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ABSTRACT Conformance checking techniques can reveal commonalities and discrepancies between the
observed behavior and the modeled behavior, by relating and comparing events in the event log to activities
in the process model. Existing techniques quantify conformance based on mainstreammodels like Petri nets,
which are process-centric and assume a case notion. However, the information systemswhich are widely used
in current organizations are object-centric and do not have a case notion. As a result, existing techniques fail
to accurately quantify the conformance for object-centric data. Therefore, in this paper, we propose a new
approach to quantify the conformance between object-centric models and object-centric logs, and redefine
metrics such as fitness and precision. At last, our approach is verified to be effective.

INDEX TERMS Process mining, conformance quantifying, metrics, object-centric event logs, enterprise
resource planning systems.

I. INTRODUCTION
Process models are widely employed to indicate how their
business processes should be executed. However, the prede-
fined processes are often violated in some situations, leading
to conformance problems between predefined processes and
real executions [1]. For example, people actually using
SAP R/3 may deviate from these reference models [2].
For companies, it is necessary to quantify the conformance
between the observed behavior and the modeled behavior,
and remove the violations corresponding to bad situations.
For instance, in financial systems, it is desirable to keep the
actual procedure consistent with the model.

The existing conformance checking techniques often
employ process-centric logs and models which consider
process instances in isolation due to the assumption of
a single case notion [3], [4], [5], [6], [7], [8]. However,
enterprise resource planning (ERP) and customer relationship
management (CRM) systems which are widely used in cur-
rent organizations are object-centric and do not assume a case
notion. Accordingly, when applying existing techniques on
these systems, traditional logs and models suffer convergence

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wang .

and divergence problems, since they are flattened and can
only focus on a particular perspective of the process [9],
[10], [11]. As a result, conformance checking fail to detect
deviations and the quantifying result is not accurate.

Fortunately, object-centric process mining have been
proposed to tackle the problem. Exitensible object-centric
(XOC) event logs, are employed in [12] to check and quantify
conformance. These conformance checking techniques are
not widely used since XOC logs suffer complexity and
performance problems. Reference [13] checks conformance
between object-centric logs and models based on seven rules,
without proposing metrics to quantify conformance.

Fitness, simplicity, precision, and generalization are used
to evaluate the quality of a model discovered from a log in
traditional process mining. Actually, these criteria can also
reveal the conformance between the log and the discovered
model, since a discovered model has good quality if it
conforms to the log. In this paper, we redefine fitness and
precision in an object-centric way to quantify the confor-
mance. Different from traditional process mining, a global
case notion is not assumed for the whole process in the
context of an object-centric model and an object-centric log.

This paper is organized as follows. Section V presents the
idea to quantify the conformance and provides a solution
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to connect a log and a model. In order to quantify the
conformance, we redefine existing criteria, i.e., fitness and
precision, and propose approaches to compute them in an
object-centric manner in Section VI and VII, respectively.
In Section VIII, we evaluate our approach and compare it
with other conformance checking techniques. Section IX
concludes this paper.

II. NOVELTY OF THE RESEARCH
The conformance problems between predefined processes
and real executions often happen in companies due to the
flexible operation environment. These problems will weaken
the internal control and lead to inefficiencies in companies.
Some undesirable deviations even suggest that specific
rules enforced by law or company policies are violated.
Conformance checking is related to business alignment
and auditing and can find commonalities and discrepancies
between the modeled behavior and the observed behavior.
This is done to checkwhether business processes are executed
within certain boundaries set by managers, governments, and
other stakeholders. By improving the alignment of infor-
mation systems, business processes, and the organization
and diagnosing discrepancies, new insights can be gathered
showing how to solve the problems of fraud, malpractice,
risks, and inefficiencies and improve the performance by
maximizing the benefits.

Existing techniques quantify conformance based on main-
stream models which typically consider process instances in
isolation (ignoring interactions among them) and are more
focused on the behavioral perspective of processes. However,
the information systems which are widely used in current
organizations are object-centric and do not have a case notion.
As a result, existing techniques fail to accurately quantify the
conformance for object-centric data.

Therefore, in this paper, we redefine metrics such as
fitness and precision to quantify the conformance between
object-centric models and object-centric logs. These metrics
are different from traditional process mining since they do
not assume a global case notion for the whole process. More
precisely, in an object-centric model [12], one behavioral
constraint specifies a restriction on events in a scope (i.e.,
an instance rather than a case) identified by a named
correlation pattern [12]. A named variant matrix is served
as a bridge to connect the log and the model [12]. More
precisely, we map the instances onto the variant matrix to
identify the observed variants, and map the constraints onto
the variant matrix to identify the allowed ones. Then the
criteria are computed based on the relation between observed
and allowed variants.

A major contribution of our approach is that instances
are not considered in isolation and cardinality constraints
in the data/object model are taken into account. Therefore,
when applying our conformance checking techniques on the
object-centric systems, the diagnosis results can cover both
the behavioral and data perspectives, and deal deviations
related to the interactions. Hence, we can now detect and

diagnose a range of conformance problems that would have
remained undetected using existing approaches. Besides,
compared with token-based replay approaches which tend to
achieve too high fitness values when event logs contain many
deviations, our approach can quantify a range of conformance
problems more precisely, since our metrics does not assume
a global case notion and can overcome famous convergence
and divergence problems.

III. RELATED WORK
Various conformance checking techniques are proposed to
quantify the conformance problems.In this section, we dis-
cuss the literature related to approaches to quantify the
conformance between a log and a model.

In traditional process mining, the replay techniques are
used to compute fitness between a Petri net and an extensibile
event stream (XES) log [2], [14], [15]. By replaying the log
on the model, i.e., replaying each case to the places and
transitions, four counters are employed to count produced
tokens (p), consumed tokens (c), remaining tokens (r) and
missing tokens (m). For instance, if an activity in the event
log is not enabled, then a missing token is added. Based
on these four numbers, a typical application is to compute
fitness based on the numbers. More precisely, after replaying
a trace σ in a log on top of a model N , the fitness of
a trace σ is calculated as fitness(σ,N ) =

1
2 (1 −

m
c ) +

1
2 (1 −

r
p ). The same approach can be used to analyze the

fitness of a log consisting of many cases: simply taking the
sums of all produced, consumed, missing, and remaining
tokens, and applying the same formula. Reference [16]
proposes an improved token-based replay approach that is
much faster and scalable than existing methods. Moreover,
the approach provides more accurate diagnostics that avoid
known problems and help to pinpoint compliance problems.
Inspired by the object-centric paradigm [17], [18], [19],
[20] presents a replay-based conformance checking method
based on a class of colored Petri nets (CPNs) which are
frequently used to describe systems centered on the end-
to-end processing of distinguishable objects. It can check
conformance in terms of interaction betweenmultiple process
instances in a system, which addresses the limitation that
the majority of existing methods focus on checking isolated
process instances. Reference [21] introduces a notion for
the precision and fitness of an object-centric Petri net with
respect to an object-centric event log, which is able to
handle multiple case notions, their dependencies and their
interactions.

However, token-based replay can only be implemented on
Petri nets. Besides, for event logs with many deviations, this
approach tends to achieve too high fitness values, since Petri
net is flooded with tokens and allows for too much behavior.
In order to overcome these problems faced by token-based
replay, alignment techniques are proposed and become the
state-of-the-art techniques. The alignment techniques [7], [8],
[22], [23] compute fitness based on the costs, assigning to
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the misalignment between model moves (not observed in the
log) and log moves (impossible in the model). For instance,
if eachmodel path is the same as the log path (i.e., there are no
model moves and log moves), the cost is zero, which means
thematch is perfect. Reference [24] presents a novel approach
to incrementally calculate prefix-alignments, paving the way
for real-time online conformance checking more efficiently.
Reference [25] defines infix/postfix alignments, and proposes
approaches to compute them, without assuming complete
process executions covering the entire process from start to
finish or prefixes of process executions.

Reference [3] and [4] employ artifact-centric models
expressed in terms of proclets to check conformance. These
papers show that process instances cannot be considered
in isolation as instances in artifact-centric processes may
overlap and interact with each other. This complicates
conformance checking but the problem can be decomposed
into a set of smaller problems, that can be analyzed using
conventional conformance checking techniques. In contrast
to most existing approaches, [26] incorporates data con-
straints into the Petri nets by relying on the expressive
power of an artifact-centric specification, thus achieving
conformance results which are more precise. These artifact-
centric conformance checking techniques do not relate
control-flow to some overall data model.

These techniques more focus on quantifying the level of
conformance in terms of fitness. However, there are also
techniques for computing other quality dimensions such as
simplicity and precision. In [27] and [28], the non-fitting
parts are simply ignored, i.e., only a fraction of the event log
can be used for computing precision, resulting in unreliable
precision measurements. Reference [29] can achieve better
precision by aligning the event log and the model in case
of deviations. Reference [21] can calculate precision for
multiple case notions based on an object-centric Petri net.
Reference [30] measures the generalization criterion when
the model is ‘‘overfitting’’ (i.e., the model explains the
particular sample log, but it is unlikely that another sample
log of the same process can be explained well by the current
model).

IV. PRELIMINARY
A. OBJECT-CENTRIC EVENT LOGS
Definition 1 (Universes): Below are the universes used in

the formal definition in this paper:

• UO is the universe of object identifiers.
• UC is the universe of object classes or object types.
• UR = UC × UC is the universe of relationships between
classes.

• UE is the universe of events.
• UA is the universe of activities.
• Utimest is the universe of timestamps.
• UAttr is the universe of attribute names.
• UVal is the universe of attribute values.
• UCard is the universe of cardinalities.

• UCon is the universe of constraints.
• UCT = {X ⊆ IN × IN | X ̸= ∅} is the universe of
constraint types.

Definition 2 (Object Centric Event Log): An object cen-
tric event log (OCEL) is a tuple L = (E,O,πact ,πtime,πevmap,
πeomap, πotyp, πovmap, πoomap ⪯), where

• E ⊆ UE is a set of event identifiers,
• O ⊆ UO is a set of object identifiers,
• πact ∈ E → UA maps events onto activities,
• πtime ∈ E → Utimest maps events onto timestamps,
• πevmap ∈ E → (UAttr ̸→ UVal) maps events onto a
partial function assigning values to some attributes,1

• πeomap ∈ E → P(O) associates events to objects,
• πotyp ∈ O → UC maps objects onto object types (or
classes),

• πovmap ∈ O → (UAttr ̸→ UVal) maps objects onto a
partial function assigning values to some attributes,

• πoomap ∈ O → P(O) associates an object to a set of
related objects, and

• ⪯ ⊆ E × E defines a total order on events.2

UL is the universe of OCELs.
An OCEL is a collection of events that belong together,

i.e., they belong to some ‘‘process’’ where many types of
objects/instances may interact. Note that one event may
refer to one or multiple objects and one object may be
referred to by one or multiple events. The objects referred
to by an event indicate that they are impacted by the
operation corresponding to the event. Such an event log
is object-centric since the events are related through the
data perspective. Table 3 and Table 4 briefly present an
object-centric event log [31], [32]. Table 3 represents the
event records, where each row corresponds to a distinct event.
Table 4 represents the relevant information of objects in the
information systems.

B. OBJECT-CENTRIC CONSTRAINT BEHAVIORAL MODEL
An OCBC model combines data/object modeling techniques
and a declarative process modeling language. More precisely,
an OCBC model consists of a class model (presenting
cardinality constraints between objects), a behavioral model
(presenting declarative constraints between events) and
so-called AOC relationships which connect these two models
by relating activities in the behavioral model to object classes
in the class model.
Definition 3 (Class Model): A class model is a tuple

ClaM = (C,R, ♯src, ♯tar ),where
• C ∈ UC is a set of classes,
• R ∈ UR is a set of relationships,
• ♯src ∈ R → UCard gives the source cardinality of
a relationship (i.e., ♯src(r) gives the cardinality on the
c1 side for r = (c1, c2) ∈ R), and

1f ∈ X ̸→ Y is a partial function with domain dom(f ) ⊆ X .
2A total order is a binary relation that is (1) antisymmetric, i.e. e1 ⪯ e2 and

e2 ⪯ e1 implies e1 = e2, (2) transitive, i.e. e1 ⪯ e2 and e2 ⪯ e3 implies
e1 ⪯ e3, and (3) total, i.e., e1 ⪯ e2 or e2 ⪯ e1.
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• ♯tar ∈ R → UCard gives the target cardinality of
a relationship (i.e., ♯tar (r) gives the cardinality on the
c2 side for r = (c1, c2) ∈ R).

UClaM is the universe of class models.
Definition 4 (Activity Model): An activity model is a tuple

ActM = (A,Con, πref , πtar , type), where
• A ⊆ UA is a set of activities (denoted by rectangles),
• Con ⊆ UCon is a set of constraints (A∩Con = ∅, denoted
by various types of edges),

• πref ∈ Con → A defines the reference activity of a
constraint (denoted by a black dot connecting constraint
and activity),

• πtar ∈ Con → A defines the target activity of a
constraint (other side of edge), and

• type ∈ Con → UCT specifies the type of each constraint
(denoted by the type of edge).

UActM is the universe of activity models.
Definition 5 (AOC Relationships): Let A ∈ UA be a set of

activities, C ∈ UC be a set of classes. AOC ⊆ A × C is
a set of AOC relationships between Activities and (Object)
Classes. For convenience, we define three functions to refer
to the cardinalities on the relationships.

• ♯A ∈ AOC → UCard gives the source cardinality of an
AOC relationship (activity side), and

• ♯OC ∈ AOC → UCard gives the target cardinality of an
AOC relationship (object class side).

UAOC is the universe of AOC relationships.
Definition 6 (Object-Centric Behavioral Constraint Mod-

el): An object-centric behavioral constraint model is a tuple
OCBCM = (ClaM ,ActM ,AOC, ♯A, ♯OC , crel), where

• ClaM = (C,R, ♯src, ♯tar ) is a classmodel (Definition 3),
• ActM = (A,Con, πref , πtar , type) is an activity model
(Definition 4),

• C , R, A and Con are pairwise disjoint (no name clashes),
• AOC ⊆ A×C is a set of AOC relationships, and ♯A and

♯OC specify the cardinalities on the AOC relationships
(Definition 5),

• crel ∈ Con → C ∪ R indicates the event correlation
pattern (to identify the scope) for each behavioral
constraint, satisfying the following conditions for each
con ∈ Con:
– {(πref (con), c), (πtar (con), c)} ⊆ AOC if crel(con) =

c ∈ C , and
– {(πref (con), c1), (πtar (con), c2)} ⊆ AOC or

{(πref (con), c2), (πtar (con), c1)} ⊆ AOC if crel
(con) = (c1, c2) ∈ R.

UOCBCM is the universe of OCBC models.
Figure 10 shows an OCBC model which describes the

order-to-cash scenario in ERP systems. The model indicates
that there are eight classes and four activities involved in
this process. The class relationships reveal the constraints
between classes, e.g., each order line should have a corre-
sponding shipment line indicated by r9 (this is consistent
with the real scenario where each order line is shipped to the
corresponding customer). The seven behavioral constraints
(i.e., con1 ∼ con7) present restrictions assigned on the

temporal order between events of different activities. For
instance, con6 indicates that each ‘‘create order’’ event is
followed by one or more corresponding ‘‘create shipment’’
events while con7 requires each ‘‘create shipment’’ event
is preceded by precisely one corresponding ‘‘create order’’
event. The eight AOC relations (i.e., aoc1 ∼ aoc8) specify
the cardinaltiy constraints between activities and classes. For
example, aoc5 shows a one-to-one correspondence between
‘‘create order’’ events and ‘‘order’’ objects, i.e., if an ‘‘order’’
object is observed, the corresponding ‘‘create order’’ activity
needs to be executed once and vice versa.

C. EVENT CORRELATION
OCELs have no case notions to correlate events. In order to
enable conformance checking on the behavioral perspective,
we first use the data perspective as a bridge to correlate
events, resulting in pattern instances. Then we compares
the correlated instances with the activity model to detect
deviations.
Definition 7 (Event Notations): Let E ⊆ UE be a set of

events ordered by ⪯ and related to activities through function
πact . For any event e ∈ E :

• ⊴e(E) = {e′ ∈ E | e′ ⪯ e} are the events before and
including e.

• ⊵e(E) = {e′ ∈ E | e ⪯ e′} are the events after and
including e.

• ◁e(E) = {e′ ∈ E | e′ ≺ e} are the events before e.3

• ▷e(E) = {e′ ∈ E | e ≺ e′} are the events after e.
• ∂a(E) = {e′ ∈ E | πact (e′) = a} are the events
corresponding to activity a ∈ UA.

Definition 8 (Correlation Pattern): A correlation pattern
P is a tuple (aref , atar , cr) where aref and atar are two
activities, and cr is a class or class relationship in an OCBC
model.

A correlation pattern P = (aref , atar , cr) consists of two
activities and a class or class relationship (which serves as
a ‘‘bridge’’ to connect these two activities) in an OCBC
model [12]. For instance, as shown in Figure 1, these two
activities (‘‘create invoice’’ and ‘‘create order’’) and the
class relationship (between ‘‘invoice’’ and ‘‘order’’) forms a
correlation pattern.
Definition 9 (Event Correlation and Instances): Let L be

an OCEL and P = (aref , atar , cr) be a correlation pattern.
Function extI ∈ UL ×UP → P(E∗) correlates events in L for
P and returns a set of instances (i.e., event sequences), such
that extI (L,P) = {ins ∈ E∗

| (∃eref ∈ ∂aref (E) : ∂set (ins) =

{eref } ∪ Etar ) ∧ (∀1 ⩽ i < j ⩽ |ins| : insi ≺ insj)} where4

• Etar = {etar ∈ ∂atar (E) | ∃o ∈ ∂c(O) : o ∈

πeomap(eref ) ∩ πeomap(etar )} if cr = c ∈ C , or

3e′ ≺ e if and only if e′ ⪯ e and e′ ̸= e.
4For a sequence σ , e.g., ins, σi refers to the i-th element of the sequence,

|σ | denotes the length of the sequence and ∂set (σ ) converts the sequence into
a set.
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FIGURE 1. Quantifying the conformance on the behavioral perspective through three criteria: fitness, precision and generalization.

• Etar = {etar ∈ ∂atar (E) | ∃o1 ∈ πeomap(eref ), o2 ∈

πeomap(etar ) : o2 ∈ πoomap(o1)∧{πotyp(o1), πotyp(o2)} =

{c1, c2}} if cr = (c1, c2) ∈ R.

For simplicity, we define ins⇂P = (before, after) =

(|◁eref (Etar )|, |▷eref (Etar )|).
Function extI correlates events in two ways. The first way

is based on a triangle pattern, i.e., crel(con) ∈ C . More
precisely, if two events refer to one common object, they are
related. The secondway to relate events is by a square pattern,
i.e., crel(con) ∈ R. More precisely, if two events refer to two
related objects (which are connected by an object relation),
they are related.

V. THE FRAMEWORK FOR QUANTIFYING CONFORMANCE
A. BASIC IDEA OF CRITERIA
Quantifying the conformance between a log and a model
is difficult, since it is characterized by many dimensions.
Fitness and precision are used to evaluate the quality of a
model discovered from a log. Actually, these criteria can also
reveal the conformance between the log and the discovered
model, since a discovered model has good quality if it
conforms to the log. Therefore, in this paper, we redefine
fitness and precision to quantify the conformance, as shown
in Figure 1. Note that these criteria only focus on the
behavioral perspective, which are explained as follows:

• fitness: the model should allow for the behavior seen in
the event log,

• precision: the model should not allow for behavior
completely unrelated to what was seen in the event log,
and

• generalization: themodel should generalize the behavior
seen in the event log.

Unlike traditional process mining, we do not assume a
global case notion for the whole process in the context of an
OCBC model and an object-centric event log (OCEL) [13].
Each behavioral constraint in an OCBC model corresponds
to a correlation pattern and specifies a restriction on events in
a scope (rather than a case) identified by the pattern. Since a
behavioral constraint is defined in the context of a correlation

FIGURE 2. A variant matrix is represented by a grid consisting of
3 × 3 cells.

pattern, constraints corresponding to different patterns are
independent. Because of this, it is not necessary to check an
OCEL log on the whole OCBC model (with all activities and
constraints). We only need to check conformance pattern by
pattern.

In this paper, we define and compute criteria on the
pattern level, More precisely, based on a correlation pattern,
we correlate events in the log to derive a set of pattern
instances and extract all behavioral constraints corresponding
to the pattern from the model. The criteria on the pattern
level are computed for each pattern, which can be merged as
criteria on the model level if needed.

B. CONNECTING EVENT LOG AND PROCESS MODEL
The conformance between a model and a log means how
much the observed behavior complies with the allowed
behavior. Therefore, we have to connect the model to the log
to quantify the conformance.
Definition 10 (Variant Matrix): A variant matrix VCT is a

set of nine disjoint constraint types which incorporate all the
possible relations between a reference event and its target
events. VCT = {(0; 0), (1; 0), (0; 1), (1; 1), (2+; 0), (0; 2+),
(2+; 1), (1; 2+), (2+; 2+)} ⊆ UCT . Each constraint type in
the set is called a variant, e.g., (1; 1) ∈ VCT is a variant.

In the variant matrix, each variant essentially is a constraint
type, e.g., (2+; 0) = {(before, after) ∈ IN× IN | before ≥ 2}.
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The variant matrix VCT in Figure 2 can serve as a bridge
to connect instances to constraints. More precisely, we map
the instances onto the variant matrix to identify the observed
variants, and map the constraints onto the variant matrix to
identify the allowed ones. Then the criteria are computed
based on the relation between observed and allowed variants.
Next, we explain how to derive the observed variants and their
frequencies.

Among the instances correlated by a candidate pattern,
if the relation between a reference event and its target events
in some instance satisfies the semantics of a variant, we say
that the instance corresponds to the variant and the variant is
observed once in the log. Based on this idea, a function freV is
defined to compute how many times each variant is observed
in a log corresponding to a pattern.
Definition 11 (Computing Variant Frequency): Let L be

an OCEL and P be a correlation pattern. Function freV ∈

UL × UP × VCT → IN returns the frequency that a variant
is observed in a log corresponding to a pattern such that
freV (L,P, v) = |{ins | ins ∈ extI (L,P) ∧ ins⇂P ∈ v}|.
For convenience, we define the following shorthand.

freV%(L,P, v) =
freV (L,P,v)∑

v∈VCT
freV (L,P,v) provides the ratio of a

variant.
More precisely, the frequency of a variant is equal

to the number of instances corresponding to the vari-
ant. For instance, assume that we have two instances
{⟨co1, cs1, cs2⟩, ⟨co2, cs3⟩} where co1 and co2 are reference
events in Figure 3. For the first instance, there are zero
and two target events before and after the reference events,
respectively, i.e., ⟨co1, cs1, cs2⟩⇂P = (0, 2) ∈ (0; 2+).
Similarly ⟨co2, cs3⟩⇂P = (0, 1) ∈ (0; 1). Therefore
freV (L,P, (0; 2+)) = 1 and freV (L,P, (0; 1)) = 1.

FIGURE 3. Function freV mapping instances (correlated by a correlation
pattern) onto the variant matrix VCT to show observed behavior, resulting
in a frequency matrix. For instance, the first one of the instances (on the
left side) only has two target events cs1 and cs2 after the reference event
co1. This relation satisfies the semantics of the cell (0; 2+) in the variant
matrix (in the middle). Since only one of the instances has such relation,
the value in the cell corresponding to (0; 2+) in the frequency matrix (on
the right side) is 1.

In an OCBC model, each behavioral constraint corre-
sponds to a constraint type. Consider for example the con-
straint con8 in in Figure 4. type(con8) = {(before, after) ∈

IN × IN | after ≥ 1}. Therefore, constraints can be related
to the variant matrix in terms of constraint types. Next,
we define a function to map constraints (corresponding to a
correlation pattern) onto a variant matrix.
Definition 12 (Allowed Variants by Model): Let M =

(ClaM ,ActM ,AOC, ♯□
A , ♯

♦

A , ♯OC , crel) be an OCBC model
where ActM = (A,Con, πref , πtar , type) is an activity model,
and P = (aref , atar , cr) is a correlation pattern.

Function posV ∈ UOCBCM × UP → P(VCT ) returns the
variants allowed by a model corresponding to a correlation
pattern such that posV (M ,P) = {v ∈ VCT | ∀con′

∈ ConP :

v ⊆ type(con′)} where ConP = {con ∈ Con | πref (con) =

aref ∧ πtar (con) = atar ∧ crel(con) = cr}.
In terms of a correlation pattern P, function posV maps

the constraints corresponding to P from an OCBC model M
onto the variant matrix, resulting in a colored matrix. In the
colored matrix, the black variants represent the behavior
allowed by the model. Assume that con6 and con8 in
Figure 4 are all constraints corresponding to the pattern
P = (create order, create shipment, order line) from the
OCBC model M . Since con6 is of the non-precedence
constraint type and con8 is of the response constraint type,
type(con6) ∩ type(con8) = {(before, after) ∈ IN × IN |

before = 0 ∧ after ≥ 1}. After checking all variants
in the matrix, we get (0; 1) ⊆ (type(con6) ∩ type(con8))
and (0; 2+) ⊆ (type(con6) ∩ type(con8)). Therefore,
posV (M ,P) = {(0; 1), (0; 2+)}.

FIGURE 4. Function posV mapping constraints (for a correlation pattern)
onto the variant matrix to show allowed behavior, resulting in a colored
matrix.

Traditional process mining techniques connect a log to a
model by replaying each case in the log onto the model. Since
OCELs and OCBC models do not assume a case notion, the
variant matrix is employed to realize the connection. The
functions proposed above can map an OCEL on the variant
matrix (resulting in a frequency matrix to show the observed
variants) and to map an OCBC model onto the variant
matrix (resulting in a colored matrix to show the allowed
variants). Next, the OCEL is connected to the OCBC
model by overlapping the frequency matrix and the colored
matrix.
Definition 13 (Connecting OCEL to OCBCModel): Func-

tion posV indicates a colored matrix which represents the
allowed behavior, and function freV indicates a frequency
matrix which represents the observed behavior. By overlap-
ping and aligning these two matrices, an overlapped matrix is
generated, which connects an OCEL to an OCBC model

FIGURE 5. A log is connected to a model by overlapping the frequency
matrix and the colored matrix, resulting in an overlapped matrix.

By overlapping the frequency matrix and the colored
matrix, we derive an overlapped matrix which contains all
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the information (i.e., the allowed behavior and observed
behavior) from these two matrices. Note that the positions of
the nine variants are fixed in all matrices, e.g., the bottom left
cell corresponds to variant (0; 2+) in the frequency matrix,
the colored matrix and the overlapped matrix. In Figure 5,
the left matrix is a frequency matrix, which indicates the
variants observed in the log, e.g., (0; 2+) is observed thirty-
five times. The middle matrix is a colored matrix, which
indicates that variants (0; 1) and (0; 2+) are allowed by
the model. By overlapping them, we get the right matrix,
i.e., an overlapped matrix. The overlapped matrix indicates
that (0; 1) and (0; 2+) are observed fifty and thirty-five
times, respectively, and they are allowed by the model.
In contrast, (1; 0) and (2+; 2+) are observed ten and five
times, respectively, and they are not allowed by the model.
By summarizing the information in the overlapped matrix,
we can claim that most observed behaviors are allowed by
the model.

Through the variant matrix, we make a bridge to connect
the log to the model, resulting in an overlapped matrix which
indicates both allowed behavior and observed behavior. Next,
we illustrate how to compute fitness and precision, based on
the overlapped matrix.

VI. FITNESS
The first metric in the context of conformance is to quantify
howmuch the real business process conforms to the specified
behavior, i.e., how much the log fits the model. Based on
the overlapped matrix defined in Section V-B, the proposed
fitness is quantified as the extent to which the observed
variants (in the OCEL) conform to the allowed variants (by
the OCBC model).

Traditional process mining grants a perfect fitness (a value
close to 1) to a model if it can replay all traces in the log from
beginning to end. In comparison, a model has a poor fitness
(a value close to 0) if it allows for little behavior seen in the
event log. In this paper, we refer to the traditional process
mining and propose solutions to compute fitness as a value
between 0 and 1 in the context of OCELs and OCBCmodels.

FIGURE 6. Three overlapped matrices indicating different fitting
situations.

As shown in Figure 6, three overlapped matrices indicate
different fitting situations. More precisely, the first situation
has a perfect fitness, since all observed behavior in the
log is allowed by the model. In comparison, most observed
behavior is allowed in the second overlapped matrix,
describing an almost fitting situation. Differently, the third
overlapped matrix describes a non-fitting situation, since

only one observed variant is allowed. The above discussion
inspires that the fitness can be expressed as the ratio of the
observed and allowed variants in all observed variants. Based
on this idea, the fitness is 0 if none of the observed variants
are allowed or 1 if all observed variants are allowed.

It is possible to take into consideration a threshold for the
frequencies of variants to make the approach robust in terms
of noise. More precisely, if the frequency of a variant is below
the configured threshold, we consider that it is not observed
in the log. The threshold can also be set as a ratio to consider
the relative frequency when deciding if a variant is observed.
Definition 14 (Fitness): Let L be an OCEL, M be an

OCBC model and P be a correlation pattern. Function
fitnessP ∈ UL ×UOCBCM ×UP → [0, 1] computes the fitness
on the pattern level. We define the following notions:

• fitnessP1(L,M ,P) =
|{v ∈ V | freV (L,P, v) ≥ 1}|

|{v ∈ VCT | freV (L,P, v) ≥ 1}|
,

• fitnessP2(L,M ,P) =
|{v ∈ V | freV (L,P, v) ≥ τ }|

|{v ∈ VCT | freV (L,P, v) ≥ τ }|

for some threshold τ ∈ IN, and

• fitnessP3(L,M ,P) =
|{v ∈ V | freV%(L,P, v) ≥ τ }|

|{v ∈ VCT | freV%(L,P, v) ≥ τ }|

for some threshold τ ∈ [0, 1],
where V = posV (M ,P) is the set of allowed variants.

Four solutions are given in Definition 14 to calculate
fitness on the pattern level (i.e., corresponding to some
pattern P). fitnessP1 only counts the number of variants
which are allowed and observed, divided by the number of
all observed variants. This solution is not be applicable for
real life logs, since it is sensitive to noise. fitnessP2 can
deal with noise by setting a threshold τ (i.e., an integer) to
filter the infrequent variant. Similar to the second solution,
fitnessP3 only changes the absolute frequency to a relative
ratio.

TABLE 1. The fitness derived by different solutions for each overlapped
matrix in Figure 6.

Next, we use the three overlapped matrices in Figure 6 to
understand how to compute fitness with different solutions.
In the first overlappedmatrix (i.e., Figure 6(a)), seven variants
are observed (seven cells with numbers greater than zero) and
all these variants are allowed (cells colored in black). As a
result, the fitness is 7/7 based on fitnessP1. In the second

VOLUME 12, 2024 91799



B. Xiu, G. Li: Quantifying Conformance Between Object-Centric Event Logs and Models

matrix, seven variants are observed, in which four of them are
allowed and fitnessP1 returns 4/7. Following the same rule,
fitnessP1 returns 1/7 for the third matrix, as shown in the first
row in Table 1.

When the threshold is set as 1, fitnessP2 returns the same
result. The number of observed variants (whose frequencies
are above the threshold) decreases with increasing the
threshold. For example, there are three observed variants
when setting the threshold as 10, and all of them are allowed
in the first and second matrix. As a result, the fitness is
3/3 based on fitnessP2. In comparison, only one of the
three observed variants is allowed in the third matrix, and
fitnessP2 returns 1/3, as shown in the fifth row in Table 1.
Based on a relative ratio, fitnessP3 computes fitness in a
similar way to fitnessP2.

VII. PRECISION
A good model needed to be as precisely as possible, i.e., if it
does not allow for ‘‘too much’’ behavior. If a model allows
for more behavior than necessary, it becomes too general and
less informative as it no longer describes the actual process.
Precision is another important criterion, which should be
taken into consideration when quantifying the conformance.
More precisely, precision evaluates how much behavior is
allowed by the model which actually never happens in the
log. It evaluates the conformance from another perspective
and is different from fitness which evaluates whether the
behavior in the log is possible with respect to the process
model. A model having a poor precision is underfitting, i.e.,
it allows for behavior that is very different from what was
seen in the event log.

FIGURE 7. Three overlapped matrices indicating situations with different
precision.

As shown in Figure 7, three overlapped matrices indicate
situations with different precision. The first situation has
perfect precision, since all behavior allowed by the model
is observed in the log. In comparison, since most allowed
behavior is observed, the second overlapped matrix shows
an almost precise situation. Differently, the third matrix
describes an imprecise situation, since two of the four allowed
variants are not observed and the other two are observed
infrequently.

Based on discussing precision in different situations, this
paper proposes solutions to compute precision in the context
of OCELs and OCBC models. Intuitively, the precision can
be quantified as the extent to which the allowed variants
(by the OCBC model) are observed in the log based on the
overlappedmatrix defined in SectionV-B.More precisely, the
precision is calculated as the ratio of the observed and allowed

TABLE 2. The precision derived by different solutions for each
overlapped matrix in Figure 7.

variants in all allowed variants. For instance, the precision
is 0 if none of the allowed variants are observed or 1 if
all allowed variants are observed. Referring to the approach
of computing fitness, we also take into consideration a
threshold, i.e., we consider that a variant is not observed in
the log if the frequency of the variant is below the configured
threshold.
Definition 15 (Precision): Let L be an OCEL, M be an

OCBC model and P be a correlation pattern. Function
precisionP ∈ UL × UOCBCM × UP → [0, 1] computes
the precision on the pattern level. We define the following
notions:

• precisionP1(L,M ,P) =
|{v ∈ V | freV (L,P, v) ≥ 1}|

|V|
,

• precisionP2(L,M ,P) =
|{v ∈ V | freV (L,P, v) ≥ τ }|

|V|
for some threshold τ ∈ IN,

• precisionP3(L,M ,P) =
|{v ∈ V | freV%(L,P, v) ≥ τ }|

|V|
for some threshold τ ∈ [0, 1], and

• precisionP4(L,M ,P) =

∑
v∈V −pv log2(pv)

log2(|V|)
with pv =

freV (L,P,v)
freV (L,P,V ) ,

5

where V = posV (M ,P).
Four solutions are given in Definition 15 to compute

precision on the pattern level (i.e., corresponding to some
pattern P). precisionP1 only counts the number of variants
which are allowed and observed, divided by the number of all
allowed variants. The first solution is not applicable for real
life logs since it is sensitive to noise. With the same filtering
approach as used for computing fitness (cf. Definition 14),
precisionP2 and precisionP3 deal with noise by setting a
threshold τ . Different from the previous solutions which use
the frequency to compute precision, precisionP4 computes
precision based on the extent to which the allowed variants
are evenly observed in terms of frequency.More precisely, the
precision is 0 if only one allowed variant is observed, and the
precision is 1 if all allowed variants have the same frequency.

5This is based on the idea of entropy. As before, we assume that x0 = 1.
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FIGURE 8. The approach to evaluate the OCBC conformance checking approach and tooling.

Next, we use the three overlapped matrices in Figure 7 to
understand how to compute precisionwith different solutions.
In the first overlapped matrix (i.e., Figure 7(a)), there are
three allowed variants and all these variants are observed.
As a result, the precision is 3/3 based on precisionP1. In the
second matrix, five variants are allowed, in which four
are observed. As a result, the precision is 4/5 based on
precisionP1. Following the same rule, precisionP1 returns 2/4
for the third matrix, as shown in the first row in Table 2.
When setting the threshold as 1, precisionP2 returns the
same result. Note that, the number of observed variants
decreases with increasing the threshold. For example, the
number of observed variants in the third matrix drops to
1 with a threshold 3. As a result, precisionP2 returns 1/4
for the third matrix. precisionP3 computes precision in
a similar way to precisionP2 based on a relative ratio,.
In comparison, precisionP4 computes precision based on
entropy. The precision is 1 based on precisionP4 if the
frequency of each allowed variant in Figure 7(a) is 30,
indicating that allowed variants are equally observed. When
changing the balance between allowed variants, the precision
decreases. As shown in Figure 7(a), the precision is 0.91when
the frequency is 50, 20 and 20.6

VIII. EVALUATION
In this section, the OCBC conformance quantifying approach
is evaluated. Figure 8 shows details about the evaluation
experimental environment.

More precisely, starting from a particular business sce-
nario, the upper branch simulates the scenario to generate a
log (representing observed behavior) and inject some known
deviations into the log, the lower branch designs a model
to describe the scenario (representing allowed behavior).
At last, based on the generated log and reference model,

6 −(50/90) log2(50/90)−(20/90) log2(20/90)−(20/90) log2(20/90)
log2(3)

= 0.91.

we verify if the proposed metrics can quantify these injected
deviations accurately. Note that, the existing approaches are
also implemented following the above process and compared
with our approach.

A. BUSINESS PROCESS
Based on a real ERP system named Dolibarr, we design
an order-to-cash (OTC) business process with an informal
notation in Figure 9 for the evaluation experiments. More
precisely, the cardinality constraints between activities are
indicated by the numbers on edges and the temporal order
between activities is indicated by the arrows of edges.
Consider the edge between the ‘‘create payment’’ activity
and the ‘‘create invoice’’ activity as example. It requires
that each ‘‘create invoice’’ event must be followed by
corresponding ‘‘create payment’’ events, and the cardinalities
on the edge indicates that each ‘‘create payment’’ event
corresponds to one or more ‘‘create invoice’’ events and each
‘‘create invoice’’ event corresponds to precisely one ‘‘create
payment’’ event [33].

FIGURE 9. An informal model to describe the OTC business process.

Based on the designed OTC scenario, we use CPN
(i.e., colored Petri net) Tools to create a simulation model
involving multiple interacting entities [34], [35], as shown
in Figure 8. A simulation log is created by running the OTC
process in the simulation model with CPN Tools. Then the
simulation log is interpreted to automatically operate the
Dolibarr system with populating its database.7

7http://www.win.tue.nl/ocbc/softwares/data_generation.html.
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FIGURE 10. An OCBC model describing the order-to-cash process in ERP
systems.

In Dolibarr system, the OTC process scenario involves
eight tables, such as order, order line, shipment, shipment
line, invoice, payment, payment line and element relation,
as shown in Figure 12. There exist PK-FK (i.e., primary key
and foreign key) relations between tables which indicate the
references between table records. For instance, the order line
ol1 refers to the order o1. By running the simulation, the
tables of Dolibarr get filled with information about orders,
invoices, shipments, etc.

Based on the OTC business process and the according data
schema, we design an OCBC model, as shown in Figure 10.
The class model is consistent with the data schema, i.e.,
eight classes correspond to eight tables and the class relations
correspond to the PK-FK relations between tables. The seven
behavioral constraints correspond to the restrictions assigned
on the events in the OTC process. For instance, the constraint
con2 indicates each ‘‘create invoice’’ event must be followed
by at least one corresponding ‘‘create payment’’ event.

FIGURE 11. A Petri net to describe the OTC business process.

In order to conduct the comparison experiment, we also
design a Petri net based on the OTC process, as shown
in Figure 11. Note that, in order to enable the many-
to-many relations between orders, invoices, payments and
shipments, we have to add silent transitions in the net to
create self-loop for ‘‘create invoice’’, ‘‘create payment’’ and
‘‘create shipment’’, due to the Petri net assumes a case notion.
Figure 11 shows a designed Petri net to describe the OTC
scenario. More precisely, after an order is created we have
two branches. The top branch shows that multiple invoices
can be created for the order and there exists a many-to-
many relationship between invoices and payments, i.e., one
invoice can be paid multiple times and one payment can
cover multiple invoices. The two implicit transitions (i.e., t)

describe this relationship. Independent from the top branch,
the bottom one indicates that multiple shipments can be
created to deliver order lines in the order. After all shipments
and payments, the process ends.

B. EVENT LOG
The conformance checking approach highly depends on the
availability of event logs. After filling the Dolibarr system
with information, we extract OCELs andXES event logs from
the achieved tables as shown in Figure 12.

Table 3 and Table 4 briefly present the extracted
OCEL [31], [32]. Table 3 represents the event records,
where each row corresponds to a distinct event. Table 4
represents the relevant information of objects in the
information systems. Figure 13 shows the extracted
XES log with the method in [36] to relate events,
resulting in a log with two cases o1 and o2, i.e.,
L = [< create order, create shipment, create invoice,
create shipment, create invoice, create payment >, < create
order, create invoice, create shipment, create payment,
create invoice, create payment >]. Note that the XES log
suffers convergence problems. More precisely, though ci2 is
performed only once in Dolibarr, it is contained by two cases
as if it happens twice. Besides, the XES log also suffers
divergence problems. More precisely, cp1 and cp2 (the two
instances of ‘‘create payment’’) cannot be distinguished in the
case o2 though they are performed on different documents in
Dolibarr (i.e., cp1 is on ci2 and cp2 is on ci3).

For controlled experiments, some deviations are added
into the normal log to examine if these deviations can be
quantified. In the normal logs, each ‘‘create invoice’’ event
is followed by at least one ‘‘create payment’’ event, as shown
in Figure 9. We insert deviations into the normal event logs
to see if the inserted deviations can be identified. More
precisely, we assume that the first ‘‘create payment’’ event
does not occur, i.e., we remove p1 from table ‘‘payment’’ and
pl1, pl2 from table ‘‘payment’’ and table ‘‘payment_line’’ in
Figure 12, respectively.
As a result, cp1 is removed from the events in Table 3 and

p1 and pl1 are removed from objects in Table 4. Note that the
relations related to the objects p1 and pl1 are also missing.
Figure 14 visualizes the OCEL after inserting the deviations.
Accordingly, for the XES log, the event ‘‘create payment
(cp1)’’ is removed from the cases o1 and o2, as shown in
Figure 15.

C. QUANTIFYING THE CONFORMANCE
Like other modeling languages such as Petri nets, OCBC
models support checking conformance on the behavioral
perspective. In the experiment, we only focus on fitness to
present the effectiveness of quantifying the conformance.

First, we check if the normal log has the perfect fitness,
i.e., 1. In the normal scenario, each ‘‘create invoice’’ event is
followed by at least one ‘‘create payment’’ event, indicated
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FIGURE 12. Tables and relations between them in the OTC scenario.

TABLE 3. Events of the input OCEL for conformance checking.

FIGURE 13. The generated XES log based the motivating data.

by the constraint con2 in Figure 10. Next, we take con2 as an
example to show the process of quantifying the conformance.

In order to calculate the fitness, we correlate events into
instances, and derive the overlapped matrix by overlapping
the frequency matrix and the colored matrix. More precisely,
we derive three instances after event correlation as shown in
the left part in Figure 3. The left matrix is a variant matrix

and the middle left cell in the matrix corresponds to variant
(0; 1). The right matrix is a frequency matrix and the number
3 in the middle left cell indicates that (0; 1) is observed three
times in the log.

Figure 4 shows the process of mapping the constraint
con2 onto the variant matrix, resulting in a colored matrix,
i.e., the right matrix with the middle left and bottom left
cells colored in black, which indicates that variants (0; 1) and
(0; 2+) are allowed by the model.
Figure 5 shows the process of overlapping the frequency

matrix in Figure 3 and the colored matrix in Figure 4,
resulting in an overlapped matrix. Based on the overlapped
matrix, we calculate fitness with the first solution, which
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TABLE 4. Objects of the input OCEL for conformance checking.

FIGURE 14. The OCEL after inserting the deviations.

FIGURE 15. The generated XES log after inserting deviations.

counts the number of variants which are observed and
allowed, divided by the number of all observed variants.
In this way, the fitness is calculated as 1 since all observed
variants are allowed.

Next, we calculate the fitness for the deviating log.
As shown in Figure 19, only one has the payment event in the
three derived instances after event correlation. Accordingly,
in the frequency matrix, the number 2 in the top left cell
indicates that (0; 0) is observed two times and the number 1 in
the middle left cell indicates that (0; 1) is observed one time
in the log. The left matrix is a variant matrix and the middle
left cell in the matrix corresponds to variant (0; 1). The right

FIGURE 16. Mapping the normal log onto the variant matrix to show
observed behavior.

FIGURE 17. Mapping the constraint con2 onto the variant matrix to show
allowed behavior.

matrix is a frequency matrix and the number 3 in the middle
left cell indicates that (0; 1) is observed three times in the log.

The overlapped matrix in Figure 20 indicates that two
variants (0; 1) and (0; 2+) are allowed by the model, and two
variants (0; 1) and (0; 0) are observed in the log. With the
first fitness solution, the fitness is 0.5, since only one variant
is observed and allowed while two variants are observed.

D. COMPARISON
The conformance quantifying result derived by our
object-centric approach shows that the inserted deviations can
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FIGURE 18. The normal log is connected to the constraint con2 by
overlapping the frequency matrix and the colored matrix, resulting in an
overlapped matrix.

FIGURE 19. Mapping the deviating log onto the variant matrix to show
observed behavior.

FIGURE 20. The deviating log is connected to the constraint con2 by
overlapping the frequency matrix and the colored matrix, resulting in an
overlapped matrix.

FIGURE 21. Replaying o1 =< co1, cs1, ci1, cs2, ci2 >.

be detected. In this part, we apply the traditional techniques
to the same data and compare its results with the result using
our approach.

We first replay the normal log in Figure 13 on the Petri
net in Figure 11. Initially, all places are empty and c =

p = 0. Then the environment produces a token in ‘‘start’’
place. Therefore, the p counter is incremented and p = 1.
Next we replay the case o1 on the model and calculate the
fitness. More precisely, we replay the first event co1, i.e., fire

transition ‘‘create order’’. As a result, the c and p counters
are incremented by 1 since ‘‘create order’’ consumes and
produces one token, respectively. Therefore, c = 1 and p =

2 after firing transition ‘‘create order’’. In order to replay the
next events, we fire the silent transition ‘‘t’’ and c = 2 and
p= 4 since ‘‘t’’ consumes one token and produces two tokens.
Thenwe replay the second event cs1. Firing transition ‘‘create
shipment’’ results in c= 3 and p= 5. After replaying the third
event (i.e. ci1) c = 4 and p = 6. Similarly, after replaying
the remaining events (i.e., cs2, ci2 and cp1) c = 7 and p =

9. After replaying the last event (i.e. cp1), we fire the silent
transition ‘‘t’’ and result in c = 9 and p = 10. At the end,
the environment consumes a token from ‘‘end’’ place. Hence
the final result is c = p = 10 and m = r = 0. Clearly, there
are no problems when replaying the case o1, i.e., there are no
missing or remaining tokens (m = r = 0). The fitness is then
calculated as fitness(σ,N ) =

1
2 (1 −

0
10 ) +

1
2 (1 −

0
10 ) = 1.

Following the above process, the fitness of the case o2 is
also 1.

Next, we replay the deviating log in Figure 15 on the Petri
net in Figure 11. For the case o1, after replaying all the
events (i.e., co1, cs1, ci1, cs2 and ci2), c = 6 and p = 8.
The tokens are in the place after ‘‘create invoice’’ and the
place after ‘‘create shipment’’, as shown in the top net in
Figure 21. In order to finish the replaying, one token needs
to be added into the place after ‘‘create payment’’ to trigger
the silent transition ‘‘t’’. After firing the transition ‘‘t’’, c =

8, p = 9, m = 1 and r =1. At the end, the environment
consumes a token from ‘‘end’’ place. Hence the final result
is c = p = 9 and m = r = 1, as shown in the bottom net in
Figure 21. The fitness is then calculated as fitness(σ,N ) =
1
2 (1−

1
9 )+

1
2 (1−

1
9 ) = 8/9. For the case o2, cp1 is removed

as a deviation. After replaying the third event cs3, the event
ci3 still can be triggered, since there is s self-loop for the
transition ‘‘create invoice’’. After replaying all events, m =

r= 0, i.e., the case o2 can be perfectly replayed on the model,
and the fitness is 1.

In the deviating log, two invoices i1 and i2 are not paid.
As we can see from the above example, the replay technique
can only detect one deviating case, i.e., o1 in which i1 has
no corresponding payment event. It fails to efficiently detect
deviations related to multiple instances, i.e., o2 in which i2 is
not paid. In comparison, our approach ismore powerful in this
situation. It can detect the two unpaid invoices i1 and i2 in a
straight-forward manner.

IX. CONCLUSION
In this paper, we proposed metrics to quantify the confor-
mance between an OCEL log and an OCBC model in terms
of fitness and precision. The quantifying task is split into two
parts in this paper. The first part is connecting an OCEL log
and an OCBC model by a variant matrix. The second task is
to redefine three criteria, i.e., fitness and precision to quantify
the conformance on the pattern level.

Our approach does not assume a global case notion
which flattens the logs and models and leads to the
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famous convergence and divergence problems. In this way,
we overcome the problems of existing approaches that
instances are considered in isolation. As a result, it is possible
to quantify a range of conformance problems that would have
remained undetected using traditional approaches.
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