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ABSTRACT Metamaterials have experienced rapid development in recent years. Absorbers made
of metamaterials play a crucial role in electromagnetic applications and other fields. The design of
metamaterials is usually simulated using simulation software and optimized by traditional algorithms, which
is time-consuming and difficult to optimize; deep learning, an emerging method, is gradually being used
for both forward and inverse design of metamaterials, but few methods can simultaneously generate the
geometric structure of metamaterials and meet the requirements of multiple physical spectra. This paper
proposes an improved conditional variational autoencoder (conditional VAE), that is composed by an encoder
and a decoder. The encoder generates a Gaussian distribution while acting as an inverse generated network
to predict the corresponding geometric parameters. The decoder can generate absorption spectra that satisfy
the requirements according to the conditions. By adding batch normalization and spectral normalization in
network training, the convergence of the neural network is accelerated, and the stability of the network is
increased. The results show that the encoder and decoder can accurately predict the geometric parameters
and the absorption spectrum according to the conditions, proving the feasibility of the method. A structural
sample of an absorber was processed and tested for verification. The method provides an effective way for
the target design of absorbers and a new approach for the design of other electromagnetic metamaterials.

INDEX TERMS Absorber, deep learning, conditional VAE, inverse design.

I. INTRODUCTION
Metamaterials are artificially synthesized sub-wavelength
scale composite materials that can achieve different operating
properties of electromagnetic waves through periodic or non-
periodic arrangements [1]. In recent years, metamaterials
have shown good performance in regulating the amplitude,
phase, polarization, and other aspects of electromagnetic
waves, and have been widely used because of their good
electromagnetic properties, such as negative refractive index
[2], lenses [3], [4], perfect absorbers [5], [6], [7]and
invisible cloaks [8]. Absorbers with high absorption rate,
wide absorption frequency band [9], and flexible design
have been studied for sensors [10], [11], electromagnetic
interference shielding [12], heat emitters [13], solar energy
collection [14].
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In general, researchers use electromagnetic simulation
software to search for metamaterial structures or use some
classic algorithms such as particle swarm optimization
and topology algorithms to optimize metamaterials [15],
[16], [17], [18], [19], [20], [21]. However, there is the
problem of time-consuming, and the optimal solution is
not always guaranteed in these processes.The development
of deep learning has gained attention from researchers for
its powerful learning and generalization capabilities [22],
[23].Researchers use nonlinear models between input and
output in deep learning to simulate the complex solving
process between metamaterial geometric parameters and
electromagnetic response [24], [25], which reduces workload
and shortens time [26], [27].

Gu et al. proposed a forward and inverse design model
for metamaterial absorbers consisting of a combination of
primary and auxiliary networks(PPN and APN), which can
achieve accuracy rates of 0.99 and 0.98 in forward prediction
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and inverse design, respectively. The method provides a
basis for the design of absorbers [28]. Ma et al. designed
an autoencoder network(CAN) and an inverse prediction
network(IDN) model for the inverse design of an absorber.
The model predicts low spectral errors and high accuracy
of structural parameters, avoiding complex electromagnetic
simulation processes [29]. Han et al. proposed an irregular
absorber unit structure, which uses absorptivity and structural
parameters as inputs and outputs for forward and inverse
design, respectively. The error between the predicted and
true values of the geometric parameters on the validation set
can reach 0.0017, giving a pathway for the implementation
of complex metamaterial structure design [30]. Hou et al.
designed an inverse neural network model(FTNN,GNN
and PNN) for customized absorbers using the absorption
spectrum as an intermediate result [31]. The results show
that the automatic generation time is short and accurate.
Lin et al. used generative adversarial networks(GAN) to
realize the one-to-many inverse design of absorbers under
a given target, providing researchers with multiple choices
[32]. The method offers a case for one-to-many design
using deep learning. However, models combining multiple
neural networks need to be trained multiple times, generative
adversarial network models are difficult to train and have
problems with mode collapse [33]. Therefore, it is necessary
to design an enhanced neural network that is easy to
train and capable of completing the inverse process for
a given goal, while also providing multiple solutions to
researchers.

In this paper, the use of an improved conditional VAE is
proposed for the design of target absorbers. The conditional
VAE [34] consists of an encoder and a decoder, the input
of the encoder is the absorption spectrum and the target
frequency bandwidth interval (range with the absorption
rate of more than 90%), which is composed of a start
frequency and an end frequency, the output is the distribution
and geometric parameters of the latent space. The input of
the decoder is the latent variables sampled from the latent
space and the target frequency bandwidth. The output is
multiple sets of absorption spectra that satisfy the target
frequency. Moreover, weight initialization, batch normal-
ization, and spectral normalization are added to accelerate
the convergence of the network model. The method can
generate absorber models that meet the requirements for
researchers at a specified range, compared to the neural
network spliced model, the model requires only one training
cycle.We conduct performance studies on the absorber
models used in neural networks at different polarization
angles and incidence angles, respectively. A structural sample
was made for experimental testing. In Section II, we describe
the material model in Part A, the specific details of the
proposed network structure in Part B, and the training
process of the network model in Part C. In Section III,
we obtain the results of the network model and analyze
and discuss the results. In Section IV, we conclude the
paper.

FIGURE 1. Schematic diagram of the proposed absorber model. The
absorber model consists of two layers of ITO-resistive film alternating
with two layers of Rogers RO4003C. A bottom layer of copper is present.

II. MATERIAL MODELS AND METHODS
A. ABSORBER STRUCTURE
To verify the effectiveness of the proposed deep learning
method on metamaterial models, this paper implements the
modeling of an absorber model. Fig.1 shows a schematic
diagram of the proposed absorber model, the absorber model
consists of five layers, the upper four layers are composed of
two layers of ITO resistive film alternating with two layers
of Rogers RO4003C (lossy) dielectric [35], [36], the bottom
metal reflective backboard uses pure copper. The dielectric
constant and loss tangent angle of Rogers RO4003C (lossy)
are 3.5 and 0.0027, respectively. The unit period p is fixed at
6 mm, and the thickness d of the bottom metal is 0.035 mm.
The pattern shape of the resistive film is made up of an
L-shape, a diagonal stripe, and a 90 ◦ fan ring. The design
parameters of the absorber model are the distance r1 from
the center of the first layer of resistive film pattern to the
fan ring, the width of the fan ring w1, the surface impedance
R1 of the resistive film, the thickness of the second layer
dielectric t1, the distance r2 from the center of the third
layer resistive film pattern to the fan ring, the width of the
fan ring w2, the surface impedance R2 of the resistive film,
the thickness of the fourth layer dielectric t2. Due to the
physical size limitation of the material unit period, the shape
of the resistive film pattern should fulfill several conditions,
r1 + w1 < p/2, r2 + w2 < p/2.

The above proposed absorber model is modeled using
the commercial software CST Microwave Studio. Using
a frequency domain solver based on the finite element
method and setting the simulation frequency interval to
2GHz∼22GHz. Periodic boundary conditions are used for
the x-axis and y-axis, and open (add space) is used for the
z-axis. Scanning the above eight geometric parameters and
sampling at equal intervals within the parameter physical
size constraints, as shown in Table 1. To obtain the
dataset containing geometric parameters and absorption
spectrum relationships required for deep model training, the
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TABLE 1. Range of geometric parameters of the absorber.

corresponding S11 parameters of the model are obtained in
the simulation process, by applying (1), the corresponding
absorption rate can be calculated.

A = 1 − |S11|2 (1)

where A is the absorbance, S11 is the reflection coefficient.

B. NETWORK MODEL
Conditional VAE network consists of two parts: an encoder
and a decoder. Among them, the input data of the encoder
is the absorption spectrum and condition, which is the
corresponding frequency bandwidth interval absorption of
more than 90%. Previously, the encoder was only used to
output a latent space distribution [37],the decoder is mainly
used in the data generation process,and function of the
encoder is very single, so, for this generative model of
the variational autoencoder, which is an underutilization of
encoder network resources. Tomake better use of the encoder,
a new architecture of the encoder network is proposed here,
which uses the encoder as an inverse designed network to
generate geometric parameters while generating latent space
distributions. The input data to the decoder are the conditions
and the latent space variables obtained by sampling from
the latent space distribution, and the output data is the
reconstructed absorption spectrum. The process of the model
is shown in Fig.2.

The encoder consists of one-dimensional convolutional
layers and fully connected (FC) layers, the one-dimensional
convolutional layer is used to extract features from the
absorption spectrum, and the size of the convolutional kernel
used in the convolutional layer is 3, at the same time, the
structure of residual blocks is used in the convolutional
layer [38]. On the one hand, residual blocks can effectively
alleviate the problems of gradient vanishing and gradient
explosion, making encoder training much easier. On the other
hand, residual blocks can learn more complex and detailed
feature representations to improve the performance of inverse
design.The dimensions of the input and output data of the
first convolutional layer and residual block are different from
those of the second one. The fully connected layer is used
for dimensional transformation and feature mapping after the
convolutional layer. Besides, using batch normalization after
one-dimensional convolutional or fully connected layers to
accelerate network convergence. To ensure stable training
of the encoder, both the convolutional layer and the fully

TABLE 2. Details of the decoder, FC layer is a fully connected layer.

TABLE 3. Results of network models with different frequency points
selected from the absorption spectrum. The error value is the
reconstruction error.

TABLE 4. Comparison of results before and after using residual blocks.

connected layer are initialized. The specific architecture of
the encoder network is shown in Fig.3.

The decoder is composed of four fully connected layers.
The inputs are condition and latent variables, and after
fully connected layers nonlinear factors are introduced
using an activation function Relu, and the output is the
absorption spectrum curve. However, since the process of
sampling is a non-differentiable operation, the gradient of
the neural network breaks down here and back propagation
is not possible. Therefore, the reparameterization technique
is used, sampling from a standard normal distribution to
obtain a 20 dimensional vector, multiplying it with the
standard deviation of the latent space distribution generated
by the encoder to obtain the result, and then adding it
to the mean to generate the latent variable. This process
only involves linear operations, which is differentiable.The
decoder aims to generate absorption spectra that meet the
target conditions according to the requirements.The detailed
structural information of the decoder is shown in Table2.

C. TRAINING MODELS
To collect the dataset needed for model training and
obtain the relationship between the absorption spectrum
and geometric parameters.Using Python combined with
electromagnetic simulation software CST, automatically
changes the geometric parameters for simulation and saves
the corresponding data. To facilitate the training of the neural
network and maintain the feature of the data, as can be seen
from the comparison of the different frequency points in
Table 3, the absorption spectrum is simplified by selecting
125 points in the absorption spectrum at equal intervals.
A total of 13401 corresponding data are collected, of which
10720(80%) are used as the training dataset and 2681(20%)
are used as the testing dataset. The encoder and decoder are
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FIGURE 2. Flowchart of the improved conditional VAE. The encoder takes the target frequency interval, i.e., the input conditions
[start frequency,end frequency] and the absorption spectrum as input and outputs the latent space distribution and geometric
parameters. The decoder reconstructs the absorption spectrum from the target frequency interval and the latent variables sampled
from the latent space.

FIGURE 3. Schematic diagram of an encoder network composed of
one-dimensional convolutional layers, residual blocks, and fully
connected layers. Input is the absorption spectrum. Outputs are latent
space distribution and geometric parameters.

trained using Adam optimizer. Relu is used as the activation
function between neuron layers, the batch size is set to 32, the
learning rate is set to 0.0005, and the epoch is set to 300. The
model is trained on a 12th Gen Intel(R) Core (TM) i5-12500
laptop.

According to the theory of the conditional VAE, it is known
that the loss function of the conditional VAE model has two

parts as shown in the (2),

L(θ, φ; x, z) = Eqφ (z|x)[log pθ (x|z)] − DKL(qφ(z|x)∥p(z))

(2)

θ and φ represent the network parameters for the decoder and
encoder, respectively, pθ is the likelihood under the model,
qφ is the approximate posterior, x is the input spectral data,
and z is the latent variable.One part is the reconstruction
error Eqφ (z|x) between the absorption spectrum of the encoder
input and the spectrum generated by the decoder, which is
measured using the mean square error (MSE) as shown in
the (3),

Lossrecon =
1
n

n∑
i=1

(Arec − Areal)2 (3)

where n represents the number of samples, Arec represents
the reconstructed absorption spectrum, Areal represents the
real absorption spectrum. Our goal is to minimize this error,
the smaller its value, the more accurate the reconstructed
absorption spectrum is, and the error value is a measure of
the decoder’s performance. The other part is the distanceDKL
between the Gaussian distribution of the latent space gen-
erated by the encoder and the standard normal distribution.
Generally, Kullback-Leibler divergence (KL divergence) is
used to measure the distance between the two distributions,
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FIGURE 4. (a), (b), (c), (d) are four randomly selected samples from the test set to test the encoder network’s inverse prediction
ability. The black curve represents the target absorption spectrum, and the red curve represents the simulated absorption
spectrum obtained based on the geometric parameters predicted by the network. The blue curve represents the predicted
absorption spectrum based on the network. The geometric parameters [r1, w1, R1, t1, r2, w2, R2, t2] corresponding to the
curves are provided in each insets.

FIGURE 5. Reconstruct the loss curve. Values converge to 0.002.

as shown in the (4),

Losskld = KL
(
N (µx , σx),N (0, 1)

)
(4)

where µx represents the mean value obtained from the latent
space, and σx represents the standard deviation obtained from
the latent space, the closer the distance between distributions,

the smaller the KL divergence value. Additionally, we also
use the encoder as an inverse generated network, then there is
an error between the predicted geometric parameters and the
true geometric parameters, again using the MSE as a measure
of the error between the geometric parameters, as shown in
the (5),

Lossgeom =
1
n

n∑
i=1

(Ppre − Preal)2 (5)

wherePpre represents the predicted structural parameter,Preal
represents the real structural parameters.Since the neural
network used is based on a gradient descent algorithm, it is a
minimization total loss function,as shown in the (6),

Losstotal = Lossrecon + Losskld + Lossgeom (6)

In the process of model training, as the number of iterations
increases, the value of the loss function gradually decreases.
When the value of the loss function stops decreasing and
stabilizes, the network model converges, which means that
training can end. At this time, the parameters in the variational
autoencoder are no longer updated, then the training is
complete.
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FIGURE 6. Decoder network prediction results. (a) Prediction results for target frequency interval at 5-11Ghz. (b) Prediction
results for target frequency interval at 11.5-17Ghz.

FIGURE 7. Absorption spectra of the absorber at different polarization angles in TE mode (a), different polarization angles in
TM mode (b), different angles of incidence in TE mode (c) and different angles of incidence in TM mode (d), respectively.

III. RESULTS AND DISCUSSION
After the training of the conditional VAE is completed, it is
necessary to evaluate the predictive effect and performance
of the network model. Firstly, the encoder needs to be able
to learn the features of the absorption spectrum and encode
them into the distribution of the latent space. After stabilizing
the model’s parameters, the KL divergence value between the
generated latent space distribution and the standard normal
distribution is 0.036, indicating that the encoder is effective
for feature compression of the absorption spectrum. It ensures

that the latent space has good properties for data generation,
which facilitates the decoding of features from the random
samples from the latent space.

Secondly, the encoder is also regarded as a network for
inverse design, and the encoder is tested during the inverse
design process using the test set data and the MSE loss
value on the model is 0.12. From Table4, it can be seen
that the inclusion of the residual network reduces both the
training error value and the training time, demonstrating that
the addition of the residual block is effective. Meanwhile,
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FIGURE 8. Absorber sample(a) and test environment(b).

four sets of data are randomly selected, and the geometrical
parameters predicted by the encoder are simulated to obtain
the absorption spectrum using the electromagnetic simulation
software CST, and the simulated results are compared with
the target spectrum, as shown in the Fig.4. Obviously, the
curve of the simulation results is basically consistent with
the target absorption spectrum curve, the accurate prediction
results of four sets of spectral curves in different frequency
bands indicate that the encoder can be trained for inverse
design. By using the improved encoder, it can perform a good
inverse design while compressing the absorption spectrum
features. There is no need to build an additional network
model to complete the inverse design, saving resources,
which is one of the advantages of the proposed network.

Then, a decoder network is used to perform the design of
a one-to-many absorption spectrum. During the training pro-
cess, the decoder network is used to reconstruct the absorp-
tion spectrum. After the training is completed, the decoder
is tested using the test set data to obtain the reconstruction
error of the decoder, as shown in the Fig.5, it can be seen that
at 300 epochs, the reconstruction error of the decoder tends
to a stable value of 0.002, indicating that the decoder can
accurately reconstruct the absorption spectrum. Within the
simulation frequency band, two target demands are selected
and sampled from the latent space, only using the decoder
network to design the absorption spectrum for the specified
absorption frequency band, as shown in the Fig.6. From
the results, the absorption rate of the absorption curve can
reach over 90% within the target range[5,11]GHz and [11.5,
17]GHz, and analysis of the generated absorption spectrum
reveals that the decoder can generate some curves outside
the dataset, some of the absorption spectra generated are
similar. For the same target condition, different solutions can
be obtained. Overall, the generated absorption curves meet
the condition, indicating that the decoder can learn features
from latent space and has a generalization ability to achieve
specific spectrum design.Comparing the model proposed

TABLE 5. Comparison results between our model and other models. P is
the material unit period and BW is the frequency bandwidth interval
(range with the absorption rate of more than 90%).

in this paper with some models in existing references has
excellent advantages, as shown in Table5.

We observed the absorption performance of the designed
absorber model at different polarization and incidence angles.
A set of geometrical parameters of the model is selected,
simulated in the electromagnetic simulation software CST,
and calculated using the template function to obtain the
absorptivity. Five different polarization angles and incidence
angles equally spaced within [0 ◦,60 ◦] are set for parameter
scanning respectively, and the results are shown in the Fig.7.
Observing that as the polarization angle gradually increases,
there is almost no change in the absorption curve of the
TE and TM modes, indicating that the designed structure is
polarization insensitive. Meanwhile, it can be observed that
the absorption rates between 5GHz and 17GHz are all more
than 90%, achieving broadband absorption of the absorber,
then the designed absorber model can provide a reference
for the broadband absorption. From the Fig.7, it is found
that as the incident angle increases, the absorption curve
gradually decreases in TE mode and shifts in TM mode,
which indicates that the structure is incident sensitive. After
45 ◦, the absorption drops to less than 80%. To maintain the
high absorption characteristics of the absorber, the incidence
angle should be less than 45 ◦ in applications.

Finally, we made a sample with a total size of 240mm ×

240mm, containing 40 × 40 periodic structures. Since the
simulation band of the designed structure is in the 2-22GHz
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FIGURE 9. Comparison figure of simulation and test. The black curve is
the simulation result, and the red curve is the test result.

range, the horn with operating bands in the range of 1-18 GHz
and 18-26.5 GHz is used for separate measurements in
the microwave darkroom. The type of vector network
analyzer used was the Ceyear 3672c. Sample and the testing
environment are shown in the Fig.8. As shown in the Fig.9,
the results of the predicted structural simulation are consistent
with the measured results, indicating that the method is
effective for absorber design.

IV. CONCLUSION
In summary, this paper proposes a method for inverse
designing the conditional VAE of an absorber based on the
target absorption frequency.The conditional VAE consists of
two parts: an encoder and a decoder. Themethod improves the
encoder, allowing it to generate a Gaussian distribution latent
space while also serving as an inverse generated network to
predict corresponding geometric parameters. Applying batch
normalization and residual blocks to the encoder increases
the speed and accuracy of network training. The results show
that the geometric parameter error value predicted by the
encoder is as low as 0.12 and the predicted spectrum is
consistent with the simulation spectrum results. The decoder
can realize the design of one-to-many absorption spectra
according to the target requirements,and the results show
that the implemented spectrum curve is different. Due to
the generalization ability of conditional VAE, there have
also been some schemes that satisfy the conditions and
are not in the dataset. Furthermore, we have simulated the
designed absorber model for multiple incidence angles and
multiple polarization angles, respectively. And the designed
absorber performs well. The actual experimental results
show that the structure predicted by the neural network is
relatively accurate. Compared with previous neural network
models, the method is simple to train and can simultaneously
generate geometric parameters and absorption spectra that
meet the target requirements. Hence, we believe that this

easy-to-train and highly accurate neural network method
can provide convenience for researchers to inverse design
absorber structures as needed, and even transfer themethod to
other electromagnetic metamaterial models for the required
design.
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