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ABSTRACT Millimeter-wave beamspacemassivemultiple-input multiple-output systemwith a lens antenna
array can minimize transceiver hardware complexity without compromising performance. However, the
number of supported portable user terminals cannot exceed the number of radio frequency blocks accessible
at the same time, frequency, and coding resources. In this paper, we propose the integration of rate-splitting
multiple access and orthogonal random precoding into the downlink of beamspace massive multiple-
input multiple-output system to support a larger number of portable user terminals than the number of
available radio frequency blocks while minimizing both inter- and intra-beam interferences and extending
the cell coverage percentage. Then, we formulate an optimization problem to optimize the system’s
overall throughput while keeping the minimum needed throughput and power budget in consideration. The
nonconvex optimization issue is then approximated into a convex optimization problem using the successive
convex approximation approach. Following that, we offer an alternating method to solve the approximate
optimization issue and select an optimal solution. Furthermore, we deduce an analytic expression for the
downlink cell coverage percentage and evaluate the effectiveness of the suggested method in terms of total
throughput, energy efficiency, and cell coverage percentage. Finally, we compare the proposed method with
benchmark techniques for perfect and imperfect channel state information, and numerical results confirm
the superior performance of the proposed method over benchmark techniques in terms of sum throughput,
energy efficiency, and cell coverage percentage.

INDEX TERMS Beamspace, cell coverage percentage, energy efficiency, lens antenna array, massive
multiple-input multiple-output, orthogonal random precoding, rate-splitting multiple access, throughput.

I. INTRODUCTION
Millimeter-Wave (mmWave) communications have been
a notable technology in the Fifth Generation (5G) of
mobile communication networks and will continue to be a
notable technology in the subsequent generations of wireless
networks because of its capability to enable Gbps throughput
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(data rates) [1], [2], [3]. This is due to the fact that there
are a large number of unused frequencies in the mmWave
band, and increasing the bandwidth is a successful strategy
to increase system capacity [4]. Nevertheless, owing to the
extremely high carrier frequencies in the mmWave spectrum,
there is a significant path loss compared with lower frequency
bands [3]. Fortunately, a large number of antennas can
be squeezed into a very small space owing to the small
wavelength of mmWave signals that can be utilized to attain
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beamforming enhancements to offset the significant path loss
at mmWave frequencies [1], [2], [3], [5], [6], [7], [8]. Despite
the advantages brought about by the large antenna arrays,
full digital beamforming introduces high energy consumption
and computation complexity owing to the fact that each
antenna needs its own Radio Frequency (RF) block that
includes a Power Amplifier (PA), Low-Noise Amplifier
(LNA), converter, mixer, filter, oscillator, and others in a tra-
ditional massive Multiple-Input Multiple-Output (mMIMO)
communication system [1], [2], [3], [4], [7], [9], [10], [11],
[12]. The use of a lens antenna array based on the beamspace
mMIMO communication system can simplify the complexity
of mmWave communication systems [3]. By changing the
direction of the electromagnetic rays, one can realize a lens
antenna array with an angle-dependent energy focus [3].
The number of required RF blocks can be decreased by
rigorously choosing the dominant beams depending on the
sparse beamspace channel [2]. However, since each RF block
can only attend to one Portable User Terminal (PUT) at the
same time and frequency, the maximum number of PUTs
supported can be limited to the number of available RF
blocks [2]. To overcome this limitation, Non-Orthogonal
Multiple Access (NOMA) was proposed [2]. NOMA can
serve multiple PUTs using the same time and frequency
resources simultaneously by multiplexing PUTs in the power
domain and utilizing Successive Interference Cancellation
(SIC) to mitigate inter-PUT interference [2], [13], [14],
[15]. Nevertheless, when using NOMA, the PUT with the
lowest allocated power will have to decode all the signals
intended for other PUTs, which increases computational
complexity [13], [16]. Therefore, Rate-Splitting Multiple
Access (RSMA) can be used in the downlink of a beamspace
mMIMO system to reduce the complexity brought about by
employing NOMA [17]. RSMA is a type of power-domain
non-orthogonal multiple access technique that is based on the
multi-antenna rate-splitting technique, where each message
is divided into a common segment and a private segment,
and the common segments of all the PUTs are encoded into
a common message and the private segment of each PUT is
encoded into a private message. Then the common message
is overlaid on top of each PUT’s private message [18], [19],
[20], [21], [22], [23], [24], [25].

Moreover, with mmWave mMIMO systems, the coverage
area can be increased by using precoding techniques in the
downlink [26]. Linear precoding techniques such as Zero-
Forcing (ZF) and Minimum Mean Square Error (MMSE)
can achieve near optimal performance with perfect Channel
State Information at the Transmitter (CSIT). However,
these techniques requires channel inversion which introduces
computation complexity into the system design. In [27],
a method for constructing M random beams to transmit
information to the PUTs that have the highest M Signal-
to-Interference plus Noise Ratios (SINRs) was proposed.
It was revealed that the throughput scales as N logK , which
is comparable to perfect Channel State Information (CSI)
utilizing dirty paper coding when the number of PUTs (K )

increases but the number of beams N stays the same [27].
Low-complexity precoding techniques are therefore essential
for designing future wireless networks in order to enhance the
system throughput and coverage area of mMIMO systems in
the downlink scenario.

A. RELATED WORKS
Several studies have already explored RSMA-related issues,
including [5], [16], [18], [19], [22], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42]. In [5],
the asymptotic sum throughput of Rate-Splitting (RS) and
Hierarchical Rate-Splitting (HRS)was analyzed and the com-
mon messages precoder was optimized. Clerckx et al. [16]
compared NOMA with traditional Multiple-User Linear
Precoding (MU-LP) and RSMA schemes and demonstrated
that despite an increased receiver complexity, NOMA
suffers from a marked multiplexing gain loss because of
the inadequate use of SIC receivers. In contrast to more
conventional techniques such as single-PUT mode Time
Division Multiple Access (TDMA) and multiple-PUT mode
Zero-Forcing Beamforming (ZFBF), Clerckx et al. [18], [43]
showed that RS can significantly increase mMIMO wireless
networks’ spectral and energy efficiencies, dependability, and
CSI feedback overhead reduction. To increase the ergodic
sum throughput, the investigations in [19] provided an RS
strategy that was combined with a linear precoder design and
optimization methods. In another study [44], Joudeh et al.
proposed an RS multigroup multicast beamforming strategy
where an alternating optimization algorithm depending on
the Weighted Minimum Mean Square Error (WMMSE)
technique was utilized to obtain RS precoders.

In [29], Yang et al. formulated a sum throughput maxi-
mization problem for wireless networks that used downlink
RSMA, whose goal was to maximize the sum throughput for
all PUTs. To resolve the nonconvex maximization problem,
they first determined the best power for transmitting the
private message in closed form for a specific rate allocation
and a common message, and they then derived the ideal rate
allocation in accordance with the highest private message
transmit power under a constant common message transmit
power. Similarly, Li et al. investigated resource allocation
in multi-carrier RSMA network [28]. In [30], a cell-free
mMIMO-based joint multiservice transmission strategy was
suggested, with which access point selection is performed
and broadcast, multicast, and unicast messages are created
at each access point in accordance with the RSMA method.
To counteract the impacts of quantization noise innate in low-
resolution Analog-to-Digital Converters (ADCs) and Digital-
to-Analog Converters (DACs), Ahiadormey and Choi [45]
proposed an RSMA method. They then demonstrated that
as the ADC/DAC resolution increased, their method outper-
formed non-RSMA methods in terms of spectral efficiency
at a high SNR. When all of the PUTs used the same
pilot sequence for channel estimation as described in [31],
RS was investigated in the downlink of a single-cell mMIMO
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system, and Thomas et al. found that RS outperformed
traditional mMIMO with maximum ratio precoding in terms
of spectral efficiency. In a similar study [32], it has been
demonstrated that RS was robust for multiple-PUT MIMO
in the presence of phase and magnified thermal noises, but
the gains decreased under both ideal and practical conditions
as the number of PUTs increased. Papazafeiropoulos and
Ratnarajah [33] considered a multipair decode-and-forward
full-duplex relay channel with a relay station that was
equipped with many antennas, and they showed how RS
enabled the extension of the range of Self-Interference
(SI), over which full-duplex relays outperformed half-duplex
relays. Dizdar et al. [34] provided a general overview of
RSMA and highlighted its potential to meet 6G require-
ments. Similarly, Mishra et al. [22] utilized RSMA as
a pilot contamination reduction method in the downlink
of machine-type communications with random access and
revealed that RSMA successfully reduces the impact of pilot
contamination. In a related work, pilot-sharing PUTs were
modeled as an interference channel [35], and the effective-
ness of the technique that decoded the interference partly
using RS and the technique that decoded the interference
completely was analyzed. The results revealed that RS had
higher spectral efficiency. In another study, low-complexity
RSMA algorithms using hierarchical streams was proposed
in [38] and analyzed under an interference nulling scenario.
Arora et al. [36] proposed quadrature-RSMA that eliminates
the requirement of performing SIC prior to decoding the
private messages. Moreover, RSMA can achieve higher
achievable rate than the conventional wireless networks in
vortex wave communications [37]. Tong et al. [40] proposed
two RS schemes with different SIC layers and analyzed
their model in terms of outage probability in the presence
of untrusted near user. In another study, Lee et al. [42]
considered a sum secrecy spectral efficiency problem in a
downlink RSMA system with multiple antennas. Recently,
RSMA has gain attention in Unmanned Aerial Vehicle
(UAV)-assisted communication. Singh et al. [41] investigated
the effectiveness of RSMA in a multiuser downlink wireless
network consisting of UAV-assisted base station that serves
multiple ground users using infinite block length and finite
block length transmission schemes under imperfect SIC and
CSI. Similarly, the integration of RSMA and Reconfigurable
Intelligent Surfaces (RIS) into wireless networks has been
shown to maximize the achievable rate and energy effi-
ciency [39]. Therefore, RSMA is a promising technique for
future wireless networks owing to its robust performance in
many scenarios.

The coverage extension issues in wireless communication
systems have been investigated in a number of studies
such as those in [26], [46], [47] and [48]. In the studies
in [26], and [46], it was investigated how Orthogonal
Random Precoding (ORP) could be used to increase coverage
in the downlink of mMIMO systems. The locations of
Next-generation Node Bs (gNBs) and PUTs were modeled
using Poisson point processes in [47], and the coverage

performance of the multiple-PUT MIMO downlink cellular
network was analyzed. The effectiveness of location-aware
rank transmission in MIMO cellular networks was examined
by Lone et al. [48]. In [26] and [46], the ORP method was not
investigated in conjunction with RSMA in a hybrid mmWave
mMIMO architecture.

B. CONTRIBUTIONS AND ORGANIZATION
In [5], [16], [18], [19], [22], [29], [30], [31], [32], [33],
[34], [35], [38], [40], [41], and [42], it has been shown
that RSMA can improve the sum throughput performance
in mMIMO systems. On the other hand, it has been
revealed that by utilizing ORP, the cell coverage can be
extended for the cell-edge PUTs in the downlink of mMIMO
cellular systems [26], [46], [47], [48]. In addition, ORP
is a low-complexity precoding technique, which makes it
preferable over conventional linear precoding methods that
rely on channel inversion [46]. As such, we propose the use
of ORP and RSMA to extend the coverage, sum throughput,
and energy efficiency in the downlink of beamspacemmWave
mMIMO systems. In an ORP method, a gNB transmits
training signals and receives a real number from each PUT
indicating the best SINR and its index. Specifically, each
PUT feeds back its largest SINR value and the index of the
orthonormal precoding vector corresponding to that SINR to
the gNB through a feedback channel. The key contributions
of this study are outlined as follows:

• We propose the adoption of ORP and one-layer1 RSMA
techniques to enhance the sum throughput, energy
efficiency, and cell coverage percentage performance of
beamspace mmWave mMIMO systems in the downlink
with reduced complexity. We utilize ORP precoding to
reduce inter-beam interference, while RSMA suppresses
intra-beam interference by partially decoding interfer-
ence and partially treating interference as noise [20].

• Using the proposed system model, we use SIC and
throughput constraints to model the sum throughput
maximization problemwith perfect CSI. The nonconvex
optimization problem is then solved using a Successive
Convex Approximation (SCA)-based technique to pro-
duce a locally optimal result. Furthermore, we deduce
the analytical expressions for the downlink cell coverage
percentage of the beamspace mmWave mMIMO system
that utilizes ORP and RSMA.

• The performance of the proposed ORP-RSMA method
is evaluated through simulations. The convergence of
the iterative optimization algorithm for joint power
allocation and rate-splitting is validated. Moreover,
numerical findings show that the proposed ORP-RSMA
method can surpass ZF Space Division Multiple Access
(ZF-SDMA), ZF NOMA (ZF-NOMA) [2], and ZF
Orthogonal Multiple Access (ZF-OMA) [14] in terms of

1One-layer RSMA refers to a system where each PUT performs SIC once
to decode the common message [18]. Without loss of generality, we use
RSMA to refer to one-layer RSMA in the remainder of this study.
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cell coverage percentage, sum throughput, and energy
efficiency. Furthermore, we compare the proposed
ORP-RSMA method for perfect and imperfect CSI
scenarios.

The remaining sections of this study are structured as
follows. In section II, we provide the system model, which
includes the path loss, channel model, signal model, ORP
method, and RSMA method. In section III, we present the
optimization problem, solution, and convergence analysis.
In section IV, we outline the performance evaluation and
comparison with benchmark schemes. Finally, in section V,
we provide the conclusion.

C. NOTATION
Boldface uppercase characters (A) denote matrices, boldface
lowercase characters (a) denote vectors, and standard char-
acters (a) denote scalars. The superscript (·)H denotes the
conjugate transpose operator, IK is a K × K identity matrix,
diag (a1, a2, . . . , aK ) is a K × K diagonal matrix that has
diagonal elements of a1, a1, . . . , aK , and A (i, :)i∈B is the
submatrix of A that consists of the ith row of A for all i ∈ B.
|a| denotes the modulus of scalar a, ∥a∥2 denotes the ℓ2-norm
of vector a, and E(·) is the expectation operator. The notation
CN (u,V) denotes the complex Gaussian distribution with
the mean vector u and the covariance matrix V.

II. SYSTEM MODEL
A. PATH LOSS MODEL
In this work, we use the close-in free space reference distance
model for its simplicity and accuracy across several propaga-
tion environments and frequency bands [46]. Therefore, the
average path loss due to large-scale and shadow fading of a
PUT at a distance of r meters from gNB is given as

PL(r) [dB] = PL(r0) [dB] + 10n̄ log10

(
r
r0

)
+ Xξ , (1)

where PL(r0) [dB] = 20 log10
(
4πr0

λ

)
is the close-in free

space path loss, with r0 = 1 m, n̄ is the average path
loss exponent depending on the propagation environment,
Xξ is a Gaussian random variable with zero mean and a
standard deviation ξ accounting for the shadowing effect, and
r ≥ r0 [46], [49].

B. CHANNEL MODEL
We consider a single cell consisting of a gNB deployed with
N antennas and NRF RF blocks [1], [2], [7] as shown in
Fig. 1 where the gNB is able to obtain the channel information
perfectly from all PUTs. The gNB supports K PUTs
concurrently, and each PUT has a single antenna [1], [2], [7].
We implemented beamspace mMIMO at the gNB because
it has the potential to decrease the energy consumption and
hardware complexity of the mmWave mMIMO system [1],
[2], [7]. The spatial channel is transformed into a sparse
beamspace channel at the gNB by the lens antenna array [1],
[2], [7]. As a result, only few beams are required to serve

PUTs without clearly degrading performance, which reduces
the quantity of RF blocks needed [1], [2], [7].
The lens antenna array can be expressedmathematically by

an N ×N Discrete Fourier Transform (DFT) matrix F as [1],
[2], [7], [50]

F =

[
a
(
θ̃1

)
, a
(
θ̃2

)
, . . . , a

(
θ̃N

)]H
, (2)

where θ̃n =
1
N

(
n−

(N−1)
2

)
for n = 1, 2, . . . ,N are the

predetermined spatial directions [1], [2], [7], [50]. For a
conventional Uniform Linear Array (ULA), it is possible to
express the steering vector as [1], [2], [7], [50]

a (θ) =
1

√
N

[
e−j 2πθq

]
q∈ȷ(N )

, (3)

where ȷ (N ) = {n − (N − 1) /2, n = 0, 1, 2, . . . ,N − 1}
is a symmetric collection of indices that is centered at the
origin [1], [2], [7], [50]. The spatial direction of the channel
is given by θ =

d sinφ
λ

, where φ is the corresponding path’s
actual direction such that −π

2 ≤ φ ≤
π
2 , d = λ/2 stands for

the spacing between the antenna elements, and λ is the signal
wavelength [1], [2], [7], [50].

Themost commonly used Saleh-Valenzuela channel model
for mmWave communications is considered in this study, and
it is written as [1], [2], [7], [50]

hk =

Np∑
l=0

β
(l)
k a

(
θ

(l)
k

)
, (4)

where β
(l)
k and a

(
θ

(l)
k

)
are the complex gain and steering

vector of the lth multipath component, respectively [1], [2],
[7], [50]. Furthermore, the Line-Of-Sight (LOS) path is
denoted by β

(0)
k a

(
θ

(0)
k

)
, and the Non-Line-Of-Sight (NLOS)

paths are denoted by β
(l)
k a

(
θ

(l)
k

)
, with l = 1, 2, . . . ,Np [1],

[2], [7], [50]. Given the spatial direction θ of the
channel, (3) can be used to determine the steering vectors for
the kth PUT’s LOS path and NLOS paths.

By using the DFT matrix F, we can convert the spatial
channel matrix H into the beamspace channel matrix Ĥ as

Ĥ =

[
ĥ1, ĥ2, . . . , ĥK

]
= [Fh1,Fh2, . . . ,FhK ] , (5)

where ĥk = Fhk is the beamspace channel vector between
the kth PUT and the gNB [1], [2], [7], [50]. Each row
of the beamspace channel matrix Ĥ in (5) represents the
gain of one beam, and all N rows represent the gains of
N orthogonal beams with predetermined spatial directions
θ̃1, θ̃2, . . . , θ̃N [1], [2]. Moreover, the quantity of NLOS
paths Np in the mmWave channel is typically less than the
quantity N of gNB antennas [2]. As a result, a relatively
small number of dominant elements exist in the beamspace
channel vector ĥk of the kth PUT [2]. Taking advantage of
this sparse property, we choose a very small portion of the
beams for all PUT accommodations using the conventional
maximum-magnitude-based beam selection method without
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FIGURE 1. System model of downlink beamspace mMIMO system with RSMA and ORP.

compromising the system performance [2]. Precisely, in the
beamspace channel ĥk between the gNB and the kth PUT, the
components are sorted in descending order [7]. Furthermore,
for each PUT, the beam chosen corresponds to the channel
gain with the largest magnitude [7]. Because one RF block
typically yields a single beam, the above-mentioned beam
selection technique can significantly lower the number of
RF blocks, thereby increasing energy efficiency and cost-
effectiveness [2].

C. SIGNAL MODEL
In accordance with the beam selection approach, the signal
received at the PUTs can be stated as

ŷ =

√
Gm
PL(r)

ĤH
r 9rPs + n, (6)

where Gm = GTXGRX is the proper beam alignment gain,
such that GTX and GRX are the antenna gains at the gNB
and PUT, respectively [26]. Furthermore, PL(r) is the average
path loss at a distance of r m, Ĥr = Ĥ (b, :)b∈B is the
beamspace channel matrix with the reduced dimensions of
size |B|×K , and B is the collection of indices of the selected
beams; 9r is the digital precoding matrix with a reduced
dimension of size |B| × K whose row dimension is equal
to |B| = NRF < N ; P = diag

(√
p1,

√
p2, . . . ,

√
pK
)
is

the transmit power allocated for all K PUTs that satisfies∑K
k=1 pk ≤ PT ; where PT is the total transmit power at

the gNB; s is the transmitted signal vector of size K × 1
with normalized power such that E

(
ssH

)
= IK ; and n ∼

CN (0, σ 2IK ) is the additive thermal noise vector [2], [51].
However, reducing the number of RF blocks, on the other

hand, creates an issue of limited connections [2]. Therefore,
in conventional beamspace MIMO, the Degree-of-Freedom
(DoF) is limited to the number of available RF blocks [2].
Consequently, the number of PUTs served concurrently can
be confined to NRF ; nevertheless, in available beamspace
mMIMO systems, a single beam can only accommodate
one PUT [2]. However, it is very likely that several PUTs
will share the same beam as their strongest beam [9].
Subsequently, in this study, we consider PUTs sharing the

same beam as Interfering PUTs (I-PUTs), whereas those
that do not share the same beam are regarded as Non
Interfering PUTs (NI-PUTs) [1], [2], [7]. To overcome the
limitation of the DoF, RSMA is utilized to allow each beam
to support more than one PUT at the same time, frequency,
and code resources. Therefore, the number of PUTs served
concurrently can be larger than NRF . Let Sn designate the
collection of indices of PUTs in the nth beam for n =

1, 2, . . . ,NRF such that Si ∩ Sj = ∅ for i ̸= j and∑NRF
n=1 |Sn| = K [2], [7].

D. ORP METHOD
In the ORP method, the downlink signals are precoded by
the gNB using orthogonal random vectors before transmis-
sion [26], [46]. To explain the ORP technique succinctly, the
ORP method is divided into two stages [26], [46] as shown
in Fig. 2.

1) TRAINING STAGE
A training signal vector s such that E

(
ssH

)
= IK and a

precoding matrix 9 consisting of K orthonormal vectors
(ψ1,ψ2, . . . ,ψK ) are generated by the gNB where the size
of ψ i is NRF × 1, i = 1, 2, . . . ,K [26], [46]. The training
signals are then precoded using the generated precoding
matrix before transmission to PUTs [26], [46].

On the receiver side, each PUT computes K SINR
values (SINR1,SINR2, . . . ,SINRK ) corresponding to K
orthonormal vectors, selects the largest among them, and
sends this largest scalar value back to the gNB through
a feedback channel together with the appropriate index of
the precoding vector [26], [46]. In this study, the ORP
scheme is implemented per beam2 to mitigate the inter-beam
interferences. Specifically, the gNB selects the orthonormal
vector corresponding to the index of the highest SINR from
among the maximum SINR values obtained at all the PUT
positions in the nth beam as the precoding vector for that

2Different orthonormal precoding vectors are selected for each beam such

that ψHi ψ j =

{
0, i ̸= j
1, otherwise

and is used to precode the private streams of all PUTs in the same beam.
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D. Alimo et al.: Coverage, Throughput, and Energy Efficiency Enhancement

FIGURE 2. Illustration of ORP method training and transmission stages.

beam. During the training stage, the signal received at themth
PUT in the nth beam is

ym,n =

K∑
i=1

√
ρGm

NRFPL(rm,n)
ĥHm,nψ isi + nm,n, (7)

where ρ is the SNR, ĥm,n is the corresponding downlink
beamspace channel3 vector of size NRF ×1 between the gNB
and the mth PUT of the nth beam after beam selection, and
nm,n ∼ CN (0, σ 2) is the AWGN noise at the mth PUT in the
nth beam [46].
Each PUT calculates the SINR corresponding to the kth

orthonormal vector ψk by considering sk as the desired
signal, whereas other SINRs are interferences from K − 1
orthonormal vectors (i.e., i ̸= k, i = 1, 2, . . . ,K ) [26].
Therefore, the SINR for the signal spanned by ψk at the
mth PUT in the nth beam can be expressed as

γ km,n =
ηm,n|ĥHm,nψk |

2

ηm,n
∑K

i̸=k |ĥHm,nψ i|
2 + σ 2

, (8)

3We assumed that each PUT can estimate ĥHm,nψ i, i = 1, 2, . . . ,K
and feed it back to the gNB by utilizing training procedures [26] and
reliable channel estimation algorithms. The estimation of ĥHm,nψ i requires
less overhead than the uplink channel estimation for K < N [26].

where

ηm,n =
ρGm

NRFPL(rm,n)
. (9)

2) TRANSMISSION STAGE
In this stage, the gNB knows the index of the selected
orthonormal vector for each beam and utilizes it to precode
the transmit signal for all PUTs within each beam [26], [46].
The information about the orthonormal precoding vectors
employed for PUTs from other beams is not important at all
PUTs [46].

E. RSMA METHOD
In RSMA, the messages (x1, x2, . . . , xK ) intended for
K PUTs are divided into common

(
xc,1, xc,2, . . . , xc,K

)
and

private
(
xp,1, xp,2, . . . , xp,K

)
segments [5], [16], [18], [29].

The common segments of all PUTs are merged into a
common message Xc and encoded into a common stream
sc using a codebook known to all PUTs, whereas the
private segments are encoded separately into private streams
(s1, s2, . . . , sK ) [5], [16], [18], [29]. Hence, the common
stream sc can be decoded by all PUTs in all beams with
negligible error probability, and it contains segments of
messages x1, x2, . . . , xK [5], [16], [18], [29]. Moreover, the
private streams

(
s1,n, s2,n, . . . , s|Sn|,n

)
intended for all PUTs

in the nth beam are superimposed over the common message
and then linearly precoded by beam-specific ORP precoding.
Therefore, the superimposed and precoded transmit signal s
at the gNB can be expressed as

s =

√
Pcψcsc +

NRF∑
n=1

|Sn|∑
m=1

√
Pm,nψnsm,n, (10)

where Pc and ψc are the transmit power and the precoding
vector of the common stream sc, respectively, such that
ψc is randomly chosen from the unselected columns of the
ORP matrix 9, Pm,n is the transmit power of the private
stream sm,n transmitted to themth PUT in the nth beam,ψn is
the precoding vector of the private streams of PUTs in the nth
beam, and sm,n is the private stream of themth PUT in the nth
beam [5], [16], [18], [29].

The transmit power constraint can be expressed as Pc +∑NRF
n=1

∑|Sn|
m=1 Pm,n ≤ PT , where PT is the total transmit

power, by defining s̃ = [sc, s1,n, s2,n, . . . , s|Sn|,n] and
assuming that E

(
s̃s̃H

)
= 1 [5], [16], [18], [29].

At each PUT in the nth beam, the common stream sc is
decoded first into X̂c by considering the interference from the
private streams as noise [5], [16], [18], [29], [36]. Employing
SIC, each PUT in the nth beam will re-encode X̂c, precode
it, and then eliminate it from the signal that was received.
The PUT will then decode its private stream sm,n into x̂p,m by
treating the residual interference from the other private stream
as noise [5], [16], [18], [29], [36]. Then themth PUT in the nth
beam restores the original message by removing x̂c,m from X̂c,
and combining x̂c,m with x̂p,m resulting in x̂m [5], [16], [18],
[29], [36].

91962 VOLUME 12, 2024



D. Alimo et al.: Coverage, Throughput, and Energy Efficiency Enhancement

FIGURE 3. Illustration of RSMA architecture for PUTs in the nth beam.

This operation is referred to as 1-layer rate splitting since it
only depends on a single common message and a single SIC
layer at each PUT [5], [16] as shown in Fig. 3.

The received signal at the mth PUT in the nth beam can be
expressed as

ym,n =

√
GmPc

PL
(
rm,n

) ĥHm,nψcsc

+

NRF∑
n=1

|Sn|∑
m=1

√
GmPm,n

PL
(
rm,n

) ĥHm,nψnsm,n + nm,n. (11)

Consequently, the attainable throughput of the mth PUT in
the nth beam for decoding the common stream is given as

Rcm,n = log2

(
1 +

υm,nPc|ĥHm,nψc|
2∑NRF

n=1
∑|Sn|

m=1 υm,nPm,n|ĥHm,nψn|
2 + σ 2

)
,

(12)

where

υm,n =
Gm

PL
(
rm,n

) . (13)

The possible throughput of the common stream should be
selected as min

m,n
Rcm,n, ∀n,m for the common stream sc to be

successfully decoded by all PUTs [29].
Moreover, for SIC operation to be implemented success-

fully at themth PUT in the nth beam, the transmit power must
satisfy the following constraint:

υm,nPc|ĥHm,nψc|
2
−

NRF∑
n=1

|Sn|∑
m=1

υm,nPm,n|ĥHm,nψn|
2

− σ 2
≥ ϑ, ∀n,m, (14)

where ϑ is the difference between the desired signal power
and the undesired interference signal power plus noise
power [29], [52].
After perfectly decoding the common stream, the attain-

able throughput of the mth PUT in the nth beam for decoding

its private stream is

Rpm,n = log2

(
1 +

υm,nPm,n|ĥHm,nψn|
2

Im′ + σ 2

)
, (15)

where

Im′ =

∑
m′ ̸=m

υm,nPm′,n|ĥHm,nψn|
2

+

NRF∑
i̸=n

|Sn|∑
j=1

υm,nPj,i|ĥHm,iψ i|
2. (16)

Hence, the attainable sum throughput of the mth PUT in the
nth beam is given as

Rm,n = Rcm,n + Rpm,n. (17)

The total system attainable throughput can be written as

Rsum =

NRF∑
n=1

|Sn|∑
m=1

(
Rcm,n + Rpm,n

)
. (18)

F. COVERAGE ANALYSIS
In terms of network planning and deployment of communi-
cation systems, cell coverage percentage is a key Quality of
Service (QoS) performance metrics [47]. Therefore, it is very
important to analyze the performance of this model in terms
of cell coverage percentage. Thus, the downlink cell coverage
percentage is defined as the expected percentage of locations
within a cell where the SINR of the received signal at PUT
exceeds the threshold Tmin [48], [49], [53]. We denote the
probability that the power of the signal received at the mth
PUT in the nth beam exceeds the SINR threshold Tmin at a
distance of rm,n meters from the gNB as PA

(
rm,n

)
.

Proposition: Given Pc > Pm,n, the downlink cell coverage
percentage of mmWave beamspace mMIMO gNB utilizing
ORP and RSMA is

Ccov = Q (−x) + exp
[
2
(
1−xy
y2

)]
Q
(
2
y
−x
)

, (19)
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where Q (·) is the Q-function defined as Q (x) =

1
√
2π

∫ t
x e

−t2
2 dt , x =

PL (r0)+10n̄ log10
(
rm,n
r0

)
−a

ξ
, y =

10n̄ log10(e)
ξ

,

a =
GmPm,n|ĥHm,nψn|

2

σ 2Tmin
−

In
σ 2 , and In =

∑
m′ ̸=m

GmPm′,n|ĥHm,nψn|
2
+
∑NRF

i̸=n
∑|Sn|

j=1GmPj,i|ĥ
H
m,iψ i|

2.
Proof: See Appendix A.

III. OPTIMIZATION AND CONVERGENCE ANALYSIS
To enhance the overall feasible throughput performance of
this system, it is necessary to optimize the common stream
throughput and the power allotted to the private stream of
each PUT and the common stream. Therefore, the feasible
throughput optimization can be formulatedmathematically as

max{
a,P
} NRF∑
n=1

|Sn|∑
m=1

(
am,n + Rpm,n

)
,

s.t. C1 :

NRF∑
n=1

|Sn|∑
m=1

am,n ≤ Rcm,n, ∀n,m,

C2 : am,n + Rpm,n ≥ Rmin, ∀n,m,

C3 : υm,nPc|ĥHm,nψc|
2
−

NRF∑
n=1

|Sn|∑
m=1

υm,nPm,n|ĥHm,nψn|
2

− σ 2
≥ ϑ, ∀n,m,

C4 : Pc +

NRF∑
n=1

|Sn|∑
m=1

Pm,n ≤ PT ,

C5 : am,n,Pc,Pm,n ≥ 0, ∀n,m, (20)

where Rmin is the minimum throughput guaranteed for all
PUTs. Constraint C1 ensures that all PUTs can decode
the common stream. This means that the sum of the
throughputs of all PUTs that are receiving the common
stream must be lower than the common stream throughput
Rcm,n [29]. C2 guarantees the minimum sum throughput
for all PUTs, Whereas C3 requires more power to be
allocated to the common stream to ensure successful SIC
operation. C4 represents the maximum power constraint and
C5 guarantees non-negative throughput am,n, common stream
power Pc, and private stream power Pm,n. Owing to the
nonconvex structure of the objective function and constraints,
the aforementioned optimization problem (20) is infeasible.

A. THROUGHPUT AND POWER ALLOCATION
To approximate the optimization problem (20) into a convex
optimization problem, we introduce slack variables γ

p
m,n

and γ cm,n. Therefore, the feasible sum throughput optimiza-
tion problem (20) can be reframed mathematically as

max{
a,P,γ c,γ p

} NRF∑
n=1

|Sn|∑
m=1

(
am,n + log2

(
1 + γ pm,n

))
,

s.t. C1 :

NRF∑
n=1

|Sn|∑
m=1

am,n ≤ log2(1 + γ cm,n), ∀n,m,

C2 : am,n + log2(1 + γ pm,n) ≥ Rmin, ∀n,m,

C3 : γ cm,n ≤
υm,nPc|ĥHm,nψc|

2∑NRF
n=1

∑|Sn|
m=1 υm,nPm,n|ĥHm,nψn|

2 + σ 2
,

∀n,m,

C4 : γ pm,n ≤
υm,nPm,n|ĥHm,nψn|

2

Im′ + σ 2 , ∀n,m,

C5 : υm,nPc|ĥHm,nψc|
2
−

NRF∑
n=1

|Sn|∑
m=1

υm,nPm,n|ĥHm,nψn|
2

− σ 2
≥ ϑ, ∀n,m,

C6 : Pc +

NRF∑
n=1

|Sn|∑
m=1

Pm,n ≤ PT ,

C7 : am,n,Pc,Pm,n ≥ 0, ∀n,m. (21)

The problem in (21) is nonconvex owing to constraints C3
and C4, as shown in Appendix B. Therefore, it is necessary to
introduce the variables αm,n and βm,n to handle constraints C3
and C4, respectively. Let us rewrite constraint C3 such that

υm,nPc|ĥHm,nψc|
2

αm,n
≥ γ cm,n, (22)

where

αm,n =

NRF∑
n=1

|Sn|∑
m=1

υm,nPm,n|ĥHm,nψn|
2
+ σ 2. (23)

By using the first-order Taylor series approximation, we can
transform the constraint referred to as (22) into the convex
constraint shown here as

υm,nPc
|ĥHm,nψc|

2

α
(l)
m,n

−
υm,nP

(l)
c |ĥHm,nψc|

2(
α
(l)
m,n
)2 αm,n ≥ γ cm,n, (24)

where

α(l)
m,n =

NRF∑
n=1

|Sn|∑
m=1

υm,nP(l)m,n|ĥ
H
m,nψn|

2
+ σ 2, (25)

and the superscript (l) denotes the variable’s value at the lth
iteration.

To transform C4 into a convex constraint, first, we rewrite
it as

υm,nPm,n|ĥHm,nψn|
2

βm,n
≥ γ pm,n, (26)

where

βm,n = Im′ + σ 2

=

∑
m′ ̸=m

υm,nPm′,n|ĥHm,nψn|
2

+

NRF∑
i̸=n

|Sn|∑
j=1

υm,nPj,n|ĥHm,iψ i|
2
+ σ 2. (27)
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We then utilize the first-order Taylor series approximation
to transform (26) into the following convex constraint:

υm,nPm,n|ĥHm,nψn|
2

β
(l)
m,n

−
υm,nP

(l)
m,n|ĥHm,nψn|

2(
β
(l)
m,n
)2 βm,n ≥ γ pm,n,

(28)

where

β(l)
m,n =

∑
m′ ̸=m

υm,nP
(l)
m′,n|ĥ

H
m,nψn|

2

+

NRF∑
i̸=n

|Sn|∑
j=1

υm,nP
(l)
j,n|ĥ

H
m,iψ i|

2
+ σ 2. (29)

β
(l)
m,n is the variable’s value at the lth iteration.
To this end, the nonconvex feasible sum throughput

optimization problem (21) can be reframed into the following
approximated convex problem:

max{
a,P,γ c,γ p,α,β

} NRF∑
n=1

|Sn|∑
m=1

Rm,n,

s.t. C1,C2,C5,C6,C7, (24), (28),

C10 : αm,n, βm,n ≥ 0, ∀n,m, (30)

where

Rm,n =

(
am,n + log2

(
1 + γ pm,n

))
. (31)

The approximated optimization problem (30) can be solved
iteratively using the SCA-based algorithm summarized in
Algorithm 1.

Algorithm 1 Feasible Sum Throughput Maximization
Algorithm

1: Initialize a(0)m,n, P
(0)
m,n, P

(0)
c , γ c(0)m,n , γ

p(0)
m,n , α

(0)
m,n, β

(0)
m,n.

Set l = 1 as the iteration number, and a constant ϵ.
2: repeat
3: Solve the approximated convex optimization prob-

lem (30), and obtain the optimal solution of (30)
denoted by a(l)m,n, P

(l)
m,n, P

(l)
c , γ c(l)m,n , γ

p(l)
m,n , α

(l)
m,n, β

(l)
m,n.

4: Update l := l + 1
5: until ∥8(l+1)

− 8(l)
∥ ≤ ϵ ; (i.e., the convergence of the

objective function (30) in the lth iteration);
6: where 8(l)

=
{
a(l)m,n,P

(l)
m,n,P

(l)
c , γ

c(l)
m,n , γ

p(l)
m,n , α

(l)
m,n, β

(l)
m,n
}

is the set of the optimal solution of problem (30) at the
lth iteration.

B. COMPLEXITY ANALYSIS
The SCA-based approach is used to solve the approximated
convex optimization problem (30), where the approximated
problem (30) is solved and the solutions found are opti-
mum at each iteration. As a result, iteratively updating
the variables would enhance or maintain the viable total
throughput (i.e., nondecreasing monotonically) and converge

TABLE 1. Computational complexity comparison.

to a position that fulfills the Karush-Kuhn-Tucker (KKT)
optimum conditions [29]. The number of constraints in
problem (21) is (6K + 1). Hence, for Algorithm 1, the
necessary number of iterations for solving the problem by
using SCA method is O

(√
6K + 1 log2 (1/ε)

)
, where ε > 0

is the accuracy of the SCA-based algorithm [54]. The
difficulty of solving the problem (30) at each iteration is
given as O

(
T 2
1 T2

)
, where T1 = 7K is the overall number

of variables and T2 = (8K + 1) is the total number of
constraints [29], [55]. Therefore, the total complexity to
solve problem (30) using SCA method in Algorithm 1 is
O
(
TmaxK 3.5 log2 (1/ε)

)
, where Tmax is the total number

of iterations. Table 1 provides the complexity comparison
between the proposed method ORP-RSMA and the iterative
power allocation algorithm (i.e., ZF-NOMA) proposed in [2],
which requires O

(
TmaxK 2 log2 (ε)

)
number of iterations.

IV. PERFORMANCE EVALUATION
Simulations are carried out to evaluate the efficacy of the
proposed method in this section. We considered the mmWave
mMIMO system in a downlink context in which the gNB is
deployed with a ULA of N = 64 antennas and NRF = K
that serves K PUTs concurrently [1], [7]. At each instance,
the number of dominant beams can be less than or equal to
NRF . To generate a precoding matrix, an orthonormal basis is
calculated for the column space of a matrix that is randomly
generated, which results in a precoding matrix consisting
of orthonormal precoding vectors [26], [46]. One LOS
component and Np = 2 NLOS components are considered
for the channels between the gNB and all PUTs [2]. For the
channel parameters of the kth PUT, it is assumed that β(0)

k ∼

CN (0, 1) and β
(l)
k ∼ CN

(
0, 10−1

)
for 1 ≤ l ≤ Np [1], [2].

In addition, θ (0)
k and θ

(l)
k for 1 ≤ l ≤ Np are random variables

uniformly distributed within [− 1
2 ,

1
2 ] [1], [2]. Furthermore,

in this study, the SNR is expressed as ρ = PT /σ 2.
The parameters of the simulation are described in Table 2.

TABLE 2. Simulation parameters.
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The proposed beamspace mMIMO with the lens antenna
array using ORP and RSMA (ORP-RSMA) is compared
with three benchmark schemes: (i) the beamspace mMIMO
system that utilizes ZF precoding and SDMA, where the
equivalent throughput maximization problem is solved,
is referred to as (ZF-SDMA). Moreover, SDMA is a multiple
access technique that is a special case of the RSMA method
when rate-splitting is not performed [20], [39]; (ii) the
beamspace mMIMO-NOMA system that groups PUTs into
clusters using maximal magnitude and utilizes ZF precoding
to suppress inter-beam interference and NOMA to mitigate
intra-beam interference and servesK ≥ NRF PUTs is referred
to as (ZF-NOMA) [2], where sum throughput maximization
and power allocation are performed as in [2], and (iii) the
beamspace mMIMO-OMA system with NRF ≤ K that
utilizes ZF precoding to mitigate inter-beam interference
and implements orthogonal frequency resource allocation to
mitigate intra-beam interference for PUTs within the same
beam and equal power allocation is referred to as (ZF-OMA).
These benchmark schemes are selected for evaluation as
SDMA and NOMA are potential multiple access techniques,
while OMA is a conventional multiple access technique.

A. THROUGHPUT
Figure 4 shows the sum throughput vs SNR when the number
of PUTs served by the gNB is K = 32. As can be seen
from the figure, the proposed ORP-RSMA method achieves
higher performance than the benchmark methods. ZF-SDMA
shows better performance compared to ZF-NOMA [2] and
ZF-OMA at high SNR regions; however, its performance
remains inferior to our proposed method. The reason behind
the poor performance of ZF-NOMA [2] is that more power
is assigned to the PUTs with low channel gains. Moreover,
ZF-NOMA treats multi-PUT interference as pure noise
and forces a PUT to decode all the messages intended
for all other PUTs, which results in poor sum throughput
performance. On the other hand, the ORP-RSMA method

FIGURE 4. Total throughput vs SNR for K = 32 PUTs.

FIGURE 5. Total throughput vs various numbers of PUTs when
SNR = 15 dB.

aligns each beam with a precoding vector that nullifies
inter-beam interference andmitigates intra-beam interference
by treating multi-PUT interference as noise or interference,
which in-turn maximizes SINR, and allocates power to the
common stream based on constraint C5 in (30), resulting
in superior sum throughput performance when K is large.
Furthermore, in the ORP-RSMAmethod, one-layer of SIC is
performed as opposed to |Sn|-layer4 of SIC in ZF-NOMA [2],
giving rise to higher DoFs and lower complexity at the
receivers. Compared with ZF-OMA, ORP-RSMA achieves
better performance owing to the fact that all the PUTs in the
same beam are served with the entire bandwidth, whereas
ZF-OMA splits the bandwidth among the PUTs [9].

Figure 5 shows the sum throughput vs the number of
PUTs when SNR = 15 dB. It is clear from this figure that
ZF-SDMA outperforms the proposed ORP-RSMA method
when the number of PUTs is small owing to higher DoF
despite the sparsity of beamspace massive MIMO. However,
as the system becomes overloaded (i.e., reduction inDoF), the
proposed method outperforms ZF-SDMA. On the other hand,
the proposed method slightly outperforms the ZF-NOMA [2]
and ZF-OMA methods by 10 bps/Hz and 12 bps/Hz,
respectively, when the number of PUTs is 10. As more PUTs
are served, the performance difference between the proposed
approach and the benchmark methods increases. This is
because when the number of PUTs is small, our proposed
ORP-RSMAmethod allocates portion of the downlink power
to the common stream, which is decoded by fewer available
PUTs, resulting in poor total throughput performance.

B. ENERGY EFFICIENCY
The energy efficiency η is described as the ratio of the
maximized sum throughput to the overall power consumed

4
|Sn|-layer refers to the number of PUTs within the same beam.
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FIGURE 6. Energy efficiency vs SNR for K = 32 PUTs.

by the system and can be expressed as

η =
RT

PT + NRFPRF + NRFPS + PB
(bps/Hz/W) , (32)

where RT =
∑NRF

n=1
∑|Sn|

m=1 Rm,n is the maximum sum
throughput of the system, PT is the maximum power
transmitted, PRF is the power dissipated at each RF block, PS
is the power consumed by each switch, and PB is the power
consumed at the baseband [2], [7]. Specifically, we consider
that PRF = 300 mW, PS = 5 mW, and PB = 200 mW [2].
In Fig. 6, the energy efficiency vs the SNR of the

suggested ORP-RSMAmethod is compared with those of the
benchmark methods for K = 32 PUTs. Clearly, the proposed
ORP-RSMA method attains superior performance compared
with the ZF-SDMA, ZF-NOMA [2], and ZF-OMA methods
in both low- and high-SNR regions. Specifically, the pro-
posed method shows a gain of approximately 11 bps/Hz/W
at SNR = 0 dB and gains of approximately 13 bps/Hz/W
and 15 bps/Hz/W compared with ZF-NOMA [2] and ZF-
OMA [14], respectively, at SNR = 20 dB. The superior
performance of the proposed method stems from the fact
that more power is allocated to the common stream while
performing only one SIC layer.

Figure 7 depicts the relationship between energy efficiency
and the number of PUTs at an SNR of 15 dB. We observe
that ZF-SDMA achieves better performance than the pro-
posed ORP-RSMA, ZF-NOMA [2], and ZF-OMA methods
when the number of PUTs is small. However, the pro-
posed ORP-RSMA method achieves gains of approximately
2.5 bps/Hz/W, 2 bps/Hz/W, and 3 bps/Hz/W as compared to
ZF-SDMA, ZF-NOMA, and ZF-OMA [2], [14], respectively,
as the number of PUTs approaches 20. As the number of
PUTs continue to increase, the proposed method become
more energy-efficient than all the benchmark methods.
Conversely, the ZF-SDMA, ZF-NOMA [2], and ZF-OMA
methods become more energy-inefficient as the number of
PUTs continue to increase. The superior performance of
the proposed ORP-RSMA method stems from the allocation

FIGURE 7. Energy efficiency vs various numbers of PUTs when
SNR = 15 dB.

of more power to the common stream than the individual
private streams, resulting in higher energy efficiency when
the number of PUTs increases as more PUTs decode the
common stream.

C. CELL COVERAGE PERCENTAGE
Figure 8 shows the cell coverage percentage vs the SINR
threshold requirement. It is clear from the figure that
ORP-RSMA method achieves a higher coverage percentage
than ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14] methods
at both low and high SINR thresholds. In particular, ORP-
RSMA method can achieve approximately 2%, 14%, and
20% gains in terms of cell coverage percentage compared
with ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14] methods
at low SINR thresholds, and up to 100%, 26%, and 38%
gains compared with ZF-SDMA, ZF-NOMA [2], and ZF-
OMA [14] at high SINR thresholds, respectively. This is

FIGURE 8. Cell coverage percentage vs the SINR threshold when
SNR = 15 dB.
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FIGURE 9. Cell coverage percentage vs log-normal shadow fading when
SNR = 15 dB and SINR threshold Tmin = 2 dB.

because the ORP-RSMAmethod selects the precoding vector
that produces the maximum SINR. On the other hand,
at higher SINR threshold requirements, ORP-RSMA, ZF-
NOMA [2], and ZF-OMA [14] outperform the ZF-SDMA
method with ORP-RSMA and ZF-NOMA [2] outperforming
ZF-OMA [14]. This is because both ORP-RSMA and ZF-
NOMA [2] methods utilize non-orthogonal multiple access
techniques, which can lead to higher SINRs than the
ZF-OMA [14] method.
Figure 9 show result of assessment of performance in terms

of cell coverage percentage vs log-normal shadowing, when
SNR = 15 dB and the SINR threshold Tmin = 2 dB.
It can be inferred from Fig. 9 that the proposed ORP-RSMA
method attains superior performance compared with the
other three benchmark methods even when the value of
log-normal shadow fading is high. We can clearly see that the
ZF-OMA [14] method achieves a worse performance than
ORP-RSMA, ZF-SDMA, and ZF-NOMA [2]. In particular,
the performance difference between ZF-OMA [14] and the
three methods continues to persist as the degree of the
shadowing effect increases.

Figure 10 shows the cell coverage percentage vs the
number of PUTs when SNR= 15 dB and the SINR threshold
Tmin = 2 dB. From the figure, it is clear that the cell
coverage percentage decreases for ORP-RSMA, ZF-SDMA,
ZF-NOMA [2], and ZF-OMA [14] methods as the number
of PUTs increases within the cell while the total transmit
power is fixed. However, the cell coverage percentage for
ORP-RSMA decreases gradually and the method achieves
an acceptable performance at both small and large numbers
of PUTs in terms of cell coverage percentage, whereas
those for ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14]
decrease sharply with respect to ORP-RSMA. Note that
ORP-RSMA achieves superior performance compared with
the ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14] methods.
This is due to the robustness of RSMA against interferences
and the capability of ORP to select a precoder that maximizes

FIGURE 10. Cell coverage percentage vs number of PUTs when SNR = 15
dB and SINR threshold Tmin = 2 dB.

SINR for the PUTs served by the nth beam. On the
other hand, ZF-SDMA outperforms both ZF-NOMA [2] and
ZF-OMA [14], while ZF-NOMA [2] outperforms the ZF-
OMA [14] method owing to its interference management
mechanism, which depends on SIC at the PUTs; nonetheless,
the complexity of the SIC increases with an increasing
number of PUTs.

FIGURE 11. Cell coverage percentage vs SNR for K = 32 PUTs when SINR
threshold Tmin = 2 dB.

Figure 11 shows the cell coverage percentage vs SNR
when the SINR threshold Tmin = 2 dB. From Fig. 11 we
can observe that the coverage percentage for all the methods
increases with the SNR. However, we can recognize that
ORP-RSMA outperforms ZF-SDMA, ZF-NOMA [2], and
ZF-OMA [14] methods at low- and high-SNR regions. ZF-
SDMA outperforms both ZF-NOMA [2] and ZF-OMA [14]
at high SNR regions, while the coverage percentage of ZF-
NOMA [2] is slightly larger than that of the ZF-OMA [14]
method at low SNRs. However, the performance difference
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between the ZF-NOMA [2] and ZF-OMA [14] methods
widens as the SNR increases. Moreover, as SNR approaches
15 dB, the coverage percentages for ZF-NOMA [2] and ZF-
OMA [14] remain constant despite the increase in SNR.

D. CONVERGENCE
The convergence of the proposed algorithm in Section III
is evaluated when the number of PUTs is K = 32,
and SNR = 5 dB for SIC detection thresholds ϑ =

2dBm and ϑ = 4 dBm. As shown in Fig. 12, the sum
throughput of the proposed method becomes stable after two
iterations regardless of the initialization, which confirms the
convergence of the algorithm as discussed in Section III-B.

FIGURE 12. Total throughput vs number of iterations when SNR = 5 dB.

E. IMPERFECT CSI
In this subsection, we evaluate the impact of imperfect
CSI on the proposed ORP-RSMA method as the residual
multiuser interference can degrade the performance of
wireless networks [58]. The imperfect estimated channel
matrix is modeled as

H̃r = τ Ĥr +

√
1 − τ 2E, (33)

where τ ∈ (0, 1) is the error parameter that represents the
accuracy of the CSI, Ĥr is the actual reduced-dimension
beamspace channel matrix, and E is the error matrix whose
entries are identically and independently distributed (iid) and
follows the distribution CN (0, 1) [59].
In Fig. 13, the sum throughput vs SNR of the proposed

model is evaluated when K = 32 PUTs for perfect and
imperfect CSI. It is clear that the proposed method with
imperfect CSI (τ = 0.6) achieves superior performance
compared to ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14]
schemes with perfect CSI.

Figure 14 presents the sum throughput vs SNR for
imperfect CSI when K = 32 PUTs. The proposed
ORP-RSMA method achieves better performance in terms
of sum throughput compared to ZF-SDMA, ZF-NOMA [2],

FIGURE 13. Total throughput vs SNR for K = 32 PUTs.

FIGURE 14. Total throughput vs SNR for K = 32 PUTs.

and ZF-OMA [14] methods in both low and high SNR
regions when CSI imperfection exists. It is obvious that
ZF-NOMA [2] achieves the worst performance by treating
multi-PUT interference as pure noise and forcing a PUT to
decode the messages of all other PUTs, and hence, imperfect
CSI is detrimental to ZF-NOMA [2] more than ZF-SDMA
and ZF-OMA [14] in terms of sum throughput.

Figure 15 shows the energy efficiency vs SNR for
imperfect CSI scenario when K = 32 PUTs. The pro-
posed ORP-RSMA method has shown the best performance
compared to ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14]
schemes in terms of energy efficiency when SNR increases
at the PUTs. The superior performance is due to the fact that
ORP-RSMA dynamically treats multi-PUT interference as
noise or interference. While ZF-NOMA [2] scheme achieves
the worst performance when imperfect CSI exists.

Figure 16 presents the cell coverage area vs SNR for
an imperfect CSI (ϵ = 0.6) scenario. We can see from
Fig. 16 that the proposed ORP-RSMA method outperforms
ZF-SDMA, ZF-NOMA [2], and ZF-OMA [14] schemes
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FIGURE 15. Energy efficiency vs SNR for K = 32 PUTs.

FIGURE 16. Cell coverage area vs SNR for K = 32 PUTs.

in terms of cell coverage area owing to it’s flexibility in
treating multi-PUT interference as noise or interference.
The ZF-OMA [14] scheme outperforms both the ZF-SDMA
and ZF-NOMA [2] schemes at high SNR regions, while the
ZF-SDMA scheme shows the worst performance at high SNR
regions.

V. CONCLUSION
In this study, we investigated the sum throughput maximiza-
tion problem in downlink mmWave beamspace mMIMO
that utilizes ORP and RSMA. ORP is employed to miti-
gate inter-beam interferences and extend the cell coverage
percentage, whereas RSMA is used to divide the power
and rate between common and private streams to minimize
intra-beam interferences. In addition, the SCA approach is
implemented to address the specific issue of maximizing
the total of the throughputs. The results of the simulation
show that the proposed ORP-RSMA approach can achieve
greater total throughput and energy efficiency at both
low- and high-SNR regions, as well as when the number

of PUTs in the cell coverage percentage of the gNB is
considerably large. This is the case regardless of whether
the SNR is high or low. Furthermore, the proposed method
achieves the best performance and shows acceptable cell
coverage percentage compared with the benchmark methods
in both low- and high-SINR threshold regions. Moreover,
the proposed method can be utilized in both low- and
high-log-normal shadow fading environments. We intend to
expand on this research in subsequent work by examining
coverage expansion for multi-cell scenarios involving inter-
cell interferences and multiple antenna PUTs.

APPENDIX A
PROOF OF PROPOSITION
Let Tmin be the required minimum SINR threshold and
PA
(
rm,n

)
be the probability that the power of the signal

received at the mth PUT in the nth beam exceeds the required
minimum SINR threshold at a distance of rm,n meters from
the gNB.

Then, given Pc > Pm,n, we assume that themth PUT in the
nth beam is within the coverage area if the SINR of a private
stream exceeds the required minimum SINR threshold.

Therefore,

PA
(
rm,n

)
= Pr

(
γ pm,n > Tmin

)
= Pr

(
GmPm,n|ĥHm,nψn|

2

In + σ 2PL
(
rm,n

) > Tmin

)
, (34)

where

PL
(
rm,n

)
= PL (r0) + 10n̄ log10

(
rm,n

r0

)
+ Xξ , (35)

and

In =

∑
m′ ̸=m

GmPm′,n|ĥHm,nψn|
2
+

NRF∑
i̸=n

|Sn|∑
j=1

GmPj,i|ĥHm,iψ i|
2.

(36)

Suppose z = cY + d , where Y is a Gaussian random
variable with mean µY and variance σ 2

Y , and c and d are both
nonrandom constants. Then z is a random variable with mean
µz = cµY + d and variance σ 2

z = c2σ 2
Y [60]. Therefore,

PL
(
rm,n

)
becomes a Gaussian random variable with mean

PL (r0) + 10n̄ log10
(
rm,n
r0

)
and variance ξ2.

As such,

PA
(
rm,n

)
= Pr

(
GmPm,n|ĥHm,nψn|

2

σ 2Tmin
−

In
σ 2 > PL

(
rm,n

))

= Pr

(
PL
(
rm,n

)
< a

)
, (37)

where

a =
GmPm,n|ĥHm,nψn|

2

σ 2Tmin
−

In
σ 2 . (38)
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Subsequently,

PA
(
rm,n

)
= Q

PL (r0) + 10n̄ log10
(
rm,n
r0

)
−a

ξ

 , (39)

where Q (·) is the Q-function [60].
Therefore, the cell coverage percentage of a cell of radius

R is given as

Ccov =
1

πR2

∫ 2π

0

∫ R

0
PA
(
rm,n

)
rm,n drm,n dθ

=
1

πR2

∫ 2π

0

∫ R

0
Q
(
L−a

ξ

)
rm,n drm,n dθ, (40)

where

L = PL (r0) + 10n̄ log10

(
rm,n

r0

)
. (41)

As such,

Ccov =
2
R2

∫ R

0
Q
(
L−a

ξ

)
rm,n drm,n

=
2
R2

∫ R

0
rm,nQ

(
L−a

ξ

)
drm,n

=
2
R2

∫ R

0
rm,nQ

(
x + y ln

( rm,n

R

))
drm,n, (42)

where

x =

PL (r0) + 10n̄ log10
(
R
r0

)
−a

ξ
, (43)

when the mth PUT in the nth beam is at the cell edge and

y =
10n̄ log10 (e)

ξ
. (44)

Applying integration by parts yields a closed form:

Ccov = Q (−x) + exp
[
2
(
1−xy
y2

)]
Q
(
2
y
−x
)

. (45)

Hence, the proof of the proposition is completed.

APPENDIX B
PROOF OF NONCONVEXITY OF CONSTRAINTS C3 AND C4
From (21), constraints C3 and C4 are inequality functions.
Therefore, to obtain the gradient and hessian of the objective
function and these constraints, we used the Lagrangian
method [61]. Hence, the Lagrangian function is given as

L
(
P, γ cm,n, γ

p
m,n
)

=

NRF∑
n=1

|Sn|∑
m=1

(
am,n + log2

(
1 + γ pm,n

))

+ λ1

γ cm,n −
vm,nPc|ĥHm,nψc|

2(∑NRF
n=1

∑|Sn|
m=1 vm,nPm,n|ĥHm,nψn|

2 + σ 2
)


+ λ2

(
γ pm,n −

vm,nPm,n|ĥHm,nψn|
2(

Im′ + σ 2
) )

, (46)

where λ1 and λ2 are Lagrangian multipliers corresponding to
constraints C3 and C4, respectively [62]. Taking the partial
derivatives of the Lagrangian function with respect to γ cm,n
and γ

p
m,n, the gradient is given as

∇L
(
P, γ cm,n, γ

p
m,n
)

=


−λ1vm,n|ĥHm,nψc|

2

P′
m,n − λ2vm,n|ĥHm,nψn|

2

γ c
′

m,n + λ1σ
2

γ
p′

m,n + λ2Im′ + λ2σ
2

 (47)

where P′
m,n = λ1γ

c
m,n

∑NRF
n=1

∑|Sn|
m=1 vm,n|ĥHm,nψn|

2
+

λ2γ
p
m,nI ′m′ , γ c

′

m,n = λ1
∑NRF

n=1
∑|Sn|

m=1 vm,nPm,n|ĥHm,nψn|
2, and

γ
p′

m,n =
∑NRF

n=1
∑|Sn|

m=1

(
1

(1+γ
p
m,n) ln 2

)
.

Taking the partial derivatives of the gradient, the hessian
is given as

∇
2L
(
P, γ cm,n, γ

p
m,n
)

= H
(
P, γ cm,n, γ

p
m,n
)

=



0 0 0 0

0 0
∂2L

∂Pm,n∂γ cm,n
λ2I ′m′

0
∂2L

∂γ cm,n∂Pm,n
0 0

0 λ2I ′m′ 0
− ln 2((

1 + γ
p
m,n
)
ln 2

)2


(48)

where ∂2L/∂Pm,n∂γ cm,n = λ1
∑NRF

n=1
∑|Sn|

m=1 vm,n|ĥHm,nψn|
2

and ∂2L/∂γ cm,n∂Pm,n = λ1
∑NRF

n=1
∑|Sn|

m=1 vm,n|ĥHm,nψn|
2.

From (48), it is clear that ∇
2L
(
P, γ cm,n, γ

p
m,n
)

⪰̸ 0 [63].
Hence, the problem in (21) is nonconvex due to constraints
C3 and C4.

Hence, the proof of the nonconvexity of constraints C3 and
C4 is completed.
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