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ABSTRACT During the production process of steel plate, surface defect detection is crucial for high-quality
products. For the existing defect detection method based on machine vision, there are various types of
problems, such as large model calculations, low detection accuracy and difficulties of recognizing small
defect targets. To reduce and solve these issues, the paper proposes a new defect detection model, simplified
kernel and squeeze on a you only look once network (SKS-YOLO), which can achieve rapid and effective
defect detection on steel plate. Firstly, it adopts EfficientNetv2 as the backbone, significantly reducing
model calculations and accelerating training speed while maintaining accuracy. Subsequently, the atrous
spatial pyramid pooling (ASPP) module is utilized to obtain a larger receptive field, extracting more feature
information from surface defects. The integration of the squeeze excitation network (SE-Net) attention
mechanism enhances capabilities of feature extraction furtherly. Then, the K-means algorithm is applied
to cluster and obtain more suitable anchor frames for defect targets. It not only increases the number of
positive samples, but also expedites model convergence. Finally, the loss function of simplified intersection
over union (SIoU) is used to enhance the ability of model to locate and detect surface defect targets. The
experimental results show that the mean average precision (mAP) is 89.40% at a detection speed of 55 frames
per second (FPS), which is better than the state-of-the-art (SOTA) detection models.

INDEX TERMS Surface defect detection, YOLO, attention mechanism, anchor frames, loss function.

I. INTRODUCTION
During the production of industry, surface defects detection
is an indispensable process to control product quality. The
quality of product directly impacts production efficiency,
and reduces a waste of raw materials. Moreover, product
quality is closely tied to the factory’s reputation and market
share. Surface defects detection has consequently become
a significant research field. Initially, surface defects inspec-
tion relied on manual methods. However, due to the limited
energy and attention of human, this approach not only
yields low accuracy but also consumes considerable time [1].
With the development of machine learning and artificial
intelligence, the image-based surface defect inspection is
widely applied to various industrial scenarios, instead of
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manual inspection. Current methods for detecting surface
defects can be broadly categorized into traditional methods
and deep learning methods. There are several differences
between these two methods. Traditional methods extract
defect features through image processing, image analysis,
and so on. In contrast, the deep learning methods learn
defect features from a specified number of defect samples
and then automatically extracts these features [2]. Firstly,
Traditional defect detection methods extract image features
through pre-processing techniques, such as histogram equal-
ization, grayscale binarization and filtering and denoising.
Subsequently, the classification and detection of defects
are accomplished by using morphology, Fourier transforms,
Gabor transforms and various machine learning techniques.
For example, Prasitmeeboon et al. [3] employed a combina-
tion of color histogram and support vector machine (SVM)
for detecting particle board defects and utilized thresholding
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and smoothing techniques to localize the faults precisely.
Chang et al. [4] conducted defect detection to use a combina-
tion of polar coordinate transform, Hough circle transform,
weighted Sobel filter, and SVM. Wang and Zuo [5] used
Fourier transform and Hough transform to reconstruct the
magnet surface image. They obtained defect information
by comparing the grayscale difference between the recon-
structed image and the original image for detecting defects.
Wen et al. [6] proposed a method which fuses 2D gray infor-
mation and 3D depth information for solving the detection
in the complex areas of steel plate surface. Wang et al. [7]
published a strip surface defect detection algorithm based on
a straightforward guide template, which accurately locates
defects from pseudo-defects and random arrangements of
gray levels in the background. Hou et al. [8] found a
multi-kernel vector machine method based on second-order
cone programming optimization to enhance accuracy and
reduce running time. All of these conventional detection
methods require feature extraction and redefined thresholds
to identify the presence of defects. However, they are effective
for a specified defect class, exhibiting inferior adaptability
and insufficient generalization ability.

With the rapid development of deep learning techniques,
numerous outstanding target detection algorithms have
emerged. Comparing with traditional methods, deep learning
approaches learn data-driven parameters to extract features
automatically, and feed them into subsequent networks for
classification and localization. These methods decrease the
need for the complex process of manual designing algo-
rithms, and demonstrate remarkable robustness and accuracy.
Generally speaking, these methods can be classified into two
types: two-stage target detection method and one-stage target
detection method. The two-stage target detection method
involves classifying each proposed region of interest using
convolutional neural network (CNN) to determine its cor-
responding object category. There are lots of examples,
such as region-CNN (R-CNN) [9], Fast R-CNN [10], Faster
R-CNN [11], etc. These methods improve detection accuracy
at the expense of detection speed. Zhao et al. [12] enhanced
the traditional Faster R-CNN by reconstructing the network
structure through multi-scale feature fusion and deformable
convolution network, which has finished 75.2% mAP.
Cha et al. [13] utilized Faster R-CNN for the detection of
concrete cracks and steel corrosion defects. Su et al. [14]
devised a complementary attention network for leveraging the
benefits of spatial location features and channel features to
suppress background noise features. They integrated this net-
work into Faster R-CNN for the detection of solar cell in elec-
troluminescence images. Zhang et al. [15] raised a strip steel
surface defect detection algorithm based on Faster R-CNN so
as to tackle the issues of low automation, slow detection speed
and low accuracy. Although the two-stage target detection
method yields satisfactory results in terms of detection accu-
racy, it is proved to be a huge challenge because of efficiency
concerns, particularly in real-time industrial defect detection.

Consequently, the one-stage target detection method has gar-
nered more attention. The one-stage target detection method
treats target detection as a regression problem, utilizing CNN
to determine the position by variety of the bounding box. For
examples, YOLO [16], [17], [18], [19], single shot multibox
detector (SSD) [20], RetinaNet [21], etc., which simplify
network designs by employing a single network for target
classification and localization. These approaches meaning-
fully increase detection speed. Yin et al. [22] used YOLOv3
to detect sewer pipe defects and achieved 85.37% mAP.
Zhang et al. [23] enhanced the original YOLOv3 by citing
a new transfer learning method for detecting concrete bridge
defects, and brought about a 13% performance improvement.
Yu et al. [24] proposed an efficient stepped pyramidal net-
work which is characterized by fusing multi-scale features
to improve the accuracy of small object detection. Wang and
Cheung [25] incorporated count loss which can detect defects
in the additive manufacturing process. Zhang et al. [26] com-
bined the coordinate attention mechanism and the context
feature enhancement module with YOLOv5 to maximize the
performance of small target detection.

For the small set of defect samples and small size defects,
above deep learning-based approaches cause unsatisfactory
results. Additionally, real-time detection of steel plate defects
encounters lots of challenges that large network structure.
As a result, there is an urgent requirement to strengthen
capacity of model, which can detect a broader range of
defects and increase accuracy for small defects. Based on
above analysis, we propose SKS-YOLO method include the
module of ASPP [27] and SE-Net [28], especially for detect-
ing small and long defects that are typically challenging.
The main contributions of the paper can be summarized as
follows.

1) To reduce the computational load of the model,
we utilized the more lightweight EfficientNetv2 [29]
to extract defect features. To tackle the fixed net-
work receptive field, we employ ASPP module
to expand the receptive field of feature extraction
network. It allows the model to extract defect infor-
mation more effectively within the suitable receptive
field.

2) The SE-Net attention module can boost the perfor-
mance of the network by learning the weight of each
channel adaptively. The K -means method is executed
to refine the anchor frames for training, enhancing the
ability of model to detect steel plate defects with large-
scale fluctuations. Besides, the SIoU loss function [30]
was carried out to raise training efficiency of model and
stability of bounding box predictions.

The paper is organized as follows: Section I explains the
motivation and contribution of our study, Section II discusses
related works, Section III describes the basic framework and
methodology, and Section IV explains the experiments and
summarizes the results. Finally, the conclusion is argued in
Section V.
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II. RELATED WORK
Machine vision has developed quickly in recent years, partic-
ularly in the fields of image classification, face recognition,
industrial manufacturing and object detection [31]. It shows
the advantages of both stability and efficiency [32], [33],
[34], [35]. Zhang et al. [36] used a lightweight YOLOv5
method to detect surface defect of strip steel, reaching the
trade-off between accuracy and speed. While the detection
of large targets is gradually enhancing, there is still much
works to be done for the detection of small targets [37].
Li et al. [38] put forward YOLOv5 to solve the numerous
types, small-sized and unbalanced samples of fabric defects.
Li et al. [39] incorporated attentionmechanisms and receptive
fields in YOLOv5 to solve the poor detection of small targets.
Xin and Zhang [40] presented an improved bidirectional
feature pyramid network to heighten the feature extraction
ability and tackle incomplete feature fusion in the YOLOv5.
Zhang and Wen [41] solved insufficient detection capability,
long model inference time and low recognition accuracy for
small targets and long strip defects. Guo et al. [42] displayed
confused defect categories, substantial defect scale changes
and poor detection results for small defects. Shi et al. [43]
put forward an improved YOLOv5 algorithm to enhance the
accuracy and efficiency of defect detection on steel surfaces,
especially for small targets. Zhang et al. [36] demonstrated
a lightweight YOLOv5 to solve the problems such as tar-
get loss, false alarms, large computation and the imbalance
between detection accuracy and speed. Qu et al. [44] tackled
the troubles encountered in the detection of tiny targets.

YOLOv5s is a lightweight deep learning model that com-
prises of backbone, neck, and head networks. The backbone
network extracts feature by Conv, Focus, C3, and spatial
pyramid pooling (SPP) modules. The Conv module performs
convolution operations and strengthens model convergence
through normalization operations, improving target detec-
tion precision. The Focus module conducts slice operations
on images to weaken computational overhead and increase
speed. The C3 module contains three standard convolutional
layers and multiple Bottleneck modules to fuse features from
different scales and accelerate network runtime. The SPP
module down-samples the input image in parallel through
multiple maximum pooling layers of different sizes. The
receptive field is expanded by the aggregated information,
retaining more context features and edge information. The
neck network serves as a feature fusion network through
combining feature pyramid network and path aggregation
network to accomplish multi-scale feature fusion of defect
images. The complete intersection over union (CIoU) loss
function and the non-maximum suppression algorithm are
used to detect in the prediction network.

The YOLOv5s loss function consists of three parts: con-
fidence loss Lconf , classification loss Lcls and location loss
Lbox , is shown as follows:

The Lconf is as follows:

L = Lconf + Lcls + Lbox (1)

Lconf = −
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where, S2 is the number of grids; B is the number of anchor
frames; Iobjij indicates whether there is a target at i and j, and it

is 1 if there is a target, otherwise is 0; Inoobjij indicates whether
the prediction box contains the target, taking 0 if it does,
otherwise is 1; C j

i is predicted confidence and C̄ j
i is ground

truth confidence.
The Lcls is as follows:

Lcls = −

S2∑
i=0

Iobjij {P
j
i (c) log[P

j
i (c)]

+ [1 − P
j
i(c)] log[1 − Pji(c)]} (3)

where, c is the type of the detection target; Pji(c) is the
predicted probability;P

j
i(c) is the ground truth probability that

the target belongs to category c.
The Lbox is as follows:

Lbox = 1 − IoU +
ρ2

(
B,Bgt

)
m2 + αυ (4)

where, IoU represents the intersection ratio of the predicted
bounding box and the ground truth; (B,Bgt ) is the cen-
ter point coordinates of the predicted bounding box and
the ground truth; ρ2(B,Bgt ) denotes the Euclidean distance;
m signifies the diagonal distance of the minimum circum-
scribed rectangle containing both the predicted bounding box
and the ground truth; α is the weight coefficient; υ is the
length-width ratio consistency parameter.

α =
υ

1 − IoU + υ
(5)

υ =
4
π2

(
arctan

ωgt

hgt
− arctan

ω

h

)2

(6)

where, ωgt and hgt are width and height of the ground truth;
ω and h are width and height of the predicted bounding box,
respectively.

III. METHODOLOGY
In this section, we provide a detailed description of the pro-
posed SKS-YOLOmethod. The network structure is depicted
in Fig. 1. It mainly includes backbone, neck and head net-
work. We adopt EfficientNetv2 as the backbone network for
feature extraction to lessen the computational complexity.
The feature extraction module of ASPP is incorporated into
the backbone network to obtain varying receptive fields for
various sizes of defects, especially for small defects. We inte-
grate SE-Net modules to the backbone and neck network
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FIGURE 1. Network structure of the proposed SKS-YOLO.

further to strengthen concentration on important feature chan-
nels and capture correlations between different defects for
the network. It can improve discrimination ability of small
defects.

A. ALGORITHM OF SKS-YOLO
In the proposed SKS-YOLO method, feature extraction part
is employed to extract the most crucial and representative
information from raw defect images. And feature fusion is
used to aggregate multi-scale features at different resolutions.
Feature pyramid network (FPN) is used to transmit deep
semantic features to enhance semantic expression at multiple
scales. Path aggregation network (PAN) and global average
pooling (GAP) is used to transmit shallow position informa-
tion to enhance the location ability on multiple scales. The
algorithm is shown in Table 1, where, Conv (input, stride,
channel); {C3, C4, C5} are features of the backbone; {P3, P4,
P5} are the levels of the FPN; {N3, N4, N5} are the levels of
the PAN; {N3_H, N4_H, N5_H} are the features of the head.

B. EfficientNetv2 MODULE
As the cross stage partial DarkNet53 (CSP-DarkNet53) of
feature extraction network in the original YOLOv5s stack
a mass of residual blocks [35]. It increases the number
of parameters and leads to a slower detection speed. Most
lightweight feature extraction networks rely on depth-wise
separable convolution to decrease parameters, it causes low
detection accuracy. In the paper, EfficientNetv2 is chosen as
the feature extraction module in backbone network to achieve
faster convergency speed with compromising accuracy.

TABLE 1. Algorithm of the proposed SKS-YOLO.

In EfficientNetv2, the memory access overhead is min-
imized by choosing for a smaller expansion ratio and
eliminating the last module of EfficientNetv1 with a step

91502 VOLUME 12, 2024



S. Zhou et al.: Surface Defect Detection of Steel Plate Based on SKS-YOLO

FIGURE 2. Schematics diagram of different modules.

size of 1. Besides, a progressive training strategy is utilized
to acquire basic capabilities for the network dramatically.
A smaller training size and milder regularization method are
adopted in the early stages of training. Subsequently, the reg-
ularizationmethod is strengthened as the image size increases
gradually. The progressive learning strategy is formalized
into a formula which makes it possible to determine the
training size and regularization intensity at different training
stages. It trains the model for N /Msteps with image size Si
and regularization Ri.It is expressed as follows:{

Si = S0 + (Se − S0) i
M−1

Ri = R0 + (Re − R0) i
M−1

(7)

where, S0 is the initial image size; Se is the final image
size; R0 is the initial regularization parameter; Re is the final
regularization parameter; N is the total number of steps;M is
the total number of training sessions; i is the index of the
current phase, ranging from 0 toM -1.

Therefore, we adopt the mobile inverted residual bottle-
neck convolutional (MBConv) module and the fused mobile
inverted residual bottleneck convolutional (Fused-MBConv)
module. The MBConv module divides the feature map of
the upper input into two parts and merges them through
cross-stage hierarchical merging. It speeds up detection and
reduces repeated gradient information. The Fused-MBConv
module has enhanced performance for the MBConv struc-
ture. It transforms a common convolution with a 1 × 1,
3×3 kernel containing batch normalization (BN) and sigmoid
linear unit (SiLU) activation functions into a convolution with
3× 3 kernel. The structures of MBConv, Fused-MBConv are
illustrated in Fig. 2.

Suppose the entire training process consists of N steps,
with a target training size (final training scale) denoted as
Se and a regularization list (final regularization strength)
represented by 8e = {8k

e}. where k signifies various reg-
ularization methods. The initial training size S0 and initial
regularization strength 80 = {8k

0} are initialized. The entire

training process is divided into M stages. For the i stage
(1≤ i ≤ M ), the training size of model is Si and the
regularization strength is 8i = {8k

i }. Linear interpola-
tion is employed between different stages for incremental
adjustments. By means of incorporating the Fused-MBConv
module into the shallow layer of the network, enhancing
progressive learning and adjusting (to adjust) the regulariza-
tion method based on the training image size dynamically.
In the end, the detection speed and accuracy are strengthened.
EfficientNetv2 as a new backbone network is constructed to
reduce the computational complexity of the model on the
basis of these improvements.

The experiment is conducted with different lightweight
networks on the NEU-DET dataset [45], and the experimen-
tal results are presented in Table 2, where, PAR represents
the number of model parameters, GFLOPS represents giga
floating-point operations per second. It demonstrates that
GhostNetv2 [35] reduces parameters but decreases speed that
compared with CSP-DarkNet53. In contrast, ShuffleNetv2
[35] significantly diminishes parameters and achieves faster
speed during actual operations. EfficientNetv2 is supe-
rior to the CSP-DarkNet53 and ShuffleNetv2 in detection
accuracy by 1.1% and 4.5%, respectively. The speed only
decreases 3 FPS compared with CSP-DarkNet53. It is suf-
ficient for meeting the real-time requirements of industrial
defect detection.

TABLE 2. Comparison of different feature extraction module in backbone
network.
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C. ASPP MODULE
The SPP module in YOLOv5s is used to extract global
features by applying maximum pooling operations to the
feature maps of input through filter kernels with sizes of 5,
9 and 13. Although it addresses the multi-scale problem in
target detection, it tends to lose some features related to small
defect targets. Considering that atrous convolution can pro-
vide a larger receptive field than traditional convolution, the
ASPP module on dilated convolution is adopted in the paper.
The ASPP module utilizes 3 × 3 dilated convolution kernels
with expansion factors of 6, 12 and 18, respectively. It is
designed to further extract features related to small defects
on the steel plate, emphasizing the key characteristics of the
target. The structure of the ASPPmodule is depicted in Fig. 2.

D. SE-NET MODULE
By incorporating the attention mechanism, the model can
gain the capability of learning automatically and focus on
essential information from the input selectively. It enhances
the performance and generalization ability of the model. The
SE-Net attention module is integrated into the neck network,
enhancing the model’s perception of defect location informa-
tion and improving detection accuracy, especially for small
defect targets. The SE-Net attention module is illustrated in
Fig. 2.

The SE-Net module adopts both squeeze and excitation
operations. In the squeeze stage, it compresses the output
feature map of the convolutional layer into a feature vector
through a global average pooling operation. In the excita-
tion stage, a weight vector for each channel is learned by
adopting a fully connected layer and a nonlinear activation
function. This weight vector is applied to each channel on the
original feature map, giving different weight for the features
of different channels effectively. By incorporating squeeze
and excitation operations, the performance of network is
enhanced by learning the weight of each channel adaptively.
At the same time, the SE-Net module learns the weight of
each channel automatically, which can adjust the significance
of features in each channel for subsequent network layers
dynamically. Consequently, the network can allocate more
attention to crucial feature channels, thus improving the dis-
crimination ability for small defect targets and enhancing the
overall detection performance.

E. ANCHOR FRAME OPTIMIZATION
The anchor box is crucial for target detection, During the
training process, the network optimizes anchor box iteratively
to establish associations with pixel information on feature
maps. It can be guided by ground truth. The feature extrac-
tion network divides the input image into feature maps of
sizes 13 × 13, 26 × 26, and 52 × 52. Subsequently, these
feature maps are used to scan each image in detection. If the
pixel information within these grid cells closely matches that
observed target, the system will identify these grid cells.
After that, the bounding box is adopted for localization and

visualization precisely, which is used to guide the generation
of bounding boxes. Consequently, anchor boxes can reduce
the number of negative samples significantly to enhance the
accuracy of detection. The schematics diagram of anchor
box, ground truth and predicted bounding box are shown in
Fig. 3. The relationship between anchor box, ground truth,
and predicted bounding box are expressed as follows:

tpx =
xp − xa
wa

, tpy =
yp − ya
ha

tpw = log (
wp
wa

), tph = log (
hp
ha

)

tgx =
xg − xa
wa

, tgy =
yg − ya
ha

tgw = log (
wg

wa
), tgh = log (

hg
ha

) (8)

where, (tpx , t
p
y ) represents the offset of the center point of

predicted bounding box relative to the center point of anchor
box; (tpw, tph ) denotes the scaling coefficients for the width and
height of predicted bounding box relative to the center point
of anchor box; (tgx , t

g
y ) indicates the offset of the center point

of ground truth relative to the center point of anchor box;
(tgw, tgh ) signifies the scaling factors for the width and height
of the ground truth relative to the center point of anchor box.

FIGURE 3. Schematics diagram of anchor box (green dashed-line box),
ground truth (red solid-line box) and predicted bounding box (blue
dotted-line box).

The first two sub-formulas in Eq. (8) adjust the anchor
box by incorporating the offset of the network prediction to
obtain the predicted bounding box. The impact of defects
that are excessively long or wide can be alleviated by the
normalization and logarithmic transformation. The latter two
sub-formulas in Eq. (8) regulate the network parameters
by calculating the loss caused by the offset between the
ground truth and the predicted bounding box. It’s important
to consider that the setting of the anchor box can impact
the prediction results. The 1-IoU index [17] and K -means
algorithm is utilized to cluster the dataset of surface defects
by genetic algorithm. The steps are shown as follows.

1) Select the number of clusters K .
2) Choose initial center of the cluster.
3) Assign each sample to the nearest cluster.
4) Update the cluster center by the mean of samples in

each cluster.
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5) Repeat the above two steps until the cluster center
remains unchanged or changes little to meet the given
termination condition.

The index of best possible recall (BPR) that shown in Eq. (9)
is used for comparing the optimized anchor box and the
original anchor box. The closer the value of BPR is to 1, the
better the anchor box is.

BPR = gtcall
/
gttotal (9)

where, gtcall reflects the total number of anchor boxes exceed-
ing a predefined threshold; gttotal represents the overall
quantity of all anchor boxes.

Comparison results between optimized anchor box and
original anchor box is shown in Fig. 4. The BPR is 0.9817,
0.9992 for YOLOv5s and SKS-YOLO, respectively. It is
shown that the optimization of anchor box can improve the
detection accuracy, and the predicted bounding box is nearly
the same as the ground truth.

FIGURE 4. Comparison between optimized anchor box and original
anchor box: the first column represents the original image, the second
column represents the original anchor box and ground truth, the third
column represents the optimized anchor box and predicted bounding
box.

F. LOSS FUNCTION OPTIMIZATION
The loss function of CIoU is extremely sensitive to the offset
between the predicted bounding box and the ground truth.
A small offset will give rise to a significant change in the
CIoU, which is not able to reflect the quality of the target
detection box precisely. The distance between the center point
of the predicted bounding box and the ground truth should
be considered in CIoU, it may lead to the instability of the
boundary prediction. The paper further considers the vector
angle between the ground truth and the predicted bounding

box based on the loss function of SIoU. It includes four parts:
angle loss, distance loss, shape loss and IoU loss, which is
shown in Fig. 5. The penalty term can reduce the offset of
the bounding box and raise the stability of the bounding box
prediction.

FIGURE 5. Schematics diagram of SIoU calculation.

The angle loss formula is:

3 = 1 − 2 ∗ sin2
(
arcsin(x) −

π

4

)
(10)

where, x = ch
/
σ = sin(α); σ is the distance between the

center point of the predicted bounding box and the ground
truth; ch is the difference of height between the center point
of the predicted bounding box and the ground truth.

The distance loss is calculated as follows:

1 =

∑
t=x,y

(
1 − e−γρt

)
(11)

where, ρx = ( b
gt
cx−bcx
cw

)2, ρy = (
bgtcy−bcy
cw

)2, γ = 2 − 3.
When α tends to 0◦, the contribution of distance loss will

decrease. When α tends to 45◦, the contribution of distance
loss will increase.

The shape loss formula is:

� =

∑
t=w,h

(
1 − e−ωt

)θ (12)

where, ωw =
|w−wgt

|

max(w,wgt ) , ωh =
|h−hgt |

max(h,hgt ) , (w, h) and (wgt , hgt )
are the width and height of the predicted bounding box and
the ground truth, respectively.

The IoU loss is calculated as follows:

IoU =

∣∣B ∩ BGT
∣∣∣∣B ∪ BGT
∣∣ (13)

In summary, the SIoU loss is calculated as follows:

LSIoU = 1 − IoU +
1 + �

2
(14)

IV. EXPERIMENTS AND RESULT ANALYSIS
A. EXPERIMENTAL SETUP
1) DATASET DESCRIPTION
three typical surface defects images (Inclusions, Patches, and
Scratches) from the NEU-DET dataset and defect-free image
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are selected in the following experiments. Each type of defect
comprises of 300 images with a size of 200 × 200, as shown
in Fig. 6. The dataset is randomly divided into a training set
and a test set in a 9:1 ratio. The input image size is 640×640,
the training rounds is 300 and a batch size is 16.

FIGURE 6. Examples of surface images of steel sheet.

2) IMPLEMENTATION DETAILS
the experiments are performed on a work computer with
an Intel(R) Core (TM) i7-12700H CPU @2.30GHz CPU,
an NVIDIAGeForce RTX3070Ti GPU (with 8 GBmemory),
CUDA 11.3, and cuDNN 8.9.2 on Windows 11 64-bit with
PyTorch1.10.

3) EVALUATION METRICS
The precision (P), recall (R), average precision (AP) and
mAP are used as the metrics to evaluate the proposed method
comprehensively. The GFLOPS are used as the metric to
evaluate the computational complexity. The FPS is used as
the metric to evaluate the efficiency. The above metrics are
defined as follows.

P =
NTP

NTP + NFP
,R =

NTP
NTP + NFN

(15)

where, NTP and NFN represent the number of defects that
are detected correctly or not respectively. NFP represents the
number of areas that are misclassified.

The mAP is used to evaluate the overall detection perfor-
mance of the proposed method, which is the average of the
AP of all the categories.

The AP is calculated as follows:

AP =

∫ 1

0
P (R) dR (16)

The mAP is calculated as follows:

mAP =

∑N
i=1 (AP)i

N
(17)

where, N is the number of samples in the dataset.

The FPS is calculated as follows:

FPS = FrameNum
/
ElapsedTime (18)

where, FrameNum is the total number of test image;
ElapsedTime is the total run time.

B. CONVERGENCE ANALYSIS AND ABLATION STUDY
The training epoch is 300 rounds, and loss curve is shown
in Fig. 7. Box_loss represents the difference between the pre-
dicted bounding box and the ground truth. Class_loss denotes
the classification loss. It is used to judge whether the model
can identify the defect target and classify it into the correct
category precisely. Object_loss represents a confidence loss,
which is capable of detecting whether there is an object in
the grid and calculating the confidence of the network. When
the epoch is 300, the loss values of the SKS-YOLO no longer
decrease to indicate the network has converged and stabilized.

FIGURE 7. The convergence curve of SKS-YOLO.

The ablation study consists of the following: affections of
the EfficientNetv2 module, affections of the ASPP module,
affections of the SE-Net module, affections of anchor frame
optimization module, and affections of the SIoU loss function
in the proposed SKS-YOLO model.

1) AFFECTIONS OF EfficientNetv2
EfficientNetv2 module is used to replace the CSP-DarkNet53
module in the original YOLOv5s backbone network. It is used
for the fusion of features from the shallow and deep layers to
the front layer. Compared with CSP-DarkNet53, the feature
fusion of EfficientNetv2 is more comprehensive. The exper-
imental results in Table 3 (1st and 2nd row) show that mAP
is increased from 85.6% to 86.1% and GFLOPS decreased
by 67.4%. It indicates that EfficientNetv2 can improve the
detection accuracy and reduce the calculation load in steel
defect detection.

2) AFFECTIONS OF ASPP
from the Table 3 (6th and 7th row), we can see that the mAP
is increased from 86.2% to 89.4%. It indicates that ASPP
module can improve the ability of feature extraction for small
defect targets.
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TABLE 3. Comparison of ablation experiment.

TABLE 4. Comparison of different methods.

FIGURE 8. Comparison of P-R curves of the proposed SKS-YOLO and YOLOv5s.

3) AFFECTIONS OF SE-NET
Table 3 (2nd and 3rd row) shows that SE-Netmodule can boost
the performance of the network by learning theweight of each
channel adaptively, and the mAP is increased from 86.7% to
87.2%. This indicates that it helps SKS-YOLO perform better

in steel defect detection. Compared with YOLOv5s directly
assigning attention to the feature channel, this module calcu-
lates the difference between the features to give attention to
the feature channel and focus on the detection of small targets.
Thus, it has higher detection accuracy.
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FIGURE 9. Comparison of the defect image detection results by different methods.

4) AFFECTIONS OF ANCHOR FRAME
it does not set many hyper-parameters of these anchor boxes
and possesses good detection results on defects with small
and narrow shapes. Table 3 (4th and 5th row) shows that it
can improve the detection accuracy of the model for various
defects greatly, the mAP is increased from 86.7% to 88.5%.

5) AFFECTIONS OF THE SIoU
the results are shown in Table 3 (5th and 7th row) denotes the
mAP is increased from 88.5% to 89.4%. It can be observed
that SIoU slightly improves the detection performance of
SKS-YOLO.

C. COMPARISON WITH SOTA WORKS
In order to verify the detection performance of the proposed
SKS-YOLO method, it is compared with some detection

methods, including Faster R-CNN, SSD, RetinaNet, Center-
Net [46], EfficientDet [47] and YOLOv5s. The experimental
results are presented in Table 4, Fig. 8 and Fig. 9. As shown
in Fig. 8, the mAP of SKS-YOLO is 89.4%, which is
3.8% higher than YOLOv5s (85.6%). SKS-YOLO signifi-
cantly increases the detection precision of Patches (4.9%)
and Scratch (11.4%). Compared with YOLOv5s has some
problems of mismatch and missing for small defect targets,
SKS-YOLO has better performance in detecting small defect
targets. It indicates the added attention mechanism is con-
ducive to locate defect targets. The improved network has
better detection accuracy and exhibits better robustness. It is
evident from Table 4 that mAP of the SKS-YOLO is 89.4%,
which is 3.8% higher than YOLOv5s. SKS-YOLO achieved
the largest AP on Patch and Scratch defects, with 86.2% and
88.6%, respectively. Compared with Faster R-CNN, SSD,
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RetinaNet, CenterNet, EfficientDet, it is increased by 9.3%,
16.1%, 32.9%, 8%, 20.1%, respectively.

V. CONCLUSION
In this article, a new detection model, SKS-YOLO based on
YOLOv5s is proposed for the detection of steel plate defects.
This deep network can tackle challenges such as large defect
spans, poor detection of small defects, and low accuracy in
the existing defect detection method on the surface of steel
plates. Compared with the various detection models, both the
accuracy and efficiency of SKS-YOLO are improved. The
module of EfficientNetv2, ASPP and SE-Net greatly improve
the detection performance of SKS-YOLO. The experimental
results show that the proposed SKS-YOLO model achieves
89.4% mAP for the defect detection task.

The proposed SKS-YOLO model requires that the avail-
able surface defects are representative of those likely to be
seen, and that representative normal images are included.
It may not be able to reliably identify completely different
types of defects that it has not seen before. At the same
time, the anchor frame optimization of SKS-YOLO takes
the K -means algorithm as the basic processing unit, but
how to adaptively determine the number of clusters K is not
discussed in the paper. We plan to put forward a multiscale
detection and segmentation method, which is expected to
automatically determine the K to be detected. In addition,
SKS-YOLO can be optimized to further enhance detection
efficiency and accuracy.

In the future, we will focus on two directions as
follows:

1) In the surface defect detection of steel plate, normal
image and defect image need to be labeled and classified,
which is laborious and time-consuming, while the deep
learning model needs large-scale samples to obtain an excel-
lent detection model. Therefore, we are going to apply
transfer learning and unsupervised learning to design more
effective models to distinguish and detect various kinds of
defects. Besides, we are also looking for more efficiency
attention module to speed up the feature map generation
process to enable real-time online defect localization and
detection.

2) For steel sheet and other industrial products, such as
AMOLED screens, wood, ceramic tile and leather, normal
surface generally shows homogeneous texture, defects are
local anomalies on the surface, which are dissimilar to the
texture at other locations. The defects are considered as aber-
rant or anomalous arrayed pixels in the image, comparing
with defect-free region. Therefore, the application of other
industrial products in complex working conditions to verify
the applicability of proposed SKS-YOLO model.
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