
Received 4 June 2024, accepted 25 June 2024, date of publication 2 July 2024, date of current version 15 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3422009

Dynamic Fuzzy Logic Energy Management System
for a Multi-Energy Microgrid
PABLO HORRILLO-QUINTERO 1, PABLO GARCÍA-TRIVIÑO 1, EHSAN HOSSEINI 1,
CARLOS ANDRÉS GARCÍA-VÁZQUEZ 1,
HIGINIO SÁNCHEZ-SAINZ2, (Senior Member, IEEE),
CARLOS E. UGALDE-LOO 3, (Senior Member, IEEE),
VEDRAN S. PERIĆ4, (Member, IEEE),
AND LUIS M. FERNÁNDEZ-RAMÍREZ 1, (Senior Member, IEEE)
1Research Group in Sustainable and Renewable Electrical Technologies—SURET (PAIDI-TEP023), Department of Electrical Engineering, ETSI Algeciras,
University of Cádiz (UCA), Algeciras, 11202 Cádiz, Spain
2Research Group in Sustainable and Renewable Electrical Technologies—SURET (PAIDI-TEP023), Department of Electrical Engineering, ESI Puerto Real,
University of Cádiz (UCA), Algeciras, 11202 Cádiz, Spain
3School of Engineering, Cardiff University, CF24 3AA Cardiff, U.K.
4Department of Electrical and Computer Engineering, Aarhus University, 8200 Aarhus, Denmark

Corresponding author: Luis M. Fernández-Ramírez (luis.fernandez@uca.es)

This work was supported in part by the Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, and Unión Europea
‘‘NextGenerationEU/PRTR’’ (Grant TED2021-129631B-C32 supported by MCIN/AEI/10.13039/501100011033 and
NextGenerationEU/PRTR)

ABSTRACT While multi-energy microgrids (MEMGs) offer a promising approach to reduce energy
consumption through coordinated integration of various energy vectors, research has primarily focused on
static studies. These studies aim to optimize a particular cost function but neglect the dynamic aspects of the
system operation. This paper presents a dynamic model of an MEMG comprising of electricity and thermal
vectors. A novel dynamic fuzzy logic-based energy management system (EMS) is investigated, aiming to
ensure energy balance (electric and thermal), optimize renewable energy utilization, and reduce the reliance
on the local electricity grid and gas. Both the EMS and MEMG have been evaluated under different weather
conditions and a 4-hour variable load profile. Furthermore, the EMS effectiveness has been verified through a
real-time experiment using an OPAL-RT4512 unit and a dSPACEMicroLabBox prototype. The results show
that the proposed fuzzy logic-based EMS outperforms a conventional EMS based on machine states (states-
based EMS), achieving a notable reduction in electricity grid consumption of 80%, as well as a consumption
reduction of 7.4% in the gas boiler and 5.4% in the electric boiler. Furthermore, the control performance
results in a remarkable reduction in ITAE (42.57%), ITSE (89.10%), IAE (54.36%) and ISE (57.55%) for
the hot water temperature control, and in ITAE (17.06%), ITSE (52.50%), IAE (31.19%) and ISE (29.99%)
for the heating control.

INDEX TERMS Electricity, energy management system, energy storage system, fuzzy-logic, multi-energy
microgrids, thermal.

I. INTRODUCTION
The push to increase the energy efficiency in electricity net-
works is driving the advancement of distributed generation
through microgrids (MGs) that incorporate renewable energy
sources with energy storage systems (ESSs) to address their
variability. It is possible to include multiple energy vectors
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in a MG, such as electricity, heat/cooling, gas or hydrogen to
build a multi-energy microgrid (MEMG) [1], [2].

A MEMG considers multiple energy vectors with a com-
plementary relationship that improves the efficiency of
the whole system [3], [4], carrying out a multi-objective
operation.

Multi-objective operation typically aims to minimize the
total operational cost of the microgrid system, improve
energy balance, and enhance overall system performance [5].
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Traditionally, the study of MEMGs has focused on static
analysis, examining the MEMG response at a single point
in time to assess its current state or predict its future state.
However, this approach overlooks the dynamic behavior and
real-time response of MEMGs, limiting the understanding of
how they respond to changes over time.

The main idea of a steady-state study is to optimize a cost
or efficiency-related objective function [6], [7], [8].

For instance, a model minimizing the carbon footprint of
an energy community was introduced in [9]. MEMG opti-
mization problems are commonly solved using mixed-integer
linear programming (MILP) with alternating directional
multiplier method [10].
The research conducted in [11] concentrated on the inte-

gration of electric-thermal power flow using an extended
Newton-Raphson algorithm. Furthermore, an optimization
model for MEMGs was implemented in [12] using a MILP
approach for a corrective receding horizon considering costs,
emissions, and flexibility, through optimization over annual
and daily time horizons. Several studies [13], [14] pointed
out the optimization of MEMGs in long term time horizon
and muti-time scale.

NOMENCLATURE
c Heat capacity boiler (J/(kg·K)).
CB Thermal capacity of the electric boiler (J/K).
cf Heat capacity of fluid (J/(kg·K)).
cp Heat capacity of fluid (const. pressure)

(J/(kg·K)).
EBESS BESS open circuit voltage (V).
Gs,Gn Irradiation on the surface and the nominal

irradiation.
IBESS BESS current (A).
IPV PV current (A).
IL , IL0 Light current and light current at SRC (A).
Isat Diode reverse saturation current (A).
k Boltzmann’s constant (1.38066 × 10−23 J/K).
K0,K1 Constants depending on the PV characteristic.
m Mass of the boiler (kg).
ṁbus Mass flow rate in the thermal bus (kg/s).
ṁwater Mass flow water demand (kg/s).
N Number of nodes.
Ns Number of cells in series.
PBESS BESS power (W)
PmaxBESS,dis Maximum BESS power in discharging (W).
PmaxBESS,cha Maximum BESS power in charging (W).
PEB Electric boiler power (W).
PGRID Local grid power (W).
PLOAD Electric load power (W).
PPV PV power (W).
P′
NET Gross net power (W).
PNET Net power (W).
q Electron charge (1.60218E–19 Coulomb).
QEB Heat power of the electric boiler (W).
QGB Heat power of the gas boiler (W).

QoutEB Heat extracted by the electric boiler (W).
Rint BESS internal resistance (�).
Rs,Rsh Series and shunt resistance (�).
Tamb Ambient temperature (◦C).
Tbus,T

ref
bus Bus temperature and reference bus

temperature(◦C).
TEB Electric boiler temperature (◦C).
Tin Temperature of fluid at the input (◦C).
TmaxEB ,TminEB Electric boiler turns off/on temperature (◦C).
T2 Temp. after electric boiler heat exchange (◦C).
TPV Photovoltaic cell temperature (◦C).
UA Heat loss coefficient to ambient (W/K).
VBESS BESS voltage (V).
Vg Diode voltage (V).

MEMGs represent an efficient solution for both
grid-connected and islanded operation modes. In [15],
an algorithm was introduced to optimize planning decisions,
enhance operating costs in grid-connectedmode, and increase
supply reliability in islanded mode. This approach accounts
for uncertainties in both demand and renewable production.

Energy storage is an imperative need for mitigating fluctu-
ations in renewable production. In [16], it was demonstrated
that storage systems can lead to cost savings in MEMG
operations and reduced losses through Mixed Integral Linear
Programming technique.

The steady-state solutions hold under the assumption
that the MEMG works within an operating range closely
resembling the one studied [13], [14], [17]. In [18], an opti-
mization cooperative demand-driven operational approach
for a MEMGwas presented, comprising a higher-level model
and a lower-level model. However, the optimization was
enclosed to the constraints and might not be adequate in
different operating conditions. In [19], the demand prob-
lem was studied with nonlinear integrated demand response
system for MEMGs based on pricing, aimed at mitigating
errors in estimating both electricity and gas loads. However,
this study did not explore real-time implementation of these
scenarios.

The static optimization presented in [20], employed
demand management in two stages. The initial phase of
optimization focused on employing a mixed-integer nonlin-
ear programming approach to maximize projected profits
from day-ahead operations. Subsequently, the second phase
of the energy management plan aimed to minimize antici-
pated costs for hour-ahead operations. However, no details
were provided regarding the dynamic behavior of the
MEMG during the optimization processes, and the models
used may not be suitable beyond the studied linearization
point.

In [21], total operating costs were minimized considering
uncertainties in renewable production, demand, and energy
prices. In this scenario, the system operator has the opportu-
nity to actively engage in electricity, heat, and gas markets,
enabling them to meet local energy demands and maximize
profits through energy exchanges.
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To expand the operational capabilities of MEMGs and
effectively manage dynamic conditions, the development of
dynamic model is crucial. This allows the operation, control,
and energy management system (EMS) to adapt to weather
variations and sudden demand changes. Consequently, amore
efficient distribution of energy between MEMG components
becomes possible.

A dynamic EMS incorporates instantaneous monitoring
and control of energy consumption, considering temporary
operating modes [22]. It has the ability to react to real-time
fluctuations in demand by adjusting production levels, con-
sidering weather conditions and the state-of-charge (SOC)
of the energy storage systems (ESSs). By implementing
this dynamic approach, MEMGs can achieve optimal per-
formance across diverse operating conditions, leading to
maximized efficiency and minimized operational costs.

As evidenced in the existing literature, most studies have
largely overlooked the dynamic nature ofMEMGs, leading to
a significant research gap in the dynamic control of MEMGs
facilitated by an EMS.

The approach to energy control and management in
MEMG studies requires dynamic models capable of accu-
rately representing equipment behavior across various operat-
ing points, and effectively responding to changes in operating
conditions. In complexMEMGs incorporating diverse renew-
able generation equipment, energy storage and thermal
sources, designing an EMS becomes a challenging task,
requiring intelligent techniques for efficient energy manage-
ment [23]. This challenge involves addressing several system
operator objectives concurrently, such as minimizing energy
supply from the main grid while controlling ESS charge
levels.

Among the different intelligent techniques presented in the
literature, fuzzy logic control is a widely adopted approach
for dynamic EMSs. Fuzzy logic systems have gained exten-
sive popularity across diverse fields owing to their inherent
ability to be used in complex systems. Unlike other intel-
ligent controllers that heavily rely on historical data, fuzzy
systems do not require such data to function effectively. Fur-
thermore, fuzzy logic control eliminates the need for system
linearization, further simplifying its application in dynamic
models [24].

In traditional energy systems, electric and thermal systems
have been designed, planned, and operated independently,
despite their physical complementarity. In the quest to opti-
mize energy usage and integrate renewable energy-based
generation systems and energy storage systems, there is a
growing need to interconnect electricity systems and coor-
dinate their operation with other energy vectors, such as heat,
taking into account the control approach to achieve this.

Current literature has not adequately addressed the study of
MEMGs from the perspective of real-time control, as well as
EMS that integrate different energy vectors. Both operators
of electric and thermal grid systems, as well as operators
of distributed generation, require real-time control to inte-
grate renewable energy sources into residential networks that

consume various types of energy in a safe and efficient
manner. Similarly, end-users benefit from having efficient
energy control and management systems, giving them greater
decision-making capabilities based on available capacity and
demand.

There are deficiencies on the design of interconnected
real-time energy control and management systems, while
considering various reliability, resilience, and efficiency
indicators within MEMGs. Additionally, minimizing energy
consumption, taking into account the savings associated
with harnessing the flexibility offered by ESS in MEMGs,
is a pressing need due to the intrinsic intermittency
of renewable generation. This problem is further exac-
erbated if there are heat-generating devices powered
by renewable-produced electricity. Controlled real-time
exchange of surplus non-dispatchable and dispatchable gen-
eration between different energy vectors is a fundamental
issue for integrating RET and ESS into current distribution
networks.

This paper addresses this gap by presenting an MEMG
considering electricity and thermal vectors controlled by a
novel dynamic fuzzy logic-based EMS acting as a supervi-
sory controller for the entire system. The primary objective
of the EMS is to minimize energy withdrawal from the
local grid and maximize the utilization of renewable energy
sources while meeting the electrical and thermal demands.
The innovative aspect of this paper lies in determining the
operating mode of the thermal sources, and the management
of the battery ESS (BESS) based on the real-time thermal and
electric demands, renewable energy availability and the SOC
of the BESS.

The contributions of this paper are summarized as follows:
� Dynamic control management (with a sample time of
0.02s) for a MEMGwith electricity and thermal vectors,
integrating PV power plant, BESS and electrical loads
(in electricity vector) and gas boiler, heat pump, electric
boiler and underfloor demand (in thermal vector).

� Development of a dynamic fuzzy logic-based EMS that
provides an efficient energy distribution in the MEMG
and allows a wide operating range for thermal and
electricity vectors.

� Validation of the proposed MEMG and EMS under
different weather condition and variations in electric
and thermal loads. The results demonstrate significant
improvements compared to a conventional state-based
EMS, achieving a significant 80% reduction in local grid
utilization for the tested scenarios. Furthermore, energy
reductions of 7.4% and 5.4% are achieved for the gas
and electric boiler sources, respectively.

� Real-time verification using experimental hardware-in-
the-loop (HIL) setup for the proposed MEMG. The
MEMG operates on an OPAL4512 unit, while the con-
trol system is implemented on a dSPACEMicroLabBox
prototype. This real-world testing confirms the effec-
tiveness of the proposed EMS under practical operating
conditions.
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Following this introduction, Section II provides a detailed
explanation of the MEMG under study. The proposed control
scheme and fuzzy logic-EMS are described in Section III.
Section IV introduces an alternative state-based EMS for
comparison with the proposed fuzzy-logic EMS. Section V
validates the operation of the MEMG under different scenar-
ios using MATLAB/Simulink and presents the experimental
results. Finally, Section V provides the conclusions drawn in
this paper.

II. DYNAMIC MODELLING OF THE MEMG
Fig. 1 shows the configuration of the proposed MEMG. The
thermal segment of theMEMG comprises a 10-kW gas boiler
and a 23-kW electric boiler with a 300-liter storage capacity,
catering the heat demand of the MEMG. The electrical vector
incorporates an 18-kW PV power plant, consisting of 60 pan-
els of 300 W each. The PV power plant layout is designed
using six strings of 10 panels connected in series per string.
To mitigate the fluctuations inherent in PV power generation,
a Lithium-Ion based BESS is integrated, leveraging its advan-
tages in efficiency and scalability [25]. The selected BESS
has a rated capacity of 26.6 kWh and a rated voltage of 345V.
Furthermore, the MEMG is connected to a 400 V three-phase
local grid to ensure a reliable power supply.

It is important to note that the controlled components in the
MEMG are the electric and gas boilers, along with the BESS.
The PV power plant operates at the maximum power point
tracking (MPPT) to maximize its output, while the local grid
assumes the surplus or necessary power to fulfill the demand
fluctuations.

The modelling of the MEMG is implemented in
MATLAB/Simulink. The CARNOT Toolbox, developed by
the Institute of Solar Research in Juelich, Germany, was
employed to model the thermal components of MEMG [26].
This toolbox provides a comprehensive library of compo-
nents commonly used in thermal systems, represented by
modular blocksets. Additionally, it offers valuable insights
into the coordination between electrical and thermal systems,
as well as specific elements related to thermal loads [26].

A. THERMAL VECTOR
The aforementioned thermal sources thermal loads form
a thermal system that needs a structured and organized
operational framework.

Fig. 1 illustrates the thermal system scheme proposed in
this paper. A thermal bus, a closed thermal circuit connecting
the thermal sources and loads, is employed. A gas boiler
maintains the bus temperature (Tbus) at the desired value. The
electric boiler extracts heat (denoted asQoutEB ) from the bus by
warming water obtained from the local network to achieve
Tbus.

Subsequently, the electric boiler elevates this temperature
to the required hot water demand (TEB). Finally, an indepen-
dent heat exchanger connects the underfloor heating demand
to the bus, extracting heat power (denoted as QU ·H ) from the

FIGURE 1. Schematic diagram of the electrical-thermal MEMG.

bus. This process results in a temperature reduction to Tin,
which serves as the input temperature for the gas boiler.

The thermal bus serves as the central component, facil-
itating heat transfer among the boilers and thermal loads,
and control of water temperature. It enables efficient energy
utilization and structured system organization by employing
hot water circulation within the heating loop.

To account for temperature drops during the heat exchange
process, Eqs. (1) and (2) model the heat exchange between
the electric boiler and the underfloor heating based on the
thermodynamic energy balance principle:

T2 =
ṁwater · Twater + ṁbus · Tbus

ṁwater + ṁbus
(1)

Tin = T2 +
−QU ·H

ṁbus · c p
(2)

The gas boiler model is a simplified representation that
primarily focuses on the heat input into the boiler combustion
chamber. It disregards any limitations arising from the pro-
cess or combustion control, such as the initial burner control
during start-up. For the water side of the boiler, a multinode
model is utilized to capture the time-dependent conditions.
The differential equation governing the gas boiler is given
as [27]:(

m · c ·
1
N

)
·
dTbus
dt

=

(
U · A ·

1
N

)
· (Tamb − Tbus)

+ (ṁbus · cf ) · (T in − Tbus) + QGB
(3)

To define (3), the law of conservation of energy and the
first law of thermodynamics are employed. In this expression,
the rate of change of the gas boiler’s outlet temperature with
respect to time equals the sum of heat transfer with the
surroundings due to the heat flow through the boiler ducts
(first term), the amount of heat required to raise the water
from the inlet temperature to the desired outlet temperature
(second term), and the heat supplied by the gas boiler, QGB
(third term).

The electric boiler is modelled as an electric heater, utiliz-
ing electricity to heat the incoming mass flow of the water
network for domestic hot water consumption. A thermal
node represents the thermal inertia of the heater and account
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for losses to the surrounding environment. The equation
governing the electric boiler is described by [26]:

mcp ·
dTEB
dt

= U · A · (T amb − TEB)

+ (ṁwater · cp) · (Tbus − TEB) + PEB (4)

which was defined using the law of conservation of energy
and the first law of thermodynamics. In (4), the rate of change
of temperature at the outlet with respect to time, considering
the boiler’s capacity mcp, is expressed as the losses to the
surroundings due to heat flow through the boiler pipes (first
term), the heat required to raise the water temperature from
the inlet temperature to the desired outlet temperature (second
term), and the required electrical power, PEB (third term).

B. ELECTRICITY VECTOR
The PV system implementation described in [28] is chosen
due to its proven accuracy and simplicity [29]. The I-V char-
acteristics of this model are obtained by providing irradiance
and temperature as input. The model comprises a diode,
a controlled current source, and two resistances (one in series
and one in parallel). The mathematical expression for the
output current of the PV system is as follows:

IPV = IL − Isat

(
e
q(VPV+IPV Rs)

NsKTPV

)
− (VPV + IPVRS )/Rsh (5)

IL = LL0(1+K0(TPV−300)
Gs
Gn

(6)

Isat = K1T 3
PV e

−qVg/TPV (7)

This paper employs a BESS model derived from the Sim-
PowerSystems Toolbox of Simulink [30]. To ensure accuracy,
modifications have been made to accurately depict the V-I
and V-SOC curves, as well as the dynamic response of the
battery, based in datasheets information. The model consists
of a series resistance and a variable voltage source.

VBESS = EBESS − IBESS · Rint (8)

Additionally, the battery state-of-charge (SOC), which
is calculated from the BESS current variation, is a crit-
ical parameter that requires a suitable control to prevent
overcharging or deep discharging.

III. FUZZY LOGIC-BASED DYNAMIC EMS AND CONTROL
LOOPS
This section introduces the novel fuzzy logic-based dynamic
EMS and the control loops proposed for the MEMG
described in Section II. The primary objective of the EMS is
to maintain power balance (electrical and thermal) by coordi-
nating the operation of the gas and electric boilers alongside
the production of the PV power plant, BESS, and thermal and
electrical loads, while minimizing the utilization of the local
grid.

This goal allows the MEMG to operate as an independent
MG, while the control loops ensure the local control of each
component. In this context, the electric boiler control loop

FIGURE 2. Overall MEMG scheme control.

regulates TEB following a hysteresis cycle. The gas boiler
control loop is implemented using a PI controller, which
regulates Tbus. Additionally, the MPPT strategy based on P&
O algorithm is implemented for the PV power plant, and the
BESS is controlled according to its SOC. The EMS acts as a
supervisory control for the entire MEMG.

A. FUZZY LOGIC-BASED DYNAMIC EMS
The proposed FL-based dynamic EMS relies on taking into
account the renewable available power (PPV ), the electric
load and the BESS SOC to determinate dynamically the oper-
ating point of the thermal components of the MEMG, which
involves varying TEB, PEB, Tbus and QGB, while satisfying
both electrical and thermal demands. Besides, the fuzzy logic
system ensures power balance (both electrical and thermal)
and minimizes the utilization of the local grid.

By employing fuzzy logic, the boiler can operate over a
wide temperature range generating both the turn-on (TminEB )
and turn-off (TmaxEB ) temperatures in the electric boiler. The
reference bus temperature can also be adjusted depending on
the MEMG needs.

The novelty in the proposed FL-EMS lies in its structure
and its objective to coordinate the operation of electrical and
thermal components. It is based on knowing the available
energy in the MEMG at each moment. For this purpose,
it only needs two parameters: the gross net power (P′

NET ) and
the BESS SOC. It provides the output signals TmaxEB , PEB and
Tbus, which allow understanding the energy consumption of
the electric and gas boilers.

The designed FL controller considers two inputs and three
outputs, as shown in Fig. 2. In MGs, the difference between
renewable power and demanded load is typically defined as
PNET . For the EMS presented in this paper, the demanded
load is divided into the electrical load (power demanded by
the dwelling) and the power demanded by the electric boiler.
In addition, P′

NET is defined as PNET without considering the
electric boiler demand (PEB):

P′
NET = PPV − PLOAD (9)

PNET = PPV − (PLOAD + PEB) (10)
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Note that the BESS power (PBESS ) can be calculated as the
difference between P′

NET − PEB and is limited by its current
SOC, as described in Eqs. (11) and (12) and illustrated in
Fig. 2.

PmaxBESS,dis = min
(
PmaxBESS ,

EnomBESS

1t
·

(
SOC − SOCmin

100

))
(11)

PmaxBESS,ch = min
(
PmaxBESS ,

EnomBESS

1t
·

(
SOCmax − SOC

100

))
(12)

PBESS constraints shown in Eqs. (11) and (12) determine
the maximum power that the BESS can handle (PmaxBESS ).
On the one hand, PmaxBES is limited according to the rated power
of the BESS. In addition, the SOC restriction guarantees that
the maximum power available is limited according to the
SOC in each moment without exceeding a threshold value.

This restriction is based on maintaining the SOC level
within a safe operating zone, defined by upper and lower
limits (SOCmax ,SOCmin). The upper limit is set at 90 % and
the lower limit to 30%. TheBESS cannot be discharged below
SOCmin or charged above SOCmax .
Furthermore, in discharging mode, the maximum power

delivered by the BESS is proportional to the SOC level when
the SOC is between 30% and 50%.

The design of the FL-EMS consists of three stages, namely:
fuzzification, rule-base, and defuzzification. The fuzzifica-
tion module transforms physical values into a normalized
fuzzy subset, consisting of an interval for the range of input
values, and an associated membership function describing
the confidence levels that the input belongs to this range.
The purpose of this step is to make the physical input signal
compatible with the fuzzy control rule base at the core of the
controller.

Five membership functions (MFs) are utilized for fuzzi-
fication to define P′

NET : negative high (NH), negative (N),
zero (Z), positive (P) and positive high (PH). Three MFs are
employed for SOC, PEB and T EBmax : low (L), normal (N) and
high (H). TGB is defined with twoMFs: low (L) and high (H).

The rule base process is crucial for achieving the ultimate
goal of minimizing energy consumption. It focuses on deter-
mining the operating mode of the output variables based on
the input variables.

The MF distribution is shown in Fig. 3. In this study,
15 rules (see Table 1) are used to determine the system behav-
ior using a Mamdani-type inference method. This method
was chosen due to its ease of implementation and its ability
to handle nonlinear systems. Its flexibility and adaptability
to new data or system changes make it suitable for dynamic
scenarios, as is the case investigated in this study [31].
Serving as an intermediary between the control rule base

and the physical system under control, the defuzzification
module acts as a bridge, converting the controller outputs
(produced by the control rule base in fuzzy terms) into precise
values that the system can handle. In this article, the centroid

FIGURE 3. Membership functions: a) Gross net power (P ′

NET ), b) BES SOC,
c) electric boiler power (PEB), d) electric boiler turn-off temperature
(T EB

max ), and e) temperature in the thermal bus (T bus).

method is employed as the defuzzification technique.

u ((k + 1)T ) =

∑N
i=1 µUi (ui (kT )) · ui(kT )∑N

i=1 µUi (ui (kT ))
(13)

Here, T represents the sampling time, and u(kt) denotes
the value of the new control action change, ui refers to the
fuzzy subsets comprising bounded intervals with their asso-
ciatedmembership functions, andµU denotes the weights for
centroid defuzzification.

Fuzzy logic enables a flexible consumption pattern by
dynamically adjusting PEB based on P′

NET and SOC, rather
than keeping it constant its rated power. For instance, when
P′
NET is positive and SOC is high, the electric boiler oper-

ates as the primary heat source, and the BESS charges
accordingly. Conversely, if P′

NET is negative and SOC is
low, the available PEB decreases, restricting the BESS from
discharging.

A similar approach is employed for bus thermal tempera-
ture control, where Tbus varies across a range of temperatures,
providing multiple operating points. This control struc-
ture promotes intelligent energy usage and reduces energy
consumption, as discussed in Section IV.
Designing an EMS requires a deep understanding of

the overall system. Inefficient design can lead to complex
EMS structures. Previous studies using FL for the EMS of
a MEMG often require complex structures. For instance,
14 input parameters and 45 rules was used in [32], 27 infer-
ence rules and 3 input variables with 3 membership functions
each in [33], and 3 membership functions for each of the
5 selected input variables in [34], resulting in a total of
243 rules.

In contrast, this article proposes a simplified and eas-
ily reproducible structure for other MEMG architectures.
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TABLE 1. Rule base of the fuzzy logic EMS.

It utilizes only two input variables: net power P′
NET (with

5 membership functions) and SOC (with 3 membership
functions). This results in a significantly reduced set of
15 inference rules for optimal FL operation, making it
adaptable to MEMG designs with similar characteristics.

B. CONTROL LOOPS
Fig. 2 shows the proposed control loops for the critical com-
ponents of the MEMG. During the heating process, hot water
flow and underfloor heating often fluctuate. The thermal bus
control subsystem is responsible for maintaining Tbus at the
desired reference value (T refbus).
This is achieved by using a gas boiler to increase the

temperature of the incoming water and managing the bus
according to the demand for underfloor heating and hot water
usage. To accomplish this, a PI controller is employed to
regulate QEB and achieve the target bus temperature. This
approach allows the power delivered by the gas boiler to be
adjusted to meet the temperature requirements rather than
operating in an all-or-nothing operation.

The electric boiler temperature control subsystem regulates
the output temperature of the electric boiler (TEB), based on
TmaxEB provided by the EMS. Effective temperature regulation
is achieved through the implementation of a hysteresis control
cycle.

In this process, the EMS determines the maximum temper-
ature mode for the electric boiler (TmaxEB ) and the minimum
temperature mode for the hysteresis cycle (TminEB ) is set at 5

◦C
lower than T EBmax . As a result, the electric boiler is activated
until it reaches the upper threshold, and then it is deacti-
vated until it reaches the lower threshold. This approach
ensures temperature control without requiring a constant
power supply to the boiler.

The MPPT strategy employs the PV voltage (VPV ) and PV
current (IPV ) to calculate the maximum power point voltage
(V ∗

PV ) for each operating condition. To achieve this, the Per-
turb & Observe (P&O) algorithm is selected to perform the
MPPT.

This strategy operates by changing the PV voltage and
analyzing the output power. Based on these observations, the
P&O technique calculates the necessary adjustment direction
to approach the maximum power point (MPP).

IV. RESULTS AND DISCUSSION
This section evaluates the performance of the MEMG
proposed in Section II, including the fuzzy logic-based

dynamic EMS and control loops presented in Section III.
MEMG modelling and simulations were performed using
MATLAB/Simulink.

The analysis is structured into three sections. First,
Section IV-A focuses on the performance of the fuzzy
logic-based dynamic EMS. The thermal control of the
MEMG is discussed, considering the performance of both the
thermal and electrical components of the MEMG.

To illustrate the advantages of the designed fuzzy-logic
supervisory control, the results are compared with a flowchart
control in Section IV-B. Finally, Section IV-C presents
a hardware-in-the-loop experimental setup to validate the
MATLAB/Simulink simulations. In this experimental setup,
the power system is implemented on an OPAL-RT4512 unit,
while the proposed control systems are executed on a
dSPACE MicroLabBox unit. The results are then displayed
on a Yokogawa DLM4038 oscilloscope, where the signals
are scaled down and measured in real time according to the
references sent by the dSPACE controller board.

A. EVALUATION OF THE DYNAMIC FUZZY LOGIC-BASED
EMS
To ensure a proper response of the dynamic behavior of
the MEMG, it is tested over a varying profile of climatic
conditions, water consumption, underfloor heating demand
and domestic electrical loads over a four-hour simulation.

Fig. 4 shows the profile data for water consumption
(ṁwater ), irradiance of the PV power plant, and underfloor
heating demand (QUH ).
Fig. 5 shows the electrical and thermal powers of the

MEMG. The power balance for electrical powers is illustrated
in Fig. 5a. Between 0 to 2500s, the PV power plant produces
17.95 kW, while the electric boiler consumes 21.5 kW when
it is turned on. When the electric boiler reaches the upper
temperature setpoint determined by the hysteresis control,
it is turned off. In this situation, the BESS is charged at a
higher value of 16.95 kW.

When the electric load demand (PLOAD) increases, P
′
NET

decreases, and consequently, PEB decreases in accordance
with the reference signal generated by the fuzzy logic-based
dynamic EMS.

At 7500s, the PV production drops to 6.3 kW. This oper-
ating condition implies that as PLOAD increases, the BESS
changes to discharging mode while PEB reduces due to lower
renewable power availability. The BESS remains in discharg-
ing mode, and when the SOC is near to the minimum SOC
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FIGURE 4. MEMG operating parameters.

FIGURE 5. Balanced power for fuzzy logic-based dynamic EMS:
(a) Electric powers and (b) thermal powers.

level (SOCmin = 30%), the BESS is not able to fulfill the
demands, and the local grid must provide the necessary power
to the MEMG. The fuzzy logic-based dynamic EMS, upon
receiving signals indicating a lower SOC and lower PPV , sets
a minimum value for PEB.

The thermal power balance is illustrated in Fig. 5b. It shows
the heat extracted from the bus due to hot water consumption
in the fuzzy logic control (QoutEB ), the heat injected by the
electric boiler in the fuzzy logic control (QEB), and the heat
provided by the gas boiler (QGB).

As seen, when there is an increment in ṁwater orQUH ,QEB
increases its value. Consequently, QGB is incremented to
maintain the bus temperature at the required value.

FIGURE 6. (a) Electric boiler temperature for fuzzy logic (T EB), Bus
temperature control for fuzzy logic, (Tbus and T ref

bus), (b)Temperature drops
for fuzzy logic (T bus, T2, Tin) and (c) BESS SOC for fuzzy logic-based
dynamic EMS.

As discussed in Section III, the gas boiler is responsible
for maintaining the temperature of the thermal bus, while the
electric boiler increases the temperature to fulfill the domestic
hot water demand. Fig. 6a shows the measured electric boiler
output temperature for the fuzzy logic control (TEB) , which
varies according to the operation point of the MEMG at each
moment.

This figure also includes the measured temperature control
of the gas boiler for the fuzzy logic control (Tbus) and the ref-
erence temperature control (T refbus ). Heat exchangers connect
the different thermal components, and Tbus decreases due to
the heat extracted from the bus.

Furthermore, Fig. 6b represents the output temperature of
the gas boiler (Tbus), the temperature after the heat exchanged
with the electric boiler (T 2), and the temperature after the heat
exchange with the underfloor heating, which coincides with
the input temperature of the gas boiler (T in).

The BESS SOC control is represented in Fig. 6c. The
SOC is maintained between SOCmin and SOCmax . When the
SOC approaches SOCmin, the curve becomes less decreasing
for the discharging, aligning with the goal of not exceeding
SOCmin.

B. EVALUATION OF THE STATES-BASED EMS
To compare the fuzzy logic-based dynamic EMS discussed in
Section III, this section outlines an alternative EMS known
as states-based EMS, which is based on operating states.
Fig. 7 represents the flowchart of this EMS. It generates the
same variables as the fuzzy logic-based dynamic EMS, i.e,
to obtain T EBmax , PEB and Tbus, pursuing the same targets.

Similarly, the input signals are P′
NET , PEB, and the maxi-

mum power available in the BESS (Pmax
BESS ). The outputs are
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FIGURE 7. Flowchart states-based EMS.

the operating modes for the gas and the electric boilers, and
PBESS is calculated according to Eqs (11,12).
On the basis of these definitions, the following five

possible modes of operation are defined:
- High-temperature mode (HTM): When P′

NET> 0 and
P′
NET> 0.6·PratedEB , the system operates with excess

renewable power. In this mode, the electric boiler is
turned on, while the gas boiler operates at a lower tem-
perature. The excess renewable power is managed by the
BESS, which charges according to its SOC. Moreover,
if the electric boiler is turned off and P′

NET> 0.6·PratedEB ,
the EMS sends the order to turn on the electric boiler in
this operation mode.

- Normal-temperature mode (NTM): In the case of
P′
NET> 0, and P′

NET < 0.6·PratedEB , the electric boiler
operates in NTM, and the gas boiler increases its temper-
ature. The BESS discharges to meet the electric demand.
When P′

NET < 0.6·PratedEB and |PNET | < 0.3·PratedEB , the
boiler is turned on.

- Low-temperature mode (LTM): If P′
NET< 0, the elec-

tric boiler is activated at low temperatures, while the
gas boiler increases its temperature similarly to NTM.
If the boiler is turned off, it remains in the LTM.

- Off mode (NTM): When P′
NET> 0, and P′

NET < PratedEB ,
if |PNET | > 0.3·PratedEB , the boiler remains turned off in
NTM.

- Off mode (LTM): When P′
NET< 0 and the boiler is

turned off, it remains turned off in LTM.
The results for the states-based EMS are shown in Fig. 8,

which are denoted as ‘‘ST’’. The electric powers are repre-
sented in Fig. 8a. As mentioned above, the MEMG operation
is divided into HTM, NTM, and LTM. From 0 to 6000s, the
MEMG operates in alternating HTM and NTM modes. The
electric boiler consumes its rated power, which is 23 kW, and
the BESS is less charged than in Fig. 5a.
In contrast, when PLOAD increases, PEB is kept at rated

power, and the MEMG operates in MTM. This implies that
the BESS is further discharged to fulfill the demand. There-
fore, in this situation, the BESS handles the peaks value of
the domestic electrical loads and PEB. From 12000s onward,

the MEMG operates in LTM and PEB is decreased. Similarly,
when the SOC is near to SOCmin, the local grid injects the
required power to the MEMG as there is not renewable or
storage system energy available.

Analogously, the thermal powers are shown in Fig. 8.b,
where the same parameters are represented for the states-
based EMS:Qout−STE ·B ,QSTE ·B andQ

ST
G·B, respectively. As shown,

a minor amount of heat power is required for the fuzzy-logic
control to maintain the temperature, leading to a lower elec-
trical energy consumption of the electric boiler, as shown in
Table 2.
On the other hand, Fig. 8c shows the temperature of the

electric boiler for the states-based EMS (T STEB ). In this case,
T STEB is controlled in HTM and MTM from 0 to 6000s,
in MTM from 6000s to 10500s and in LTM from 10500s to
15000s. Moreover, Fig. 8c represents the measured tempera-
ture control of the gas boiler for the states-based EMS (T STbus)
and the reference temperature control (T ref−STbus ).
In this instance, T STbus takes a value of 30

◦C if the electric
boiler operates in HTM and a value of 35 ◦C if the electric
boiler operates in MTM or LTM. The temperature drops due
to the heat exchanged in the thermal bus are represented in
Fig. 8d for the states-based EMS, which are denoted as T STbus,
T ST2 and T STin .
Finally, to ensure the correct operation of the MEMG, the

energy balance in the thermal bus must be satisfied. This
means that the total heat extracted from the bus (Qcon), which
is the sum of the underfloor heating demand (QU ·H ), and the
heat extracted for the electric boiler (QoutE ·B), must be equal
to the heat injected by the gas boiler (QG·B) to maintain Tbus
according to T refbus .

Fig. 9a shows the energy balance for the fuzzy logic
control, while Fig. 9b represents the same concept for the
states-based control, where adequate responses are achieved
in both cases.

To provide numerical support to the above discussion,
it has been calculated how the electric boiler power is sup-
plied. The total energy consumed by the gas boiler can be
computed by integrating the supplied power. Table 2 illus-
trates the total energy consumed (EGB) for the fuzzy-based
EMS and the states-based EMS. The results demon-
strate a 7.36% reduction in consumption for the presented
fuzzy-based EMS.

Furthermore, Table 2 presents the energy consumed by the
electric and gas boiler. As seen, the energy demand of the
electric boiler (EEB) is reduced by 5.38 % for the fuzzy-
based EMS. The total consumption of the local grid (Egrid )
is notably reduced by 80.67% for the fuzzy-based EMS,
highlighting its superiority over the states-based EMS. The
savings lie in the fact that the proposed fuzzy-based EMS is
able to dynamically adjust the operating point of the electric
and gas boilers, while the state-based EMS maintains a fixed
consumption pattern for each operating mode. This dynamic
adaptation enables more efficient energy distribution, result-
ing in energy savings as demonstrated by the numerical
analysis.
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FIGURE 8. States-bases EMS (a) Electric powers and (b) thermal powers, (c) Electric boiler temperature T ST
EB , Bus temperature control (T ST

bus and
T ref

bus) and (d) Temperature drops (T ST
bus, T ST

2 , T ST
in ).

FIGURE 9. (a) Thermal energy balance for fuzzy logic-based dynamic EMS
and (b) electric power balance for state-based EMS.

Another interesting aspect to analyze is the technology
employed to supply the electric boiler. In terms of utilization,
the fuzzy EMS enables a 1.74% increase in renewable power
utilization (GPV ), and a 4.93% rise in BESS power utilization
GBESS ). This results in a 6.67% decrease in grid utilization
(GGRID) when compared to states-based EMS. Consequently,
the grid is also less employed to fulfill the demand in each
case, demonstrating the superiority of the proposed fuzzy
EMS.

It is essential to note that despite the different control
schemes used, the average temperatures for the electric boiler
(T avgEB ), and the gas boiler (T avgGB ) are very similar in both
cases, ensuring consistent thermal comfort, as demonstrated
in Table 2.

In addition to an energy-based comparison, this section
presents themetrics used to quantitatively evaluate the control
performance of the FL-EMS compared against the SB-EMS,
as well as the BESS SOC behavior and the temperature

TABLE 2. Numerical comparison between fuzzy logic-based dynamic EMS
and states-based EMS.

gradient in the gas boiler. Table 3 summarized the numerical
results.

Firstly, performance indices including the Integral Time
Absolute Error (ITAE), Integral Time Squared Error ITSE),
Integral Absolute Error (IAE), and Integral Squared Error
(ISE) are computed for of the regulated Tbus with respect to
its reference, T refbus , and for the regulated QGEN with respect
to QCON . The results show an improvement in ITAETbus of
42.57%, in ITSETbus of 89.1%, IAETbus of 54.36%, and in
ISETbus of 57.55%. Regarding the thermal balance control,
the improvement in ITAEQ is 17.06%, in ITSEQ is 52.5%,
in IAEQ is 31.19%, and in ISEQ is 29.99%.
Employing FL-EMS results in an increase of 5.03% in

the maximum BESS SOC (SOCmax), 1.6% in the minimum
BESS SOC (SOCmin), and 3.98% in the average BESS SOC
(SOCavg). This demonstrates that the BESS is managed more
effectively with the proposed FL-EMS.

Finally, the temperature gradient in the gas boiler is calcu-
lated, which is defined as 1T = (Tbus − Tin). The parameter
1T is directly related to the heat that the gas boiler must gen-
erate to meet the thermal demand. The results showa decrease
in the temperature gradient for the FL-EMS of 7.29%.
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TABLE 3. Metrics for evaluate the fuzzy logic-based dynamic EMS and
states-based EMS.

FIGURE 10. Experimental HIL setup implemented in the
laboratory:(a) Scheme, (b) Photo.

C. HARDWARE-IN-THE-LOOP (HIL) VERIFICATION
Fig. 10a shows the schematic of the experimental setup
built in the laboratory to perform a real-time simulation
based on the HIL. The power system is implemented
using an OPAL-RT4512 unit, a real-time HIL simulator
designed for executing and testing models created using
MATLAB/Simulink.

It is specifically programmed using RT-Lab software,
enabling efficient model implementation and testing. The
control system is executed on a DSPACEMicroLabBox unit,
programmed using Simulink. DSPACE MicroLabBox is a
hardware device dedicated to rapid control prototyping and
algorithm testing.

It incorporates a powerful FPGA, and a comprehensive
suite of I/O interfaces. Real-time simulation visualization
is achieved using a Yokogawa DLM4038 oscilloscope.
The Yokogawa DLM4038 is a digital storage oscilloscope

FIGURE 11. Experimental results: (a) Electric power balance,
(b) Temperature control and (c) Thermal power balance.

specifically designed for accurate waveform analysis.
Fig. 10b illustrates the experimental setup.

It is worth noting that the OPAL-RT4512 analogue out-
puts operate within the range of −16V/+16V. Consequently,
signals measured in the MATLAB/Simulink simulation must
be scaled down to ensure proper representation on the
oscilloscope.

Fig. 11a represents the electric power balance for
fuzzy-based dynamic EMS during a 3000s real-time simula-
tion. Initially, the signals were scaled down by dividing them
by 2000. Subsequently, a scale of 5V/div was employed to
visualize the signals, and a scale of 300 s/div was selected as
the time scale.

For instance, the PPV signal (blue) exhibits a value of
17.95 kW in the first stage of the simulation, as seen in
Fig. 5a. When divided by 2000 and represented in a scale of
5V/div, the measured signal is approximately 9 V, consistent
with the performed scaling.

A similar procedure was applied to the remaining signals:
PGRID(yellow), PEB(green), PBESS(purple), and PLOAD(red).

The obtained results confirmed that no energy was con-
sumed from the grid and verified the results obtained from
MATLAB/Simulink, as shown Fig. 5a.

Fig. 11b shows the temperature control for fuzzy-based
dynamic EMS. In this case, the signals were scaled down
by dividing them by 2000. A scale of 2V/div is employed
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to represent the signals, and the scale of 300 s/div is kept.
Tbus(yellow) exhibits a value of 32◦C in the first stage of
simulation (Fig. 6a). When divided by 5 and represented on
a scale of 2V/div, the measured signal is 6.4 V, confirming
accurate representation. The same scaling procedure was
applied to T refbus (green) and TEB (purple). It was verified that
Tbus is controlled according to T

ref
bus , and the measured results

for TEB are consistent with the simulated results (Fig. 6a).
Finally, Fig. 11c illustrates the heat bus control for

fuzzy-based dynamic EMS. The signals were scaled down by
dividing them by 1000. A scale of 2V/div was used to repre-
sent the signals, and the scale of 300 s/div was maintained.

For instance, QGB (yellow) takes a value of 7.5 kW at
the beginning of the simulation (Fig. 9a), and when divided
by 1000 and represented in a scale of 2V/div, the measured
signal is 7.5 V, further confirming correct representation.
The experimental results corroborate the heat control in the
thermal bus. The results obtained in the HIL-based real-
time simulation have verified the correct performance of the
proposed MEMG.

The results validate the effectiveness of both the dynamic
models and the proposed novel FL-EMS for MEMGs. The
FL-EMS demonstrated significant improvements in terms
of energy efficiency and dynamic control of MEMGs. This
work could be extended by considering the optimal opera-
tional costs in the energy distribution, and exploring demand
response services to enhance the operational flexibility of
MEMGs.

V. CONCLUSION
Traditionally, MEMG studies have employed a static
approach, with optimization algorithms operating over daily
or weekly time horizons. These models, typically linearized
around a single operating point, may become ineffective
when operating conditions deviate. The dynamic study of
MEMGs, encompassing real-time control and management
systems, which could be improved by the adoption of intelli-
gent control algorithms specifically designed for MEMGs.

This paper provided a dynamic control for a MEMG with
electricity and thermal vectors, encompassing generation,
energy storage and load systems. To effectively coordinate the
different energy vectors within the MEMG, a dynamic fuzzy-
based EMS was proposed. The validity of the proposed EMS
was evaluated through real-time HIL experimentation.

Minimizing energy consumption through real-time inter-
connection of diverse energy vectors represents an underex-
plored approach for optimizing the operation of MEMGs.

The proposed EMS was comparatively evaluated with a
state-based EMS. By dynamically adjusting the operating
point of the thermal generation sources based on available
renewable energy, the proposed fuzzy-based EMS achieved
a significant reduction of 80% in power grid consumption,
accompanied by a decrease of 7.4% in gas boiler consump-
tion, and a reduction of 5.4% in electric boiler consumption.
Additionally, compared to the states-based EMS, the use of

the PV plant increased by 1.74%, while BESS utilization rose
by 4.93% to feed the electric boiler.

The control of dispatchable and non-dispatchable systems
within the context of MEMGs is a sparsely addressed issue
in the literature. Concerning the control system, an 89.10%
improvement in ITSE was achieved when compared to the
states-based EMS for controlling the temperature of the
hot water circuit, and a 52.5% improvement in ITSE was
achieved for thermal balance control. Additionally, the aver-
age SOC was 3.98% higher, and the required temperature
jump in the gas boiler was reduced by 7.29%.

Despite the differences in energy dispatch between the
two EMS implementations investigated in this paper, the
findings demonstrated that thermal comfort was maintained
when either a gas or an electric boiler was adopted, while the
BESS SOC was effectively controlled within safe operating
thresholds. The comprehensive approach presented in this
paper ensures the efficient operation of the different vectors
within anMEMG, leading to significant savings in natural gas
consumption and overall energy consumption from the local
electricity grid, while complying meeting energy demand.
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