IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 April 2024, accepted 24 June 2024, date of publication 2 July 2024, date of current version 10 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421962

== RESEARCH ARTICLE

Finite State Machine of the MQTT-SN Protocol for
Its Operation Over IEEE 802.15.4 in Linear
Topologies

LUIS CRIOLLO CAJAMARCA 1, CARLOS EGAS ACOSTA !, CHRISTIAN TIPANTUNA 1,
JORGE CARVAJAL-RODRIGUEZ !, AND CARLA PARRA"?2

IDeparlamento de Electrénica, Telecomunicaciones y Redes de Informacién, Escuela Politécnica Nacional, Quito 170525, Ecuador
2Departamento de Estudios Organizacionales y Desarrollo Humano, Escuela Politécnica Nacional, Quito 170525, Ecuador

Corresponding author: Christian Tipantufia (christian.tipantuna@epn.edu.ec)

This work was supported by the Escuela Politécnica Nacional.

ABSTRACT Currently, the Message Queuing Telemetry Transport for Sensor Networks (MQTT - SN)
protocol has been implemented in operating systems such as TinyOS and Contiki to operate above the
network layer, in sensor nodes with low processing capacity, powered by batteries and operating in various
topologies. However, minimizing the processes at the node side is necessary to make the MQTT - SN protocol
applicable in wireless sensor networks (WSNs) with large-scale linear structures. This paper presents the
development of the MQTT-SN protocol’s finite state machine (FSM) for its operation over IEEE 802.15.4 in
linear topologies. For this purpose, an FSM for each of the twelve procedures indicated in the MQTT-SN
specification is obtained. Furthermore, each FSM is represented using the specification and description
language, and the characteristics of the IEEE 802.15.4 protocol and the sensor node are considered. Through
simulation and the exchange of messages between nodes, the operation of the FSMs is verified. Subsequently,
implementing the FSMs in WSNs allows for validating the deployment of the MQTT-SN protocol in linear
topologies.

INDEX TERMS MQTT-SN, message queuing telemetry transport for sensor networks, IEEE802.15.4, finite
state machine, linear topology, wireless sensor networks.

I. INTRODUCTION [4]. With this development, a sender node can be encoded to

Currently, the use of wireless sensor networks (WSNs)
has experienced an increase [1]. With this, the need has
arisen to develop technologies that require using the Message
Queuing Telemetry Transport for Sensor Networks (MQTT-
SN) protocol [2]. However, to date, no implementation of the
MQTT-SN protocol directly over IEEE 802.15.4 is available.
The MQTT-SN protocol has been implemented in operating
systems on the network layer. To ensure that the MQTT-SN
protocol is applied in WSNs, minimizing the processes
carried out in the sensor nodes is necessary [3]. Therefore,
this paper develops the finite state machines of the MQTT-SN
protocol for operation over IEEE 802.15.4 in linear topolo-
gies using the specification and description language (SDL)

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

respond to sequences of 802.15.4 frames containing MQTT-
SN messages. Implementing the MQTT-SN FSMs operating
over IEEE 802.15.4 allows verifying that it is possible to use
MQTT-SN over the link level in wireless networks and in a
linear topology where routing functions are minimal [5].

Il. BACKGROUND

A. LINEAR WSNS

Linear WSNs are a specific type of WSN in which the
nodes are organized in a straight line, as seen in Fig. 1. This
topology aims to reduce installation and maintenance costs,
improve network stability and fault tolerance, extend sensor
battery life, and reduce end-to-end communication latency to
improve the quality of service (QoS) of sensitive data [6],
[7]. The linear alignment of sensor nodes can be applied in

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

91678 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0008-8455-396X
https://orcid.org/0000-0002-3540-9768
https://orcid.org/0000-0002-8655-325X
https://orcid.org/0000-0003-0369-9964
https://orcid.org/0000-0002-7974-471X

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

Transmission to Sn

-—
Transmission to S1

FIGURE 1. Linear wireless sensor network [7].

various situations, such as monitoring and surveillance of
international borders to detect illegal crossings or smuggling
operations, monitoring highways, or monitoring pipelines
that transport oil, as has been analyzed in our previous work
in [8], [9], and [10].

The transport of the MQTT-SN protocol over IEEE
802.15.4 frames in large-scale linear infrastructures with
hundreds of nodes considers typical transactional traffic for
monitoring linear structures. Potential packet loss due to
congestion issues stemming from the low computational
capacity of nodes when multiple IEEE 802.15.4 frames
circulate through the linear topology is addressed in [8]. This
paper presents an algorithm for reliable data transport using
IEEE 802.15.4 between a sensor node in the linear topology
and a border node, eliminating the need for a routing protocol.

Implementing the MQTT-SN protocol over the IEEE
802.15.4 protocol considers a routing protocol unnecessary
when nodes are stationary in a linear topology. Therefore, the
same MAC identifier can be used to identify the node within
the multi-hop network, as studied in [11]. In dynamic linear
topologies where nodes are in motion, a node may transition
from one coverage area to another, necessitating network-
level identifiers. Therefore, MQTT must be encapsulated in a
protocol such as 6LoWPAN. Furthermore, in the scenario in
which linear WSNs are used for monitoring large-scale linear
infrastructures, nodes have equal priority in transmitting
sensing messages because the parameters to be monitored
are the same across all nodes and are equally important.
This study does not consider nodes that have prioritized
information to transmit.

The implemented scenarios consider multi-hop linear
topologies, where each node’s coverage zone spans nodes
to the right and left. Monitoring large-scale linear infras-
tructures involves transactional traffic and monitoring data
that can be transported within the payload of a single IEEE
802.15.4 frame.

B. MQTT-SN PROTOCOL

The MQTT-SN protocol is considered an adaptation of the
MQTT protocol designed for resource-constrained devices
with low processing power, low memory, and requiring
batteries, making it ideal for WSNs. Any network that
provides bidirectional data transfer service supports MQTT-
SN. For this reason, TCP/IP is not essential for the operation
of MQTT-SN [12]. In general terms, MQTT-SN can be

VOLUME 12, 2024

MQTT-SN
client | mqrT- MQTT-SN marT
Gateway
MQTT-SN
client
MQTT-SN
MQTT-SN ,__M S
client
QTS
MQTT-SN A_..----MQ
Forwarder
MQTT-SN MOAT-SN
client
FIGURE 2. MQTT-SN architecture [12].
2 or 4 Octets N Octets .
- >

Message Variable

Message Header
Part

FIGURE 3. MQTT-SN message format [12].

defined as an optimized publish/subscribe protocol for
WSNs [13].

1) MQTT-SN ARCHITECTURE

Figure 2 shows the architecture used by MQTT-SN [12].
MQTT-SN must work in conjunction with MQTT, so three
components are defined:

o« MQTT-SN clients: They are responsible for publishing
and subscribing to the MQTT broker, although they
cannot connect to it directly [12].

o MQTT-SN forwarder: MQTT-SN clients can access a
gateway through a forwarder. This component encapsu-
lates the MQTT-SN messages in a forwarding frame to
send them to the gateway. When the forwarder receives
an encapsulated frame, it decapsulates it and sends it to
the client [12].

« MQTT-SN gateway: It operates as an intermediary
between the client and the broker, converting MQTT-SN
communication messages to MQTT. A gateway can
be integrated into the broker or be independent [12].
A stand-alone gateway must convert MQTT-SN mes-
sages to MQTT and vice versa because it uses
MQTT-SN messages to communicate with clients and
MQTT messages to communicate with the broker [12].

2) MQTT-SN MESSAGE FORMAT

An MQTT-SN message comprises a fixed header and a
variable part, as shown in Fig. 3. The fixed header is
mandatory, and its fields are identical for all messages, while
the variable part and its fields depend on the type of MQTT-
SN message [12].

e MQTT-SN message header: The message header
consists of the Length field and the MsgType field,
as seen in Fig. 4. The Length field indicates the total
octets of the message, including the field size. Its length

91679

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

1 or 3 Octets 1 Octet

)
’

Length MsgType

FIGURE 4. MQTT-SN message header [12].

Message Type

Message Type Field Value Message Variable Part
Hex. Dec.
ADVERTISE 0x00 0 Gwld Duration
SEARCHGW 0x01 1 Radius
GWINFO 0x02 2 Gwld GwAdd
Reserved 0x03 3
CONNECT 0x04 4 Flags Protocolld Duration Clientld
CONNACK 0x05 5 ReturnCode
WILLTOPICREQ 0x06 6
WILLTOPIC 0x07 7 Flags Willtopic
WILLMSGREQ 0x08 8
WILLMSG 0x09 9 Willmsg
REGISTER 0x0A 10 Topicld Msgld TopicName
REGACK 0x0B 1 Topicld Msgld ReturnCode
PUBLISH 0x0C 12 Flags Topicld Msgld Data
PUBACK 0x0D 13 Topicld Msgld ReturnCode
PUBCOMP 0x0E 14 Msgld
PUBREC OxOF 15 Msgld
PUBREL 0x10 16 Msgld
Reserved 0x11 17
SUBSCRIBE | O0x12 18 Flags Msgld W
SUBACK 0x13 19 Flags Topicld Msgld ReturnCode
UNSUBSCRIBE = 0x14 20 Flags Msgld T°pTi‘;':iacr|’:f o
UNSUBACK 0x15 21 Msgld
PINGREQ 0x16 22 Clientld (op)
PINGRESP 0x17 23
Duration
DISCONNECT 0x18 24 (op)
Reserved 0x19 25
WILLTOPICUPD 0x1A 26 Flags Willtopic
WILLTOPICRESP 0x1B 27 ReturnCode
WILLMSGUPD 0x1C 28 WILLMSG
WILLMSGRESP 0x1D 29 ReturnCode
Reserved ((}));LED- 30-253
Encapsulated OXFE 254 ctrl Wireless MQTT-SN
message Node Id message
Reserved OxFF 255

FIGURE 5. Values that the MsgType field can acquire, together with its
respective variable parts, in an MQTT-SN message [12].

can be 1 or 3 octets. The 1-octet format is used for
messages with a length less than or equal to 255 octets.
For messages longer than 256 octets, the 3-octet format
is used. In this case, the first octet of the length field is
encoded with the value 0 x 01, while the remaining two
octets indicate the total number of octets of the message.
The MsgType field is used to identify any MQTT-SN
message uniquely [12]. It has a length of 1 octet, and its
values can be seen in Fig. 5.

« Variable part of the message: It can consist of 14 fields
whose use and distribution depend on the message type,
as shown in Fig 5 [14]. The Flags and ReturnCode fields
are described below.

— Flags (1 byte): It contains six flags, which are
indicated in Fig. 6) and are described below:

1) DUP: Used in PUBLISH messages to indicate
whether the message is transmitted for the first
time (0) or retransmitted (1).

91680

Bits 7 6 5 4 3 2 1 0
DUP QoS Retain Will Clean TopicldType
Session

FIGURE 6. MQTT-SN flags field [12].

TABLE 1. Values and meaning of the Return Code field.

Value Meaning

0x00 Accepted

0x01 Rejected: congestion
0x02 Rejected: invalid topic ID
0x03 Rejected: not supported
0x04 - OxFF | Reserved

2) QoS: Indicates the quality of service level:
QoS 0 (0b00), QoS 1 (0b01), QoS 2 (0b10),
and QoS -1 (Obll); the latter is specific to
MQTT-SN and is used in publications that do
not require prior procedures.

3) Retain: Used in PUBLISH messages for the
client to tell the broker to replace any existing
held messages and store the new received
message.

4) Will: Used in CONNECT messages sent by the
client, indicates that a Will topic and a Will
message will be sent.

5) CleanSession: If set to 0, it tells the broker to
resume communication with the client as long as
it has an associated session. If set to 1, the client
and server must discard previous sessions and
start a new one, which will be deleted when the
network connection ends. CleanSession is used
only in CONNECT messages.

6) TopicldType: In an MQTT-SN message, the
value of the Topicld or TopicName field can
be a regular topic identifier, a predefined topic
identifier, or a short topic name.

— ReturnCode (1 byte): Used to accept or reject a
message awaiting an acknowledgment, the values

and meanings of which are shown in Table 1.

C. FINITE STATE MACHINE

A finite state machine (FSM) or finite automaton is an
abstract model for the manipulation of symbols that allows
us to know if a chain of symbols belongs to a language or,
in turn, generates another set of symbols [15], [16]. An FSM
comprises a set of states that includes an initial and final state.
Furthermore, it depends on the string entered and the state
changes on the FSM. An FSM is composed of five parts and
can be defined as a quintuple: A = {Q, qo, F, X, §}, where:

Q : Finite set of states.

qo : Initial state with gg € Q.
F : Set of final states.

% : Finite input alphabet.

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

1/a

0/b

FIGURE 7. Mealy machine diagram [19].

6 : Transition function Q x ¥ — Q.

If the FSM is in state ¢; (where ¢; € Q) and enters symbol
a (where a € X)), it causes the FSM to change from state
gi to state gi. The function 4, called the transition function,
describes this change in the form §(g;, a) — gi. In this way,
a new state is obtained. Another way to represent an FSM is
through a state diagram [15].

1) MEALY MACHINE

A derivation of the FSMs is the transducer state machines
(finite-state transducers), which deliver a set of symbols that
belong to a language. The set of final states is changed by an
output function, which takes the current state or a transition
of the FSM as a parameter and returns an element of the set
of output symbols [17], [18]. An example of this type of FSM
is the Mealy machine. The Mealy machine requires an initial
state go; the output function A, which returns a symbol s as
soon as a state transition occurs, and the transition function §,
which reads an element of the input string ¥ and indicates the
new state [19], [20]. A tuple or a state diagram can represent
a Mealy machine, as shown in Fig. 7. A Mealy machine is
defined as a 6-tuple: C = {Q, %, S, §, A, qo}, where:

Q : Finite set of states.
% : Input alphabet.
S : Output alphabet.
8 : Transition function Q x ¥ — Q.
A : Output function Q x ¥ — S,
with A(gj,a) - s, cons € S,ge Qyaec X.
qo : Initial state.

D. SPECIFICATION AND DESCRIPTION LANGUAGE

The SDL is based on finite state machines and was originally
developed to specify and describe the functional behavior of
telecommunications systems [4], [21], [22]. This language
describes a system’s structure, communication, behavior, and
data. It is also used to specify communication protocols [23].
Two types of SDL notations can be selected: i) graphi-
cal representation (SDL/GR) and ii) phrase representation
(SDL/PR).

VOLUME 12, 2024

15em
SRC_ADDR=0x001 = SRC_ADDR=0x002 |———{ SRC_ADDR=0x003 = SRC_ADDR=0x004
Gateway Node

Intermediate Nodes Intermediate Nodes

FIGURE 8. IEEE 802.15.4 linear topology wireless network.

IIl. CONSIDERATIONS FOR THE DEVELOPMENT OF THE
FSM

Because wireless nodes, in this case, the ATMEL
RCB256RFR2 [24], have their operating characteristics,
determining whether any of them affect the development of
the FSM is essential. This section analyses Features such as
the data reception and transfer service, the operation of the
nodes in linear topologies, the programming language used
by the node, the operation of the MQTT-SN protocol over
IEEE 802.15.4, and the interaction between the broker and
the gateway.

A. NODE DATA TRANSFER AND RECEPTION SERVICE

As specified in the characteristics of the RCB256RFR2
node [24], it cannot receive and send information at the same
time, so it is considered that the reception of a message should
be the trigger for a state change. In response to receiving
a message, the node can send another depending on its
procedure and state. When the node is in a certain state, it can
receive different types of messages, but only one message at a
time. After reception and transmission, if applicable, the node
must go to another state or return to the same state.

B. NODE PROGRAMMING LANGUAGE

The RCB256RFR2 node uses the C programming language,
so the device cannot run multithreaded processes [24].
Because of this, the node can only run one process at a
time, being another reason why the node cannot receive and
send multiple messages simultaneously. Since the C language
does not allow object-oriented programming, generating
MQTT-SN messages uses vector pooling. As they are simple
messages, they do not take up a large amount of device
resources. For this reason, the node remains in a certain state
until it receives a message or signal allowing a state change.
The C language allows this functionality to be coded without
any problem within the node; therefore, there should be no
problem in the development of the FSM either.

C. NODE OPERATION ON LINEAR TOPOLOGIES
For the development of the FSM of the MQTT-SN protocol,
only two nodes are considered capable of handling the states
of each MQTT-SN procedure. The mentioned nodes must be
at the network’s edge; thus, a network with linear topology
is formed, as shown in Fig. 8. The intermediate nodes only
verify if the MQTT-SN message type is correct and then send
it to the next node until it reaches its destination.

The MQTT-SN protocol, designed for WSNs, operates
directly on the link layer, not requiring a network layer
because the information is sent only through a single

91681

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

route [3], [5]. The RCB256RFR2 node allows direct access to
the payload field of an IEEE 802.15.4 frame [24]. Therefore,
the gateway node and the publisher/subscriber (client) node
can generate MQTT-SN messages and send them through
the intermediate nodes. Because the nodes work on a linear
topology, functions are omitted in the announcement and
discovery procedure. The ability to respond to SEARCHGW
messages by nodes other than the gateway is not con-
sidered because the publisher/subscriber node receives the
ADVERTISE messages through the intermediate nodes in
the proposed network topology. The timers with which the
response priority is given to the gateway are also not taken
into account; the whole procedure is not omitted because the
constant sending of ADVERTISE messages allows the client
to know the gateway’s status. It should also be mentioned that
when working on the proposed linear topology, it is assumed
that there are no problems due to the transmission or reception
of simultaneous messages.

D. OPERATION OF THE MQTT-SN PROTOCOL OVER IEEE
802.15.4

MQTT-SN was originally developed to run over ZigBee,
which has selected the IEEE 802.15.4 standard as the protocol
for the PHY and MAC layers, thus providing interoperability
between products from different vendors [14], [25]. MQTT-
SN is designed to be independent of the lower layers
it operates on. A network providing a bidirectional data
transfer service between any node and a particular node
(gateway) must support MQTT-SN [12]. Thus, encapsulating
MQTT-SN messages in IEEE 802.15.4 frames should not
affect the protocol’s operation.

E. INTERACTION BETWEEN THE MQTT BROKER AND THE
MQTT-SN GATEWAY

No FSM corresponding to the MQTT broker is developed
in this paper. However, this device’s operation must be
considered when creating FSMs, especially gateway-related
functionalities. In an MQTT-SN network, the gateway
must periodically announce its presence. The gateway must
establish a connection with the broker if it is independent.
In contrast, if the gateway is integrated with the broker,
it announces its presence when it starts its operation. In both
cases, a signal is established that the broker is ready to receive
messages for FSM development. On the other hand, by not
using a broker in the proposed MQTT-SN network, it is
considered that the gateway responds to messages sent by the
client in a similar way as it would if it were connected to a
broker, and the time it should take for the broker to respond
is not taken into account.

F. MQTT-SN MESSAGES TO BE EXCHANGED BETWEEN
CLIENT AND GATEWAY

The messages are considered input and output signals for
the developed FSMs. Both the client and gateway nodes can
generate their respective MQTT-SN messages. In addition,

91682

in several cases, a device must generate a message in
response to receiving another message sent by another
device. To develop the FSMs of the MQTT-SN protocol,
all the messages of the MQTT-SN specification except the
MQTT-SN encapsulation frame must be used. The messages
must be sent and received according to the procedure being
executed in the device using them.

G. OTHER EVENTS AFFECTING THE DEVELOPMENT OF
THE FSMS

Apart from the reception of MQTT-SN messages, a state
change is also possible when the time of a previously set
timer has expired. In addition, a status change can occur by an
internal signal generated within the node itself. For example,
when the client has a new publication-ready, the message
PUBLISH should signal that it is ready to be published. The
pushbutton will be used on the RCB256RFR2 node board to
simulate these internal signals. On the other hand, messages
that have a returnCode field or the flags field (QoS and will)
also cause a state change.

IV. DEVELOPMENT OF THE FSMS OF THE MQTT-SN
PROTOCOL

Given that in most of the procedures, the devices involved
respond to the reception of a message with another message,
the Mealy machine represents the states through which
the client and gateway nodes pass. The Mealy machine
allows accepting the input of different MQTT-SN message
sequences and, in turn, sending a sequence of output
MQTT-SN messages. Considering the 12 procedures for
operating the MQTT-SN protocol, it is chosen to develop
a Mealy machine (both for the client and the gateway) for
each procedure independently because it will be easier to
understand each FSM obtained. In addition, the message
sequences allowed for use are shorter and depend on each
procedure. Similarly, it is easier to test the operation of one
procedure at a time rather than all procedures together. Fig. 9
shows an overview of all procedures specified in MQTT-SN
specification.

A. GATEWAY ANNOUNCEMENT AND DISCOVERY
PROCEDURE

A gateway must establish a connection with a broker and then
send ADVERTISE messages to all devices in the MQTT-
SN network. If the gateway is part of the broker, it will
announce its presence instantly. ADVERTISE messages are
sent periodically. Each period will have a duration TADYV,
indicated in the “Duration” field of the message. If new
clients join the network, they can wait for ADVERTISE
messages or send SEARCHGW messages. Each client
will wait a random time, between 0 and TSEARCHGW,
before transmitting a SEARCHGW message. In response,
the gateway will send a GWINFO message indicating the
device is active. SEARCHGW messages can be retransmitted
when there is no response to their sending. Each time
interval between two consecutive SEARCHGW messages

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

Gateway
Advertisement and
Discovery Procedure

Client's

Connection Setup Procedure for

Updating Will

This is used for a Data

client to establish a
connection with
the MQTT broker
through the MQTT-
SN gateway.

This is used to
announce the
presence of the
gateway to all clients
that are part of the
wireless network.

The client can use
this to update will
data information
at any time.

Support for Energy Client's Client's Disconnect
Saving Retransmission Procedure
Procedure

The client uses this to
save energy by
switching from the
sleeping state to the
awake state
periodically.

This is used by the
client when it needs to
disconnect from the
network.

This is used to avoid
blockages in the
devices caused by
the messages
retransmission

Procedure for
Registering Topic
Names

Publication with QoS

Client's Publication Level -1

Procedure

This is used for a
client to send
publications without
the need for previous
procedures.

This is used for a
client to send
publication messages
to the gateway.

A client or gateway
can use this to
associate a topic
name with a topic
identifier.

Gateway's
Keep Alive and Ping Publication Client's Topic
Procedure Procedure Subscribe or Un-

Subscribe Procedure
This is used for the
gateway to send
publication messages
to a client.

This is used for a client
to subscribe or
unsubscribe from a
topic name.

Both the client and
the gateway use this
to check each other's

availability.

FIGURE 9. Overview of the description of the 12 procedures indicated in the MQTT-SN specification [12].

T SEARCHGW

SEARCHGW.
T Apv

— —GWINFO — —

Fgﬁ

ADVERTISE4>I
|
|
|
|
|
|
|
|
|
|

-ADVERTISE -ADVERTISE:

T

FIGURE 10. Gateway announcing its presence to two clients.

must increase exponentially. Fig. 10 shows two clients
discovering an active gateway. Client 1 only waits for the
warning message from the gateway, while client 2 requests
a GWINFO. After these interactions, both clients wait for the
following ADVERTISE messages.

All clients contain a list that stores active gateway
identifiers. The list is kept updated with information from
ADVERTISE and GWINFO messages sent by the gateway.
During an interaction between clients, a client can reply
to a SEARCHGW message with its respective GWINFO
if its gateway list contains information for at least one

VOLUME 12, 2024

ADVERTISE41 m

A
IT SEARCHGW
SEARCHGW SEARCHGW
[client 2] [client 2]
T o GWINFO___ _ _GWINFO_ RN

ADV [gateway] [gateway]
|
T GWINFO GWINFO_ > % |
[client 1] I
|
|
| |

\ ADVERTISE4DI*ADVERTISE4DI
|
1

FIGURE 11. Client requesting information about an active gateway from
another client.

active gateway. The client selects an active device from the
list and sends its address and ID within a GWINFO. The
transmission of GWINFO messages by the client must be
delayed by TGWINFO time because the gateway has priority
in responding to a SEARCHGW. Fig. 11 shows the sequence
diagram, where client 2 wants to know the existence of the
active gateway. Both client 1 and the gateway receive the
SEARCHGW message. However, this client cancels sending
its response because the gateway has priority in responding.

91683

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

il

ADVERTISE ADVERTISE
[Active GW] [Active GW]

ADVERTISE > .
[Active GW]

ADVERTISE
[Active GW]

I
|
I
|
I ADVERTISE
I
|

I

—
>
o
<

-

FIGURE 12. Operation of an active and inactive gateway.

Although the network may operate with multiple gateways,
a client can connect to only one. If the connection fails, the
client will look for another gateway. An MQTT-SN network
can support several inactive gateways that do not send
messages. An inactive gateway only allows the reception of
ADVERTISE messages from other active gateways. As seen
in the sequence diagram in Fig.12, the client and gateway 2
(inactive) receive the announcement message from Gateway 1
(active). However, the latter’s messages are lost NADV times,
causing gateway 2 to wake up and send its ADVERTISE
messages. Because multiple active gateways can coexist
on the network, clients must receive their ADVERTISE
messages repeatedly every so often TADV. If clients stop
receiving messages a certain number of times (NADV times)
from a given gateway, their information will be removed from
all lists.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

The state machine diagram for this procedure indicates that
the device can remain in three states: i) INACTIVE, ii)
WAITING ADVERTISEMENT, and iii) BACKUP, as shown in
Fig. 13).

When the MQTT broker is ready to receive and transmit
messages, the gateway node will also be prepared to start its
operation if the latter is part of the broker. Otherwise, both
devices must establish a connection for the gateway to oper-
ate. Therefore, the node remains in the INACTIVE state until
the broker, through the input signal brokerReady = 1, tells
the gateway that it can start operating. Once the input signal is
received, the device responds with the message ADVERTISE.
When the device reaches the WAITING ADVERTISEMENT
state, the gateway periodically sends ADVERTISE messages
when the timer TADV expires. Additionally, during this
state, the gateway can receive SEARCHGW messages to
respond with a GWINFO immediately. This way, the node

91684

TADV: Finish

TX: ADVERTISE

brokerReady==1
RX:SEARCHGW

TX:GWINFO

WAITING
ADVERTISEMENT
S1

NADVTADV: Finish

TX: ADVERTISE

gwBackup==1

NS BACKUP
S2

RX:ADVERTISE
(de otro GW)

FIGURE 13. State diagram for the gateway, representing the
announcement and discovery procedure.

can announce its presence in an MQTT-SN network. Also,
there is a state called BACKUP, which the node will reach if
it receives the signal gwBackup = 1 when in the WAITING
ADVERTISEMENT state. During this state, the node waits for
ADVERTISE messages from another nearby gateway, which
must announce its presence periodically. The gateway in the
BACKUP state will return to the WAITING ADVERTISEMENT
state if the NADVTADV timer expires after it stops receiving
ADVERTISE messages from another gateway. Furthermore,
from the INACTIVE state it is not possible to go to the backup
state directly, you must wait for the broker to indicate that it
is ready to work. Finally, a Gateway will go to the INACTIVE
state, from any state, if the broker, for any reason, stops
working, for which a brokerReady = 0 signal is used.

The diagram in Fig. 14 is similar to the Mealy machine
of the corresponding procedure, with the difference that
here the timers TADV and NADVTADV are added that
start when a message is sent or received ADVERTISE.
The variables durationRX, durationTX, and NADV are
added to control the duration of the timers. The diagram better
describes the state changes described in Mealy’s machine.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION
Although an MQTT-SN client must be able to respond to
messages from other clients, this feature was not considered
for developing this Mealy machine because it is unnecessary
if the node operates on a linear topology. Due to the above,
only two states will be required: i) DISCOVERY and ii)
RX_GWINFO, as shown in Fig. 15.

The initial state is the Discovery state, during which the
client node waits to receive ADVERTISE messages from
the gateway node, also waiting for the NADVTADV or

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PROCESS: Gateway Advertisement and Discovery
Procedure

DCL NADV Integer :=2,
durationTx Integer :=900,
durationRx Integer :=900;

TIMER TADV, NADVTADV;

INACTIVO BACKUP
S0 52

NapvTaDv ADVERTICE

brokerReady==

NTadv:=
durationRx*NADV;

ADVERTISE ADVERTISE

SET(NOW+
durationTx, TADV)

SET(NOW+
durationTx , TADV)

SET(NOW+NTadyv,
NADVTADV)

BACKUP
s2

WAITING
ADVERTISEMENT
s1

gwBackup:=0;

WAITING
ADVERTISEMENT
WAITING s1
ADVERTISEMENT
s1

brokerReady==0

INACTIVE
S0

SEARCHGW gwBackup==1

BACKUP

ADVERTISE 52

GWINFO

SET(NOW+

durationTx , TADV) brokerReady==0

WAITING
ADVERTISEMENT
s1

INACTIVE
SO

FIGURE 14. SDL process for the gateway, representing the gateway
advertisement and discovery procedure.

TSEARCHGW timers to expire. When the TSEARCHGW
timer expires, a SEARCHGW message is sent, and the node
enters the RX_GWINFO state. In the mentioned state, the
node waits for the GWINFO message to return to the initial
state and continues waiting for warning messages from the
gateway. Conversely, if the node does not receive the expected
message, it must retransmit the previously sent SEARCHGW
message.

Figure 16 shows how the timers NADTADYV,
TSEARCHGW, and TRTX are added to the SDL process.
The NADTADV and TSEARCHGW timers are started when
an ADVERTISE is received or a SEARCHGW is sent.
Fig. 16 shows that the timer TSEARCHGW is configured
before starting the state transition and how the timer TRTX

VOLUME 12, 2024

TRTX: Finish

RTX: SEARCHGW

RX:ADVERTISE

NS TSEARCHGW : Finish

TX: SEARCHGW

DISCOVERY RX_GWINFO

S1

RX:GWINFO

FIGURE 15. State diagram for the client, representing the gateway
announcement and discovery procedure.

increases the duration when the client does not receive a
response from the gateway. The SDL process also adds the
variables t SEARCHGW, NADV, durationRx, tini,
tRTX and NTadv to control the duration of the timers. On the
other hand, the variable tablaGwUpdated indicates that
when the correct sequence of messages has been exchanged,
a client’s gateway table should be updated.

B. CLIENT'S CONNECTION SETUP

Before a client can exchange information with a gateway,
it must establish a connection. During this procedure, a client
must send a CONNECT message to the gateway to which it
wishes to connect. The message tells the gateway whether or
not the client wants to send will data via the corresponding
flag. If the client requires sending a topic and a will message,
it will set the will flag to 1. After the gateway receives the
CONNECT message, it will request the topic and the will
message using the WILLTOPICREQ and WILLMSGREQ
messages, respectively. The client will send the data will by
responding with the messages WILLTOPIC and WILLMSG,
respectively. Finally, the gateway will send a CONNACK
message accepting or rejecting the connection. If the client
sets the will flag of the CONNECT message to 0, the gateway
will immediately respond with a CONNACK message.
Fig. 17 shows two clients establishing a connection with a
gateway with a different value of the will flag.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

This procedure starts when the previous procedure has sent at
least one warning message. Consequently, the state of WAIT
ADVERTISE is renamed WAIT CONECTION and is consid-
ered the initial state of this procedure. Additionally, the states
RX_TOPIC and RX_MSG are considered, which are used
according to the setting of the will flag, as shown in Fig. 18.
In the initial state, the node waits for CONNECTmessages.
After responding with a CONNACK message, it remains in
this state if the received message contains the will flag with
a zero value. However, a state change occurs, and a request
message WILLTOPICREQ is sent if a message with the will

91685

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

PROCESS: Gateway Advertisement and Discovery
Procedure

DCL tsearchgw Integer:=5,
NADV Integer:=2,
durationRx Integer:=900,
tini, trtx, tableGwUpdated, NTadv
Integer:=0;
SET(NOW-tini, TIMER TSEARCHGW, NADVTADV,

TSEARCHGW) TRTX;

tini:=RAND
(0 - tsearchgw),
trix:=tini;

DISCOVERY
SO

NapvTabv

tableGwUpdated:=1;

tableGwUpdated:=2;

o
e
=

DISCOVERY NTadv:=NADV*
SO durationRx;
SET(NOW-+NTady, SET(NOW-+
RX_GWINFO trt TRTX)
- NapvTADv) -
DISCOVERY RX—G:: INFO

SO

tableGwUpdated:=2;

SET(NOW+
trtx , TRTX)

DISCOVERY
S0

RX_GWINFO
s1

FIGURE 16. SDL process for the client, representing the gateway
advertisement and discovery procedure.

flag equal to one is received. In state RX_TOPIC, the node
waits for a WILLTOPIC message to send a WILLMSGREQ
and move to state RX_MSG. Finally, the moment the gateway
receives a WILLMSG message, a CONNACK message is
transmitted, and the node returns to the initial state of the
procedure to wait for another connection.

Figure 19 shows the SDL process for the gateway in
which the state change of the gateway is observed in
response to the reception of a CONNECT message, along
with the different settings of the Will flag. Additionally, the
variable proc2Count indicates when the correct sequence

91686

CONNECT
(will flag=1)

— — —WILLTOPIC- — — =

— — — WILLMSG- — — —

< — — -CONNACK — — —

CONNECT
(will flag=0)

— — — CONNACK- — — —

FIGURE 17. Connection between client and gateway, with the will flag set
to1ando.

RX: CONNECT RX: CONNECT
(Will Flag==0)
TR:CONNACK TR:WILLTOPICREQ

WAIT
CONNECTION
SO

RX_TOPIC
S1

RX: WILLTOPIC

TR: WILLMSGREQ
RX: WILLMSG

TR: CONNACK

FIGURE 18. State diagram for the gateway, representing the configuration
for the client connection.

of messages has been exchanged. Once a value has been
assigned to this variable, the procedure can be considered to
have fulfilled its objective.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

When a client node has found a gateway to connect, it will
begin establishing a connection. For this reason, an initial
state called ESTABLISH CONNECTION is used, in which the
value of the will flag is verified before being sent within
a CONNECT message. According to the state diagram in
Fig. 20, if the flag will is equal to one, the node advances

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PROCESS: Client's Connection Setup

WAIT | :
CONNECTION

) DCL proc2Count Integer:=0;

CONNECT

Will Flag=1

Will Flag=0

CONNACK WILLTOPICREQ WILLMSGREQ

RX_TOPIC

CONNACK
s1

proc2Count:=1;

WAIT RX_TOPIC
CONNECTION s1
S0

proc2Count:=2;

WAIT
CONNECTION
S0

WILLTOPIC

WILLMSGREQ

FIGURE 19. SDL process for the gateway, representing the configuration
for the client connection.

to state RX_TOPIC_REQ, where it awaits receipt of the
message WILLTOPICREQ. Subsequently, it goes to the state
RX_TOPIC_REQ, in which it waits to receive the message
WILLMSGREQ and then to the state RX_CONNACK. After
receiving the respective request in its corresponding state, the
node transmits the messages WILLTOPIC and WILLMSG.
If the will flag equals zero, the node goes directly to the
RX_CONNACK state after sending its CONNECT message.
In the state RX_CONNACK, the node waits for the arrival of
a CONNACK message, which contains the ReturnCode field
that indicates whether the connection is accepted or rejected.
Once the connection is accepted or rejected (ReturnCode: not
supported), the node returns to the initial state to execute
another procedure or restart the connection. If the node is
rejected due to congestion, it enters the DESCONGESTION
state and remains until the TWAIT timer expires. Afterward,
it returns to the initial state to reconnect to the gateway.

VOLUME 12, 2024

willFlag==1

TR:CONNECT

RX_TOPIC_REQ
ESTABLISH - -

s1
CONNECTION
<0 RX:WILLTOPICREQ

TX:WILLTOPIC

willFlag==0

TR:CONNECT

TWAIT:Finish

RX:CONNACK
(ReturnCode=
0x00 6 0x03)

RX:WILLMSGREQ

DESCONGESTION

= RX_CONNACK

S3

RX:CONNACK
(ReturnCode=0x01)

FIGURE 20. State diagram for the client, representing the configuration
for the client connection.

Through the SDL process in Fig. 21, the change of client
states is evident, attributed to the previous configuration
of the Will flag of the CONNECT message that will
be sent. Regardless of the flag forwarded, reaching the
RX_CONNACK state is crucial, where the client’s behavior
due to the receipt of the ReturnCode field can be observed.
When this field has the value of 0 x 01, it is necessary to
initialize a timer before entering the DECONGESTION state.
The variable proc2Count is also introduced, indicating
whether the correct message sequence has been exchanged.
After assigning a value to this variable, it can be considered
that the procedure has fulfilled its function.

C. PROCEDURE FOR UPDATING WILL DATA

After establishing an MQTT-SN connection, the client will
update the last messages stored at any time. The will topic can
be updated by sending a WILTOPICUPD message, while the
will message can be updated by a WILLMSGUPD message.
It is important to note that neither of these two messages
depends on the other. In response to update messages, the
gateway will send WILLTOPICRESP or WILLMSGRESP,
as detailed in the diagram in Fig. 22. Additionally, if it is
necessary to remove the topic and the message from a client’s
will, the latter can send an empty WILLTOPICUPD message.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

As mentioned above, if a gateway has received a will
message or topic, it will be subject to receiving requests
to update the will data at any time. The procedure to
update the last will data will have a single state (WAIT
WILLTOPIC OR WILLMSG), which can be activated by

91687

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

PROCESS: Client's Connection Setup

DCL twait Integer:=300, '——
proc2Count Integer:=0;

ESTABLISH TIMER TWAIT;

CONNECTION
S0

RX_TOPIC_REQ

illFlag==0
willFlag s1

willFlag==1

CONNECT

CONNECT

RX_CONNACK RX_TOPIC_REQ

s3 s1 WILLTOPIC

DESCONGESTION RX_MSG_REQ
sS4 S2

WILLMSGREQ

WILLMSG proc2Count:=2

RX_CONNACK ESTABLISH
s3 CONNECTION
S0

Congestion=0x01

SET(NOW-+
twait , TWAIT)

pauoddns JoN

proc2Count:=1

E£0X0:

ESTABLISH
CONNECTION

DESCONGESTION
sS4 so

FIGURE 21. SDL process for the client, representing the configuration for
the client connection.

receiving a message WILLTOPICUPD or a WILLMSGUPD,
and then responding with a message WILLTOPICRESP or
a WILLMSGRESP respectively, and finally return to the
original state, as illustrated in Fig. 23.

This SDL process, as shown in Fig. 24, is similar to the one
indicated in the Mealy machine, with the difference that the
variable proc3Count is added. This variable signals that
the successful exchange of messages between the gateway
and the client has been completed. Once a value is assigned to
this variable, the procedure can be considered to have fulfilled
its function.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

Once a client has connected to a gateway, it is considered
an active client and can update its will data at any time by

91688

Lo =

WILLTOPICUPD(willTopic)

—————— WILLTOPICRESP— — — — — —

WILLMSGUPD(willMsg)

WILLTOPICUPD(vacio)

—————— WILLTOPICRESP— — — — — —

I |
FIGURE 22. Update of last will data.

RX:WILLTOPICUPD

TX:WILLTOPICRESP

WAIT '
WILLTOPIC

OR
WILLMSG
S0

RX:WILLMSGUPD

TX:WILLMSGRESP

FIGURE 23. State diagram for the gateway, corresponding to the
procedure for updating will data.

running the will data update procedure. If the client node
wants to update its will topic, it will need to receive a signal
updateWILLTOPIC = 1, when itis in state ACTIVE UPDATE
WILL DATA, to transmit a message WILLTOPICUPD and
go to state RX TOPIC RESP. Similarly, if the client node
wants to update its will message, it will need to receive
a signal updateWILLMSG = 1 to transmit a message
WILLMSGUPD and move to state RX_MSG_RESP. The
client will return to the initial state once it has received its
respective response, WILLTOPICRESP or WILLMSGRESP.
Fig. 25 shows the state diagram of this procedure.

The SDL process in Fig. 26 is similar to that indicated
on the Mealy machine, with the difference that the variable
proc3Count is added. This variable indicates that the
successful exchange of message sequences between the client

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PROCESS: Procedure for Updating the Will Data

WAIT WILLTOPIC DCL proc3Count Integer:=0;

OR WILLMSG
S0

WILLTOPICUPD WILLMSGUPD

WILLTOPICRESP

WILLMSGRESP

proc3Count:=1; proc3Count:=2;

WAIT WILLTOPIC
OR WILLMSG
S0

WAIT WILLTOPIC
OR WILLMSG
S0

FIGURE 24. SDL process for the gateway, corresponding to the procedure
for updating will data.

updateWILLTOPIC==1

TX:WILLTOPICUPD

ACTIVE
UPDATE WILL RX_TOPIC_RESP
DATA S1
SO
RX: WILLTOPICRESP.

NS

RX:WILLMSGRESP

NS TX:WILLMSGUPD

updateWILLMSG==1

RX_MSG_RESP
)

FIGURE 25. State diagram for the client, corresponding to the procedure
for updating data will.

and the gateway has been completed. Once a value is assigned
to this variable, it can be considered that the procedure has
fulfilled its function.

D. PROCEDURE FOR REGISTERING TOPIC NAMES

MQTT-SN introduces a procedure for registering topic names
to reduce the size of publishing messages. This procedure
allows the client and the gateway to inform their counterpart
about a topic identifier in the topic field. This topic identifier
should be shorter than a conventional topic name. When the
client wants to register a topic name, it starts by sending

VOLUME 12, 2024

PROCESS: Procedure for Updating the Will Data

DCL proc3Count Integer:=0;
ACTIVE UPDATE
WILL DATA
S0

updateWILLTOPIC==1 Update WILLMSG==1

WILLTOPICUPD

RX_TOPIC_RESP
s1

WILLMSGUPD

RX_MSG_RESP
s2

RX_TOPIC_RESP
s1

RX_MSG_RESP
s2

WILLTOPICRESP WILLMSGRESP

proc3Count:=1; proc3Count:=2;

ACTIVE UPDATE
WILL DATA
SO

ACTIVE UPDATE
WILL DATA
SO

FIGURE 26. SDL process for the client, corresponding to the procedure for

updating will data.
|

REGISTER(topicName)
REGACK
— —(topic Id,ReturnCode)— —
|
FIGURE 27. Procedure to register a topic name, executed by a client.

a REGISTER message. Upon receiving this message, the
gateway parses it, assigns an identifier to the corresponding
topic name, and transmits it to the client via a REGACK
message. If the registration is rejected, the gateway also
sends a REGACK message, including in the returnCode field
an indication of the reason for the rejection, as detailed in
Fig. 27.

If the client loses connection and reconnects without
setting the CleanSession flag, it may need information about
the topic names and IDs it previously registered or subscribed
to. The gateway notifies the client of the topic names and
their respective identifiers using a REGISTER message.
The client uses the received topic identifier to publish its

91689

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

REGISTER(topicName)

REGACK
— —(topic Id,ReturnCode)— —

|
FIGURE 28. Procedure to register a topic name, executed by a client and

a gateway.

REGISTER(topicName)

REGACK
— (topic Id,ReturnCode=0x01)—
T
T wair
l REGISTER(topicName)
REGACK

— (topic Id,ReturnCode=0x00)—

-.4-__.45

FIGURE 29. Rejection due to congestion during a registration procedure.

messages, as shown in Fig. 28. The gateway also uses this
registration procedure when the client has subscribed to topic
names using wildcard characters. This is because the message
that accepts a subscription cannot contain more than one
topic identifier. In case of rejection due to congestion, the
procedure will be restarted after waiting a TWAIT time, either
by the client or the gateway, as shown in Fig. 29.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

After receiving a connection, the gateway waits for a registra-
tion message sent by the newly connected client. Therefore,
the initial state called WAIT REGISTRATION is established
for this procedure. During this state, the node responds with
a REACK message upon receipt of a REGISTER message
and then returns to the same state. Since the gateway can
also initiate a registration procedure, it can send a REGISTER
message once it receives the readyRegister = 1 signal
from the initial state. After sending the mentioned message,
the node goes to the RX_REGACK state, where it waits for
a REACK message sent by the client. Once the REACK
message is received, its ReturnCode field is checked. If the
registration is accepted or rejected (ReturnCode=invalid
or unsupported topic identifier), the node returns to the
initial state to execute another procedure or restart the
registration procedure. Fig. 30 illustrates the state diagram

91690

RX:REGISTER

TX:REGACK
readyRegister==1

TX:REGISTER

WAIT RX_REGACK
REGISTRATION (from Client)
SO RX:REGACK S1
(ReturnCode=
0x00, 0x02, 0x03)

RX:REGACK
(ReturnCode=0x01)

TWAIT:Finish

NS DECONGESTION
s2

FIGURE 30. Diagrama de estados para el gateway, correspondiente al
procedimiento para registrar nombres de temas.

of this procedure. If there is a rejection due to congestion,
the gateway node must go to the DECONGESTION state,
remaining until the TWAIT timer expires. Afterward, the node
will return to the initial state to register the topic name again.

This SDL process is similar to that indicated on the Mealy
machine, as shown in Fig. 31, with the addition of the variable
proc4Count. Inaddition, the timer TWAIT and the variable
twait are incorporated to control its duration. The timer
is activated when receiving a rejection due to congestion.
Once a value is assigned to the variable proc4Count, the
procedure can be considered to have fulfilled its function.
If necessary, it can also be restarted. The variable does not
take on a value when rejections are received for invalid topic
identifiers or unsupported messages.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

After the client has established a successful connection, it is
considered an active client. However, before publication,
the client must initiate a registration procedure. For this
reason, although the state diagram for the client is similar
to that of the gateway, the initial state is called ACTIVE
REGISTRATION. During this initial state, the client sends a
REGISTER message when it receives the readyRegister ==
1 signal. After sending this message, the node goes to the
RX_REGACK state, where it waits for a REACK message sent
by the gateway. Upon receipt of the REACK message, its
ReturnCode field is examined. If the registration is accepted
or rejected, the node returns to the initial state to execute
another procedure or restart the registration procedure.
If there is a rejection due to congestion, the client node goes
to the DECONGESTION state, which will remain until the
TWAIT timer expires. Afterward, the node must return to the
initial state to register the topic name again. If the client node
is in the initial state, it can respond with a REACK message

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PROCESS: Procedure for Registering Topic Names

DCL twait Integer:=300,
proc4Count Integer:=0;
WAIT TIMER TWAIT;

REGISTRATION
S0

DECONGESTION

REGISTER s2

readyRegister==1

REGACK REGISTER

RX_REGACK

proc4Count:=1; s1

proc4Count:=3;

WAIT RX_REGACK WAIT
REGISTRATION sl REGISTRATION
S0 S0

REGACK

Accepted=0x00 Return
Code

Congestion=0x01

Invalid topic ID=0x02
Not supported=0x03

SET(NOW+

roc4Count:=2;
B twait, TWAIT)

WAIT DECONGESTION
REGISTRATION 52
S0

FIGURE 31. SDL process for the gateway, corresponding to registering
topic names.

upon receipt of a REGISTER message sent by the gateway
node. Fig. 32 shows the state diagram of this procedure.

This SDL diagram for the client, as seen in Fig. 33,
is practically identical to the one used by the gateway,
with the only difference being certain state names. The
variable proc4Count is also included as in the previous
diagram. This variable indicates that the successful exchange
of message sequences between the client and the gateway
has been completed. Once a value has been assigned to this
variable, the procedure can be considered to have fulfilled its
function.

E. CLIENT'S PUBLICATION PROCEDURE

Clients can publish information associated with a topic if they
have previously completed the registration procedure. The
payload and its topic identifier are sent within a PUBLISH
message. This procedure covers three of the four quality
of service levels (QoS 0, QoS 1, and QoS 2) supported by
MQTT-SN. Therefore, a gateway will respond differently
upon receiving a publication. The behavior of the gateway
at the three QoS levels mentioned is described below:

VOLUME 12, 2024

RX:REGISTER

TX:REGACK

readyRegister==1

ACTIVE
REGISTRATION
SO

RX_REGACK
(from GW)
S1

RX:REGACK
(ReturnCode=
0x00, 0x02, 0x03)

RX:REGACK
(ReturnCode=0x01)

TWAIT:Finish

DECONGESTION

S2

FIGURE 32. State diagram for the client, corresponding to registering
topic names.

« If the gateway receives a publication with QoS 0, it does
not send any message to confirm receipt.

o If the gateway receives a publication with QoS 1,
it responds with a PUBAC message.

o If the gateway receives a publication with QoS 2,
itresponds with a PUBREC message. The client receives
this message and responds with a PUBREL message.
Finally, the gateway sends the PUBCOMP message in
response to the client’s last message.

If a client makes a publication with quality of service

1 or 2, it must wait for the message exchange to complete
before starting a new publication. The sequence diagram in
Fig. 34 shows a client sending publication messages with the
different quality of service levels mentioned in this procedure.
When a post is rejected, the returnCode field indicates the
reason for the rejection. In case of rejection due to an invalid
topic identifier (returnCode=0 x 02), the client must register
the topic name again, as shown in Fig. 35. In publishes with
QoS 1 and QoS 2, if there is a rejection due to congestion
(returnCode=0 x 01), the client will try to publish after
waiting for a TWAIT time, as shown in the diagrams in
Fig. 36.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION
If the gateway has completed a registration procedure
initiated by the client, it can initiate a publication procedure.
Therefore, an initial state called WAIT PUBLICATION is
established for the gateway node. During this state, the
node can receive PUBLISH messages with various quality
of service variants. The following describes how the node
should respond to each QoS level:
« PUBLISH (QoS 0): When a publication with this
quality of service is received, the node does not issue
any response and returns to the initial state.

91691

lEEEACC@SS L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

PROCESS: Procedure for Registering Topic Names

DCL twait Integer:=300,
proc4Count Integer:=0;
TIMER TWAIT;

ACTIVE
REGISTRATION
so

DECONGESTION
52

REGISTER readyRegister==1
REGACK REGISTER

RX_REGACK
sl

proc4Count:=3;

proc4Count:=1;

ACTIVE
REGISTRATION
S0

ACTIVE
REGISTRATION
so

Accepted=0x00 i-yaepres Congestion=0x01
Code

Invalid topic ID=0x02 SET(NOW+

proc4Count:=2;
Not supported=0x03 twait, TWAIT)

ACTIVE
REGISTRATION
S0

DECONGESTION
52

FIGURE 33. SDL process for the client, corresponding to registering topic
names.

o PUBLISH (QoS 1): Upon receipt of a publication
with this quality of service, the node responds with a
PUBACK message and returns to the initial state.

« PUBLISH (QoS 2): Upon receiving a publication
with this quality of service, the node responds with a
PUBREC message and enters the RX_PUBREL state.
During this state, the node waits for the arrival of the
PUBREL message to respond with a PUBCOMP and
return to the initial state.

If the node is in the initial state and receives a PUBLISH
message with an invalid topic identifier, it will respond with
a PUBACK message indicating the reason for the rejection
(ReturnCode=0 x 02). Finally, the node must return to
the initial state to handle new publications or initiate new
procedures. Fig. 37 shows the state diagram of this procedure.

The SDL process in Fig. 38 shows the state the node should
remain in when receiving a PUBLISH message with a valid
or invalid topic identifier. Fig. 38 also shows the verification

91692

| |
| |
QoS=0 { I7PUBLISH(QOS 0, data, topicld)4bl
| |
| |

-

PUBLISH(QoS 1, data, topicld

Qos=1 <
—————— -PUBACK(returnCode=0x00) — — — — — —
S |
|
-
PUBLISH(Q0S 2, data, topicld
——————————— PUBREC
Qos=2 3

PUBREL-

FIGURE 34. Client sending PUBLISH messages, with QoS 0, QoS 1, and
QoS 2, to a gateway.

=] =

PUBLISH
(QoS, data, topicld)

PUBACK
— — — —(returnCode=0x02)- — — —

REGISTER
(topicName)

REGACK
(topicld, returnCode=0x00)

FIGURE 35. Exchange of messages between client and gateway when
errors occur due to invalid identifiers.

of the QoS level of the received message after confirming the
validity of the topic identifier. The change of state of the node
and the assignment of a value to the variable proc5Count
will depend on the QoS level of the PUBLISH message.
This mentioned variable indicates that the correct exchange
of messages between the gateway and the client has occurred.
Additionally, the iniRegister variable is available to indicate
that the procedure has failed.

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PUBLISH
(QoS, data, topicld)

PUBACK
T — —(returnCode=0x01) — — —

|
T wAIT

|
|
PUBLISH
(QoS, data, topicld)
PUBACK
— — —(returnCode=0x01) — — —
FIGURE 36. Exchange of messages between client and gateway when

errors occur due to congestion problems.

RX:PUBLISH(QoS0)

NS

RX:PUBLISH(QoS 2)

TX:PUBREC
WAIT
PUBLICATION RX_PSLiBREL
SO
RX:PUBREL

TX:PUBCOMP

RX: PUBLISH(QoS1
or invalid Topic ID)

TX:PUBACK

FIGURE 37. State diagram for the gateway, corresponding to the client
publication procedure.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

If the client has completed a registration procedure, it is
enabled to initiate a publication procedure. Therefore, an ini-
tial state called ACTIVE PUBLICATION is established. During
this initial state, the node can send PUBLISH messages. The
behavior of the client node when sending publications with
different levels of QoS is described below:

o PUBLISH (QoS 0): When the node receives the signal
PublicationReady(QoS0) == 1, it transmits a message
PUBLISH and remains in the initial state.

o PUBLISH (QoS 1): When the node receives the signal
PublicationReady(QoS1) == 1, it transmits a message
PUBLISH and enters the RX_ACK state. During this
state, the node waits for a PUBACK message to check
the ReturnCode field. If the publication is accepted or
rejected for a reason other than congestion, the node
returns to the initial state to execute another procedure
or restart the publication procedure. In case of rejection
due to congestion, the node enters the DECONGESTION
state, where it remains until the TWAIT timer expires.

VOLUME 12, 2024

PROCESS: Client's Publication Procedure

RX_PUBREL
s1

WAIT
PUBLICATION
S0

PUBREL

PUBACK PUBCOMP

PUBLISH

iniRegister:=1; proc5Count:=3;

Topic ID

Invalid
WAIT

valid PUBLICATION
S0

WAIT
PUBLICATION
S0

QoS=0b01

Q0S=0b10
QoS=0b00

proc5Count:1;

PUBREC PUBACK

WAIT
PUBLICATION
S0

RX_PUBREL

s1 proc5Count:=2;

DCL iniRegistro Integer:=0, B WAIT

proc5Count Integer:=0; PUBLICATION
SO0

FIGURE 38. Proceso SDL para el gateway, correspondiente al
procedimiento de publicacion del cliente.

The node then returns to the initial state to try to send
the publish message again.

o PUBLISH (QoS 2): When the node receives the
signal PublicationReady(QoS2) == 1, it transmits
a message PUBLISH and enters the RX_ACK state.
During this state, the node waits to receive a PUBREC
message to transmit a PUBREL message and enter
the RX_PUBCOMP state. The publication is considered
accepted if a PUBCOMP message is received during this
last state.

A PUBACK message can also be received during the initial
state if it contains the field ReturnCode=0x 02. Fig. 39 shows
the state diagram of this procedure.

The SDL process in Fig. 40 shows the state changes
the node must make after sending a publish message. The
state change depends on the QoS level, which is analyzed
before sending the PUBLISH message. Figure shows the
analysis of the returnCode field and its corresponding
change of states due to the different values contained
in this field. Additionally, the variable proc5Count is

91693

lEEEACC@SS L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

listaPublicacion==1
(Qos0) publicationReady==1
"""""""""""""" (QoS16 Qo2)

TX:PUBLISH

ACTIVE

PUBLICATION
s0 RX:PUBACK

(RetunCode=

RX:PUBACK
(RetunCode=0x01)

RX:PUBACK
(RetunCode=0x02)

DECONGESTION TR

S3

RX_PUBCOMP
S2

FIGURE 39. State diagram for the client, corresponding to the client
publication procedure.

introduced, which indicates that the correct exchange of
messages between the client and the gateway has been carried
out. Likewise, the variable iniRegister is available to
indicate that the procedure has failed.

F. PUBLISHING WITH QOS LEVEL -1

The QoS —1 publishing procedure is helpful for simple
MQTT-SN clients requiring this procedure. No connection,
registration, subscription, or discovery procedures are neces-
sary; the client only needs prior knowledge of the gateway
address. The client sends PUBLISH messages to the gateway
regardless of the state in which the latter is, nor does it verify
whether the message arrives, as shown in Fig. 41. PUBLISH
messages with QoS —1 can only have the following values:

o QoS flag: “0Ob11” for service quality level -1.

o TopicldType flag: “Ob01” for a predefined topic
identifier or “Ob10” for a short topic name.

« Topicld field: A predefined topic identifier or short
topic name.

« Data field: The payload of the message.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

In this procedure, as shown in Fig. 42, only two states
are defined: INACTIVE and WAIT PUBLICATION, because
no other procedures are required to receive this type of
publication, and it must also be considered that the gateway
must be connected to a broker to start its operation. During the
INACTIVE state, the node waits for the signal (brokerReady =
1) that indicates that the broker is ready to operate and

91694

PROCESS: Client's Publication Procedure

DCL twait Integer:=300,

proc5Count Integer:=0;
ACTIVE

PUBLICATION iniRegister Integer:=0;
s0 TIMER TWAIT;

publicationReady==1

QoS0=0b00
QoS Flag

QoS1=0b01

PUBLISH PUBLISH PUBACK

(ReturnCode=0x02)

proc5Count:=1; iniRegister:=1;

ACTIVE
PUBLICATION
S0

ACTIVE
PUBLICATION
S0

PUBACK

Return

-Accepted=0x00
Code P

ongestion=0x01

0x03

Invalid Topic ID=0x02
v

SET(NOW+
iniRegister:=1; roc5Count:=2;
e twait, TWAIT) p ‘

ACTIVE DECONGESTION
PUBLICATION s3

S0

Not supported

RX_PUBCOMP DECONGESTION

PUBREC s2 s3

PUBREL PUBCOMP

RX_PUBCOMP
S2

proc5Count:=3; proc5Count:=4;

ACTIVE ACTIVE
PUBLICATION PUBLICATION
SO SO

FIGURE 40. SDL process for the client, corresponding to the client’s
publication procedure.

then goes to the WAIT PUBLICATION state. In the WAIT
PUBLICATION state, the node waits to receive PUBLISH
messages with quality of service QoS-1, without issuing any
confirmation. If the signal brokerReady = 0 is received due to
any failure in the broker, the node will return to the INACTIVE
state.

The SDL process in Fig. 43 incorporates the variable
proc6Count that indicates the exchange of the correct
sequence of messages between the gateway and the client.
After assigning a value to this variable, it can be considered

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PUBLISH
(QoS= -1, topicldType= 0b01 6 0b10, data

|
PUBLISH——»‘
(QoS= -1, topicldType= 0b01 6 0b10, data)
|
|
PUBLISH >)
(QoS= -1, topicldType= 0b01 6 0b10, data) Inactive
|
I

[—
| |
|
-
X

Gateway

FIGURE 41. Client sending PUBLISH messages with QoS —1 to the
gateway.

RX: PUBLISH

brokerReady==1

WAIT

INACTIVE PUBLICATION

(Qos-1)
)

brokerReady==

FIGURE 42. State diagram for the gateway, corresponding to the
publication procedure with QoS -1.

that the procedure has fulfilled its function and that no timer
or additional variable is added to the one indicated.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

As shown in Fig. 44, a client will remain exclusively in
the ACTIVE PUBLICATION state since the client can only
send publication messages. In this state, it waits for the
publicationReady(QoS — 1) = 1 signal to transmit the cor-
responding PUBLISH message and then returns to the same
state.

In the SDL process, as shown in Fig. 45, the variable
proc6Count is added. This variable indicates that the
correct exchange of messages between the client and the
gateway has been carried out.

G. CLIENT’'S TOPIC SUBSCRIBE OR UNSUBSCRIBE
PROCEDURE

To subscribe to a topic name, a client sends a SUBSCRIBE
message to the gateway, indicating the topic of interest.
If the gateway can accept the subscription, it assigns a topic
identifier to the received topic name. It returns it within a
SUBACK message to the client, as illustrated in the diagram
in Fig. 46. If the client subscribes to a topic name containing

VOLUME 12, 2024

PROCESS: Publication with QoS Level -1

INACTIVE Qo5-1
S0

DCL proc6Count Integer:=0;

brokerReady==1

WAIT
PUBLICATION QoSs-1
S1

WAIT
PUBLICATION Qos-1
51

PUBLISH brokerReady==0

proc6Count:=1;

proc6Count:=2;

WAIT INACTIVE QoS-1
PUBLICATION QoS-1 S0
s1

FIGURE 43. SDL process for the gateway, corresponding to the
publication procedure with QoS -1.

publicationReady==1(QoS-1)

N

TX: PUBLISH

ACTIVE
PUBLICATION
(Qos-1)

SO

FIGURE 44. State diagram for the client, corresponding to the publication
procedure with QoS —1.

a wildcard character (+ or #), the SUBACK message will
include the topic ID value 0 x 0000. When a client subscribes
to multiple topics using wildcards, it will be informed of
the ID of all topics involved before sending the first publish
message for a specific topic. To communicate the value of
the topic identifier to the client, the gateway must use the
registration procedure. Similar to the publishing procedure,
topic identifiers can be predefined for specific topic names;
You can also have short theme names. In both cases, the
client must subscribe to these identifiers or topic names to
receive posts related to the latter. If the subscription cannot be
accepted, a SUBACK message will be sent back to the client
with the reason for the rejection encoded in the returnCode
field. If the cause of the rejection is “‘rejected: congestion”,
the client must wait the TWAIT time before forwarding the
SUBSCRIBE message to the gateway, as shown in Fig. 47.

91695

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

PROCESS: Publication with QoS Level -1

ACTIVE
PUBLICATION QoS-1
S0

DCL proc6Count Integer:=0;

publicationReady==1

proc6Count:=1,;

ACTIVE
PUBLICATION QoS-1
S0

FIGURE 45. SDL process for the client, corresponding to the publication

procedure with QoS —1.

SUBSCRIBE
(flags, topicName 6 topiclD)

SUBACK
— — — ~(topiclD, returnCode=0x00) — —

FIGURE 46. Exchange of subscription messages between client and
gateway.

To unsubscribe, a client sends a UNSUBSCRIBE message
to the gateway, which must respond with a UNSUBACK
message. The client indicates the name or topic identifier
from which they wish to unsubscribe, as shown in the diagram
in Fig. 48.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION
In this procedure, as shown in Fig. 49, the gateway node
needs to remain in a single state called WAIT SUBSCRIPTION
OR UNSUBSCRIPTION, where it constantly waits for
SUBSCRIBE messages and then sends a SUBACK message
indicating whether the subscription is accepted or rejected.
The node can also receive UNSUBSCRIBE messages from
clients that wish to unsubscribe, which are responded to with
a UNSUBACK . After responding to received messages, the
node returns to the same state.

The diagram in Fig. 50 includes the variable proc7Count,
which indicates that the correct exchange of messages has

91696

SUBSCRIBE
(flags, topicName ¢ topiclD)
SUBACK
T— —(topiclD, returnCode=0x01)— — —

SUBSCRIBE
(flags, topicName 6 topiclD)
SUBACK
— — —(topiclD, returnCode=0x00)— — —

T waIT

FIGURE 47. Interaction between client and gateway when the
subscription is not accepted due to congestion.

UNSUBSCRIBE
{flags, topicName 6 topiclD)

——————— UNSUBACK — — — — — —

FIGURE 48. Exchange of messages, to unsubscribe from a topic, between
client and gateway.

RX:SUSBCRIBE

TX:SUBACK

WAIT
SUBSCRIPTION
OR
UNSUBSCRIPTION
So

RX:UNSUSBCRIBE

TX:UNSUBACK

FIGURE 49. State diagram for the gateway, corresponding to the
procedure to Subscribe or Unsubscribe from a topic.

been carried out between the gateway and the client when the
latter has requested a connection or when the of a topic and
will take the value of 1 or 2, respectively.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

When a client has established a connection to a gateway, it is
considered in ACTIVE state, allowing it to subscribe to a topic
of interest. This procedure starts with the node in the state

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PROCESS: Client's Topic Subscribe or Un-Subscribe
Procedure

DCL proc7Count Integer:=0;

WAIT SUBSCRIPTION
OR UNSUBSCRIPTION
S0

SUSBCRIBE UNSUSBCRIBE

SUBACK UNSUBACK

proc7Count:=1; proc7Count:=2;

WAIT SUBSCRIPTION
OR UNSUBSCRIPTION
S0

WAIT SUBSCRIPTION
OR UNSUBSCRIPTION
S0

FIGURE 50. SDL process for the gateway, corresponding to the procedure
to subscribe or unsubscribe from a topic.

named ACTIVE SUBSCRIPTION OR UNSUBSCRIPTION.
During this state, the node waits for a signal to subscribe to or
unsubscribe from a topic. If the signal subscriptionReady ==
1 is received in the initial state, a message SUBSCRIBE is
sent, and then the state RX_SUBACK is passed, where the
node waits for a message SUBACK sent by the gateway.
Upon receiving the SUBACK message, its ReturnCode field
is verified. If the subscription is accepted or rejected for a
reason other than congestion, the node returns to the initial
state to execute another procedure or restart the process.
If the subscription is rejected due to congestion, the client
node goes to the DECONGESTION state, remaining until
the TWAIT timer expires. The node must then return to
the initial state to try to subscribe again. If in the initial
state, the signal unsubscriptionReady == 1 is received,
a message UNSUBSCRIBE is sent, and then the state is
passed to RX_UNSUBACK, where the node waits for a
UNSUBACK message sent by the gateway. In this way,
a customer unsubscribes from a previously subscribed topic.
Fig. 51 shows the state diagram of this procedure.

In the SDL process in Fig. 52, it is observed that the state
changes caused by the confirmation messages sent by the
gateway are similar to what is shown in the state diagrams
of this procedure, with the particularity that the variables
are incorporated. textttiniRegister and proc7Count. These
variables indicate the proper message exchange between the
client and the gateway has occurred. If the subscription
is accepted, the topicID field must be verified; this way,
the node will determine if it should initiate the registration

VOLUME 12, 2024

unsubscriptionReady==1

TR:UNSUBSCRIBE

subscriptionReady==1

ACTIVE TX:SUBSCRIBE
SUBSCRIPTION
OR
UNSUBSCRIPTION

RX_SUBACK RX_UNSUBACK
S1 S3
RX: SUBACK
(RetunCode=
0X00,0x02,0x03) RX:SUBACK
— (RetunCode=0x01)

DECONGESTION
S2

RX:UNSUBACK

NS

FIGURE 51. State diagram for the client, corresponding to the procedure
to subscribe or unsubscribe from a topic.

procedure due to the use of wildcards within its subscription
message. If yes, the node will assign a value to the variable
iniRegister, in the same way it would if it receives a
rejection for an invalid topic identifier in the returnCode field.

H. GATEWAY'S PUBLICATION PROCEDURE

For a gateway to publish on a specific topic, a client must
first subscribe. Posts use the topic ID and QoS set during
subscription. As in a publication by the client, the gateway
sends a PUBLISH message, from which a response can be
obtained from the client depending on the level of quality
of service (QoS 1 and QoS 2) or not received in the
case of QoS 0 The sequence diagrams in Fig. 53 illustrate
various publications made by the gateway. Publications can
be rejected using PUBACK messages, similar to the client’s
publishing procedure.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

Figure 54 presents the state diagram of this procedure. Before
preparing posts for submission, the node must check to see
if it has any pending posts. Therefore, the node starts in the
WAIT state, where, as its name indicates, it waits for the signal
pendingPublications >= 1 to advance to the PUBLICATION
state. From the second state, the gateway node follows
the same behavior as that of a client when it requires
sending PUBLISH messages, with the distinction that once
all pending publications have been sent, the node returns to
the initial state. If necessary, the pendingPublications ==
0 signal must return to the WAIT state and start another
procedure.

In the SDL process in Fig. 55, the gateway initiates the first
state change when the gateway node has at least one pending
message to publish. Likewise, the variable proc8Count is
used, indicating that the correct message exchange between

91697

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

PROCESS: Client's Topic Subscribe or Un-Subscribe
Procedure

DCL twait Integer:=300,
proc7Count Integer:=0;
iniRegister Integer:=0;

ACTIVE SUBSCRIPTION TIMER TWAIT;

OR UNSUBSCRIPTION

S0

RX_UNSUBACK

subscriptionReady==1 53

unsubscriptionReady==1

SUBSCRIBE UNSUBSCRIBE UNSUBACK

RX_SUBACK RX_UNSUBACK

s1 s3 proc7Count:=2;

RX_SUBACK ACTIVE
s1 SUBSCRIPTION
OR
UNSUBSCRIPTION

SET(NOW:
(NOW)

twait, T WAIT)

SUBACK

Return
Code

Congestion=0x01

DECONGESTION

s2
Accepted=0x00 |nyalid Topic ID=0x02

0x03

0x0000

Not supported

proc7Count:=3;

proc7Count:=1;

ACTIVE
SUBSCRIPTION
OR
UNSUBSCRIPTION
S0

ACTIVE
SUBSCRIPTION
OR
UNSUBSCRIPTION
S0

FIGURE 52. SDL process for the client, corresponding to the procedure to
subscribe or unsubscribe from a topic.

the gateway and the client has been carried out. If the sending
of pending messages goes smoothly, the number of pending
posts decreases until it reaches zero, at which point it returns
to the initial state. In addition, the variable iniRegister
is used, which indicates that the procedure has failed.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

During this procedure, the client node behaves similarly to
the gateway node when executing the client’s publishing
procedure. The only difference lies in the name of the
initial state, which will now be named ACTIVE WAIT
PUBLICATION because the client must be active to start this
procedure. From this initial state, the client will attend to the

91698

| |
| |
Qos=0 { I—DUBLISH(QOS 0, data, topicld)4bl
| |
| |

.

UBLISH(QoS 1, data, topicld)

QosS=1 <

UBLISH(QoS 2, data, topicld)

QoS=2 3

PUBREL

-~ |

FIGURE 53. Gateway sending PUBLISH messages, with QoS 0, QoS 1, and
QoS 2, to a client.

PUBLISH messages sent by the gateway with their respective
QoS level, as shown in Fig. 56.

The SDL process in Fig. 57 presents the variable
proc8Count, which indicates the correct exchange of
messages during the procedure. It is observed which state
the node should transition to when receiving a publication
message with a specific QoS level and topic identifier.
Additionally, the variable iniRegistro is used, indicating
that the procedure failed due to an invalid topic identifier.

I. KEEP ALIVE AND PING PROCEDURE

In an MQTT-SN network, clients execute this procedure to
verify the gateway’s correct operation. The client must send
a PINGREQ message within each keep-alive time interval
set by the client during the connection, and the gateway
must acknowledge this message by sending a PINGRESP in
response. Similarly, a client will respond with a PINGRESP
message if it receives a PINGREQ message from the gateway
to which it is connected. Fig. 58 shows the sending and
receiving of the mentioned messages.

1) DESIGN OF THE MEALY MACHINE FOR GATEWAY
OPERATION

As shown in Fig. 59, during this procedure, the gateway node
can remain in only two states: i) the WAIT state and ii) the
RX_PINGRESP state. When the node is in the initial state,
it can receive a message PINGREQ, to which it immediately
responds with a message PINGRESP. Additionally, it may
receive the signal that the timer TKA (Keep Alive) has

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

pendingPublications==0

pendingPublications >=1

publicationReady==1
(Qos1 6 Qo2)

TX:PUBLISH

RX:PUBACK
(ReturnCode:

RX:PUBACK
(ReturnCode=
0x00,0x02,0x03)

publicationReady==1
(Qos 0)

TX:PUBLISH

RX:PUBACK
(RetunCode=0x01)

DESCONGESTION
sS4

TX:PUBREL

RX_PUBCOMP
S3

FIGURE 54. State diagram for the gateway, corresponding to the
procedure for publication by the gateway.

expired, which occurs when the client stops sending its
message PINGREQ. The node enters the RX_PINGRESP state
when it receives the requestReady = 1 signal, indicating its
intention to verify whether the client node is working. The
gateway waits for the client’s response in the second state and
returns to the initial state.

The SDL process in Fig. 60 states that the timer TKA
must be started before the procedure begins its execution.
The variable tKeepAlive controls the timer’s duration,
which is assigned the value contained in the duration field,
which must be assigned when the client receives a connection
message. The variable is also assigned a 50 percent tolerance,
as indicated in the MQTT-SN specification. Likewise, the
variable lostClient is incorporated and activated when
the timer ends. Additionally, the variable proc9Count
indicates that the correct exchange of messages between the
gateway and the client has occurred.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

In this procedure, as shown in Fig. 61, two states are
managed: i) ACTIVE SUPERVISION and ii) RX_PINGRESP.

VOLUME 12, 2024

PROCESS: Gateway's Publication Procedure

DCL twait Integer:=300,
proc8Count Integer:=0;
iniRegister Integer:=0;

TIMER TWAIT;

pending
Publications >=1

PUBLICATION

S1

PUBLICATION pending
s1 Publications==0

publicationReady==1

Qo52=0b10

QoS Flag v

| PUBACK
QoS0=0b00 (ReturnCode=0x02)

iniRegister:=1;

QoS1=0b01

PUBLISH

PUBLICATION

proc8Count:=1;
s1

pendingPublications :=
pendingPublications-1;

PUBLICATION

PUBACK 51

-Accepted=0x01

ongestion=0x01
Invalid Topic ID=0x02 1

SET(NOW+
twait, TWAIT)

PUBLICATION DESCONGESTION
s1 sa proc8Count:=2;

pendingPublications := RX_PUBCOMP
pendingPublications-1; s3

iniRegister:=1;

Not supported=0x03

DESCONGESTION
54 PUBCOMP

PUBREC

PUBREL proc8Count:=3;

RX_PUBCOMP
$3

pendingPublications :=
pendingPublications-1;

proc8Count:=4;

PUBLICATION PUBLICATION
s1 s1

FIGURE 55. SDL process for the gateway, corresponding to the procedure
for publication by the gateway.

In the initial state, the node waits for the timer TKA to expire
and then sends the message PINGREQ. The response to the
sent message is expected in the state RX_PINGRESP. Once

91699

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

RX:PUBLISH(QoS 0)

NS RX:PUBLISH(QoS 2)

TX:PUBREC

ACTIVE
WAIT PUBLICATION
SO

RX_PUBREL

S1

RX:PUBREL

RX: PUBLISH(QoS1 TX:PUBCOMP

or invalid Topic ID)

TX:PUBACK

FIGURE 56. State diagram for the client, corresponding to the gateway’s
publication procedure.

the node receives the PINGRESP message, it returns to the
initial state, indicating that the gateway operates normally.
Additionally, in the initial state, the node must respond to a
PINGREQ message sent by the gateway.

In the diagram in Fig. 62, the timer 7KA must also
be initialized before starting the procedure. The variable
tKeepAlive is added, which stores the timer’s duration,
which must be assigned when the client receives a connection
message during the respective procedure. Additionally, the
variable proc9Count indicates that the correct exchange of
messages between the client and the gateway has occurred.

J. CLIENT'S DISCONNECT PROCEDURE

If a client wants to disconnect from the MQTT-SN network,
it must send a DISCONNECT message. The gateway then
sends another DISCONNECT message to confirm the dis-
connection, as shown in Fig. 63. In this type of disconnection,
initiating a registration procedure is unnecessary if the
client must connect to the network again. When a client
disconnects, the client’s will data and subscriptions persist
unless otherwise indicated in the cleanSession flag during
a new connection. The gateway sends a DISCONNECT
message when a client cannot be recognized. The client that
receives this message must establish the connection again,
as shown in Fig. 64.

1) MEALY MACHINE DESIGN FOR GATEWAY OPERATION
As shown in Fig. 65, the node must be maintained exclusively
in a single state called WAIT DISCONNECTION during this
state. In this state, the gateway waits for a DISCONNECT
message sent by the client when the client wants to
disconnect. This message is responded to with another
DISCONNECT message and then returns to the initial state.
A DISCONNECT message can be sent when the signal
unknowClient == 1isreceived. This signal must be set when
the gateway cannot identify a received message.

In the SDL process in Fig. 66, the variable proc10Count
is used to signal that the proper exchange of messages
between the gateway and the client has occurred. The variable

91700

ACTIVE
WAIT PUBLICATION
S0

PUBLISH

PROCESS: Gateway's Publication Procedure

DCL iniRegister Integer:=0;
proc8Count Integer:=0;

Invalid

PUBACK

iniRegister:=1;

ACTIVE
WAIT PUBLICATION
S0

QoS=0b01

proc8Count:1;

ACTIVE
WAIT PUBLICATION
S0

PUBREC

RX_PUBREL
51

A 4

RX_PUBREL
PUBACK

51

PUBREL

proc8Count:=2;

ACTIVE
WAIT PUBLICATION
S0

PUBCOMP

proc8Count:=3;

ACTIVE
WAIT PUBLICATION
S0

FIGURE 57. SDL process for the client, corresponding to the gateway’s
publication procedure.

will take one value when a disconnection message is sent due
to a customer’s request and will take another value when you
want to know if a customer has been lost.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

A client must be found and active to carry out this
procedure. In this sense, the client node starts the pro-
cedure in an ACTIVE DISCONNECTION state. In this
initial state, if the client wants to disconnect, it must wait
to receive a closeConnection 1 signal and then
send a DISCONNECT message. Subsequently, since the
client waits for the gateway to confirm its disconnection,
it transitions to the RX_DISCONNECT state. After receiving
the disconnection confirmation, the node finally reaches

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

PINGREQ. >
A
——————— PINGRESP — — — — — —
PINGREQ:
—————— PINGRESP— — — — — — =
\ PINGREQ. >
——————— PINGRESP — — — — — —

FIGURE 58. Keep alive and PING procedure.

Keep Alive

A

RX: PINGREQ

requestReady==1
TX: PINGRESP

TX: PINGREQ

RX_PINGRESP
S1

RX: PINGRESP

TKA: Finish

NS

FIGURE 59. State diagram for the gateway, corresponding to the keep
alive and ping procedure.

the DISCONNECTED state. The client will remain in this
state until it establishes a new connection, indicated by
the signal iniConnection = 1. Additionally, the client
may receive a DISCONNECT message from the initial
state, indicating that the gateway cannot recognize it. Upon
receiving the DISCONNECT message, the node goes to
the state ESTABLISH CONNECTION, referring to the state
handled in the client connection configuration procedure.
Because if a client receives a DISCONNECT message, it must
try to connect to the gateway again. Fig. 67 shows the state
diagram of this procedure.

In the SDL process in Fig. 68, the variable proc10Count
indicates that the correct sequence of messages has been
exchanged between the client and gateway.

K. CLIENT'S RETRANSMISSION PROCEDURE

Clients use this procedure when sending unicast messages
to the gateway, which require a response. After sending the
message and not receiving a response, a retry timer (Tretry)
and a retry counter (Nretry) are activated. If no response

VOLUME 12, 2024

PROCESS: Keep Alive and Ping Procedure

DCL proc9Count Integer:=0,
lostClient Integer:=0,
tkeepAlive Integer:=duration+(duration*0.5);
/*The Keep Alive timer tolerance percentage

can be 10% or 50%.*/

TIMER TKA;

SET
(NOW-+tkeepAlive, TKA)

requestReady==1

PINGREQ PINGREQ

RX_PINGRESP

PINGRESP s1

lostClient=1;

RX_PINGRESP

proc9Count:=1; s1

PINGRESP

proc9Count:=2;

FIGURE 60. SDL process for the gateway, corresponding to the keep alive
and ping procedure.

is received during the timer period, the client retransmits
the unicast message, resets the timer, and increments the
counter by one. If the expected response is received, the client
stops the timer and counter, as indicated in the sequence
diagram in Fig. 69. There is a maximum limit for allowed
retransmissions; once this limit is exceeded, the client aborts
the procedure, assuming that the MQTT-SN connection has
been lost. In this case, a new connection must be started,
either with the same gateway or another.

1) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

As shown in Fig. 70, this procedure is exclusive to the
client. When the node is in its initial state, designated

91701

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

TKA : Finish

TX:PINGREQ

ACTIVE
SUPERVISION

RX_PINGRESP

0 S1

RX: PINGRESP

RX: PINGREQ

TX: PINGRESP

FIGURE 61. State diagram for the client, corresponding to the keep alive
and ping procedure.

PROCESS: Keep Alive and Ping Procedure

DCL proc9Count Integer:=0,
tkeepAlive Integer:=duracion;
TIMER TKA;

SET(NOW+
tkeepAlive, TKA)

ACTIVE
SUPERVISION
S0

RX_PINGRESP
51

SET(NOW+
PINGREQ

tkeepAlive, TKA)

RX_PINGRESP
51

proc9Count:=1; proc9Count:=2;

ACTIVE
SUPERVISION
S0

ACTIVE
SUPERVISION
S0

FIGURE 62. SDL process for the client, corresponding to the keep alive
and ping procedure.

ACTIVE, it can send a unicast message to the client once
it receives the corresponding signal (in this case, the signal
msgUnicastReady == 1 is expected). If the sent message
requires confirmation, the node goes to the RX_ACK state,
where it waits to receive the expected message; In that case,
it returns to the initial state. If the client returns to the ACTIVE
state, you should be able to continue with other procedures.
However, if the acknowledgment message is not received, the
node must wait for the TRETRY timer to expire and retransmit
the sent unicast message. The node enters the RX_ACK state
until it receives the confirmation message or, failing that,
reaches the maximum number of retries and must enter
the ESTABLISH CONNECTION state using the Nretry ==

91702

— — — -DISCONNECT — — — —

| |
FIGURE 63. Procedure for client disconnection.

S e
==
|

CONNECT
CONNACK

|
FIGURE 64. Gateway sending a disconnection message to the client.

unknownClient==1

TX: DISCONNECT

WAIT

DISCONNECTION
SO

RX: DISCONNECT

TX: DISCONNECT

FIGURE 65. State diagram for the gateway, corresponding to the client
disconnection procedure.

Nmaxsignal.. The client connection configuration procedure
must be started if the node reaches the mentioned state.

The SDL process in Fig. 71 shows the activation, start,
and subsequent reset of timer TRETRY , which occurs when
initially sending or retransmitting a Unicast message. The
variable tretry will control the duration of this timer.
Additionally, the variables Nmax and Nretry are used to
keep track of the maximum allowed number of retransmission
attempts. The variable procllCount is also used to
indicate that the procedure has been completed and that a new
connection must begin.

L. SUPPORT FOR ENERGY SAVING
This procedure supports clients that need to conserve power
and remain in sleep mode until they have information to

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies IEEEACCGSS

PROCESS: Client's Disconnect Procedure PROCESS: Client's Disconnect Procedure

DCL proc10Count Integer:=0;

DCL proc10Count Integer:=0; ACTIVE

DISCONNECTION
S0

WAIT
DISCONNECTION
S0

closeConnection==1

DISCONNECT

proc10Count:=2; DISCONNECT

ESTABLISH RX_ DISCONNECT
CONNECTION s1
s3

procl0Count:=1; procl0Count:=2;

DISCONNECTED L
52 51

WAIT
DISCONNECTION
S0

WAIT
DISCONNECTION

S0 iniConexién==

FIGURE 66. SDL process for the gateway, corresponding to the client
disconnection procedure. proc10Count:=3; procl0Count:=1;

ESTABLISH DISCONNECTED
CONNECTION 52

S3

ESTABLISH
CONNECTION

s3 FIGURE 68. SDL process for the client, corresponding to the client
disconnection procedure.

iniConnection==1 m m

|
|
PUBLISH_1(QoS 1, data, topicld)
ez RX_ DISCONNECTED
DISCONNECTION DISCONNECT oy First publication, Tretry and
[0} S1 Nretry are suspended. — — — -PUBACK(returnCode=0x00) — — —
|

RX: DISCONNECT

NS

closeConnection==1

TX: DISCONNECT NS

|
FIGURE 67. State diagram for the client, corresponding to the client _ PUBLISH_2(QoS 1, data, topicld)
disconnection procedure. ? -

Tretry
Second publication, the — ¥ PUBLISH_2(QoS 1, data, topicld)
client doesn't receive

send or receive. Clients are only activated when they have SEmemanaE

I

I

publication, then begins

data to exchange. The gateway stores messages destined for toretransmit Neimes. | —4—
the client in a buffer until the client is activated. From the Tretry
gateway’s perspective, a client can be in one of the following
states: active, sleeping, awake, lost, and offline. All states
except the offline state are monitored continuously. When a
client wants to go to sleep, it must send a DISCONNECT FIGURE 69. A client making two publications. The first is carried out
message thaF includes' the du'ration of tf_le Tsleep timer z::;:s,f:ﬂzsm?;lfhteh;::::;: .:f:t:uell:ﬁ: rr:noa)r:;ﬁ:::s:u:btehrlifs lrt:t:l:zn e
associated with that client. This message is acknowledged allowed is reached.

with another DISCONNECT message, followed by the

timer’s start. The gateway monitors the client’s state using

its own Tsleep timer, the duration of which is indicated in gateway’s Tsleep timer expires. If the gateway receives a
the client’s DISCONNECT message. The client is considered PINGREQ before its Tsleep timer expires, it identifies the
lost if the client does not send any messages before the client that sent it and considers it awake. On the client side,

PUBLISH_2(QoS 1, data, topicld)

VOLUME 12, 2024 91703

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

TRETRY: Finish

msgUnicastReady==1
TX: Msg Unicast
(ex. TX: PUBLISH)

RTX: Msg Unicast
(ex. RTX: PUBLISH)

ACTIVE
S0

ESTABLISH
CONNECTION
S2

Nretry==Nmax

RX: ACK
(ex. RX: PUBACK)

NS

FIGURE 70. State diagram for the client, corresponding to the
retransmission procedure.

PROCESS: Client's Retransmission Procedure

msgUnicastReady==1 TRETRY

procl1Count:=1;

ESTABLISH
CONNECTION
S2

SET
(NOW-tretry, TRETRY)

SET
(NOW-tretry, TRETRY)

PUBACK

procl1Count:=2;

DCL Nmax Integer:=3,
tretry Integer:=10,
procllCount,Nretry Integer:=0; ACTIVE

TIMER TRETRY; S0

FIGURE 71. SDL process for the client, corresponding to the
retransmission procedure.

it switches to the awake state when it sends the PINGREQ
message with its respective identifier once its Tsleep ends.
During the awake state of the client, a transfer of pending
messages occurs, which the gateway completes by sending a
PINGRESP message. If there are no pending messages, the
gateway immediately sends the PINGRESP message. Upon
receipt of the PINGRESP message, the client resets its Tsleep
timer and returns to sleep. Simultaneously, the gateway
considers the client asleep after sending the PINGRESP and
restarts its timer, as shown in Fig. 72.

1) MEALY MACHINE DESIGN FOR GATEWAY OPERATION

For the gateway to support clients that require power savings,
the node must manage two states: i) WAIT SUPERVISION
(initial state) and ii) PUBLICATION. In the initial state,

91704

CONNECT >

Active
Client

Sleeping
Client

PINGREQ(clientld)

Awake

Client PUBLISH(QoS, data, topicld)

Sleeping

Client | Tsleep

Awake
Client

FIGURE 72. Client changing state when it needs to conserve energy.

the node waits for the reception of different signals to
determine the client’s state. Suppose the gateway receives
a DISCONNECT message (either with or without the
duration field) while in the initial state, it responds with a
DISCONNECT message to confirm receipt. Once the node
has received a DISCONNECT message that includes the
duration for which the client will remain asleep, it can also
receive the timer signal Ts (Tsleep). This allows the gateway
node to monitor the client while sleeping or in a lost state.
The active state of the client is not considered, as this aspect
is addressed in the client connection procedure.

The node enters the PUBLICATION state if, while in
the initial state, it receives a PINGREQ message. This
reception assumes the client is awake and can send or receive
pending publications using the corresponding procedure.
If there are no pending publications, the node receives
the signal pendingPublications == 0 and immediately
sends a message PINGRESP. The client is then considered
asleep, and the gateway node returns to the initial state,
where it continues to monitor the client’s state. Fig. 73
shows the state diagram of this procedure. The gateway
does not monitor the disconnected state. A client enters
this state after sending a DISCONNECT message and
receiving confirmation, as outlined in the client disconnection
procedure.

The SDL process in Fig. 74 illustrates the establishment
of the timer 7's, whose duration depends on the information
contained in the Duration field of the DISCONNECT
message when a client indicates that it will go to sleep. The
variable durat ionsS will contain the value of the mentioned

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

RX:DISCONNECT
(sleepDuration)

TX:DISCONNECT RX:PINGREQ

WAIT
SUPERVISION
SO

PUBLICATION
s1

RX:DISCONNECT

pendingPublications==0

TX:PINGRESP

NS
FIGURE 73. State diagram for the gateway, corresponding to the energy
saving support procedure.

field, to which its respective tolerance will be added.
Therefore, the timer will operate shortly after receiving the
DISCONNECT message. Additionally, the timer will reset
when the gateway verifies that it has no pending publications.
Also, the different messages that the gateway can send to
know the client’s status are presented. For this reason, the
variable staClient assigns a value that indicates the
client’s state: 1 if it is asleep, 2 if it is awake, and 3 if lost.
In this case, the variable proc12Count indicates whether a
client has disconnected.

2) DESIGN OF THE MEALY MACHINE FOR THE CLIENT'S
OPERATION

As shown in Fig. 75, when a client node can manage its
energy consumption, it can enter various states. For this
purpose, a diagram is considered that includes the following
states for said node: ACTIVE, SLEEP CONFIRMATION,
SLEEP, AWAKE, RX_DISCONNECT, DISCONNECTED, and
ESTABLISH CONNECTION. From its initial state, the
node can receive the signals saveEnergy == 1 or
closeConnection == 1, and send a message DISCONNECT
if it seeks to move to the state SLEEP CONFIRMATION or
RX DISCONNECT, respectively. It is important to note that
the DISCONNECT message sent to save energy must include
the ‘Duration’ field, indicating the time the node will remain
sleeping. In case of receiving a DISCONNECT message
from the state SLEEP CONFIRMATION, the node will go
to the state SLEEP. During this state, the node waits for the
timer that controls the sleep duration, T, to expire and then
enters the AWAKE state after sending the PINGRE(Q message.
During the AWAKE state, the node can receive or send
publications until it receives the PINGRESP message from
the gateway. Subsequently, the node returns to the SLEEP
state, where it waits for timer T's to expire again. During the
SLEEP state, the node can adjust the sleep duration by sending
another message DISCONNECT , and the gateway must con-
firm the new duration of timer 7s. Additionally, the node can
return to the ACTIVE or DISCONNECT state upon receiving
the signals saveEnergy == 0 or closeConnection ==
1, respectively. To return to the ACTIVE state, you must
first go through the ESTABLISH CONNECTION state,
where the client connection procedure should be executed.

VOLUME 12, 2024

PROCESS: Support for Energy Saving

DCL durationS, staClient,
proc12Count Integer:=0;
/*Sleeping Client (estCliente=1)

Awake Client (estCliente=2)
Lost Client (estCliente=3)*/
TIMER Ts;

WAIT
SUPERVISION
S0

DISCONNECT staClient :=3;

WAIT
SUPERVISION
S0

staClient :=2;

Duration

Sleep duration PUBLICATION

PUBLICATION
51

durationS:=Duration+

procl2Count:=1;
(0.5*Duration)

pendingPublications==0

SET(NOW-+
SUPERVISION
50 durations, T's)

durationS:=

Duration+(0.5*Duration)

staClient :=1;

WAIT
SUPERVISION
SO

SET(NOW-+durations, Ts)

staClient :=1;

WAIT SUPERVISION
S0

FIGURE 74. SDL process for the gateway, corresponding to the energy
saving support procedure.

The node returns to the active state if the connection is
accepted. Because the procedure above was already explained
previously, only the state ESTABLISH CONNECTION is used,
during which the signal proc2Count = 1 is expected to be
received, which indicates that the client has established a
successful connection. Finally, to move to the DISCONNECT
state, the node must receive a confirmation DISCONNECT
message sent by the gateway during the RX_DISCONNECT
state. If the node requires to return to the ACTIVE
state, it must initiate a new connection using the signal
iniConnection == 1.

The SDL process in Fig. 76, shows the node responds
to various inputs, whether messages or internal signals. The
timer 7T's and the variable duration$ are introduced to
control the time the node will remain in the SLEEP state.
The variable durationsS stores the duration of the timer,
which starts when the node enters the SLEEP state and

91705

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

ACTIVE
SO

saveEnergy==1
TX:DISCONNECT
(duration)

saveEnergy==1

TX:DISCONNECT
(duration)

RX:DISCONNECT

RX_ ESTABLISH
DISCONNECT CONNECTION
sS4 saveEnergy==0 S6

closeConnection==1

TX: DISCONNECT NS

Ts: Finish

RX:PINGRESP

DISCONNECTED
S5

FIGURE 75. State diagram for the client, corresponding to the
energy-saving support procedure.

restarts every time it transitions from the AWAKE state to
the SLEEP state again. A constant state change is shown
between SLEEP and AWAKE, as well as the transition process
of these states through the signals closeConnection ==
1 and saveEnergy == 0. The first signal brings the node
to the DISCONNECTED state, while the second returns
the node to the ACTIVE state. In both cases, the variable
procl2Count is used to indicate that the node no longer
needs to conserve energy, assigning it the value 1 when it
goes from the SLEEP state to the ESTABLISH CONNECTION
state, or the value 2 when it goes from the DISCONNECTED
state to the ESTABLISH CONNECTION state. The procedure
is considered to have met its objective when the variable takes
on any of these values. From the ESTABLISH CONNECTION
state, the node returns to the initial state as soon as it receives
the signal indicating that it has successfully established a
connection.

V. REPRESENTATION OF THE MQTT-SN PROTOCOL
OPERATING ON THE IEEE 802.15.4 STANDARD WITHIN
THE NODE USING SDL BLOCKS AND PROCESSES

The Mealy machines obtained are beneficial for developing
SDL diagrams of the protocol procedures because the SDL
diagrams handle the same states and signals. Each obtained

91706

PROCESS: Support for Energy Saving

DCL proc12Count Integer:=0,
durationS Integer:=10;
TIMER Ts;

SLEEP
CONFIRMATION

closeConnection==1 saveEnergy==1 Ss1

DISCONNECT DISCON.NECT
(duration)
RX_DISCONNECT SLEEP

S4 CONFIRMATION
s1

SET
(NOW+durations, Ts)

closeConnection==1

saveEnergy==0

DISCONNECT PINGREQ

RX_DISCONNECT el A=

S4

ESTABLISH
RX_DISCONNECT CONNECTION
sS4 S6

DISCONNECTED

PINGRESP
S5

DISCONNECT

SET DISCONNECTED

S5 iniConnection==

(NOW+durations, Ts)

ESTABLISH
CONNECTION
S6

procl2Count:=2;

ESTABLISH
CONNECTION

proc2Count==1 S6

FIGURE 76. SDL process for the client, corresponding to the support
procedure for energy savings.

SDL diagram represents an SDL process type entity (SDL
PROCESS). Once the SDL PROCESS entities for each
MQTT-SN procedure have been obtained, starting from their
respective Mealy machine, and clear about the different
signals that each node needs to achieve a state transition, it is
possible to represent an SDL system that better shows how the
exchange of messages between the client node and gateway
node works through several block-type entities (BLOCK)
connected through channels. Each of the blocks obtained

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

BLOCK: Gateway Node

RG1
[ADVERTISE, GWINFO,
CONNACK, WILLTOPIC,
WILLMSG, REGISTER,
CH1 REGACK, PUBLISH,
[€ PUBACK, PUBCOMP,
PUBREC, PUBREL,
SUBACK, UNSUBACK,
PINGREQ, PINGRESP,
DISCONNECT,
WILLTOPICRESP,
WILLMSGRESP]

RG2
[SEARCHGW, CONNECT,
WILLTOPICREQ,
WILLMSGREQ,
REGISTER, REGACK,
CH2 PUBLISH, PUBACK,
PUBCOMP, PUBREC,
PUBREL, SUBSCRIBE,
UNSUBSCRIBE,

PROCESS:
Procedure for
the client

]

RG3
[brokerReady,
gwBackup,
registerReady,
publicationReady,
unknownClient,
pendingPublications,
requestReady]

BLOCK: Client Node

REGISTER, REGACK,
[€———— PUBLISH, PUBACK,
PUBCOMP, PUBREC,
PUBREL, SUBSCRIBE,

UNSUBSCRIBE,

RG1
CH1 [ADVERTISE, GWINFO,
CONNACK, WILLTOPIC,
WILLMSG, REGISTER,
REGACK, PUBLISH,
PUBACK, PUBCOMP,
PUBREC, PUBREL,
SUBACK, UNSUBACK,
PINGREQ, PINGRESP,
DISCONNECT,
WILLTOPICRESP,
WILLMSGRESP] PROCESS: CH4
Procedure for
RG3
the gateway [updateWILLTOPIC,
RG2 updateWILLMSG,
[SEARCHGW, CONNECT, registerReady,
WILLTOPICREQ, publicationReady,
CH2 WILLMSGREQ, suscriptionReady,

unsuscriptionReady,
closeConnection,
iniConexién,
saveEnergy]

PINGREQ, PINGRESP,
DISCONNECT,
WILLTOPICUPD,
WILLMSGUPD]

FIGURE 77. SDL block type entity representing the gateway node.

contains an SDL process inside. Each entity that will be part
of the system is explained below.

A. PROCESS

As seen in Fig. 77 and Fig. 78, a process is part of an
SDL block. The process within the block refers to each of
the previously designed MQTT-SN procedures and its finite
state machine. In the case of the process called gateway
procedure, it is connected to two input channels called RG2
and RG3 and one output channel called RG1. The RG1 and
RG?2 channels send and receive MQTT-SN messages, while
the RG3 channel receives the signals generated within the
gateway node. The client procedure entity contains two input
channels called RG1 and RG3 and an output channel called
RG2.

B. GATEWAY NODE BLOCK

This entity, as shown in Fig. 77, represents the gateway node
and is composed of a process entity (gateway procedure),
three channels (RG1, RG2, and RG3), and three inputs (CHI,
CH2, and CH3), which allow the process with the block and
later with the system. This block connects with the block
that represents the client node or with entities external to the
system through the channels of the main entity.

C. CLIENT NODE BLOCK

This entity, as shown in Fig. 78, represents the client node
and is composed of a process entity (client procedure), three
channels (RG1, RG2, and RG3), and three inputs (CH1, CH2,
and CH4) that allow the process to interact with the block and
later with the system. This block connects with the block that
represents the gateway node or with entities external to the
system through the channels of the main entity.

D. SYSTEM
The main system or entity, shown in Fig. 79, consists of
a text box, four channels (CH1, CH2, CH3, and CH4),

VOLUME 12, 2024

PINGREQ, PINGRESP,
DISCONNECT,
WILLTOPICUPD,
WILLMSGUPD]

FIGURE 78. SDL block type entity representing the client node.

and two blocks (CLIENT NODE and GATEWAY NODE).
All signals passing through all channels in the system are
declared within the text box. Signals include MQTT-SN
messages and other events that cause a change of states
within the respective entities. The blocks representing the
client node and gateway node communicate through channels
CHI and CH2, which carry MQTT-SN messages and refer
to the wireless medium through which the RCB256RFR2
nodes communicate. Finally, channels CH3 and CH4 are
responsible for transporting the rest of the signals the nodes
will use. It is considered that these signals originate outside
the system since they depend on an external agent that must
interact with the node’s button.

1) IMPLEMENTATION OF STATES IN THE NODES

The states described in Section I have been coded using the
Atmel Studio 7 integrated development environment. Each
node’s complete code is found in this repository [26].

2) STATE MACHINE SIMULATIONS

The JFLAP state machine simulator offers the ability to
simulate various types of state machines, including the Mealy
machine, thus allowing the different state changes of the
nodes to be recreated [27]. An input string (entered manually
or via a text file) that represents the various MQTT-SN
message sequences that the node must interact with is
required to perform the simulation. The interface provided
by JFLAP, as shown in Fig. 80, facilitates the creation
and simulation of a state machine, which in turn allows
verifying the validity of the state machines defined for each
procedure.

VI. RESULTS
The SmartRF and packet sniffer tools are used to verify the
operation of the stated and encoded states in the nodes. These

tools capture messages exchanged between the nodes in the
WSN.

91707

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

SYSTEM: MQTT-SN operating over IEEE 802.15.4 standard on RCB256RFR2 node.

SIGNALS:
ADVERTISE, SEARCHGW, GWINFO, CONNECT, CONNACK, WILLTOPICREQ,
WILLTOPIC, WILLMSGREQ, WILLMSG, REGISTER, REGACK, PUBLISH,
PUBACK, PUBCOMP, PUBREC, PUBREL, SUBSCRIBE, SUBACK, UNSUBSCRIBE,
UNSUBACK, PINGREQ, PINGRESP, DISCONNECT, WILLTOPICUPD,
WILLTOPICRESP, WILLMSGUPD, WILLMSGRESP, brokerReady, gwBackup,
updateWILLTOPIC, updateWILLMSG, registerReady, publicationReady,

i ipti unknownClient,

loseConnection, iniConnection, pending]

BLOCK: Gateway Node

T CH3

[brokerReady,
CH1 CH2 wBackup,
[ADVERTISE, GWINFO, [SEARCHGW, CONNECT, registerReady,
CONNACK, WILLTOPIC, WILLTOPICREQ, publicationReady,
WILLMSG, REGISTER, unknownClient,
REGACK, PUBLISH, pendingPublications,
PUBACK, PUBCOMP, requestReady]
PUBREC, PUBREL,

SUBACK, UNSUBACK,
PINGREQ, PINGRESP,
DISCONNECT,
WILLTOPICRESP,
WILLMSGRESP]

WILLMSGREQ,
REGISTER, REGACK,
PUBLISH, PUBACK,
PUBCOMP, PUBREC,
PUBREL, SUBSCRIBE,
UNSUBSCRIBE, PINGREQ,
PINGRESP, DISCONNECT,
WILLTOPICUPD,
WILLMSGUPD]

CH4
[updateWILLTOPIC,
updateWILLMSG,
registerReady,
publicationReady,
suscriptionReady,
suscriptionReady,
closeConnection,
iniConnection,
saveEnergy]

BLOCK: Client Node

FIGURE 79. SDL main entity representing the MQTT-SN protocol on the
node.

File Input Test View Convert Help
Editor File Help Batch Preferences
LY (o] E<d B3 el s

Finite Automaton

SEARCHGW_ : GWINFO_
TADV_; ADVERTISE_

Mealy Machine

Moore Machine ‘

Pushdown Automaton

Turing Machine

NS

i Multi-Tape Turing Machine
i
4 Grammar
H
L-System

Regular Expression

M Regular Pumping Lemma

< [T

Automaton Size o Context-Free Pumping Lemma

FIGURE 80. Simulation of the procedure for gateway announcement and
discovery.

A. TEST SCENARIO

The network consists of four RCB256RFR2 nodes, the
edge nodes containing the code necessary to represent
their respective state machines. The two internal nodes
carry the MQTT-SN messages generated by the edge
nodes (client and gateway), thus forming a linear topol-
ogy. Each node has a unique address that it uses to
communicate with each other, as shown in Fig. 8I.
The client node (SRC_ADDR=0 x 004) communicates
with the nearest intermediate node (SRC_ADDR=0 x
003), while the gateway node (SRC_ADDR=0 x 001)
communicates with the nearest intermediate node
(SRC_ADDR =0 x 002).

91708

S & — o o

SRC_ADDR=0x001 SRC_ADDR=0x002 | SRC_ADDR=0x003 SRC_ADDR=0x004,
Gateway Node Intermediate Nodes Client Node

Intermediate Nodes

Laptop Sniffer
FIGURE 81. Test scenario.

Payload format:

Bytes Text
Souce || MACg®Source || MAC payload]
Address ||33 27 27 27 45 53 50 SF 50 55 4 *"'ESP_PUBLICACION'':
0x0| 2| 2D 3| START 5-00

MQTT-SN Message J

So
Address [[15-0c[20 00 01 00 01 43 €1 72

eade Source || MAC payload ||
Address || %% AxxiCarg |nput
0x0004 (0x0004 || aUtil-QoS1

So essage [EHLEL] Source || MAC payload

A w0 [STATE addess ||~ aaar | JOutput
oxo G 00 110 0x0001 ax 11001
Source Mack. END MAC payload

Address [|33 20 20 20 20 20 20 54 65 72 § Termina -
0x0001 || 32 2E 2E 2E 2E 2E 2E 2E 2E 53 2 0001 [[EEE——— 5-00..... oz
Souece || MACp| Souce || MACpayload
Address [|3A 27 27 27 45 53 50 SF 50 55 42 | Address | : ' 'ESP_PUBLICACION'':
0x0001 || 32 20 20 20 20 20 20 20 53 2D 30 |0x0001]: 5-00 5

FIGURE 82. Status verification by SmartRF packet sniffer.

B. MONITORING TOOL CONFIGURATION

The SmartRF Packet Sniffer monitoring tool monitors a
node’s status. This tool captures and displays the fields
of 802.15.4 frames in a graphical interface, including the
MQTT-SN messages generated and sent by the nodes and the
frame’s payload field in text or hexadecimal format. Due to
the inclusion of messages indicating the node’s status, these
messages are only visible when the payload field is displayed
in text format in the Sniffer application. On the other hand,
MQTT-SN messages are only visible when the payload field
is displayed in hexadecimal format.

C. STATUS VERIFICATION BY SMARTRF PACKET SNIFFER

To identify the state a node is in, the node sends a message
indicating that state and the node remains in this state until
it receives an IEEE 802.15.4 frame containing an MQTT-
SN message. The node may transmit a response message
and perform a state transition depending on the case. Before
performing the state transition, the node sends another
message indicating that the previous state has ended. Fig. 82
shows the messages that mark the start and end of a state.

D. VERIFICATION OF MQTT-SN MESSAGES USING
SMARTRF PACKET SNIFFER

When MQTT-SN messages are used as inputs and outputs of
a state machine, they must be placed between the messages
that mark the start and end of a state. The messages are
only noticeable if the IEEE 802.15.4 frame payload display
format is set to hexadecimal. Because the Sniffer cannot
categorize the fields of MQTT-SN messages, it is necessary to
manually review the relevant fields to verify which messages

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

> ® w

@
Addr: 0x0001 Addr: 0x0002 Addr: 0x0003 Addr: 0x0004
Node 1 Node 2 Node 3 Node 4
. i k£

|
I
50 :] brokerReady=1 }
|

> DVERTI DVERT >
s

DVERT
s1 Ts(ARcHGwi }50
TaDV

}51

. { D R }

DVERT! P DVERTI P DVERT! P

s1 Taov -

DVERTISE = DVERTISE - DVERTISE =

FIGURE 83. MQTT-SN messages used in the test of the gateway
announcement and discovery procedure.

enter and leave the node. Only the first two bytes of the
frame’s payload field containing the MQTT-SN message
must be examined to determine the message type. The first
byte indicates the length of the message, while the second
indicates its type. These two bytes comprise the fixed header,
while the remaining bits represent the variable part of the
MQTT-SN message. Fig. 82 illustrates how to identify the
fields of MQTT-SN messages.

E. TESTS PERFORMED

The client and gateway nodes generate messages between
both devices to verify their correct operation. These
sequences are the same as those entered into the simulator.
Although the simulator returns a sequence of messages
according to the procedure, a state transition does not always
generate an output message. In such cases, a pair of characters
(NS) indicates the absence of output or response upon receipt
of a specific message or signal. The output sequences of the
simulator are similar to the MQTT-SN message sequences
sent by the nodes. Next, the results of the sniffer captures are
presented, showing the inputs, outputs, and states managed
by the client and gateway nodes. The captures made are
compared with the results of the simulations.

1) TESTING OF THE GATEWAY ANNOUNCEMENT AND
DISCOVERY PROCEDURE
Figure 88 shows the MQTT-SN messages used in the test
of the gateway announcement and discovery procedure. The
analysis was performed from both the gateway and the client
side.

« Gateway side: For this procedure, the following input

sequence has been selected:
brokerReady=1_SEARCHGW_TADV_TADV_

VOLUME 12, 2024

|£f JFLAP : (1.1.GATEWAY_ADVERTISEMENT_AND_DISCOVERY_PROCEDUREjff) — a ped
File Input Test View Convert Help E‘

Simulate: brokerReady=1_SEARCHGW_TADV_TADV_ |

SEARCHGWW_ ; GWINFO_
TADV_; ADVERTISE_

brokerReady=1_; ADVERTISE_

brokerReady=0_; N5_

T_ NS

NADVTADV_; ADVERTISE

3 K
2 3
o]
E :
=4
7]
'al
-+
=
Q.
=
ADVERTISE_; NS_
@ fHow_TaDV_TADY_ f —
|ADVERTISE_GWINFO_ADVERTISE_ADVERTISE_ < Output Sequence |

Step | Reset | Freeze | Thaw | Trace | Remove

FIGURE 84. Simulation (Gateway) of the gateway announcement and
discovery procedure.

This sequence consists of a signal indicating that the broker
is ready to operate, a message querying the existence of a
gateway, and two timer signals that send warning messages.

The simulation of this procedure shows the various states
the node goes through upon receiving the input sequence,
which includes several signals that the node must generate
internally. The signal brokerReady=1 in the sequence allows
the node to advance from the initial state (SO) to the WAIT-
ING ADVERTISEMENT state (S1), where it will continue to
send several ADVERTISE messages upon receiving signals
indicating the expiration of a TADV timer. The state machine
remains in state S1 upon receiving the sequence above.
In this state, during which ADVERTISE messages can be
sent periodically, the device must be maintained to fulfill
its objective in this procedure. The sequence was selected
to illustrate this aspect. Fig. 84 shows the output sequence
emitted by the simulator.

Figure 85 shows that the node behaves consistently with
the simulation when receiving the first signal of the input
sequence. The node goes from the INACTIVE state (S0)
to the WAITING ADVERTISEMENT state (S1), which
remains while receiving the TADV timer signals. State S2
is only reached when the corresponding configuration of
the gateway node is performed. This configuration allows
the signal gwBackup=1 to be sent to the sensor node
through the button, but this state was not reached in this
test. The internal signal brokerReady=1, which the broker
should send, is generated by the node push button, while
the TADV signals are generated automatically at the end of
the previously configured timers. The sequences of signals,
messages received, and messages leaving the node are shown
below.

Input sequence:

brokerReady=1, SEARCHGW, TADV, TADV

91709

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

Source Source MAC payload
Address [|3A 27 27 27 27 27 27 49 4E |Address|(:'"'""'INACTIVE''"'"'"'"':
0x0001 53 (0x0001 |(= S-00 4

£/ JFLAP : (1.2.CLIENT_ADVERTISEMENT_AND_DISCOVERY_PROCEDURE,jff) - [m] x
File Input Test View Convert Help
Simulate: TSEARCHGW_GWINFO_ADVERTISE_ADVERTISE_ |

Source || PUSH BUTTON SIGNAL Source MAC T
Address § 33 20 20 20 20 20 20 20 J0 |Address||: bro
Lox0001 NGA20.20.20.20.20.20.20.92 00001 |: Read :

Source || MAC payload

Source

NADVTADV_ ; NS_

ADVERTISE_ ; NS_ TRTX_ ; SEARCHGW_

Source
Address
0x0001

Source || MAC payload
Address LR SR
0x0001 okl e v

MsgType: ADVERTISE Source MAC payload
Address: Address GW_END :
0x0001 ||3A 2E 2E 2E 2E 2E 2E 0x0001 ||iS—— N
Source Source MAC payload
Address |(3A 27 57 41 49 54 SF 41 44 |Address || :'WAIT ADVERTISEMENT':
0x0001 |[3A 20 20 20 20 20 20 20 53 (0x0001 ||z S=010

b [

Source || TIMER SIGNAL | | Source MAC Input
Address |I3A 20 20 20 20 20 20 20 30 |Address ||: i
0x0001 |\3A_20 20 20 20 20 20 20 _J6 (0x0001 |(= Finish
Source || MAC payload LarllFes Source || MAC payload
Address || 05 (0001 Address SRS Output
0x0001 || 03 &3 39 || ok 0x0001 ax e]
Source sType: ADVER Source MAC payload
Address| 57 |Address GW_END -
0x0001 ||3A 2E 2E 2E 2E 2E 2E 2E 2E |0x0001 |[2.cccucnn Ul e
Source Source MAC payload
Address |(3R 27 57 41 49 54 SF 41 44 |Address || :'WAIT ADVERTISEMENT'
0x0001 |(3A 20 20 20 20 20 20 20 53 (0x0001||: S-01

FIGURE 85. Sniffing (gateway-side) of the gateway announcement and
discovery procedure.

Output sequence:

ADVERTISE, GWINFO, ADVERTISE, ADVERTISE

o Client side: The simulation of this procedure shows
the various states the node goes through when receiving
the input sequence. The first received signal allows the
device state machine to advance from the DISCOVERY
state (S0) to the RX_GWINFO state (S1). In this last
state, the device waits for the arrival of the GWINFO
message. Once this message is received, the node returns
to the initial state SO. Once it has returned to the initial
state, two ADVERTISE messages are received, and
upon receiving these messages, the node remains in the

91710

Address Address ey Output TSEARCHGW_ ; SEARCHGW _
0x0001 0x0001 S [SIJOK]
MsgType: ADVERTISE Source MAC payload
T 57 |Address GW_END :
3A 2E 2E 2E 2E 2E 2E 2E 2E |0x0001]|:........ e comceces
GWINFO_ ; NS,

Source Source MAC payload - -
Addre 44 |Address || : "WAIT_ADVERTISEMENT':
[FULEN MsgType: SEARCHGW Rl IGFOTTN (B 5-01 - e
Source ||MAC payload LaillFes Source || MAC payload n
Address OS‘ Address x Input [sEARCHOW NS NS ns <Output Sequence |
0x0004 01 21 || oK | 0x0004 * 2
Source || MAC payload Source || MAC payload
Address Address L] Output
0x0001 0x0001 *
Source MsgType: GWINFO Source MAC payload =
Address FOEREREEeea——. 7 57 |Address || : GW_END : -
0x0001 ||3R 2E 2E 2E 2E 2E 2E 2E 2E |0x0001 |(2........ SO fif|5‘e°H Reset Freeze | Thaw | Trace | Remove
Source Source MAC payload FIGURE 86. Simulation (Client) of the gateway announcement and
Address |(3R 27 57 41 49 54 5F 41 44 |Address||:'WAIT ADVERTISEMENT': discovery procedure.
0x0001 ||3A 20 20 20 20 20 20 20 53 |0x0001 5-01 A :
Source § TIMER SIGNAL | | Source MAC Input
Address 33 20 20 20 20 20 20 20 J0 |Address T. o ee
oxo0oL e Rt I ox0001 e initial state. This sequence allows for the verification

of the operation of the procedure when the node
receives several ADVERTISE messages. Fig. 86 shows
the output sequence emitted by the simulator, where
only one SEARCHGW message is emitted, followed
by several “NS” symbols that indicate the absence of
signals to emit.

The sniffing procedure shows that the node behaves
similarly to what was indicated in the simulation upon
receiving the same sequence. Upon receiving the timer
signal, the node advances from the initial state (SO) to
the RX_GWINFO state (S1) after sending a SEARCHGW
message. Subsequently, it returns to the initial state after
receiving the GWINFO message. The TSEARHGW signal
is generated automatically at the end of the previously
configured timer. Once the node returns to the initial state,
it can remain in this state, waiting for more ADVERTISE
messages. Because the client node should not respond to
the arrival of ADVERTISE messages, it only issued a
SEARCHGW message during this test, similar to what was
indicated in the simulation. The input and output sequences
are shown below and are depicted in Fig. 87.

Input sequence:

TSEARCHGW, GWINFO, ADVERTISE, ADVERTISE
Output sequence:

SEARCHGW

2) TESTING THE PROCEDURE FOR CLIENT CONNECTION
CONFIGURATION

Figure 88 shows the MQTT-SN messages used to test the
client connection configuration procedure. The analysis was
performed from both the gateway and the client side.

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

Source Source MAC payload
Address |(7C 3D 3D 3D 3D 3D 3D 44 49 |Address (|| DISCOVERY: |
0x0004 || 7C 20 20 20 20 20 20 20 20 |0x0004 ||| S-00 |

Y =

S
Source TIMER SIGNAL 1 Source MAC pa;
Address |[I7C 20 20 20 20 54 5F Sp 45 |Address ||| T Input
0x0004 46| 0x0004 ||| Fini;

I

Source Source || MAC payload Output
Address Address EE

0x0004 0x0004 x 21 || OK

Source Mslype: SEARCHOW Source MAC payload

Address [|7C 20 20 20 20 20 20 20 43 |Address ||| CL_END |
0x0004 ||7C 2D 2D 2D 2D 2D 2D 2D 2D|0x0004 ||| S5-00. |
Source Source MAC payload

Address |(7C 3D 3D 3D 3D 3D 3D 52 58|Address || RX_GWINFO: |
0x0004 20| 0x0004 ||| S-01 |
Source Source |[MAC payload ||, 1T]
Address Address L

0x0001 0x0001 * 42
Source Source MAC payload

Address [|7C 20 20 20 20 20 20 20 43 |Address ||| CL_END |
0x0004 ||7C 2D 2D 2D 2D 2D 2D 2D 2D|0x0004 ||| S-01 |
Source Source MAC payload

Address |(7C 3D 3D 3D 3D 3D 3D 44 49|Address ||| DISCOVERY: |
0x0004 20| 0x0004 ||| 5-00 |
Source Source |[MAC payload|[, , 1]
Address Address AAK

0x0001 0x0001 Lo 4 OR

Source Source MAC payload

Address |(7C 20 20 20 20 20 20 20 43 |Address ||| CL_END |
0x0004 ||7C 2D 2D 2D 2D 2D 2D 2D 2D|0x0004 ||| S-00 |
Source Source MAC payload

Address |(7C 3D 3D 3D 3D 3D 3D 44 49 |Address ||| DISCOVERY: |
0x0004 0x0004 || 5-00 |
Source Source |[MAC payload |[, [T
Address Address AN

0x0001 0x0001 Ak 39
Source Source MAC payload

Address [|7C 20 20 20 20 20 20 20 43 |Address ||| CL_END |
0x0004 ||7C 2D 2D 2D 2D 2D 2D 2D 2D|0x0004 ||| 5-00 |
Source Source MAC payload

Address |(7C 3D 3D 3D 3D 3D 3D 44 49|Address || DISCOVERY: |
0x0004 || 7C 20 20 20 20 20 20 20 20|0x0004 ||| 5-00 |

FIGURE 87. Sniffing (client-side) of the gateway announcement and
discovery procedure.

« Gateway side: For this procedure, the following input
sequence has been selected:

CONNECT (willFlag=1) _WILLTOPIC\
WILLMSG

This sequence consists of a connection message sent by
the client, which contains the will flag with a value of
one. It also includes two messages that assign a topic
and a will message.

The simulation shows the state changes necessary for a
gateway to respond to a connection request required by a
client, in addition to the fact that the latter needs to configure
topics and will messages. The simulation receives an input
stream that contains only MQTT-SN messages; however,
the CONNECT message is specified to contain a will field
set to one. This will field facilitates the transition from the
WAIT CONNECTION state (SO) to the RX_TOPIC state (S1)
and subsequently to the RX_MSG state (S2). Finally, the
simulation state machine returns to the initial state because
it can wait for another connection sequence from this state.
In each state transition, a message is issued corresponding to

VOLUME 12, 2024

Addr: 0x0004
Node 4

L oL L L

Willflag=1 }50

ONNECT- ONNEC ONNECT-

}51
WILLTOPICREQ————|

WILLTOPICREQ————|

WILLTOPICREQ———|

Sl{
LTOPIC: LTOPIC- LTOPIC:

}sz
WILLMSGREQ————

WILLMSGREQ———— WILLMSGREQ————|
sz{
u L L
}53
ONNAC ONNAC ONNAC

v |)

FIGURE 88. MQTT-SN messages used in testing the procedure for client
connection configuration.

[Z] JFLAP : (2.1.GATEWAY_CLIENT'S_CONNECTION_SETUP;ff) - o X
File Input Test View Comvert Help [x]
[(Editor_|” Simulate: CONNECT(willFlag=1)_WILLTOPIC_WILLMSG_ |

CONNECT

(willFlag=0)_ ; CONNACK_

WILLTOPIC_ ; WILLMSGREQ_

CONNECT(willFlag=1)_; WILLTOPICREQ_

WILLMSG_ ; CONNACK_

2

[WILLTOPICREQ WILLMSGREQ_CONNACK_ < Output Sequence |

| [t meset e rraw [race | omove

FIGURE 89. Simulation (gateway-side) of the procedure for client
connection configuration.

the output sequence, as shown in Fig. 89. If the simulation
returns to the initial state, it can be considered that a
successful connection has been established.

Using the sniffer, it can be observed that the node behaves
consistently with the simulation if it receives the same
sequence. The node starts in the WAIT CONNECTION
state (SO) and, upon receiving a CONNECT message with
the will flag set to one (will field =0b00001000 or 0 x
08), enters the RX_TOPIC state (S1) after transmitting the
message WILLTOPICREQ. Subsequently, the node enters
the RX_MSG state (S2) upon receiving the WILLTOPIC
message while issuing a WILLMSGREQ message. Finally,
the node returns to the initial state after accepting the
connection using the CONNACK message with the field
returnCode=0 x 00. Upon reaching this state, it is ready to

91711

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

Dest. Source MsgType: WILLTOPICREQ Source MAC payload
Address || Address [TS8 20 20 20 20 20 [/Rouress || Address || = GW_END
Ox6ATE || 0x0001 |[3A 2E 2E 2E 2E 2E (OX6ATE |(0x0001 ||2........ S=00. c/abinaint
Dest. Source Dest. Source MAC payload
Address || Address A Address || Address ||z *RX{TOPICTPrTEs:
Ox6ATE |[0x0001 [VI SREVITE o0 6ATE || 0x0001 || = 5-01 :
Dest. Source MAC payload Dest. Source ||MAC payload

Address || Address || 0A 50 77 69 Lo Address || Address *APwi

0x0003 || 0x0004 ||6C 6C 54 €F 70| 63|0x0003 |(0x0004 11Top

RS

Dest. || Source || | Dest | Source MAC payload |£) JFLAP : (2.2.CLIENTE__CLIENT'S_CONNECTION_SETUP,jff) - a X
Address || Address || 3A 27 27 27 57 41 |Address [/ Address ||:'' 'WAIT CONNECTION'':
0x6ATE |[0x0001 sgType: CO 0x6ATE [0x0001 || = 5-00 : File Input Test View Convert Help E
Dest. Source MAC payload Dest. Source |[MAC payload r Editor r/ Simulate: Willflag=1_WILLTOPICREQ_WILLMSGREQ_CONNACK_
Address || Address F]f 03 94 ||Address || Address || *xxasx < Input
0x0003 |{0x0004 |69 64 0x0003 || 0x0004 idclo
o |5 | — [Doet | Source | [WACPyosd Willflag=1_; CONNECT_ WILLTOPICREQ_; WILLTOPIC_
Address || Address 02 Address || Address *
0x0002 || 0x0001 4 42 || OK |0x0002 || 0x0001 *

CONNACK(Dx0T)_; NS_

FEMONNML % e

|CONNECTJMLLTOPICJMLLMS(LNSi

| Step || Reset ” Freeze ” Thaw || Trace ” Remmre|

Dest. Source || MAC payload LarllFes Dest. Source ||MAC payload
Address || Address 02 Address || Address *
0x0002 || 0x0001 8| 23 || OK |0x0002 || 0x0001 X
Dest. Source IsgTyp REQ t. Source MAC payload
Address || Address ress || Address || = GW_END
Ox6ATE || 0x0001 ||3A 2E 2E 2E 2E 2E |Ox6ATE |(0x0001 ||2........ SEE e
Dest. Source Dest. Source MAC payload
Address || Address Address || Address ||z YRXIMSGY iy
0x6A7E || 0x0001 MsgType: WILLVISG 0x6ATE || 0x0001 || = 5-02 :
Dest. Source MAC payload Dest. Source ||MAC payload /l
Address || Address || 0B 77 €9 6C eC || Address || Address *ewill Input
0x0003 || 0x0004 ||6D 73 €7 €3 6C 0x0003 || 0x0004 msgcl
Dest. Source || MAC payload Dest. Source ||MAC payload
Address || Address 03 @ Address A%
0x0002 |{0x0001 0 i 02 || 0x0001 3
Dest. Source 2hilt: Dest. Source MAC payload
Address || Address Address || Address || = GW_END
Ox6ATE ||0x0001 |(3A 2E 2E 2E 2E 2E |OxX6ATE || 0x0001 |(=........ S=02 e
Dest. Source Dest. Source MAC payload
Address || Address || 3A 27 27 27 57 41 |Address || Address || ;' 'WAIT CONNECTION'':
O0x6ATE || 0x0001 || 3A 20 20 20 20 20 |0x6ATE || 0x0001 || = 5-00 :

FIGURE 90. Sniffing (gateway-side) of the procedure for client connection
configuration.

wait for another sequence of messages sent by the client.
The input and output sequences are presented below and are
depicted in Fig. 90.

Input sequence:

CONNECT (willFlag=1l), WILLTOPIC, WILLMSG
Output sequence:

WILLTOPICREQ, WILLMSGREQ, CONNACK

o Client side: For this procedure, the following input
sequence has been selected:

Willflag=1_WILLTOPICREQ
_WILLMSGREQ_CONNACK_

This sequence consists of a signal that allows a
connection message to be sent with a will flag with
a value of one. It also consists of two messages: the
gateway, which requests a topic, and the last will
message, which accepts or rejects the connection.

The simulation shows a client’s different state transitions
when connecting with a gateway. The message sequence
contains a signal, which indicates the value of the will
flag before sending the CONNECT message. Depending
on the value of the flag, a state change will occur. In this
case, the sequence indicates that the will flag was set

91712

FIGURE 91. Simulation (client-side) of the procedure for client
connection configuration.

to one, so a state change will occur from the initial
state SO to the RX_TOPIC_REQ state (S1) after sending
a connection message. Having reached state S1, it must
go to state RX_MSG_REQ (S2) when a WILLTOPICREQ
message is received, and the WILLTOPIC message is
transmitted. To go from state S2 to state RX_CONNACK
(S3), the node must receive a WILLMSGREQ message and
respond with WILLMSG. Finally, the state machine returns to
the initial state from state S3 once the CONNACK message is
received. From the initial state, another connection sequence
can be received. Fig. 91 shows the change of states and the
output sequence.

The sniffing process shows that the node starts its operation
in the ESTABLISH CONNECTION state (SO) and then
goes to the RX_TOPIC_REQ(S1) state after sending a
CONNECT message with the will flag set to one (field
will= 0b00001000 or 0 x 08). The signal that indicates
the flag’s value is recreated using the node’s push button,
and the node also indicates that the signal has been
received. This way, the node knows which state to advance
to. According to the sequence received, the node goes
from state S1 to state RX_MSG_REQ(S2) until reaching
state RX_CONNACK(S3), where it waits for the CONNACK
message with the field returnCode= 0 x 00. The node
returns to the initial state, where it can restart the connection
process. If the message received in state S3 is a CONNACK
with a returnCode= 0 x 01 field, the node will go to the
DECONGESTION state (S4), where it will activate a timer
and wait for it to end to return to the initial state and restart
the procedure. The latter state is not covered in this test. The
entry and exit sequences are shown below.

Sequence of signals and messages received:

VOLUME 12, 2024

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

IEEE Access

ter allows the representation of the operation of vari-
ables, comparators, timers, and additional signals neces-
sary for coding the nodes. Furthermore, the simplicity
of MQTT-SN messages allows their direct encapsulation
in an IEEE802.15.4 frame across the node (for example,
the RCB256RFR2). This enables their subsequent use as
inputs and outputs of the client node and the gateway.
The simulations and captures confirmed that the WSNs can
respond to the various message sequences generated for each

Dest. Source Dest. Source MAC payload
Address || Address || 7C 3D 45 53 54 41 |Address ||Address || |=ESTABLISH CONNECTION=|
0xC11E |(0x0004 |(7C 20 20 20 20 20 |0xCl1E | 0x0004 ||| CL 5-00 |
Dest. Source PUSHBUTTONSIGNAL | Dest. Source MAC payloag/l
Address || Address [17C 20 20 20 20 20 |Address [Address || | Wil Input
0xC11E || 0x0004 |{7C 20 20 20 20 20 |0xC11E} 0x0004 || flag==1 —1]
Dest. |(Source |[Source |[MAC payload []
Address || Address Address || Axaxxx
0x0003 || 0x0004 0x0004 idclo OK
Dest. Source Source MAC payload
Address Address | | CL_END |
0xCl1E 0x0004 || |=—==——— €L S=00 === |
Dest. Source Dest. Source MAC payload
Address || Address || 7C 3D 3D 3D 3D 3D |Address ||Address || |=====RX_TOPIC REQ=====|
0xC11E || 0x0004 0x0004 || CL 5-01 |
OPICREQ
Dest. Source NN Source || MAC payload
Address || Address 02 Address || Address * Input
0x0002 || 0x0001 [oe] 42 || ok |0x0002 |[0x0001 * 4
Dest. Source MAC payload La Dest. Source ||MAC payload
Address || Address || 0& 50 77 €9 Address || Address AXPwi Output
0x0003 |(0x0004 |(6C oC 54 6F 70 || 63| 0x0003 || 0x0004 11Top T
Dest. Source oP est. Source MAC payload
Address || Address ress || Address || | CL_END |
0xCL1E || 0x0004 ||7C 2D 2D 2D 2D 2D |0xCl1E |(0x0004 || |-=———= S |
Dest. Source Dest. Source MAC payload
Address || Address || 7C 3D 3D 3D 3D 3D |Address ||Address || |======RX_MSG_REQ======|
0xC11E |(0x0004 0x0004 ||| CL S-02 |
REQ
Dest. Source Source || MAC payload
Address || Address 02 Address || Address * Input
0x0002 |(0x0001 08 23 || OK | 0x0002 || 0x0001 £ 2
Dest. Source MAC payload Dest. Source || MAC payload
Address || Address || 0B ! 77 €9 6C 6C || Address || Address *ewill Output
0x0003 |(0x0004 |(6D 67 63 6C 0x0003 |(0x0004 msgcl ©
Dest. Source est. Source MAC payload
Address || Address ress || Address || | CL_END |
0xC11E |(0x0004 |(7C 2D 2D 2D 2D 2D |OxCll1E | 0x0004 || |-————- S |
Dest. Source Dest. Source MAC payload
Address || Address |[7C 3D 3D 3D 3D 3D |Address (| Address || | ======RX CONNACK======|
0xC11E |(0x0004 gType: CO CL1E || 0x0004 || CL S-03 |
Dest. Source pa LaillFes Dest. Source || MAC payload
Address || Address 03] 05} ress || Address Ax Input
0x0002 |(0x0001 00 R 002 || 0x0001 & 2
Dest. Source Dest. Source MAC payload
Address |(Address ||7C 20 20 20 20 20 |Address || Address ||| CL_END |
0xCL1E || 0x0004 ||7C 2D 2D 2D 2D 2D |0xCl1E |(0x0004 || |-=———= S SIS mmmmeee |
Dest. Source Dest. Source MAC payload
Address || Address |(7C 3D 45 53 54 41 |Address || Address || |=ESTABLISH CONNECTION=|
0xC11E |(0x0004 |(7C 20 20 20 20 20 |0xCllE | 0x0004 | | CL S-00 |

FIGURE 92. Sniffing (client-side) of the procedure for client connection
configuration.

Willflag=1,
CONNACK

WILLTOPICREQ, WILLMSGREQ,

Output sequence:

CONNECT, WILLTOPIC, WILLMSG

Figure 92 allows verifying the input and output sequences
and the will flags and returnCode fields used to change states.

VII. CONCLUSION
This paper details the development of FSMs so that the
MQTT-SN protocol can operate over IEEE 802.15.4 in linear
topologies. The Mealy machine is explicitly used for this
purpose because it allows a better representation of the
operation of each procedure of the MQTT-SN protocol. This
type of FSM considers the reception and transmission of
MQTT-SN messages in each state transition. In addition, the
number of states that would be used with another type of state
machine is considerably reduced.

Representing an MQTT-SN procedure through a Mealy
machine is comparable to using SDL. However, the lat-

VOLUME 12, 2024

MQTT-SN procedure.

REFERENCES

[1]

[2]

3

[t

[4]

[5]

[6

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A survey on enabling technologies, protocols, and
applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347-2376,
4th Quart., 2015.

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mgqtt-s—A pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. 3rd Int.
Conf. Commun. Syst. Software Middleware and Workshops (COMSWARE),
2008, pp. 791-798.

C. Egas Acosta, F. Gil-Castifieira, and E. Costa-Montenegro, ‘“‘Red
inaldmbrica de sensores con topologia lineal sin capa de red,” Revista de
Investigacion en Tecnologias de la Informacion, vol. 9, no. 17, pp. 56-65,
Jan. 2021. [Online]. Available: https://riti.es/index.php/riti/article/view/73
F. Belina and D. Hogrefe, “The CCITT-specification and description
language SDL,” Comput. Netw. ISDN Syst., vol. 16, no. 4, pp. 311-341,
Mar. 1989.

C. Egas Acosta, L. Criollo, C. Tipantufia, and J. Carvajal-Rodriguez,
“Software-defined networking-enabled efficient default route config-
uration in IEEE 802.15.4 protocol: A smart algorithmic approach,”
Electronics, vol. 13, no. 8, p. 1537, Apr. 2024. [Online]. Available:
https://www.mdpi.com/2079-9292/13/8/1537

1. Jawhar, N. Mohamed, and D. P. Agrawal, “Linear wireless sen-
sor networks: Classification and applications,” J. Netw. Comput.
Appl., vol. 34, no. 5, pp. 1671-1682, Sep. 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804511001081

E. Ndoye, F. Jacquet, M. Misson, and I. Niang, “Evaluation of RTS/CTS
with unslotted CSMA/CA algorithm in linear sensor networks,” NICST,
France, Tech. Rep. 1, 2013.

C. E. Acosta., F. Gil-Castifieira, E. Costa-Montenegro, and J. S. Silva,
“Reliable link level routing algorithm in pipeline monitoring using implicit
acknowledgements,” Sensors, vol. 21, no. 3, p. 968, Feb. 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/3/968

L. Vera Sanchez and C. Egas Acosta, “Algoritmo para el monitoreo de
estructuras lineales a gran escala,” Revista Tecnolégica ESPOL, vol. 34,
no. 3, pp. 58-71, Nov. 2022.

C. E. Acosta, F. Gil-Castifieira, and C. E. Gualotuiia, “Optimization of
delays and power consumption in large-scale linear networks using iACK,”
in Proc. IEEE ANDESCON, Oct. 2020, pp. 1-5.

A. C. Egas, F. Gil-Castifieira, E. Costa-Montenegro, and J. S. Silva,
“Automatic allocation of identifiers in linear wireless sensor networks
using link-level processes,” in Proc. 8th IEEE Latin-American Conf.
Commun. (LATINCOM), Nov. 2016, pp. 1-6.

A. Stanford-Clark and H. L. Truong. (Nov. 2013). MQTT For Sensor
Networks (MQTT-SN) Protocol Specification. [Online]. Available:
https://www.oasisopen.org/committees/download.php/66091/MQTT-
SN_spec_v1.2.pdf

P. Lea, Internet of Things for Architects: Architecting loT Solutions by
Implementing Sensors, Communication Infrastructure, Edge Computing,
Analytics, and Security. Birmingham, Packt, 2018.

P. Egli, “MQTT—Message Queueing Telemetry Transport Introduction
to MQTT, a protocol for M2M and IoT applications,” in Proc.
Enero, 2017, pp. 1-33. [Online]. Available: https://www.researchgate.
net/publication/320126053_MQTT_-_Message_Queueing_Telemetry_
Transport_Introduction_to_MQTT_a_protocol_for_ M2M_and_
ToT_applications

D. Brand and P. Zafiropulo, “‘On communicating finite-state machines,” J.
ACM, vol. 30, no. 2, pp. 323-342, Apr. 1983, doi: 10.1145/322374.322380.

91713

http://dx.doi.org/10.1145/322374.322380

IEEE Access

L. C. Cajamarca et al.: FSM of the MQTT-SN Protocol for Its Operation Over IEEE 802.15.4 in Linear Topologies

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

'W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes, *‘Generating finite
state machines from abstract state machines,” ACM SIGSOFT Softw. Eng.
Notes, vol. 27, no. 4, pp. 112-122, Jul. 2002, doi: 10.1145/566171.566190.
M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic finite state transducers: Algorithms and applications,” ACM
SIGPLAN Notices, vol. 47, no. 1, pp.137-150, Jan. 2012, doi:
10.1145/2103621.2103674.

D. Lee and M. Yannakakis, “Principles and methods of testing finite state
machines—A survey,” Proc. IEEE, vol. 84, no. 8, pp. 1090-1123, 1996.
M. Kaloper and P. Rudnicki, “Minimization of finite state machines,” in
Proc. Mizar User’s Assoc., 1996, pp. 1-11.

Z. Zhang, C. Xia, J. Fu, and Z. Chen, “Initial-state observability of
mealy-based finite-state machine with nondeterministic output functions,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 10, pp. 6396-6405,
Oct. 2022.

A. Rockstrom and R. Saracco, “SDL-CCITT specification and description
language,” IEEE Trans. Commun., vol. COM-30, no. 6, pp. 1310-1318,
Jun. 1982.

B. Hogrefe. (May 2013). SDL-88 Tutorial. [Online]. Available:
http://www.sdl-forum.org/sd188tutorial/index.html

S. Ruehrup. (2009). Network Protocol Design and Evaluation.
[Online]. Available: http://hondo.informatik.uni-freiburg.de/teaching/
vorlesung/protocol-design-s09/slides/04-Protocol_Specification_2.pdf
Atmel. Atmel AVR10004: RCB256RFR2—Hardware User Manual, Appli-
cation Note ed. Microchip. Accessed: Jan. 20, 2024. [Online]. Avail-
able: https://ww1.microchip.com/downloads/en/AppNotes/Atmel-42081-
RCB256RFR2-Hardware-User-Manual Application-Note AV R10004.pdf
D. Guha Roy, B. Mahato, D. De, and R. Buyya, “Application-
aware end-to-end delay and message loss estimation in Internet
of Things (IoT)—MQTT-SN protocols,” Future Gener. Comput.
Syst., vol. 89, pp.300-316, Dec. 2018. https://www.sciencedirect.
com/science/article/pii/S0167739X17329990

C. T. C. Criollo, L. E. Acosta, and J. Carvajal. (Mar. 2024). MQTT-
SN Finite State Machine Implementation Repository. [Online].
Available: https://github.com/criolloluis410/FSM_MQTT-SN_Over
_IEEE_802.15.4.git

S. H. Rodger and T. W. Finley, JFLAP: An Interactive Formal Languages
and Automata Package. Sudbury, MA, USA: Jones & Bartlett Learning,
2006.

LUIS CRIOLLO CAJAMARCA received the
degree in electronics and information net-
works engineering from the Escuela Politecnica
Nacional, Ecuador, in 2024. His research interests
include linear wireless sensor networks, embedded
software development, general-purpose software
development, the implementation of IoT solutions,
and software-defined radio.

91714

CARLOS EGAS ACOSTA received the degree

in electronics and telecommunications from the Escuela
Politecnica Nacional, in 1986, and the master’s
degree in computer science from the Universidad
Andina Simn Bolivar, in 1996. He is currently the
Director of the Internet of All Things Research
Group, National Polytechnic School. His research
interest includes wireless sensor networks with
LoRa technology.

CHRISTIAN TIPANTUNA received the bache-
lor’s degree in telecommunications engineering
from the Escuela Politecnica Nacional, Ecuador,
in 2011, the M.Sc. degree in wireless systems
and related technologies from the Politecnico
di Torino, Turin, Italy, in 2013, and the Ph.D.
degree in network engineering from the Univer-
sitat Politecnica de Catalunya, Barcelona, Spain,
in 2022. He is a member of the Grupo de
investigacion en Redes Inalambricas, Escuela
Politecnica Nacional. His current research interests include UAV-enabled
communications, wireless networks, software-defined radio (SDR), optical
networks, and machine learning applied to communications systems and
networks.

JORGE CARVAJAL-RODRIGUEZ received the
degree in electronics and telecommunication engi-
neering from the Escuela Politecnica Nacional,
Ecuador, in 2010, and the M.Sc. degree in
information technologies from the Mannheim
University of Applied Sciences, Germany, in 2013.
His research interests include UAV-enabled com-
munications, wireless networks, and software-
defined radio. He is a member of the Grupo
de investigacion en Redes Inalambricas, Escuela
Politecnica Nacional.

CARLA PARRA received the bachelor’s degree
in electronics and information networks from the
Escuela Politecnica Nacional, Ecuador, in 2018,
and the joint M.Sc. degree in business management
and project management from the Universitat
Politecnica de Catalunya and EAE Business
School, Barcelona, Spain, in 2020. She is currently
pursuing the Ph.D. degree with the Technol-
ogy Management Program, Escuela Politecnica
Nacional. She was the CTO of Nuevas Comuni-
caciones Iberia, Barcelona, Spain, a company dedicated to commercializing
FTTH products.

VOLUME 12, 2024

http://dx.doi.org/10.1145/566171.566190
http://dx.doi.org/10.1145/2103621.2103674

