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ABSTRACT An intelligent fault diagnosis method of rolling bearings based on a depth feature fusion
network was proposed to solve the problems of a single original signal, large noise interference and difficult
diagnosis of varying working conditions of rolling bearings. Using various transform domain signals can
make the input contain comprehensive information, extract useful fault features, and conduct feature fusion
through the attention mechanism feature fusion method to enhance the ability to obtain effective features.
In addition, an improved dense network integrates the pooling layer with dense blocks and introduces a
multi-scale convolution kernel and squeeze excitation module. It can promote feature reuse, reduce the
dimensions of the feature map, and automatically measure the importance of the weight of each feature
channel, enhancing the useful features of the current task and suppressing useless features. Hence, the model
has an optimum feature extraction capability. The bearing dataset of Case Western Reserve University was
selected to verify the fault diagnosis ability of the proposed method. The recognition accuracy rates under
ideal, anti-noise and generalization tests were 99.75%, 97.81% and 96.88%, respectively. The recognition
accuracy rate was higher than that of the other depth learning models. Experiments and comparative analysis
showed that the proposed method has good anti-noise and generalization abilities compared to traditional
methods.

INDEX TERMS Rolling bearing, intelligent fault diagnosis, depth feature fusion, transform domain signal,
improved dense network, attention mechanism feature fusion method.

I. INTRODUCTION
Rolling bearings are important for supporting the rotating
body of machinery and are widely used in automobile gear-
boxes, aircraft engines and other fields. Its accuracy and
reliability significantly impact the performance of a machine.
Therefore, it is imperative in contemporary machinery [1].
Deep groove ball bearings, as the most common type of
rolling bearings, are mainly composed of outer rings, inner
rings, steel balls, and retainers. They have a simple structure,
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convenient use, small friction coefficient, high limit speed,
diverse in size ranges and forms, and are the most widely
used type of bearings in themechanical industry. In a complex
operating environment, bearings are easily damaged due to
overload, fatigue, wear, and pitting, resulting in the failure
of the rotating machinery. This failure induces huge property
losses, time wastage and even casualties [2], [3]. Therefore,
to ensure the safe and reliable operation of rolling bearings
and reduce maintenance costs, realising the fault diagnosis of
rolling bearings is urgent and necessary [4].

Traditional fault diagnosis methods mainly include
two steps: feature extraction and state classification.
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Feature extraction adopts transform domain methods, such
as time domain and frequency domain [5], [6], [7], while
state classification usually adopts the k-nearest neighbour
algorithm [8], support vector machine [9], artificial neural
network [10] and other machine learning algorithms.
However, the above methods have high requirements for
signal-processing technology and manual experience judge-
ment, and their universality is poor. Moreover, important
features may be lost during signal analysis, affecting the
diagnosis results.

In recent years, with the rapid development of artificial
intelligence technology, deep learning has made great
achievements in computer vision [11], image processing [12],
speech recognition [13] and other fields. Its strong learn-
ing ability has achieved adaptive feature extraction and
fault recognition, reducing its excessive dependence on
expert knowledge and signal-processing technology. There-
fore, many deep neural networks have been proposed, such
as convolutional neural networks (CNN), deep confidence
networks, long and short-term memory network, etc. Among
them, the CNN, an important network model in the field of
deep learning, has achieved remarkable results in the field of
image processing. Furthermore, scholars have introduced it
to fault diagnosis and they conducted in-depth research on
it. Zhang et al. [14] built the first layer of the CNN using
a large convolution kernel and combined it with the AdaBN
algorithm [15] to achieve fault diagnosis of rolling bearings.
Li et al. [16] proposed a bearing fault diagnosis model based
on an integrated deep neural network and CNN to complete
bearing fault diagnosis. In addition, Gao et al. [17] proposed
an adaptive CNN based on Nesterov momentum for the fault
diagnosis of rolling bearings, which improved the accuracy of
bearing fault classification. Xie et al. [18] proposed a hybrid
model based on CNN and individual classifiers, which max-
imised the feature extraction capability of CNN by selecting
classifiers, thus completing bearing fault diagnosis.

CNN has achieved a good diagnostic performance in
fault diagnosis. However, a deep CNN improves diagnostic
accuracy by increasing the number of network layers, result-
ing in the disappearing, and exploding gradient problem.
To overcome the problem associated with deep CNNs, many
researchers have added jump connections between convo-
lutional layers. In particular, a dense network (DN) uses a
dense connexion mode to ensure the maximisation of infor-
mation between layers in the network, alleviating the learning
problem and introducing feature reuse. Therefore, DN’s deep
learning method has been widely applied. Wu et al. [19] used
two parallel dense blocks in an improved one-dimensional
DN to improve the ability of the network to extract the
deep features of the automatic link establishment signal.
Zhai et al. [20] proposed an improved single-shot multi-
box detector (SSD) target detection algorithm based on DN
and feature fusion. This solved the lack of feature comple-
mentarity between feature layers of single-point multi-box
detectors and the weak ability of SSD to detect small targets.

Yang et al. [21] introduced the DN model into transfer
learning and realised intelligent grading of liver steatosis.

DN has compelling advantages, but it also has obvious
disadvantages. First, each layer of the network obtains the
feature map of the current layer by combining the feature
maps of all previous layers, it without considering the inter-
dependence between different channels [22]. Second, rolling
bearings are susceptible to noise interference during opera-
tion, and noise is easily introduced using a deep network,
which affects feature extraction [23]. Third, DN has numer-
ous network layers, a complex structure and slow calculation
speed, so it cannot quickly identify faults and timely feedback
fault information. This results in the occurrence of mechan-
ical shutdowns and property loss. Fourth, the dense blocks
and the transition layer of DN are composed of alternating
connections. Dense blocks are responsible only for feature
map extraction, and the size of the feature map between
layers remains unchanged. Reducing the dimension of the
feature graph in the transition layer is necessary, resulting in
redundancy in most dense block calculations [24]. Therefore,
this paper proposes an improved dense network (IDN) to
reduce noise interference and improve computing speed. This
network uses a dense block structure tomaximise information
between layers. Furthermore, the pooling layer is introduced
into the hop connexion of dense blocks to reduce the dimen-
sion of the feature map and simplify the model structure.
Finally, a multi-scale convolution kernel and squeeze exci-
tation module (SEM) are integrated into the dense block to
enhance the network feature extraction ability.

Currently, the fault diagnosis method based on deep learn-
ing determines the fault type by mining and collecting the
depth information of the signal. The bearing vibration signal
collected using the sensor only contains time domain infor-
mation, which is not sensitive to non-stationary signals
and has unstable characteristic performance. Hence, the
difference between faults cannot be highlighted. To obtain
comprehensive and multi-dimensional fault information of
rolling bearings, the original signal is analysed from mul-
tiple angles and multiple domain transformations, which is
conducive to improving fault identification accuracy. Many
scholars have conducted numerous studies on multiple trans-
form domain signals. Wang et al. [25] used short-time Fourier
transform andwavelet transform to process the original signal
to achieve improved bearing fault diagnosis. Long et al. [26]
conducted Hilbert transform and Fourier transform on dif-
ferent signals to obtain the corresponding frequency domain
feature information and achieved motor fault diagnosis using
an improved AdaBoost multi-classifier and dynamic weight
distribution matrix. Furthermore, Chen et al. [27] conducted
wavelet packet decomposition of the original vibration signal
for time and frequency domain statistical analyses. Further-
more, they conducted intelligent fault diagnosis based on a
multi-core correlation vector machine model.

Based on the above analysis, this paper proposes a rolling
bearing intelligent fault diagnosis method based on depth
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feature fusion to solve the problems of variable working
conditions, single original signal, and strong noise in rolling
bearing fault diagnosis. To fully extract the fault feature
information of the original signal and maximally reduce the
loss of information, the proposed method uses the Fourier
transform [28] and Hilbert envelope spectrum [29] meth-
ods for the original signal to make the input signal contain
time domain and multiple frequency domain information.
Next, IDN is used to extract fault information from various
transform domain signals for improved mining of the fault
characteristics of different transform domain signals. Finally,
the attention mechanism feature fusion method (AMFFM) is
used to fuse the depth features of different signals extracted
from the IDN, and the SoftMax function is used to achieve
fault classification. The bearing dataset of Case Western
Reserve University was selected for a comparative test to
verify the effectiveness of the proposed method, the test
results show that the proposed method has good fault diag-
nosis performance compared to traditional fault diagnosis
methods under ideal working conditions, noise environment
and variable load conditions.

The rest of this paper is organised as follows: Section II
introduces the theoretical foundation, Section III introduces
the depth feature fusion network (DFFN) model in detail,
Section II introduces the experiment and comparative anal-
ysis and, finally, Section II provides the study conclusions.

II. THEORETICAL FOUNDATION
A. MULTIPLE TRANSFORM DOMAIN SIGNAL-PROCESSING
Non-linear and non-stationary vibration signals of rolling
bearings contain much useful information. The mode of min-
ing the internal information to accurately identify bearing
faults under variable working conditions is crucial. The orig-
inal vibration signals of rolling bearings contain only time
domain information. However, when local damage occurs
during operation, it produces vibrations at a specific fre-
quency. Therefore, frequency spectrum analysis has always
been an important part of vibration signal analysis. To fully
extract the fault feature information of the original signal, this
paper proposes taking the time domain, frequency domain
and envelope spectrum signals as the input of the model to
maximally reduce information loss.

1) FOURIER TRANSFORM
Fourier transform can transform time domain signals into fre-
quency domain signals and can modulate the low-frequency
component of the signal into a high-frequency to improve
the anti-noise performance of the signal. Unlike time domain
signals, frequency domain signals can characterise the global
spectrum change characteristics of a non-stationary signal.
For discrete vibration signal x(n), its discrete Fourier trans-
form formula is shown in Equation (1):

X (k) =

N−1∑
n=0

x(n)e−j
2π
N kn (1)

where, k = 0, 1, · · · ,N − 1,N is the length of the discrete
sequence.

2) ENVELOPE SPECTRUM METHOD
Compared to spectrum analysis, the envelope spectrum
method is more sensitive to shock signals and can pro-
vide fault location information through peak frequency.
Moreover, it can demodulate high-frequency resonance to
low-frequency fault frequency, eliminate unnecessary fre-
quency interference, highlight fault characteristic frequency,
and provide good frequency resolution for bearing fault
diagnosis. The envelope spectrum calculation method in this
paper is based on the Hilbert transform, which is divided into
two steps.

Let x(t) be a time domain signal, and its definition of
Hilbert transform is represented as follows.

h(t) = H [x(t)] =
1
π

∫
+∞

−∞

x(τ )
t − π

dτ (2)

The original signal x(t) and its Hilbert transform signal h(t)
construct a new analytic signal z(t), as shown in Equation (3).

z(t) = x(t) + ih(t) (3)

where, i is the imaginary unit, h(t) is the imaginary coefficient
of the analytic signal z(t). The modulus a(t) of z(t) analytic
signal is represented as follows.

a(t) = |z(t)| = |x(t) + ih(t)| =

√
x2(t) + h2(t) (4)

Fourier transform is used to obtain the envelope spectrum
E(t), as shown in Equation (5).

E(t) = |FT [a(t)]| (5)

B. DENSE NETWORK
DN was first proposed by Gao et al. [30]. It mainly includes
dense blocks and transition layers. Each layer of dense blocks
takes all previous layers as inputs, and its output is input to
all subsequent layers. Hence, the DN of the L layer has L
(L+1)/2 connections, ensuring a maximum information flow
between layers in the network, eliminating the problem of
gradient disappearance and explosion and promoting feature
reuse. The transition layer includes the convolution layer
(CL) and pooling layer, which are mainly used to reduce the
dimension of the feature map. The structure of the original
dense block in DN is shown in Figure 1, and the output xl of
the L-th layer is represented as follows.

xl = Hl([x0, x1, · · · , xl−1]) (6)

where, [x0, x1, · · · , xl−1] represents the series connexion of
the characteristic graphs of Layers 0 to l–1, the process of
combining multiple tensors into one, and Hl(·) represents
the non-linear transformation function, including a series of
operations, such as convolution (Conv), batch normalisation
(BN), and rectified linear unit (ReLU).

With the wide application of DN, remarkable achievements
have been made in data classification, image processing and
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FIGURE 1. Original dense block.

other fields. Tong et al. [31] proposed a method of applying
DN to image super-resolution and achieved good results.
Zhang et al. [32] proposed a multi-stream network based on
residual dense blocks for single-image denoising. Further-
more, the network was applied to mechanical fault diagnosis.
Lin et al. [33] proposed a variational mode decompositionDN
for bearing fault diagnosis. The network extracts feature from
each image block of the image to obtain advanced, accurate
diagnosis results, which provides a more effective method for
bearing fault diagnosis.

C. SQUEEZE EXCITATION MODULE
The SEM acquires the weight of each feature channel through
automatic learning, which makes effective features weigh
more and ineffective ones weigh less. This enhances use-
ful features and suppresses unimportant features, increasing
the selection and capture ability of the whole network for
features. Figure 2 shows the SEM.

FIGURE 2. Squeeze excitation module.

The number, length, and width of feature channels for
a given input feature map are C , W and H , respectively.
The characteristics with the number of feature channels are
obtained through squeezing, excitation, and reweighting. The
detailed steps are as follows:

The squeeze turns each two-dimensional feature channel
into a real numberwith the global receptive field, representing
the global distribution of the response on the feature channel
as follows.

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (7)

where uc(i, j) is the pixel value of Point (i, j) on the c-th
channel feature map, zc represents the c-th element of z,Fsp
is the squeeze algorithm.

Excitation introduces two full connexion layers to automat-
ically adjust the correlation between channels and generate

the weight for each feature channel, as shown in Equation (8).

s = Fex(z,W ) = σ (g(z,W )) = σ (W2δ(W1z)) (8)

where s is the output of the excitation,w1 andw2 are mapping
matrices, δ and g are mapping functions,z is the channel
information value of the characteristic map and Fex is the
excitation algorithm.

The reweight multiplies the weight after excitation with the
original feature diagram channel by channel to complete the
recalibration of different channel features.

x̃c = Fre(uc, sc) = sc · uc (9)

x̃c is the significant feature map obtained using c-th channel,
Fre is the reweight algorithm.

III. DEPTH FEATURE FUSION NETWORK
In the fault diagnosis of rolling bearings, different trans-
form domains of the original signal have different value
information and fault features. The existing depth learning
models mainly focus on single-dimension signal feature
extraction, which easily induces information loss. To improve
the accuracy of fault diagnosis and optimally use the fault
information of the signal, this paper proposes a deep feature
fusion network based on IDN and AMFFM (Figure 3). First,
the original signal is pre-processed to obtain the frequency
domain signal and envelope spectrum signal, which form the
input of the model with the time domain signal. Second,
features are simultaneously extracted from each transform
domain through the CL and IDN, and feature fusion is
achieved using the AMFFM. Subsequently, features are clas-
sified through the flatten layer, full connexion layer and
SoftMax. Finally, the diagnosis results are output.

A. IMPROVED DENSE NETWORK
DN has been introduced into fault diagnosis with its unique
advantages. However, it has many shortcomings, such as
poor dependence between channels, weak anti-noise ability,
slow computing speed and redundant data. To overcome the
above shortcomings, many variants of DN have recently
been proposed and applied to various fields. Li et al. [23]
proposed an automatic DN sparse enhancement method
to reduce feature redundancy, which improved comput-
ing speed. Zhang et al. [24] proposed a new multi-feature
reweighting DN architecture, which adaptively recalibrated
channel features and adjusted the relationship between the
features of different CLs, thus reducing the error rate.
Although the above variants of DN improve some shortcom-
ings, they cannot avoid the problem of noise interference and
low calculation efficiency. Therefore, it is unsuitable for fault
diagnosis under variable working conditions.

Based on the above analysis, this paper proposes an IDN
structure (Figure 4). First, the input of each CL of DN
concatenates the characteristic graphs of all previous layers
without considering the interdependence between different
channels. Therefore, SEM is added behind each CL, the
weight of each feature channel is obtained through automatic
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FIGURE 3. Depth feature fusion network structure.

FIGURE 4. Improved dense network.

learning, the useful features are enhanced according to the
weight and the useless features are suppressed to establish the
relationship between channels. Second, to reduce noise inter-
ference and data redundancy, the IDN adopts a dense block
structure and introduces its jumping connexion part into the
pooling layer to ensure that the information between layers in
the network ismaximisedwhile reducing the dimension of the
feature map. This structure combines the transition layer in
DNwith dense blocks, inherits the advantages of DN, reduces
the complexity of the model and enhances the ability of the
model to diagnose faults under variable working conditions.
Finally, a multi-scale convolution kernel is used in the CL
of dense blocks to increase the network’s ability to extract
features.

The four-layer CL in Figure 4 further illustrates the IDN
structure. The structure comprises four CLs and six pooling
layers. The first three CLs have convolution kernel sizes of
1 × 3 and 1 × 5, step sizes of 2, and convolution kernel
numbers of 16. The fourth CL has convolution kernel sizes of
1 × 3, step sizes of 2, and convolution kernel numbers of 32.
Table 1 shows parameters, such as kernel size, number of
input channels, number of output channels, output feature

TABLE 1. IDN volume layer parameters.

map size and step size in the CL. The CLs are numbered
according to the sequence in the figure, and the pre-activation
method (BN-ReLU-Conv) is used to reduce the complexity
of the model. The size of the six pooling layers is 1 × 2;
hence, the feature map of the jump connexion matches the
feature map obtained by the CL, and the dimension of the fea-
ture map is reduced while the feature extraction is achieved.
Thus, the generation of redundant features is reduced and
the convergence speed of the network is increased. IDN was
used to learn and extract the time domain, frequency domain
and envelope spectrum signals, respectively, to obtain optimal
effective depth features for rolling bearing fault diagnosis.

B. ATTENTION MECHANISM FEATURE FUSION METHOD
After the depth features of the time domain, frequency
domain and envelope spectrum signals are extracted using
IDN, these depth features must be fused to obtain advanced
comprehensive bearing fault information. Currently, most
scholars use the serial connexion method to fuse multiple
features (Figure 5). However, this method ignores the factors
with different contributions of different features to fault
diagnosis.

Regarding the shortcomings of the fusion method of tra-
ditional serial connexion features, this paper proposes an
AMFFM (Figure 6). This stems from the different degrees
of human attention to various parts of the target object.
Particularly, prominent positions always attract attention
first, thus enhancing the ability to obtain effective features.
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FIGURE 5. Serial connection.

FIGURE 6. Attention mechanism feature fusion method.

The AMFFM is used to fuse the depth features of multiple
signals extracted by IDN to form the global features of bear-
ing fault diagnosis. The specific calculation is as follows.

The weight ui of each feature in the depth feature map is
calculated using dimensionality reduction (equation (10)).

ui = σ (wjhi + bj) (10)

where, hi is the depth feature corresponding to the time
domain, frequency domain and envelope spectrum signals,
wj and bj, are the weights and offsets learned, σ is the
non-linear activation function.

Subsequently, calculate the importance weight ai of the
feature in the feature map, as shown in Equation (11).

ai =
exp(ui)∑
exp(us)

(11)

where s is the number of features in the feature map. Finally,
the global feature f is obtained using weighted fusion,
as shown in Equation (12).

f =

n∑
i=1

aihi (12)

C. FAULT DIAGNOSIS PROCESS
Figure 7 shows the fault diagnosis process of the rolling
bearing based on DFFN, including three stages: data acquisi-
tion and pre-processing, model training and verification and
model testing. The specific steps are as follows:

Step 1: Sensors were used to collect rolling bearing vibra-
tion signals, and the vibration signals were pre-processed
to obtain the time domain, frequency domain and envelope

FIGURE 7. Fault diagnosis process of the rolling bearing based on DFFN.

FIGURE 8. CWRU dataset test bench.

spectrum signals. The input sample dimensions of the time
domain, frequency domain and envelope spectrum signals
are 1 × 1024, 1 × 512 and 1 × 512, respectively.
Step 2: The three signals were divided into the training,

verification and test sets following a certain proportion, and
the training set of the three signals was input into the initiali-
sation network.

Step 3: The CL of 32 large-scale convolution kernels with
sizes of 64 and steps of 16, 8 and 8 were used to extract
the shallow features of the signals, and the depth features
of the signals were extracted using IDN. Next, the AMFFM
was used to fuse the depth features of the three signals to
obtain the global features, and fault classification was con-
ducted using SoftMax. Finally, error back-propagation and
network parameter update were achieved by calculating the
loss function until the maximum training times were reached.
The model was verified by combining the verification set to
obtain the training model.
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TABLE 2. Specific sample information of the time domain signal.

FIGURE 9. Three signal samples of 10 bearing states with a load of 0 hp: (a) time domain sample; (b) frequency domain sample; and
(c) envelope spectrum sample.

Step 4: The accuracy of the fault identification of themodel
was tested using the test set.

IV. TEST AND COMPARATIVE ANALYSIS
A. TEST VERIFICATION
To verify the effectiveness of the proposed method, this paper
uses the dataset of the Rolling Bearing Data Centre [34]
of Case Western Reserve University (CWRU). The bearing

data acquisition equipment includes an electric motor, fan end
bearing, drive end bearing, torque transducer and encoder,
dynamometer, and other equipment. Figure 8 shows the
CWRU dataset test bench, where the data acquisition fre-
quency at the drive end is 12 kHz. All datasets include o hp,
1 hp, 2 hp and 3 hp load types, and each load simulates
10 bearing states, including normal state, inner ring damage,
outer ring damage and rolling body damage. The damage
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diameters of the inner ring, outer ring and rolling body
damage are 7, 14 and 21 mils, respectively. Each bearing
state contains 100,000 data points, and 1024 data points are
randomly selected as samples. Table 2 shows the specific
sample information of the time domain signal. Hence, the
original one-dimensional signal is pre-processed to obtain the
frequency domain signal and envelope spectrum signal. Due
to the symmetry of the sampling frequency, the samples of the
frequency domain signal and envelope spectrum signal have
only 512 data points. Consider one sample from each of the
10 bearing states with a load of 0 hp to obtain the images
of the three signals (Figure 9). Before training, 2000 sub-
samples are formed for each signal through random sampling,
wherein 60% of the samples are selected as the training set,
20% as the verification set and 20% as the test set. The tests
in this paper are run on Windows 10, Intel Core i7 CPU,
32 GB processor, and the Keras deep learning framework
under Python.

Fig. 9 shows that compared to the time domain samples,
the frequency domain and envelope spectrum samples show
their characteristics. The signals differ in different states,
and compared with single domain signal input signal, using
multiple transform domain signals is more conducive to fea-
ture classification. Moreover, the amplitude of the frequency
domain and envelope spectrum samples in a normal state is
relatively small and has increased stability.

To verify the effectiveness of the proposed method, this
paper uses the above four load data for the comparative
analysis test. The influence of different input modes on the
fault identification effect was studied. Four load data were
used for ten tests for each input mode, and the average value
was taken to obtain the identification accuracy of different
input modes under four loads (Table 3).

TABLE 3. Identification accuracy of different input modes/%.

Table 3 shows that the same feature extraction network
is used for data of different load types. Compared to the
single input method of three signals, the diagnostic accuracy
of this method is higher, and the average recognition accuracy
can reach 99.75%, indicating that this method has improved
recognition and classification capabilities.

In this paper, the IDN is developed from DN, the pool-
ing layer is added to the jumping connexion part and the
multi-scale module and SEM are introduced; thus, this
improves the accuracy of bearing fault identification. To ver-
ify the feature extraction ability of IDN, it is compared with
residual network (RN), DN and multi-scale dense network
(MDN). The RN includes a large-scale convolution kernel,
four residual blocks, a global average pooling layer and an
output layer. DN includes a large-scale convolution kernel,

three dense blocks, two transition layers, a global average
pooling layer and an output layer. Moreover, based on DN,
MDN sets the convolution kernel size of dense blocks to
1 × 3 and 1 × 5. Table 4 shows the statistical results of the
average accuracy, standard deviation, and training time of the
four networks.

Table 4 shows that the classification and recognition accu-
racy of these four networks reached 99%, indicating that
the deep learning method has good fault diagnosis ability.
Compared to other networks, the proposed network has the
highest recognition accuracy among the test results, the min-
imum standard deviation among multiple tests, improved
stability, and the least time consumption, which improves the
fault recognition accuracy and diagnostic efficiency. There-
fore, the IDN in this paper is superior to the above networks in
accuracy and training efficiency. Figure 10 shows the recogni-
tion accuracy of the above networks under the four-load data.

TABLE 4. Test results of different networks.

FIGURE 10. Identification accuracy of four networks under four loads.

Finally, to verify the effectiveness of the AMFFM, it was
compared to the serial connexion method. The above four
load data are used for multiple tests to obtain the identifica-
tion accuracy and average value of the five serial connexion
modes (Figure 11). The recognition accuracy of the serial
connexion method was 99.20%. Compared to the recognition
accuracy of the proposed method, the recognition accuracy of
the serial connexion method is significantly lower, indicating
that the AMFFM has improved feature fusion capability.

B. ANTI-NOISE PERFORMANCE ANALYSIS
During the production process, because of the complex work-
ing environment of the rolling bearing, the vibration signals
collected are vulnerable to noise pollution, which presents
higher requirements for the noise resistance of the model.
To verify the anti-noise diagnostic capability of the IDN in
this paper, Gaussian white noise with a signal-to-noise ratio
of 0, 3 dB, 6 dB and 9 dB is added to the test set by using
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FIGURE 11. Identification accuracy of serial connexion mode in four loads.

FIGURE 12. Recognition accuracy of the four methods under different load types and noises: recognition accuracy with (a) 0 hp load;
(b) 1 hp load; (c) 2 hp load; and (d) 3 hp load.

the four kinds of load data in Section III-A. Multiple tests
were conducted on RN, DN, MDN and IDN in different
noise environments; the average values were collected to
obtain the recognition accuracy of four kinds of loads in noisy
environments (Figure 12).

For data of different load types, the fault diagnosis recog-
nition rate of IDN at 0, 3 dB and 9 dB is higher than that
of other networks. This is because RN, DN and MDN have
considerable network depth and an excellent diagnostic effect

on clean signals. However, their diagnostic performance
under noise interference was significantly lower than that of
IDN.MDN can extract themulti-scale features of signals, and
the anti-noise performance is partially improved compared to
DN. This indicates that the multi-scale convolution kernel has
partial anti-noise capability. The IDN adopts a dense block
structure with a reduced number of network layers and adds
a pooling layer to the jump connexion part. This structure
inherits the advantages of DN, simplifies the DN structure,
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FIGURE 13. Comparison of recognition accuracy of the four methods under different variable loads.

FIGURE 14. Visualisation results of the t-sNE method: (a) input layer; (b) CL; (c) IDN layer; and (d) output layer.

enhances the anti-noise ability of the model and introduces
a multi-scale convolution kernel and SEM, which greatly
enhances the anti-noise ability of the network. This maintains
a high diagnostic performance in 3 dB, 6 dB and 9 dB noise
environments and achieves an average recognition accuracy
of 94.47% under noise interference with a signal-to-noise

ratio of 0. The above tests show that IDN has excellent fault
diagnosis ability in a noisy environment.

C. GENERALISATION PERFORMANCE ANALYSIS
During the production process, due to the complex working
conditions, the equipment may work under various loads,
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FIGURE 15. Visualisation results of four kinds of t-SNE networks: (a) RN; (b) DN; (c) MDN; and (d) IDN.

which requires the fault diagnosis model to have good gener-
alisation performance. Therefore, to verify the fault diagnosis
generalisation capability of the IDN, the load data of the
above four loads are used as the training set, and the remain-
ing three load data are used as the test set. For example, the
0 hp load data is used as the training set, and 1 hp, 2 hp and
3 hp load data are used as the test set, represented by 0–1, 0–2
and 0–3.

Figure 13 shows the recognition rates of the four networks
under different variable loads. The recognition accuracy
of RN decreases significantly when the load changes and
the maximum and minimum recognition accuracy rates are
89.67% and 76.12%, respectively, with a maximum differ-
ence of 13.55% and an average recognition accuracy rate
of 85.16%. This result indicates that the RN method has
a poor diagnostic ability under variable load conditions.
The maximum and minimum recognition rates of DN under
variable loads were 97.78% and 88.64%, respectively, with
a maximum difference of 9.14% and an average recognition
rate of 94.80%. Compared to the RN method, the recognition
accuracy of DN under variable loads has greatly improved,
indicating that increasing the information flow between net-
work layers can enhance the network’s generalisation ability.
Although the recognition accuracy of MDN has decreased
under some variable loads compared to single-scale DN, the
average recognition accuracy has reached 95.57%, which
is higher than that of single-scale DN. This is because the
feature information extracted using multi-scale convolution
is more comprehensive, further improving generalisation

ability. The maximum and minimum recognition accuracy
rates of the IDN were 99.14% and 94.72%, respectively, with
a maximum difference of 4.42%, and the average recog-
nition accuracy rate reached 96.88%. This is because the
network is improved based on DN, which not only inherits
most of the advantages of the network but also compensates
for its shortcomings and simplifies the network structure.
Combining a multi-scale convolution kernel and SEM, the
generalisation ability of the proposed method is enhanced.
In conclusion, compared to the other three networks, the IDN
has better recognition accuracy, stability, and generalisation
performance.

D. T-SNE VISUAL ANALYSIS
To illustrate the feature extraction capability of each network
layer of the model, t-SNE [35] technology was used in this
paper for visual analysis of its input layer, CL, IDN layer
and output layer to judge the classification and recognition
capability of themodel. Figure 14 shows that different colours
and numbers represent various fault states of bearings, and
the horizontal and vertical coordinates represent different
dimensions.

Figure 14 shows that various features of the input layer
are mixed without regularity. After the CL, the tags of each
feature begin to show a dispersion trend. However, due to
its limited feature extraction ability, the tags of each fea-
ture are still messy. After passing through the IDN layer,
all kinds of features were separated, and tags of the same
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kind were gathered, reflecting the powerful feature extraction
capability of the IDN. Finally, various features complete
separation and convergence through the fusion layer of the
attention mechanism feature and the whole full connexion
layer, and the prediction tag of various feature in the output
layer is obtained.

Furthermore, the t-SNE visualisation analysis of IDN,
RN, DN and MDN was conducted (Figure 15). Compared
with the other three networks, the proposed network has
fewer label errors and higher recognition accuracy, which
can optimally reflect the powerful feature extraction capa-
bility of the proposed network. And the fundamental reason
for the misclassification of the IDN method is that the col-
lected data is interfered by various uncertain factors such as
noise, which leads to the same characteristics among dif-
ferent categories of data, resulting in a misjudgment of the
types of collected data, and ultimately misclassification of
the IDN.

V. CONCLUSION
To solve the difficulty of diagnosing the fault of a rolling
bearing under different working conditions, an intelligent
fault diagnosis method of rolling bearing based on a
DFFN is proposed. the proposed method is validated by
using the data set of CWRU rolling bearing data center
in the United States, and the following conclusions are
drawn:

1) Compared to traditional dense network, the IDN com-
bines the dense block with the pooled layer, which
not only realizes the connection of all the front layers
with the back layers, promotes the flow of features
in the network, but also effectively reduces the data
dimension by layer-by-layer pooling, improves the
computing power of the network, and reduces the gen-
eration of redundant data. Furthermore, the feature
extraction method of multi-transform domain signals is
more sensitive to vibration signals, and more abundant
fault features can be extracted.

2) The AMFFM is proposed for fusing the depth features
of various transform domain signals to form the global
features of bearing fault diagnosis, which can compile
abundant fault information and solve the problem of
low accuracy of single-feature fault diagnosis.

3) The experimental results show that compared with
ResNet, DenseNet andmulti-scale DenseNet networks,
IDN has the highest average recognition accuracy of
99.87%, 97.83% and 96.88% respectively under ideal,
noisy, and variable load conditions. In addition, under
ideal conditions, the stability of multiple experiments is
good, with the lowest standard deviation, only 4.63%,
and the training time is only 0.692 seconds, indicat-
ing the highest computational efficiency. Therefore,
the proposed method achieves bearing fault diagnosis
under variable operating conditions and strong noise
conditions.
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