ-
ing atrial fibrillation and other arrhythmia, from ECG signals.
These methods enable researchers to leverage advances in
electronic engineering technologies, such as the latest central
processing unit (CPU) or graphical processing unit (GPU)
having large computing powers.

In work by Mahmud et al., [10], a two-dimensional deep
convolutional neural network (2D CNN) is modified for
use with one-dimensional (1 D) signals. The authors imple-
mented a method called depthwise separable 2D convolution,
where the spatial and inter-channel convolution operations
are performed separately, reducing model complexities and
computation time. The method proposed in [10] achieved
a high accuracy of 99.28% when tested on a 5-class
classification of ECG data in the MIT-BIH Arrhythmia
Dataset. However, the work by [10] assumes a beat-by-beat
segmented input ECG signal, making its accuracy dependent
on the accuracy of the beat detection and segmentation
algorithm [11].

Petmezas et al. [12] combined convolutional neural
network (CNN) and long short-time memory (LTSM) to
achieve 97.87% sensitivity and 99.29% sensitivity when
used on the MIT-BIH Atrial Fibrillation Database (AFDB)
to classify ECG beats into four classes (Normal, Atrial
Fibrillation, Atrial Flutter, and AV Junctional Rhythms).
While this method can work with a very short input signal
length (one beat), similar to the work by [10], its accuracy
depends significantly on the accuracy of the beat detection
method used.

C. PREVIOUS WORKS ON RESOURCE-CONSTRAINED
DEVICE-BASED AUTOMATIC ATRIAL FIBRILLATION
DETECTION
Recent advances in semiconductor and microelectronic
technologies have allowed the development of small-sized,
battery-powered electronic biomedical devices that can be
worn by a person and used continuously with minimal

disturbance in their daily activities. If monitoring and
detection of patients’ conditions can be implemented in
these devices, the quality of life of the patients and their
families will be improved significantly, and the work burden
of medical staff will be reduced.

Deep learning-based methods can achieve relatively high
classification accuracies at the cost of a high computation
load and large memory requirement. These trade-offs mean
implementing a deep learning-based detection algorithm on
a low-power and low-cost wearable microcontroller device is
not trivial. Previous works have been able to walk around this
problem using cloud-based detection [13] or edge hardware
with a relatively large computing power such as a Raspberry
Pi board [14] or NVIDIA Jetson Nano [15].

Tseng et al. [13] propose a sliding large kernel-based
deep learning algorithm for processing and classifying ECG
signals acquired by mobile devices. The method proposed
by [13] takes advantage of the currently ubiquitous wireless
high-speed internet connection to transmit ECG data from
a mobile device to a network server. The ECG signals are
converted into images in the server and processed using a
deep learning method.

Farag et al. [14] proposed using a short-time Fourier
transform (STFT) based one-dimensional convolutional
layer to generate a spectrogram from the input ECG
signal. These one-dimensional features are then con-
verted into two-dimensional heat maps and classified using
two-dimensional convolutional neural networks. Using the
MIT-BIH Arrhythmia Database and running on an edge
device based on Raspberry-Pi 3 model B+, [14] achieved
99.1% classification accuracy while using up to 12MB of
random access memory.

Seitanidis et al. [15] used two-dimensional convolutional
neural networks (2D-CNN) to classify two-dimensional
image representations of ECG signals. The input ECG signals
are segmented by beats, and each beat is converted into a
128 × 128 pixel grayscale image. Using NVIDIA Jetson
Nano as the edge device, [15] achieved 95.3% accuracy
when classifying ECG signals from theMIT-BIHArrhythmia
Database.

The requirement of using cloud-based or high compu-
tational power hardware imposes severe limitations on a
wearable medical device. The necessity to transmit all
recorded signals to the cloud for classification means
large data transmission costs will be incurred. The energy
required for the wireless data transmission will also be
significant, reducing the device’s battery life or requiring
larger batteries to be used, degrading comfortability and
usability [16], [17]. Using a system with large computing
power means there will be a higher heat dissipation on
top of the larger energy consumption, both of which
are not ideal for a wearable medical device. In addition,
transmitting and storing a patient’s raw biomedical signal to
the cloud will pose significant security and privacy-related
risks [18]. Platforms with higher computing power and
larger memory capacity are also typically more expensive,
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increasing production costs and the financial burden for
patients.

For the above reasons, developing an ECG classification
method that can be run on an edge device with limited
computing resources is essential.

Reducing the computation load of the detection system
can be achieved by using manually selected features-based
machine learning. Instead of having the machine learning
model automatically find significant features of the input
signals, they are previously selected by a human expert. The
selected input features are then used as the input vector
for a machine learning classifier such as a support vector
machine (SVM). Using extracted features as classifier input
reduces the input dimension and the search space for the
machine learning model training. This approach will reduce
computing power and memory size requirements for the
hardware.

Chen et al. [19] selected five features consisting of
statistical parameters of the RR intervals for use with a
simple artificial neural network (ANN) classifier with only
a single hidden layer with three nodes. While the training
phase of the machine learning model was done on a personal
computer (PC), the trained model was embedded in a
low-power microcontroller for the on-the-edge inference.
This method achieved 94.5% classification accuracy and a
2.22ms processing timewhen used on 15 seconds length ECG
signals from the China Physiological Signal Challenge 2018
(CPSC2018) [20].

Ganapathy et al. [21] proposed a method based on dynam-
ically assigned symbolic representation of RR intervals
of an ECG signal as the input feature to conventional
classifiers. In [21], each RR intervals are divided into
several classes based on its lengths, using threshold values
dynamically determined from the average value of the RR
intervals of the whole signal. The generated time series
of codes are then converted into a cooccurrence matrix,
which will be the input features for machine learning.
Tested on the Atrial Fibrillation Prediction Challenge
Database (AFPDB) and the Atrial Fibrillation Termina-
tion Challenge Database (AFTDB), the method proposed
by [21] achieved 94.0% and 99.8% classification accuracies,
respectively.

Previously, in the work by Yazid and Mahrus [22],
we proposed a new feature extraction algorithm for the
detection of atrial fibrillation from ECG signals called
Variable Step Dynamic Threshold Local Binary Pattern
(VSDTLBP). Consisting of only simple arithmetic and
logic operation, our proposed feature extraction method can
result in a 99.11% sensitivity and 99.29% specificity when
combined with an SVM classifier and applied to 60 seconds
length ECG signals from the MIT-BIH Atrial Fibrillation
Database.

The relatively simple computation involved in the
VSDTLBP algorithm and its significantly higher classi-
fication accuracy among the reported works on Atrial
Fibrillation detection algorithms make it a suitable candidate

for implementing a wearable AF detection device on a
low-power microcontroller.

D. CONTRIBUTION OF THIS WORK
In this paper, we present an improvement of the algorithm
proposed in [22] and discuss its efficient implementation on
low-power microcontrollers. The method proposed in this
work will be shown to achieve high classification accuracy
even when implemented as an embedded application in
a low-power and low-cost microcontroller. The memory
footprint and the computation time required by the proposed
method are relatively small and suitable for an at-the-edge
classification of Atrial Fibrillation.

The contributions of this work are:
1) Improvements to the VSDTLBP algorithm to make it

more suitable for use in low-power microcontrollers.
2) Efficient implementation of the VSDTLBP algorithm

in constrained resource edge device/microcontroller.
3) Classification accuracy of the proposed method is

shown to be comparable with previous works that are
based on high computing power systems such as PC or
GPU.

4) When compared with previous works on edge device-
based systems, the proposed work can achieve a higher
classification accuracy with less power consumption
and production cost.

The organization of the paper is as follows. First,
in section II, we will explain the dataset, data segmenta-
tion, hardware, and analysis methods used in this paper.
In section III, we will elaborate on our proposed method.
Section IV will show and discuss the experiment results,
which will then be analyzed and compared with results of
previous works in section V. Finally, section VI will be the
conclusion.

II. MATERIALS AND METHODS
A. ECG SIGNAL DATASET
In this work, ECG signals from the MIT-BIH Atrial Fibrilla-
tion Database (AFDB) [23], [24] and MIT-BIH Arrhythmia
Database (MITDB) [24], [25] are used to verify and compare
the quality of the developed method with previous works.
These publicly available ECG signal databases are commonly
used in AF detection research in previous works [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], which
will facilitate objective comparison of our proposed method
with those works.

1) MIT-BIH ATRIAL FIBRILLATION DATABASE
The MIT-BIH Atrial Fibrillation Database consists of
25 long-time records of ECG signals from human subjects
with AF. Each recording is 10 hours long and consists
of two ECG signals sampled with 250 samples/second
sampling frequency, and provided with manually annotated
information of each beats [23], [24].

Only the first of the two available ECG channels in
the MIT-BIH Atrial Fibrillation Database is used [22].
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TABLE 1. The number of input signal segments generated from MIT-BIH
atrial fibrillation database.

Following [22], [38], the ECG signals are split into
non-overlapping segments of 10, 15, 20, 30, 40, 50, and
60 seconds lengths. The ECG segments are labeled according
to the beat annotations included in the database. Segments
containing both AF and non-AF beats are discarded, and
only segments that are fully AF or fully non-AF are used
[22]. Since input data classes are unbalanced, random
undersamplings are performed on the larger class to balance
it with the other class [22], [36].
Table 1 shows the number of segments generated for each

input length from the MIT-BIH Atrial Fibrillation Database.
The numbers listed under ‘‘Balanced’’ are the number of
signal segments used in the 10-fold stratified cross-validation
test after random undersampling to balance the classes.

2) MIT-BIH ARRHYTHMIA DATABASE
The MIT-BIH Arrhythmia Database consists of 48 ECG
records from 47 human subjects. Each recording is approx-
imately 0.5 hours long and sampled with 360 samples per
second sampling frequency. This database also includes
manually annotated information of each beat [24], [25].

The MIT-BIH Arrhythmia Database signals can be divided
into 100 series and 200 series signals. Among these, only
the 200 series signals contain Atrial Fibrillation episodes.
For this reason, only the 200 series signals are used in this
work. The signals are resampled into 250 samples/second
sampling frequency. Other preprocessing, segmentation, and
labeling processes are the same as the MIT-BIH Atrial
Fibrillation Database signals. Table 2 shows the number of
segments generated for each input length from the MIT-BIH
Arrhythmia Database 200 series.

B. HARDWARE IMPLEMENTATION
The proposed method is implemented as an embedded appli-
cation in STM32F413ZH microcontroller [39], contained in
a Nucleo-144 development board produced by STMicroelec-
tronics [40]. The microcontroller is based on the Arm Cortex
M4 core [41], with 1.5MB of flash memory and 320kB
of random access memory (RAM). The STM32F413ZH
microcontroller is also equipped with a hardware floating
point unit (FPU) and can run with a clock frequency up
to 100MHz [39]. The microcontroller is programmed on

TABLE 2. The number of input signal segments generated from MIT-BIH
arrhythmia database 200 series.

the STM32CubeIDE, an integrated development environment
(IDE) provided by the manufacturer [42]. To compare
its performances on different types of microcontrollers,
the proposed method will also be tested on several other
microcontrollers produced by STMicroelectronics, including
STM32F207ZG, STM32L4R5ZIP, and STM32H7A3ZIQ.
Specifications of the microcontrollers used in this work are
shown in Table 3.
Unless explicitly specified, if an MCU is equipped with

a hardware floating point unit (FPU), it is enabled in all
experiments reported in this paper.

C. ANALYSIS METHOD
The performances of the proposed algorithm are measured
and compared to previous works using the commonly used
sensitivity, specificity, and accuracymetrics. In this work, two
experiment settings are used:

1) Experiment Setting 1: In order to compare the perfor-
mance of the proposed method with previous works,
10-fold stratified cross-validation against the whole
balanced segments of the MIT-BIH Atrial Fibrillation
Dataset and the MIT-BIH Arrhythmia Dataset is done.
The average results of five experiments are presented
in this paper.

2) Experiment Setting 2: This experiment setting is
mainly used for experiments related to embedding
trained machine-learning models in a microcontroller.
The available data (after balancing) are first split into
train and test segments (80% of the balanced data for
training and 20% for testing). In this experiment, 10-
fold stratified cross-validation is done on the training
segments, and the model with the best accuracy is
saved. This model is then used to do inference on the
test segments, both as a Python program running on a
personal computer (PC) and as an embeddedC program
on the microcontroller, so that performances can be
compared. For the inference on the microcontroller,
the test data is loaded onto an SD card for the MCU
to access. This experiment is repeated five times and
the average results are shown in this paper. Experiment
Setting 2 is done only with the MIT-BIH Atrial
Fibrillation Database signals.
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TABLE 3. Specifications of microcontrollers used in this work.

In order to show the suitability of the proposed method for
use in an embedded system, the size of the generated machine
learning model and the extracted support vector array size are
also shown and compared with previous work.

This paper also reports embedded memory usage, com-
putation time, and average current consumption of the
embedded implementation of our proposed method. Memory
usage is provided by the integrated development environment
(IDE) used in development (STM32CubeIDE), while com-
putation time is measured using the internal microcontroller
timer. MCU average current consumption is measured at the
current measurement location specified in the Nucleo-144
board datasheets provided by the manufacturer.

III. IMPROVING VARIABLE STEP DYNAMIC THRESHOLD
LOCAL BINARY PATTERN FOR
MICROCONTROLLER-BASED MACHINE LEARNING
A. PREVIOUSLY PROPOSED VARIABLE STEP DYNAMIC
THRESHOLD LOCAL BINARY PATTERN
Variable Step Dynamic Threshold Local Binary Pattern
(VSDTLBP) was proposed in Yazid and Mahrus [22] for use
as a feature extraction method in AF detection from ECG
signal. In [22], histograms of LBP codes were used as the
input to the SVM classifier to classify ECG segments into
AF or non-AF classes.

An 8-bit VSDTLBP code corresponding to a particular
target data point is calculated from the values of its eight
neighbor data points (4 data points before and 4 data
points after). The VSDTLBP differs from the conventional
LBP in that it specifies an interval (called step) between
these data points, which can be adjusted according to
signal characteristics and the specific application target.
Furthermore, the VSDTLBP algorithm used a dynamically
computed threshold value rather than using the value of the
center data point as the threshold as in the conventional
LBP algorithm. These made the VSDTLBP algorithm easily
adaptable to different types of time series signals and
classification problems.

An illustration of the operation of the VSDTLBP as
described in [22] is shown in Figure 1.

LBP(x[i]) =

P
2 −1∑
r=0

×

{
S
(
x
[
i+ (r −

P
2
) × step

]
− f (x, i,P, step)

)
2r

FIGURE 1. Illustration of the variable step LBP method as described
in [22]. The black points are data points used for calculating an LBP code.
The top picture shows the points associated with the generation of LBP
code corresponding to reference data point A, and the lower picture
shows the points associated with the generation of LBP code for
reference data point B. The LBP Step chosen in this example is 3, which is
the distance between adjacent black points [22].

+ S
(
x
[
i+ (r + 1) × step

]
−f (x, i,P, step)

)
2r+

P
2

}
where S(a) =

{
1, a ≥ 0
0, a < 0

(1)

f (x, i,P, step) =
1

P+ 1

i+( P2 )×step∑
r=i−( P2 )×step

x[r] (2)

Equation 1 and 2 shows the VSDTLBP calculation method
mathematically [22]. In these equations, f (x, i,P, step) is the
dynamic threshold function, P is the binary bit length of the
LBP code, and step is the selected step value between data
points being considered for generating an LBP code.
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In [22], from the 256 possible 8-bit codes generated by
Equation 1 and 2, only 58 types of local binary pattern (LBP)
codes which are defined as the ‘‘uniform’’ LBP codes by
Ojala et al. [43] are used. Uniform LBP codes are LBP
codes that have at most two transitions between ‘‘0’’ to
‘‘1’’ or ‘‘1’’ to ‘‘0’’ in its binary form representation. More
detailed information about VSDTLBP and LBP can be found
in previous works [22] and [43], respectively.

B. ADDITION OF LOW PASS FILTER TO REMOVE ALIASING
EFFECT
Since VSDTLBP with step value n will ignore n − 1 data
points between the data points used in the calculation of each
LBP value, any signal component with wavelength less than
n times the sampling period will create an aliasing effect,
a commonly known negative side effect of downsampling.
Using a low pass filter to preprocess the input signal will
reduce the aliasing effect and improve the ability of the LBP
codes to represent signal features much more accurately,
increasing classification accuracy.

In the proposed work, a Butterworth low pass filter (LPF)
was used with a cut-off frequency calculated based on
Equation 3, where fc is the LPF cut-off frequency, fs is
the signal sampling frequency, and step is the LBP step
value. The signal sampling frequency used in this work is
250 samples/second, and the LBP step value is 6, which was
found to be optimal for 250 S/s ECG signals in previous
work [22].

fc =
fs

2 × step
(3)

C. FEATURE SIZE REDUCTION BASED ON CORRELATION
AND P-VALUES
While the size of uniform LBP feature vectors is rela-
tively small compared to those of other methods, further
reducing the feature vector size can result in a smaller
machine-learning model size, minimizing memory usage and
computation time. The size of the machine learning model is
particularly important for a microcontroller implementation
since, typically, there are only a few hundred kilobytes up to
a few megabytes of internal flash memory available, which
must also be shared with other parts of the programs, such as
the graphical user interface.

One way tominimize the feature vector size is by removing
redundant features. If more than one features are highly
correlated to each other, it is logical that only one of them is
necessary since the inclusion of the other correlated features
will only add a little information for the machine learning
model.

Pearson correlation coefficient has been proposed in
previous works as an indicator of feature redundancy
[44], [45], [46], [47], [48], [49]. In this work, Pearson
correlation coefficient between input features is used as a
criterion of feature selection. When two or more features
are highly correlated, only one is selected, and the rest are

FIGURE 2. Illustration of a circular buffer data architecture with length L.
d [n] is the newest data in the circular buffer, while d [n − (L − 1)] is the
oldest data. When new data arrives, the oldest data is removed, and the
newest data is put in its place.

removed. Only 10000 (5000 AF and 5000 non-AF) randomly
selected 10-second ECG segments from the MIT-BIH Atrial
Fibrillation database ECG signals are used in the feature
selection process to prevent overfitting.

P-value has also been widely used for feature selec-
tion, particularly to remove irrelevant features [50], [51].
We perform statistical tests on each feature to determine
its importance in distinguishing the two classes (AF and
non-AF). Features with large p-values are determined as
insignificant and removed.

D. EFFICIENT IMPLEMENTATION USING CIRCULAR
BUFFER
Circular buffer is a commonly used data structure in
resource-constrained systems such as low-power microcon-
trollers [52], [53], [54], [55]. Figure 2 illustrates a basic
circular buffer architecture that has the length L. In the
circular buffer illustrated in Figure 2, d[n] is the latest data
inserted in the circular buffer, d[n − 1] the data inserted
immediately before the latest, and so on. If the length of the
circular buffer is L, then d[n−(L−1)] contains the oldest data
in it.When new data arrives, the oldest data must be taken out,
and this new data is put in its place and becomes the current
latest data in the buffer (d[n]).

The VSDTLBP and its derivation proposed in this paper
can be implemented very efficiently using circular buffer
architecture.

In our implementation presented in this work, the AF
detection system continuously accepts new ECG data points,
generates the corresponding LBP codes, updates the LBP
histogram, and uses a trained machine learning model to
classify the ECG signal using the LBP histogram as input
features.

To save data storage and transmission costs, only the
detected AF ECG segment and its surrounding data points
need to be stored or transmitted to the cloud. This can be
easily implemented using a circular buffer with a length
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corresponding to the amount of data points to be stored or
transmitted whenever AF is detected.

In the proposed implementation, whenever a new ECG
datapoint d[n] arrives, a new LBP code corresponding to
datapoint d[n − (4 × step)] can be calculated. The delay
of 4 × step is due to the fact that for each datapoint, the
proposed algorithm needs the previous four datapoints and
the following four datapoints to calculate its corresponding
LBP code, assuming an eight-bit length LBP code. The
calculated LBP codes are stored in a circular buffer with a
length similar to the input segment length. After the initial
ECG segment has been received, the oldest LBP code in
the buffer will always be replaced by the newest, and the
LBP circular buffer will always contain the LBP codes
corresponding to the latest segment of the ECG input signal.

Further, after calculating each new LBP code, the LBP
histogram will be updated. This process involves adding 1 to
the value stored in the histogram bins corresponding to the
new LBP code and reducing 1 from the value stored in
the histogram bin corresponding to the oldest LBP codes
removed in the previous process. At this point, the LBP
histogram is ready for use as input features for a machine-
learning model. To improve classification accuracy, input
scaling or normalization, a common part of a machine
learning inference process flow, can also be added after this
step. A flow chart illustrating the process outlined in the
above paragraphs can be seen in Figure 3.

A significant benefit of the proposed method, particularly
when used in real-time on a stream of ECG data points,
is that for each arriving new data point, only one new LBP
code needs to be calculated, followed by a simple process of
replacing the oldest value in a circular buffer and updating
the value of two bins in a histogram. At this point a complete
input vector is ready for the inference process, assuming
at least one initial segment length is already processed.
Since, generally, this process is faster than the ECG signal
sampling period, a machine learning inference using the
latest VSDTLBP histogram as its input can be done at every
sampling period. The limitation on the inference frequency
will be the computation time of the inference itself.

E. IMPLEMENTATION OF MACHINE LEARNING
INFERENCE IN MICROCONTROLLER
In this work, we propose doing the machine learning
inference process at the edge using a low-resource microcon-
troller. The target microcontrollers are Arm Cortex M-based
microcontrollers produced by STMicroelectronics.

The support vector machine (SVM) model is first trained
in a personal computer having large memory and computing
power. Afterward, support vectors are extracted from the
generated model and included as an array in the C program
embedded in the target microcontroller.

SVM model training is done in Python using the sci-kit-
learn library and the radial basis function (RBF) kernel [56].
10-fold stratified cross validation is used, and the trained

FIGURE 3. Flowchart illustrating the process flow every time a new ECG
datapoint is received. n is the current time, LDATA is the length of the
circular buffer storing ECG data, and LLBP is the length of the circular
buffer storing generated LBP codes.

model having the best accuracy is stored for use in the
microcontroller. The microcontroller embedding is based on
the Arm CMSIS-DSP library provided by Arm [57].

IV. RESULTS AND DISCUSSION
A. EFFECT OF ADDITION OF LOW PASS FILTER
Figure 4 shows the effect of low-pass filtering before the LBP
calculation for different input data segment lengths. It can
be seen that classification accuracy improved significantly
compared to the original algorithm proposed in [22].

B. EFFECT OF FEATURE SELECTION
The feature selection process resulted in 44 features left from
the original 58 features (VSDTLBP codes) proposed byYazid
and Mahrus in [22].

Figure 5 shows the effect of feature selection on classi-
fication accuracy. It can be seen that the proposed feature
reduction does not affect classification results significantly.
On the other hand, the smaller model size achieved by
reducing 14 features from the original 58 (about 24%
reduction in the number of features) is essential for allowing
implementation of the machine learning algorithm on a low-
resource microcontroller.

Table 4 shows the number of support vectors generated
after SVM training for several input segment lengths when
using the original 58 LBP codes of VSDTLBP [22] and
the 44 LBP codes selected by the feature selection process.
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FIGURE 4. Plot showing the effect of adding a low pass filter before the
LBP calculation on classification accuracy, tested against the MIT-BIH
Atrial Fibrillation Database with Experiment Setting 1. The no LPF results
are achieved using the original VSDTLBP algorithm proposed by [22].

FIGURE 5. Plot showing the effect of feature selection on classification
accuracy, tested against the MIT-BIH Atrial Fibrillation Database with
Experiment Setting 1. The result without feature selection is achieved
using the original VSDTLBP algorithm as proposed by [22].

TABLE 4. Effect of Feature Selection on the number of generated support
vectors when trained on ECG segments from the MIT-BIH atrial fibrillation
database, using experiment setting 1.

The feature selection resulted in a significant decrease in the
number of support vectors generated after training. Since the
size of the machine learning model is directly proportional
to the number of support vectors, this also means a similar
decrease in machine learning model size.

It should be noted that while Figure 5 shows a slightly
decreased classification accuracy as a result of the feature
reduction, it will be canceled out by the larger accuracy
improvement due to the addition of the low pass filter.

TABLE 5. Comparison of the classification results between the proposed
method and the previous work [22] when used on the MIT-BIH atrial
fibrillation database with experiment setting 1.

FIGURE 6. Plots showing a comparison of the classification sensitivity of
the proposed method compared to the original method [22] for different
lengths of input ECG segments from the MIT-BIH Atrial Fibrillation
Database using Experiment Setting 1.

C. EXPERIMENT SETTING 1
1) CLASSIFICATION ACCURACY
Figure 6, Figure 7, and Figure 8 shows plots of the clas-
sification sensitivity, specificity, and accuracy against input
signal segment length, when the improvements specified in
the previous sections are implemented and tested against the
whole of the MIT-BIH Atrial Fibrillation Database using
Experiment Setting 1, compared to the results of the original
VSDTLBP [22] algorithm. Table 5 shows these results in
numbers.

The plots show that the improvements proposed in this
paper particularly improve the classification sensitivity com-
pared to the previous results reported in [22]. Classification
sensitivity is the ability of the algorithm to identify Atrial
Fibrillation segments in ECG signals. A high sensitivity value
is especially important for abnormality detection since it
reduces the risk of potentially dangerous abnormal conditions
being undetected.

Table 6 shows the comparison results when using the
MIT-BIH Arrhythmia Database, showing similar trends as
those achieved when using the MIT-BIH Atrial Fibrillation
database.

2) MACHINE LEARNING MODEL SIZE
Table 7 compares the size of the generated machine learning
model between the original VSDTLBP [22] and the proposed
method. The model used for this table is the best model
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FIGURE 7. Plots showing a comparison of the classification specificity of
the proposed method compared to the original method [22] for different
lengths of input ECG segments from the MIT-BIH Atrial Fibrillation
Database using Experiment Setting 1.

FIGURE 8. Plots showing a comparison of the classification accuracy of
the proposed method compared to the original method [22] for different
lengths of input ECG segments from the MIT-BIH Atrial Fibrillation
Database using Experiment Setting 1.

TABLE 6. Comparison of the classification results between the proposed
method and the previous work [22] when used on the MIT-BIH
arrhythmia database with experiment setting 1.

generated in the 10-fold stratified cross-validation using the
balanced MIT-BIH Atrial Fibrillation Database signals with
Experiment Setting 1. It can be seen that the proposedmethod
has a significantly reduced machine-learning model size.
Table 8 also shows the extracted support vector array size for
each saved model, which generally correlates with the model
file size.

A typical low-cost microcontroller from STMicroelectron-
ics used in small electronic devices includes as small as

TABLE 7. Comparison of generated trained model size between the
proposed method and VSDTLBP [22], using the MIT-BIH atrial fibrillation
database with experiment setting 1.

TABLE 8. Comparison of extracted support vector array size between the
proposed method and VSDTLBP [22], using the MIT-BIH atrial fibrillation
database with experiment setting 1.

a few hundred kB of flash memory to store its programs.
Our proposed method’s machine learning model sizes are
sufficiently small to embed in this type of microcontroller.
This point is particularly significant in applications that
include a graphical user interface since the graphics data
necessary for the GUI usually take a large amount of memory,
limiting available memory space for other uses.

D. EXPERIMENT SETTING 2
For implementation on the microcontroller and its per-
formance comparison with a PC-based Python program,
Experiment Setting 2 as specified in section II-C is used.
In this experiment, the balanced segments from the MIT-BIH
Atrial Fibrillation Database are randomly split into training
and testing segments using an 80:20 proportion. 10-fold
stratified cross-validation is done on the training segments,
and the model with the best accuracy is saved for use against
the test segments. The experiment is repeated five times and
the average results are reported in this paper.

1) EMBEDDED CLASSIFICATION ACCURACY
Table 9 shows the classification accuracy of the trained
machine learning model (using the 80% training segments)
when tested against the 20% test segments, showing both the
results of inference as a python program on PC and as an
embedded program on the MCU.

Our experiments showed that embedding a trained sup-
port vector machine (SVM) machine learning model as a
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TABLE 9. Comparison of classification results of the proposed method on
PC and STM32F413ZH MCU, using the MIT-BIH atrial fibrillation database
with experiment setting 2.

TABLE 10. Memory usage and computing time of the proposed method
on STM32F413ZH MCU, using the MIT-BIH atrial fibrillation database with
experiment setting 2.

Cprogram on the STM32MCUusing theArmCMSIS library
does not result in significant classification accuracy degrada-
tion. This result is a significant achievement since, typically,
MCU implementation of machine learning algorithms results
in reduced classification accuracy.

2) MEMORY USAGE AND COMPUTING TIME
Table 10 shows flash memory usage and computation time
required to calculate a single LBP code and an SVM
classification on the STM32F413ZH microcontroller. The
best machine learning models generated in the training
processes using Experiment Setting 2 are used in these
experiments.

The STM32F413ZH microcontroller unit (MCU) is pro-
duced by STMicroelectronics. It is a 32-bit MCU with a
hardware floating point unit (FPU), 1.5MB of flash memory,
320kB RAM, and a maximum clock frequency of 100MHz
[39].

The flash memory usage in Table 10 is taken from the
values reported by the integrated development environment
(IDE) STM32CubeIDE provided by the manufacturer [42].
The computing time is calculated using the internal timer of
the MCU.

Table 10 shows that even the longest calculation time
specified in the table is still well below the average length
of a single heartbeat of a human, indicating that our proposed
method can achieve a near real-time detection of Atrial Fib-
rillation even when implemented on a resource-constrained
microcontroller.

TABLE 11. Effect of hardware FPU use on the performance of the
proposed method, tested on STM32F413ZH using 60-second input signals
from the MIT-BIH atrial fibrillation database with experiment setting 2.

3) EFFECT OF HARDWARE FLOATING POINT UNIT (FPU)
The STM32F413ZH microcontroller contains a hard-
ware floating point unit (FPU), which can handle
resource-intensive calculations involving floating numbers,
greatly reducing processor computing burden and the
algorithm calculation time. Table 11 compares algorithm
performance when embedded in the STM32F413ZH micro-
controller with and without enabling the hardware FPU.
As expected, the calculation time is significantly increased
when the hardware FPU is disabled because the compiler
is forced to emulate floating point calculations in software.
On the other hand, consistent classification results are
achieved irrespective of the use of hardware FPU unit on this
MCU.

4) PERFORMANCE COMPARISON ON MULTIPLE MCU TYPES
Table 12 compares the proposed method’s performance when
embedded in several STM32 microcontrollers from different
series based on several different Arm Cortex-Mmicroproces-
sor cores. The models and test data for 60 seconds input data
generated in PC based experiment using Experiment Setting
2 are used in this test. When hardware FPU is not available
(as in STM32F207ZG) or is not enabled, such as in the first
result for STM32F413ZHT3 in Table 12, the computing times
are significantly larger. However, all microcontroller tested
in this work shows similar high classification accuracy as
the PC based results. This result shows that the proposed
method does not require sacrificing classification accuracy,
even when implemented on the relatively cheap Arm Cortex-
M3 or M4-based microcontrollers. The simple process used
by our proposed feature extraction method does not depend
on advanced features that are only available in expensive
high-end microcontrollers.

V. COMPARISON WITH PREVIOUS WORKS
A. COMPARISON WITH PREVIOUS WORKS ON ATRIAL
FIBRILLATION CLASSIFICATION
Table 13 compares our proposed method with previous works
on atrial fibrillation classification using the MIT-BIH Atrial
Fibrillation Database, and Table 14 compares with those
using the MIT-BIH Arrhythmia Database, respectively. Our
proposed work achieved better results than most previous
works in both tables, including the work presented in the
original paper [22].
Our proposed method achieved better accuracy while

reducing machine learning model size, which is very
beneficial for embedded implementation in low-resource
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TABLE 12. Comparison of performance of the proposed method on several types of STM32 MCU, using 60-second input signals from the MIT-BIH atrial
fibrillation database with experiment setting 2.

TABLE 13. Comparison with previous works in atrial fibrillation
classification using MIT-BIH atrial fibrillation database.

microcontrollers. The classification sensitivity, specificity,
and accuracy are also among the best in the list. Some
previous results that are slightly better are achieved at the cost
of using more resource-demanding methods, such as deep
learning or computationally complex feature extractions.

B. COMPARISON WITH PREVIOUS WORKS ON EDGE
DEVICE-BASED ECG SIGNAL CLASSIFICATION
Table 15 shows a comparison of our work with previous
works on edge device/constrained device-based ECG
signal classification. Since previous works on Atrial

TABLE 14. Comparison with previous works in atrial fibrillation
classification using MIT-BIH arrhythmia database.

Fibrillation classification that include implementation on
edge device/constrained devices are still rare, we also include
works on Arrhythmia classification in the comparison table.

Compared to the systems based on the Raspberry-Pi
devices such as those proposed by [14], [65], and [68] and
the NVIDIA Jetson Nano device used by [15] and [69], our
proposed method and system are better due to the much lower
power consumption of the STM32 microcontrollers. Our
measurement shows that the average current consumption
of the STM32F413ZHT3 MCU when running the proposed
method is just around 27mA. Since the supply voltage of the
MCU on the Nucleo-144 board is 3.3V, the average power
consumption can be calculated to be just around 89.1mW.
On the other hand, the idle power consumption of Raspberry-
Pi4 and NVIDIA Jetson Nano is reported to be around 2.1W
and 0.9W, respectively [70]. Our proposed method’s much
lower power consumption increases battery life and reduces
heat dissipation, making a wearable device more convenient
to use for a long period of time.

The STM32 microcontroller-based system proposed in
this work also has significant benefits in terms of size and
production cost compared to Raspberry Pi or NVIDIA Jetson
Nano-based systems since the latter two typically have a
relatively large form factor and are more expensive compared
to an STM32 microcontroller-based system.
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TABLE 15. Comparison with previous works on ECG classification based on constrained resource device.

In Table 15, there are also previous works using 8-bit
microcontrollers such as ATmega2560 and ATmega328 [19],
[71], [72]. These microcontrollers are known to have low
power consumption and are relatively cheap. However, their
downside is the relatively small memory size. Previous works
implementing machine learning algorithms on these devices
can only use a small number of input features in order to
minimize model size. They also need to optimize the machine
learning model further to make it fit in the memory, and
the optimization process will typically reduce classification
accuracy.

Chen et al. [19] proposed a system based on the 8-bit
ATmega2560 microcontroller using only 22 heart rate
variability features to achieve 94.5% accuracy when tested
against the China Physiological Signal Challenge (CPSC)
2018 dataset. Themethod proposed in [19] needs only 2.12ms
to execute inference on the microcontroller, not including the
time required for feature extraction. The features used by [19]
include computationally complex functions such as standard
deviation, root mean square, skewness, and coefficient of
variation, potentially adding significant computing time. Our
proposed method does not use such expensive calculations in
the feature extraction process. Furthermore, [19] also depends
on the accurate detection of R peaks from the ECG signals,

which will add more processing time and significantly affect
the system’s overall accuracy.

Falaschetti et al. [73] proposed an STM32 based system
using a long short time memory (LSTM) classifier to classify
arrhythmia. Reference [73] does not use feature extraction in
their method, directly feeding 145 samples of ECG signal into
the machine learning model. While this makes the process
relatively simple, it results in a significantly higher machine
learning model size and longer inference time than our
proposed method.

Zylinski et al. in [74] also proposed a system based on
a low-power STM32 microcontroller, which can achieve a
fast inference time of just 0.72 ms for each input ECG
signal with a length from 6 to 60 seconds. However, the
RR-interval-based feature extraction used by [74] requires
accurate detection of R peaks from ECG signals, adding more
computation complexity and time. Our proposed method is
better because it has a relatively simpler feature extraction
process and does not depend on R peak detection.

VI. CONCLUSION
In this work we proposed an improved method to detect
Atrial Fibrillation from ECG signal. The proposed method
successfully increased classification accuracy and reduced
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the trained model size. Implemented on an Arm Cortex
M4-based microcontroller, the proposed method can run
an SVM inference within 11.28ms using as low as 27mA
average current, enabling near real-time atrial fibrillation
detection on a low-power and low-cost device. In contrast
to many previously proposed edge device-based inference
systems, which usually need to implement methods that
reduce classification accuracy (such as model pruning) in
order to be able to run as an embedded system, our proposed
method can achieve as high accuracy classification as a
PC based solution when implemented in a low power
microcontroller. While further works such as testing with real
ambulatory ECG data recorded from a wearable device are
necessary, the work presented in this paper can contribute to
reducing the cost and improving the quality of smart wearable
ECG monitor devices, helping reduce the burden on medical
professionals, patients, and their families.
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