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ABSTRACT State estimation is paramount in control, monitoring, and fault management across various
domains. Uncertainty in model parameters and changing system dynamics pose significant challenges to
accurate state estimation. This paper proposes a novel adaptive estimation strategy called the Moving
Window Interacting Multiple Model (MWIMM). Using a moving window improves identifiability and
computational efficiency of the multiple model algorithms by focusing on a subset of possible models,
rather than considering all models at each stage. MWIMM enables the estimation of gradual changes in
the system, making it valuable for fault intensity and Remaining Useful Life (RUL) estimation. The paper
provides an overview of adaptive estimation strategies, presents the formulation of MWIMM for fault
intensity and RUL estimation, and investigates the parameter estimation problem. Results are compared
with those of augmented state Extended Kalman Filter (EKF) estimation, and it is shown that the proposed
MWIMM approach offers a promising alternative for effectively handling extensive parameter uncertainty
and accommodating gradual changes in system parameters.

INDEX TERMS Adaptive estimation, moving window IMM, fault diagnosis, RUL estimation.

I. INTRODUCTION
State estimation is an essential step in various fields, includ-
ing control, monitoring, fault management [1], [2] and control
of cyber-physical systems [3]. However, system states may be
partially observable or even unobservable. In addition to the
challenges posed by the unknown states, another important
barrier in state estimation is the uncertainty within the model
parameters. Since these parameters are often not precisely
known, the estimation process is inherently unpredictable
and imprecise. Moreover, system dynamics gradually change
over time due to aging. It is also possible that a system
undergoes abrupt changes, which include switching in the
entire system dynamics. Hybrid models are deployed to
capture this phenomenon. In such cases, estimating the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiajie Fan .

model parameters alongside the states becomes particularly
valuable, as it aids in detecting faults and predicting their
future behavior as well as allowing for proactive maintenance
and management.

State estimation accuracy heavily depends on the prior
knowledge of model parameters. When parameters are
precisely known, which is unrealistic in most applications,
the Kalman Filter (KF) offers optimal state estimation for
linear systems assuming zero-mean Gaussian noise [1].
Furthermore, in the presence of small parametric uncer-
tainties, the impact of parameter mismatch is typically
insignificant compared to the process noise, enabling the
KF to maintain a satisfactory performance [4]. However,
for scenarios involving moderate parametric uncertainty,
alternative approaches become necessary. One approach
involves introducing artificial white noise by increasing
specific elements of the process noise covariance matrix, Q,
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within the KF algorithm [4]. Another technique adaptively
adjusts the process noise covariance matrix by monitoring
residuals within the KF [5]. Alternatively, a robust estimation
strategy such as the Smooth Variable Structure Filter (SVSF)
with Variable Boundary Layer (SVSF-VBL) optimizes
estimation error while considering parametric uncertainty
through deploying a switching gain [6], [7].
In the presence of significant parametric uncertainty,

the traditional approach of increasing process noise and
treating it as equivalent to white noise within the KF
becomes inadequate. In this case, the effects of parametric
uncertainties become significant and cannot be considered
as added white noise [4]. Although SVSF can guarantee
boundedness of estimation error in the presence of large
uncertainties, it requires a large corrective gain, which
leads to chattering [8], [9]. While the mean error may
decrease rapidly due to this significant gain, the excessive
control action can result in a large Root Mean Square Error
(RMSE) for SVSF [10]. As an alternative, particle filters
are known nonlinear filtering techniques suitable for more
general systems characterized by unknown uncertainties
and non-Gaussian probability density functions (PDFs).
However, their performance is contingent on the number of
particles employed and they require very high computational
power. An infinite number of particles would be necessary
for the estimation error to converge to zero in an ideal
setting [11].
Joint state and parameter estimation offers an alternative

approach for dealing with extensive parametric uncertain-
ties and for accommodating gradual changes in model
parameters. However, this method presents challenges due
to its reliance on nonlinear filtering and calls for solving
complex nonlinear Partial Differential Equations (PDEs) to
obtain the optimal solution. The augmented state Extended
Kalman Filter (EKF) provides a suboptimal solution [12],
which is susceptible to bias estimation and divergence for
several reasons [13], [14]. Firstly, the augmented states lack
meaningful dynamics, making it challenging to intuitively
select the artificially introduced noise based on engineering
guesses [4]. Secondly, discriminative training methods for
determining the process noise covariance matrix depend
on measured states, and including augmented states can
negatively impact the training process [5], [15]. Additionally,
validity of linearization used in the EKF becomes compro-
mised in the presence of significant parametric uncertainty.
Moreover, incorporating augmented states can render the
system unobservable [12].
Alternatively, adaptive estimation strategies offer a dif-

ferent viewpoint that tackles significant uncertainties and
enables the estimation of abrupt changes in the system
that are a possible occurrence in hybrid systems and fault
detection scenarios. In this paper, a novel adaptive estimation
strategy is developed based on the InteractingMultipleModel
(IMM) method. The new algorithm called Moving Window
Interacting Multiple Model (MWIMM) offers the following
advantages compared to the traditional IMM algorithm:

• It is capable of estimating gradual changes in system
parameters, making it valuable for fault prognosis and
Remaining Useful Life (RUL) estimation problems.
This is achieved through utilizing parameter bins.

• It improves computational efficiency and avoids com-
binatorial explosion, which are two common problems
associated with MMAE algorithms including traditional
IMM strategy. This is accomplished by narrowing down
the search space to a specific window rather than
considering all potential models at each stage.

• It relaxes the assumed irreversible condition used in the
Updated IMM (UIMM) algorithm [16], [17], [18], thus
extending its application to a wider range of problem
domains.

The paper follows the subsequent structure: Section II
presents an overview of adaptive estimation strategies.
In Section III, the formulation of MWIMM for fault intensity
and remaining useful life estimation is presented. Section IV
investigates the application of the proposed MWIMM in
a comprehensive parameter estimation problem, comparing
the results with parameter estimation using augmented state
extended Kalman filter. Section V explores the influence of
three crucial factors—identifiability, optimality, and system
excitation—on the performance of the multiple model
adaptive estimation strategy in general and the proposed
method specifically. It is demonstrated through a case study
that for a Multiple Model Adaptive Estimation (MMAE)
strategy, observability of all models in the filter bank does
not guarantee identifiability. Finally, the paper concludeswith
summarizing remarks in the last section.

II. BACKGROUND: ADAPTIVE ESTIMATION STRATEGY
Adaptive estimation using multiple models for hypothesis
testing, known as Multiple Model Adaptive Estimation
(MMAE), proves to be a valuable tool for handling large
parameter uncertainty and hybrid systems characterized by
different system models with distinct parameter sets [4].
MMAE assumes that engineering knowledge can serve as
prior information about the hybrid models and the feasible
range of parameters. This approach enables the estimation
of system states while providing an algorithm to identify
changing parameters or the true underlying model. MMAE
finds extensive applications in real-time problems, including
autonomous vehicles [19], [20], target tracking [21], [22],
fault diagnosis [23], [24], [25], and fault-tolerant control
systems [16], [26], [27], [28]. The multiple model estimation
procedure involves three main steps: generating individual
state estimates that correspond to a given parameter vector,
evolving the hypothesis probability, and combining the
individual estimates.

In the realm of MMAE, two distinct approaches can
be observed: static and dynamic. Static MMAE assumes
the exclusive usage of a single model throughout the
entire process, without any transitions or jumps occurring.
Consequently, it is unsuitable for time-variant systems
characterized by changing parameters or instances where the
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system switches between different models. On the other hand,
dynamic MMAE is specifically designed for time-varying
systems and proves to bewell-suited for online fault diagnosis
or target tracing applications [1]. Notably, within the realm
of dynamic MMAE, three widely recognized strategies are
the General Pseudo-Bayesian estimator of the first order
(GPB1), the General Pseudo-Bayesian estimator of the
second order (GPB2), and the Interacting Multiple Model
(IMM). Among these, IMMgained interest due to its reported
computational efficiency while maintaining a performance
comparable to that of GPB2 [1]. As a result, IMM emerges as
a promising choice for dynamic MMAE applications. Hence,
the proposed method in this study is built on IMM.

III. MOVING WINDOW INTERACTIVE MULTIPLE MODEL
FOR FAULT INTENSITY AND REMAINING USEFUL LIFE
ESTIMATION
The novel Moving Window Interactive Multiple Model
(MWIMM) strategy is proposed and is well-suited for
addressing problems characterized by a gradual progression
of degradation, such as estimating a system’s Remaining
Useful Life (RUL) and measuring fault intensity. Assessment
of RUL involves evaluating the level of degradation in a
system and estimating its remaining operational lifespan,
with the estimation of battery State of Health (SoH) being a
prominent example. Precise fault intensity measurement is a
fundamental pillar in prognostics and condition monitoring
applications. Taking account of the inherent chronological
order involved in these issues, the MWIMM strategy can
effectively estimate RUL and quantify fault intensity, incor-
porating supplementary temporal information to enhance
computational efficiency, and improve identifiability com-
pared to the IMM strategy. Consider a general linear system
that is subject to switching as described below:

x(k) = A(M (k))x(k − 1) + B(M (k))u(k)

+ v(k − 1,M (k)), (1)

z(k) = C (M (k)) x(k) + D (M (k))u(k)

+ w (k,M (k)) . (2)

In this context, x(k) and z(k) are state and measurement
vectors respectively, M (k) represents the true model at time
k , while A (M (k)), B (M (k)), C (M (k)), and D (M (k))
refer to the system matrices associated with model M (k).
Additionally, v (k − 1,M (k)) andw (k,M (k)) represent the
process and measurement noise corresponding to model
M (k), respectively. These systems are also known as jump-
linear systems, assuming that the mode jump process exhibits
left continuity [1]. This means that the influence of the new
model initiates from time k onwards. The vector x(k), which
takes on continuous values, and the discrete variable M (k)
are sometimes denoted as the base state and modal state,
respectively [1].

The model at time k is assumed to be among theN possible
fault severity levels as:

M (k) ∈
{
MFL[i]

}N−1
i=0 , (3)

where the subscript FL[i] stands for the fault intensity level
of ‘‘i’’. A larger ‘‘i’’ means the model has a more severe
fault (i.e., the model MFL[0] corresponds to a healthy system
or zero fault intensity level, and model MFL[i] has the fault
intensity level of ‘‘i’’). Similarly for RUL estimation,M (k) is
assumed to be among the N possible RUL levels as:

M (k) ∈
{
MRUL[i]

}N−1
i=0 . (4)

Here, the index ‘‘i’’ serves as an indicator of the system’s level
of degradation. For instance, the modelMRUL[0] corresponds
to zero degradation or the maximum RUL, while the
model MRUL[i] represents the RUL level associated with the
degradation level ‘‘i’’ of the system. In a general formulation
applicable to all level-basedmodel sets, such as fault intensity
level sets or RUL level sets, (3) and (4) can be expressed as
follows:

M (k) ∈
{
ML[i]

}N−1
i=0 . (5)

In this context,ML[i] represents the model corresponding to
level ‘‘i’’. Assuming that the model switching follows a
Markov process with a known mode transition, a common
assumption in MMAE strategies leads to the following [1]:

pij := P
{
M (k) = ML[j]

∣∣M (k − 1) = ML[i]
}
. (6)

The mode transition probabilities, represented by pij,
are constant over time and independent of the base state.
To account for the inherent temporal information associated
with the chronological order, it is possible to build the
transition matrix assuming that the transition probability
increases when the model levels are in close proximity,
as illustrated in (7):

|i− j1| < |i− j2| → pij1 > pij2 . (7)

In contrast to the IMM strategy, the MWIMM approach
utilizes a filter bank that includes only neighboring models
of the matched model, incorporating information aligned
with the chronological order. Consequently, the number of
filters operating in parallel depends on the chosen size of the
moving window that defines the neighborhood. As illustrated
in Fig. 1, when a model transition occurs, signifying a
change in the matched model, the moving window adjusts
accordingly. Regarding the initial condition, it is reasonable
to assume that the system is in a healthy state (level zero)
at the commencement of the process. However, the proposed
algorithm can start from any other initial condition.
Remark 1: In cases where the true model is not included

within the model bank contained in the window employed
by the MWIMM approach, an automatic adjustment takes
place. Such cases can occur due to incorrect initial conditions
or a significant and abrupt change during the process
that pushes the model outside the window. The adjustment
process involves initial convergence towards the ‘‘nearest’’
model [29], followed by the subsequent sliding of the
window’s position.
Remark 2: In general, it is advisable to opt for an

odd-sized window in the MWIMM framework, with the
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FIGURE 1. Flowchart illustrating the MWIMM approach for estimating RUL and addressing fault intensity issues.

matched model positioned at the center. This choice helps
prevent any bias towards switching to higher or lower levels.
However, depending on the application, it is permissible to
employ a skewed window that tilts toward a specific direction.
For instance, in the case of RUL estimation, where switching
consistently occurs in the direction of lower RUL due to
the nature of aging, the MWIMM design can incorporate
a skewed window that promotes switching predominantly in
that specific direction.
Remark 3: The applicability of the MWIMM strategy

extends to nonlinear systems by employing linearization
techniques, following the same underlying principles utilized
in the IMM strategy [1].
Remark 4: The computational efficiency of the MWIMM

approach is enhanced by reducing the number of running
filters, number of combinations and number of proba-
bility calculations in comparison to the IMM strategy.
This improvement is demonstrated in Table. 1, where ‘‘n’’
represents the size of themovingwindow and ‘‘N’’ denotes the
total number of models. The same strategy can be applied to
GPB1 and GPB2 estimators using targeted moving windows,
known as MWGPB1 and MWGPB2 respectively, in Table. 1,
resulting in improved computational efficiency.

Based on Remark 1, it can be inferred that selecting a
window of size n = 3 with the matched model in the center is
generally adequate since the MWIMM strategy adjusts the
window position over time to encompass the true model.
However, in situations where the model levels are closely
spaced, resulting from selecting small bin levels, and the
system undergoes rapid changes, the sliding window may
lag behind and fail to converge to include the true model
in a timely manner. Increasing the window size addresses
this issue by sacrificing computational efficiency (as shown

in Table. 1), but it facilitates the inclusion of the true
model within the sliding window and expedites convergence.
Further elaboration on these issues will be provided in
the subsequent section, which discusses the selection of
MWIMM parameters for parameter estimation problems.

IV. MOVING WINDOW INTERACTIVE MULTIPLE MODEL
FOR PARAMETER IDENTIFICATION
TheMWIMM strategy can be applied in a general context for
parameter identification tasks when system parameters are
unknown and potentially subject to time variations. Consider
a general linear system as follows, with parameter θ (k) being
unknown and time-varying:

x(k) = A (θ (k)) x(k − 1) + B (θ (k))u(k)

+ Q (θ (k)) v(k − 1), (8)

z(k) = C (θ (k)) x(k) + D (θ (k))u(k)

+ R (θ (k))w(k), (9)

where A (θ (k)), B (θ (k)), C (θ (k)), and D (θ (k)) represent
system matrices, Q (θ (k)) and R (θ (k)) denote the matrices
associated with process noise and measurement noise,
respectively, as functions of θ (k). Without loss of generality
θ (k) is assumed to be bounded as follows:

β1 ≤ θ (k) ≤ β2, (10)

Then, the set ofmodels can be created based on discretizing
the value of θ (k) to N bins as:

θi := β1 +
2i+ 1
2N

(β2 − β1)

where i ∈ {0, 1, . . . , N − 1}, (11)

M (k) ∈
{
ML[θi]

}N−1
i=0 , (12)
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TABLE 1. A comparative analysis of computational requirements among various MMAE strategies.

FIGURE 2. Parameter identification using the MWIMM strategy.

where θi represents the central value of the ith bin, and
ML[θi] corresponds to the model associated with parameter
θi, which can be derived based on (8) and (9). The total
number of models (N ) depends on the chosen bin size for
θi. Thus, identification of parameter θ entails determining
the model M (k) in (12), which can be solved using the
MWIMM strategy. Opting for a smaller bin size enhances
the resolution for identification of θ ; however, this leads
to closely spaced ML[θi] models, posing a greater challenge
for MWIMM in terms of identification. Fig. 2 illustrates
the application of MWIMM in a parameter identification
context for estimating a time-varying parameter. This figure
highlights the importance of two additional parameters: the
window size and the updating time for the MWIMM sliding
window. Remark 1 suggests that a window size of n = 3,
with the matched model positioned in the center, is generally
sufficient. However, for improved performance, the window
size can be determined by considering the confidence
interval of the Probability Density Function (PDF), if such
information is available (as depicted in Fig. 2). The impact of
the updating time and bin size will be extensively investigated
in the following section through several case studies.
Remark 5: If the probability distribution function of the

parameter to be identified (θ) is available, the transition
matrix for the MWIMM strategy can be formed accordingly.
Remark 6: The aforementioned approach can also be

applied for identification of multiple parameters by utilizing
a parameter vector (θ ), whereby the number of models grows
exponentially with respect to the number of parameters to be
identified.

A. CASE STUDY: SECOND ORDER SYSTEM PARAMETER
IDENTIFICATION
This section utilizes the MWIMM strategy with the Kalman
Filter as the underlying filter (referred to as MWIMM-KF)
to estimate the natural frequency of a second-order system.
Assuming that only the first state has been measured, the
state-space model (13) represents a generic second-order
system with parameters such as damping ratio ζ , natural
frequency ω0, measurement noise w(k), and process noise
v(k):

x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsω2

0x1(k) + (1 − 2Tsζω0) x2(k)
+Tsbu(k) + v2(k),

z(k) = x1(k) + w(k), (13)

where Ts denotes the time-step and u is the system input. Let
us assume that the parameters of the system are specified
as follows: ζ = 0.1,b = 100, uncorrelated process
noise v1 (k) ∼ N

(
0, 10−12) and v2 (k) ∼ N

(
0, 10−6),

and measurement noise w (k) ∼ N
(
0, 10−10). Given that

the system behavior changes gradually over time due to
variations in the natural frequency, the MWIMM strategy
can be employed to estimate the natural frequency. In this
approach, a window size of three is chosen, limiting the
consideration to threemodels in the filter bank at each instant.
To ensure a high resolution, the bin size for the natural
frequency is set to 0.05 Hz. The sampling time used in the
filter is 0.002s, while the updating time bin for the sliding
window (Tu) is 1s. The transition matrix Pij, initial mode
probability µ(0), and mode probability threshold for sliding
µThreshold , are determined as follows:

Pij =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 , µ(0) =

0.25
0.5
0.25

 ,

µThreshold = 0.5. (14)

The threshold for the mode probability in the sliding
window reflects the sliding window’s sensitivity to model
transitions. A higher threshold value makes the MWIMM
window reluctant to slide, thereby minimizing false transi-
tions caused by noise. However, it also reduces the sensitivity
of the estimation to parameter changes. In this case study,
a threshold of 0.5 is chosen to ensure that sliding occurs only
when the new ‘‘matched model’’ has the highest probability
among themodel banks. Theminimum threshold can be set as
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the maximum mode probability at each time step to establish
a reference level.

The covariance matrices used for the Kalman filter are
derived from the measurement and process noises in the
following manner:

Q =

[
10−12 0
0 10−6

]
, R = 10−10,

P (0|0) =

[
1 0
0 1

]
. (15)

The results illustrated in Fig. 3 show the MWIMM-
KF’s effective estimation of both states, while successfully
identifying the gradual change in the natural frequency. With
a chosen window size of three (n = 3), Fig. 3a displays
three mode probabilities: ‘‘Model Low,’’ ‘‘Model Mid,’’ and
‘‘Model Up,’’ corresponding to models with lower, middle,
and higher natural frequencies within the window. When
the mode probability of ‘‘Model Up’’ surpasses the others
(t between 25s and 125s), it signifies an increasing natural
frequency, prompting an upward slide of the MWIMM
window. Conversely, when the mode probability of ‘‘Model
Low’’ exceeds the others (from t = 175s to t =

275s), it indicates a decreasing natural frequency, causing
the window to slide downward. Finally, when the mode
probability of ‘‘Model Mid’’ outweighs the others (t ≤

25s or 125s ≤ t ≤ 175s or 275s ≤ t), it signifies a
constant natural frequency, resulting in the window to remain
stationary. In Fig. 3b, the estimated natural frequency exhibits
step levels with a resolution of 0.05 Hz, derived from the
chosen frequency bin in the MWIMM models.

To achieve the same level of resolution (0.05 Hz) with
traditional IMM, assuming the upper and lower bound of
natural frequency are known to be 2 and 4 Hz respectively,
40 filters needed to be run simultaneously, compared to
the 3 filters used in the MWIMM approach. Based on
Table. 1, the number of probability calculations needed for the
IMM algorithm becomes 1640 compared to 10 calculations
needed for the MWIMM. Therefore, it is computationally
infeasible to estimate the natural frequency with the same
resolution using the traditional IMM. Even with access to
substantial computational power, accuracy would be an issue
due to the combinatorial effect of the 1640 hypotheses that
must be handled in each step. One approach to make the
IMM feasible is to decrease the resolution. For example,
given similar computational resources, the IMM resolution
would be 1 Hz (20 times less accurate than MWIMM
used here), while it still needs an extra assumption that the
upper and lower bounds are known. Consequently, the IMM
algorithm in its current format is inadequate for estimating
gradual parameter changes. An alternative method involves
employing joint state and parameter estimation techniques,
such as the augmented state Kalman filter. This approach
results in a system of partial differential equations that are
difficult to solve and may make the system unobservable.
Further elaboration on this issue can be found in Section V.

FIGURE 3. Using MWIMM-KF for estimating the time-varying parameter
of a second-order system.

1) EFFECT OF BIN SIZE AND UPDATING TIME
The choice of bin size within the MWIMM strategy
significantly impacts the process of parameter estimation
by influencing both the accuracy and convergence of the
estimation. A smaller bin size enhances the resolution
of the estimated parameter, allowing for finer details to
be captured. However, when a parameter undergoes rapid
changes,MWIMMwith a small bin sizewill slide thewindow
of the filter bank slower than the rate of parameter change
and will fail to converge to the true value in a timely manner.
This issue is shown in Figure 4, where Bin1 demonstrates
a scenario in which the MWIMM strategy lacks sufficient
time to effectively track the gradual change in the target
parameter. To address this challenge, one potential solution
is to increase the window size (n > 3), allowing for a
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FIGURE 4. Schematic depiction of the effect of the rate of change of a
parameter on determining an appropriate bin size.

FIGURE 5. Estimating natural frequency for different bin sizes.

larger interval to be covered in each update. Nevertheless,
this approach necessitates running more filters in parallel,
leading to increased computational demand and a higher risk
of combinatorial explosion [16]. Additionally, employing a
small bin size diminishes the difference between the models
in the filter bank, and potentially further escalates the risk of
combinatorial explosion.

In Figure 5, the natural frequency estimation of the
previously introduced second-order system is performed
using different bin sizes under the exact same conditions. It is
evident that larger bin sizes, such as 0.4Hz and 0.2Hz, lead to
a deterioration in the resolution of the parameter estimation.
On the other hand, employing a very small bin size of 0.02 Hz
causes theMWIMM strategy to lag behind and ultimately fail
in accurately estimating the natural frequency.

These observations highlight the trade-off involved in
selecting an appropriate bin size inMWIMM.A balancemust
be struck between achieving higher resolution and ensuring
timely convergence to the true parameter value. The choice
of bin size should be tailored to the specific characteristics of
the parameter being estimated and the dynamics of the system
under investigation.

FIGURE 6. Schematic depiction of the effect of the rate of change of a
parameter on determining an appropriate updating time.

FIGURE 7. Estimating natural frequency for different updating times.

Employing a longer updating time in the MWIMM
increases the amount of measurement data available for esti-
mating the correct model, thereby reducing the likelihood of
false switching, and yielding smoother parameter estimation
results. However, when the rate of change of the parameter is
high, MWIMMwith a longer updating time, as demonstrated
in Fig. 6 for updating Tu3 and Tu4, tends to lag behind.
In Fig. 7, estimation of the natural frequency is conducted
for the previously introduced second-order system using
various updating times while maintaining a fixed bin size
of 0.02 Hz. As depicted in this figure, a smaller updating
time of 0.1s results in higher fluctuations in the estimated
natural frequency, as expected. Conversely, larger updating
times such as 1s and 2s cause the MWIMM to be unable
to keep pace with the rapid rate of change in the natural
frequency.

B. IDENTIFYING BOTH NATURAL FREQUENCY AND
DAMPING RATIO
One alternative approach for estimating the natural frequency
involves utilizing joint state and parameter estimation. This
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technique considers the natural frequency as an augmented
state within the system and employs a nonlinear filter, such
as the Extended Kalman Filter (EKF), to estimate it alongside
other states, as long as the system maintains observability.
However, it is important to note that this method provides
a suboptimal solution, and the accuracy of the linearization
is compromised when there is significant uncertainty in
the parameters. By considering the natural frequency as
an augmented state in the system described in (13), it is
possible to prove observability of the system using Lie
derivative. Consequently, the natural frequency can be
estimated using the EKF estimation method. In this section,
the EKF-basedMWIMMmethod (MWIMM-EKF) is applied
to identify the damping ratio and the natural frequency of
a second-order system, thereby demonstrating the applica-
bility of the MWIMM approach for nonlinear systems as
well.

Regarding the natural frequency as an augmented state,
we can reformulate the model in (13) as follows:

x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsx23 (k)x1(k) + (1 − 2Tsζx3 (k)) x2(k)

+Tsbu(k) + v2(k)
x3(k + 1) = x3(k) + v3(k),

z(k) = x1(k) + w(k), (16)

State variable x3, which represents the natural frequency,
incorporates artificial noise v3 (k) ∼ N

(
0, 10−6). The

MWIMM employs the same parameters as described in (14).
However, here, the set of considered models is formed
according to the discretization of the damping ratio, and
model validation is performed using the estimated value of
the damping ratio at each time step. To ensure accurate
resolution, a bin size of 0.05 is chosen for the damping
ratio. Moreover, when considering the augmented state
vector, covariance matrices of the EKF are updated as
follows:

Q =

10−12 0 0
0 10−6 0
0 0 10−6

 , R = 10−10,

P (0|0) =

1 0 0
0 1 0
0 0 1

 . (17)

From (16), the measurement function can be obtained as
h(x) = x1. The observability matrix can then be computed
utilizing Lie derivatives in the following manner:

O(x, u) =


dL0f h(x)
dL1f h(x)

. . .

dLn−1
f h(x)

 =

 1 0 0
0 1 0
x23 2ζx3 2ζx2 + 2x3x1

 .

(18)

Here, dLnf h represents the nth order Lie derivative of the
measurement function h with respect to the system model f ,

FIGURE 8. Estimating natural frequency and damping ratio using
MWIMM-EKF.

and O represents the observability matrix. The observability
matrix is full rank as long as 2ξx2 + 2x3x1 is not equal to
zero. It means that the system is observable. The only scenario
for the system to be unobservable is when both states x1 and
x2 are zero (trivial solution for any linear system) which
is very rare and can be ignored. Fig. 8 demonstrates that
the MWIMM-EKF accurately estimates natural frequency,
damping ratio, and system states, including scenarios with
both constant and unknown damping ratios (Fig. 8a) as well
as time-varying damping ratios (Fig. 8b).

For comparative analysis, in this section, the augmented
state EKF is employed to estimate both natural frequency and
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damping ratio along with other states. Therefore, equation 13
can be reformulated as follows:

x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsx23 (k)x1(k) + (1 − 2Tsx4 (k) x3 (k))

x2(k) + Tsbu(k) + v2(k)
x3(k + 1) = x3(k) + v3(k)
x4(k + 1) = x4(k) + v4(k),

z(k) = x1(k) + w(k), (19)

where x3 is natural frequency and x4 is damping ratio.
In order to ensure a fair comparison, all conditions in
this section are assumed to be identical to those in
the previous section. However, there is one distinction
regarding the artificial noise v4 corresponding to damping
ratio x4. Obtaining this artificial noise for the augmented
state EKF is not straightforward due to the lack of
information about the dynamics of the augmented states.
Consequently, it becomes challenging to intuitively select the
noise based on engineering guesswork [4], and employing
discriminative training methods is ineffective for determin-
ing the process noise for all four states using only one
measurement x1.
Assuming that the damping ratio can fluctuate with a stan-

dard deviation of 0.01, an added artificial noise is assumed
with the normal distribution of v4 (k) ∼ N

(
0, 10−4).

Covariance matrices of the EKF are then derived as follows:

Q =


10−12 0 0 0
0 10−6 0 0
0 0 10−6 0
0 0 0 10−4

 , R = 10−10,

P (0|0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (20)

The observability matrix can then be computed using Lie
derivatives as (21), shown at the bottom of the next page.
As shown, it is not necessarily guaranteed that the

observability matrix is full rank, indicating that in general,
observability cannot be proven and the system is only
partially observable. Fig. 9 illustrates that the augmented
state EKF fails to estimate both constant and time-varying
damping ratios.

V. DISCUSSION AND FUTURE DIRECTIONS
To comprehensively investigate the performance of the
Multiple-Model Adaptive Estimation (MMAE) strategy,
particularly the Moving Window IMM (MWIMM) proposed
in this paper, it is essential to carefully examine three key
factors. These factors play a crucial role in understanding the
efficacy of these strategies:

1) Identifiability: This factor evaluates the ability of the
MMAE strategy to accurately identify the true model
among the bank of possible models. It is important to

note that even if all the models within the bank are
observable, identifiability cannot be guaranteed. The
absence of identifiability indicates the singularity of the
Fisher information matrix, and vice versa [30]. In such
cases, it becomes necessary to incorporate a priori
information by imposing constraints on the model or
consider reparameterization of the model as a potential
solution.

2) Optimality: Theoretically speaking, optimality can be
guaranteed only in the case of static MMAE, where
the system has time-invariant parameters [4]. For
dynamic multiple-model adaptive estimation strate-
gies such as Interacting Multiple Models (IMM)
and MWIMM, which deal with systems with time-
varying parameters, only suboptimal solutions can be
obtained.

3) System Excitation: To accurately estimate time-
varying parameters, the system under study needs to
be excited. This excitation is necessary for conver-
gence towards the true model. Therefore, to maintain
observability, careful consideration should be given to
the level of system excitation, especially for nonlinear
systems.

Understanding these factors can significantly contribute
to the development and evaluation of effective estimation
strategies in various applications. In the following section,
an illustrative example is presented to show the identifiability
challenge encountered in dynamic multiple-model adaptive
estimation.

Consider a second-order system, exemplified by a mass-
spring-damper configuration, which is derived by an external
force F as:

x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsω2

0x1(k) + (1 − 2Tsζω0) x2(k)
+Tsbu(k) + v2(k) − TsF,

z(k) = x2(k) + w(k). (22)

Using the previously mentioned parameter values, includ-
ing a natural frequency of 2Hz, a damping ratio of 0.1,
a value of b equivalent to 100, uncorrelated process noise
v1 (k) ∼ N

(
0, 10−12), and v2 (k) ∼ N

(
0, 10−6). Now

considering the availability of velocity measurement for
the second state, subject to measurement noise w (k) ∼

N
(
0, 10−8). Additionally, assume the external force F to

possess three distinct levels, namely low (50N ), mid (500N ),
and high (2000N ). System observability is assessed as
follows:

C =
[
0 1

]
, A =

[
0 1

−ω2
0 −2ζω0

]
(23)

H⇒ O =

[
C
CA

]
=

[
0 1

−ω2
0 −2ζω0

]
H⇒ full rank. (24)

The observability matrix with full rank indicates that the
system is observable, allowing for unique determination
of states x1 and x2. Nevertheless, as demonstrated in the
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FIGURE 9. Estimating natural frequency and damping ratio using
Augmented state EKF.

following illustration, the external force cannot be estimated
as an augmented state using the KF due to the system’s lack

of observability.
x1(k + 1) = x1(k) + Tsx2(k) + v1(k)
x2(k + 1) = −Tsω2

0x1(k) + (1 − 2Tsζω0) x2(k)
−Tsx3(k) + Tsbu(k) + v2(k)

x3(k + 1) = x3(k) + v3(k),

z(k) = x2(k) + w(k). (25)

In (25), the augmented state x3 represents the external
force. To perform the observability test, the observability
matrix can be derived as follows:

C =
[
0 1 0

]
, A =

 0 1 0
−ω2

0 −2ζω0 −1
0 0 0


⇒ O =

 C
CA
CA2

 =

 0 1 0
−ω2

0 −2ζω0 −1
2ζω3

0

(
4ζ 2

− 1
)
ω2
0 2ζω0


⇒ Rank (O) = 2 ⇒ O is not full rank.

(26)

According to (26), it is evident that the system lacks
observability, thereby preventing the estimation of the
external force using the augmented KF. To address this issue,
an alternative approach is IMM-KF. This method involves
incorporating models for low, mid, and high external forces,
and leveraging the mode probability to determine the true
model at each time step, thereby enabling the identification
of the external force. To assess the effectiveness of this
approach, a series of events is considered as a simulation
scenario:

1) For the initial 10 seconds, the external force is set to a
low level (F = 50N ).

2) From 10 seconds to 20 seconds, the external force
transitions to a mid-level (F = 500N ).

3) Finally, for the last 10 seconds, the external force
switches to a high level (F = 2000N ).

Fig. 10 demonstrates that the IMM-KF fails to accurately
estimate the state x1 and cannot correctly identify the external
force, despite each model in the filter bank being individually
observable based on (24). However, as depicted in Fig. 11
and Fig. 12, the IMM-KF can successfully estimate the
states and identify the external force accurately when either
the measurement for state x1 or both states are available.
Overall, Fig. 12 illustrates that the IMM-KF achieves the

O(x, u) =


dL0f h(x)
dL1f h(x)

. . .

dLn−1
f h(x)



=


1 0 0 0
0 1 0 0
x23 2x4x3 2x3x1 + 2x2x4 2x2x3

2x33x4 4x23x
2
4 + x23 8x3x24x2 + 6x23x4x1 + 2x2x3 + 2bx4u 8x4x23x2 + 2x33x1 + 2bx3u

 . (21)
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FIGURE 10. Identifying the external force for a second-order system with
measurement feedback from x2 using IMM-KF.

FIGURE 11. Identifying the external force for a second-order system with
measurement feedback from x1 using IMM-KF.

best performance when measurements for both states are
available, which is intuitively reasonable.

Consequently, MWIMM is unable to accurately estimate
the time-varying external force in cases where only the
x2measurement is available, as depicted in Figs 13, 14 and 15.
However, the external force estimation is achievable when
either the x1 measurement or both state measurements are
available. Additionally, it is evident that the performance
of MWIMM improves significantly when both states are

FIGURE 12. Identifying the external force for a second-order system with
full-state feedback using IMM-KF.

FIGURE 13. Identifying the time-varying external force for a second-order
system with measurement feedback from x2 using MWIMM-KF.

measured, as the system exhibits a higher degree of
observability.

A viable approach to address the identifiability concern
in this scenario involves utilizing a robust filter, such as
the Smooth Variable Structure Filter (SVSF), in lieu of the
Kalman filter to account for model mismatch. An IMM-
SVSF-VBL, equipped with a small boundary layer for the
measured state and a large boundary layer for the unmeasured
state, can effectively detect sudden changes in the external
force by including additional information as follows:
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FIGURE 14. Identifying the time-varying external force for a second-order
system with measurement feedback from x1 using MWIMM-KF.

FIGURE 15. Identifying the time-varying external force for a second-order
system with full-state using MWIMM-KF.

• By setting a small boundary layer threshold for the
measured state x2, the IMM-SVSF-VBL is capable of
recognizing changes in the system model, triggering the
corrective action of the SVSF.

• Conversely, a large boundary layer threshold for the
unmeasured state x1 implies that the system relies on
the filter bank models to estimate the unmeasured state
x1, avoiding from correcting the a priori estimations of
the filters based on new measurements. Consequently,
the incorrect models maintain a substantial a priori error,
helping the IMM to find the most relevant model.

FIGURE 16. External load level identification in a second-order system
form velocity measurement using IMM-SVSF-VBL; a sudden change in the
external load level.

As depicted in Fig. 16, unlike IMM-KF, IMM-SVSF-VBL
successfully identifies sudden changes in the level of the
external force. However, as demonstrated in Fig. 17, it still
struggles to identify the external force level when it changes
gradually. In such cases, the slow deviation of the a priori
error does not cross the boundary layer, giving the incorrect
filter (representing a low external force model here) sufficient
time to adjust the gain, to maintain a small a priori error, and
prevent the IMM from switching. This limitation stems from
the fact that the impact of a changing external force is akin
to the displacement of a spring (x1), and the filter cannot
distinguish between the two solely based on the system’s
velocity measurement. This is due to the unobservability of
the augmented state as shown in (26).

A. EXPLORING ROBUSTNESS
Another area worthy of further exploration is the robustness
of the MWIMM algorithm. The Kalman filter utilized in the
MWIMM algorithm, as discussed previously, assumes that
the process and measurement noise of the system adhere
to zero-mean and Gaussian distributions. Consequently, any
bias or uncertainty present in the system can negatively
impact the performance of this strategy, and in extreme cases,
it may lead to instability of the Kalman filter. Considering the
system in (13), let us assume the system behavior changes
gradually over time due to variations in the damping ratio.
Then, the MWIMM-KF strategy can be employed to estimate
the damping ratio. To study the robustness of this approach,
different levels of bias or uncertainty have been introduced
to the natural frequency of the system. These scenarios are
outlined below, and the results of the MWIMM-KF are
presented in Fig. 18.
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FIGURE 17. External load level identification in a second-order system
form velocity measurement using IMM-SVSF-VBL; the gradual change in
the external load level.

FIGURE 18. Using MWIMM-KF for estimating the time-varying parameter
of a second-order system with different levels of bias or uncertainty.

1) System without bias or uncertainty: In this situation,
the MWIMM-KF exhibits excellent performance as
expected.

2) System with small bias or uncertainty (1% additive
uncertainty): Despite a slight increase in estimation
error compared to the scenario without bias, KF effec-
tively manages to estimate states because the bias or
uncertainty falls within the range of process noise.

3) System with medium bias or uncertainty (10% additive
uncertainty): In this scenario, MWIMM-KF fails to
estimate the damping ratio as the bias or uncertainty
exceeds the range of process noise. Therefore, none
of the models in the MWIMM window is capable of
representing the system’s behavior. MWIMM-KF tries
to resolve this issue by switching to negative damping

FIGURE 19. MWIMM-KF becomes unstable for estimating the
time-varying parameter of a second-order system with large uncertainty
(50% bias).

FIGURE 20. Using MWIMM-SVSF for estimating the time-varying
parameter of a second-order system with different levels of bias or
uncertainty.

to adjust for the bias in natural frequency, which makes
the problem even worse.

4) System with large bias or uncertainty (50% additive
uncertainty): In this scenario, MWIMM-KF becomes
unstable in less than 2 seconds as shown in Fig. 19.

One approach to improve robustness is to use a robust
filtering strategy such as SVSF-VBL, instead of Kalman
filter. Results for the same conditions using MWIMM-SVSF
are illustrated in Fig. 20. These results are also compared with
those of MWIMM-KF in Table. 2. In the scenario without
bias, both KF and SVSF-VBL exhibit similar performance
as expected. Note that employing a very small Fixed
Boundary Layer (FBL) may compromise the performance
of SVSF-VBL, as it relies on the fixed bound instead of
the optimized one, which is calculated by taking account of
system noise.

91940 VOLUME 12, 2024



A. Saeedzadeh et al.: Adaptive Estimation Using Interacting Multiple Model With Moving Window

TABLE 2. Estimation errors with different bias/uncertainty levels.

In the case of small bias, SVSF estimation error is slightly
larger than KF, because corrective actions from FBL occur
more frequently with a larger a priori error from uncertainty.
Enhancing SVSF performance can be achieved by increasing
FBL, but this comes at the expense of a larger error boundary.

For medium and large bias, MWIMM-SVSF fails to
estimate the damping ratio. However, it ensures stability and
boundedness of the estimation error. This is because when
the prior error exceeds the fixed boundary layer, SVSF loses
confidence in the model and relies on corrective actions from
the fixed boundary layer. As a result, the estimation error of
the damping ratio levels off.

As shown, although MWIMM-SVSF ensures the sta-
bility and boundedness of the estimation error, neither
MWIMM-SVSF nor MWIMM-KF effectively captures the
states and unknown parameters (e.g. damping ratio) under
conditions of medium and large uncertainty. This outcome
is expected, given that when uncertainty significantly
outweighs the differences between model hypotheses, the
comparison becomes irrelevant for identifying the truemodel.
A more in-depth exploration of this issue could be pursued in
the future, developing a robust estimation strategy based on
the variable structure system concept, as demonstrated here.
This could involve a comprehensive analysis of parameters
such as bin size, window size, and process noise (Q) to
enhance performance.

B. PRUNING STRATEGY
Instead of merging, an alternative for decreasing the number
of regime sequences in MMAE algorithms involves employ-
ing pruning. Pruning entails the removal of low probability
branches (i.e., regime sequences) from the MMAE tree,
in contrast to the merging approach used in IMM. While
merging algorithms such as IMMfilters are widely employed
in estimation tasks including target tracking, a pruning
algorithm such as Multiple Model Pruning (MMP) [31]

is more relevant for detecting changes in fault detection
problems. In these scenarios, accurately identifying changes
in the system’s behavior is more important than estimating the
system’s state. TheMMP algorithm has three main steps [31]:

1) Recursively compute the conditional filter for a bank of
M sequences.

2) After the measurement update at time k , retain only
the M/S most probable branches and prune the rest,
S being the number of branches retained in each step.

3) At time k + 1, allow the M/S considered branches to
split into S.M/S = M branches and update their a
posteriori probabilities.

An entirely distinct approach to reduce the complexity
and improve the performance of MMAE algorithms in
addressing fault detection problems involves the adoption of
the MMP algorithm. Future research may focus on exploring
the pruning techniques as well as combining them and
comparing them with merging approaches employed in this
paper, such as IMM and MWIMM, for fault detection and
diagnosis problems. One potential approach could involve
implementing a moving window strategy to enhance the
performance of an MMP algorithm.

VI. CONCLUSION
In this study, a novel adaptive estimation strategy called
MowingWindow InteractingMultipleModel (MWIMM) has
been introduced to address the challenges of state estimation
in the presence of uncertain model parameters and changing
system dynamics. Focusing on a subset of possible models
at each stage instead of considering all models, MWIMM
improves identifiability and computational efficiency by
effectively narrowing down the search space for the true
model. This approach enables the estimation of gradual
changes in the system, making it particularly valuable for
estimation of fault intensity and remaining useful life.
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The parameter estimation problem was investigated, com-
paring the results obtained by the proposed method and
the augmented state extended Kalman filter. The results
demonstrated that the proposed MWIMM approach presents
a promising alternative for effectively handling extensive
parameter uncertainty and accommodating gradual changes
in system parameters. Future research direction can focus on
applying the proposed method to prognosis and degradation
estimation problems, such as estimating the state of health of
batteries.

REFERENCES
[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation With Applications

to Tracking and Navigation: Theory Algorithms and Software. Hoboken,
NJ, USA: Wiley, 2004.

[2] T. D. Barfoot, State Estimation for Robotics. Cambridge, U.K.: Cambridge
Univ. Press, 2024.

[3] D. Ding, Q.-L. Han, X. Ge, and J. Wang, ‘‘Secure state estimation and
control of cyber-physical systems: A survey,’’ IEEE Trans. Syst. Man,
Cybern. Syst., vol. 51, no. 1, pp. 176–190, Jan. 2021.

[4] M. Athans and C.-B. Chang, Adaptive Estimation and Parameter
Identification Using Multiple Model Estimation Algorithm. Lexington,
MA, USA: MIT Lincoln Laboratory, 1976.

[5] M. Karasalo and X. Hu, ‘‘An optimization approach to adaptive Kalman
filtering,’’ Automatica, vol. 47, no. 8, pp. 1785–1793, Aug. 2011.

[6] S. Akhtar, P. Setoodeh, R. Ahmed, and S. Habibi, ‘‘A new strategy for
combining nonlinear Kalman filters with smooth variable structure filters,’’
IEEE Access, vol. 11, pp. 146262–146281, 2023.

[7] S. A. Gadsden, S. Habibi, and T. Kirubarajan, ‘‘Kalman and smooth
variable structure filters for robust estimation,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 50, no. 2, pp. 1038–1050, Apr. 2014.

[8] S. Habibi, ‘‘The smooth variable structure filter,’’ Proc. IEEE, vol. 95,
no. 5, pp. 1026–1059, May 2007.

[9] A. Saeedzadeh, P. Setoodeh, M. Alavi, and S. Habibi, ‘‘Information
extraction using spectral analysis of the chattering of the smooth variable
structure filter,’’ IEEE Access, vol. 11, pp. 104992–105008, 2023.

[10] M. Al-Shabi, S. A. Gadsden, and S. R. Habibi, ‘‘Kalman filtering strategies
utilizing the chattering effects of the smooth variable structure filter,’’
Signal Process., vol. 93, no. 2, pp. 420–431, Feb. 2013.

[11] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. Hoboken, NJ, USA: Wiley, 2006.

[12] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice
With MATLAB. Hoboken, NJ, USA: Wiley, 2014.

[13] L. Ljung, ‘‘Asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems,’’ IEEE Trans. Autom. Control,
vols. AC-24, no. 1, pp. 36–50, Feb. 1979.

[14] L. Nelson and E. Stear, ‘‘The simultaneous on-line estimation of
parameters and states in linear systems,’’ IEEE Trans. Autom. Control,
vols. AC-21, no. 1, pp. 94–98, Feb. 1976.

[15] P. Abbeel, A. Coates, M. Montemerlo, A. Y. Ng, and S. Thrun,
‘‘Discriminative training of Kalman filters,’’ Robot., Sci. Syst., vol. 2,
pp. 1–13, Sep. 2005.

[16] A. Saeedzadeh, S. Habibi, M. Alavi, and P. Setoodeh, ‘‘A robust model-
based strategy for real-time fault detection and diagnosis in an electro-
hydraulic actuator using updated interactive multiple model smooth
variable structure filter,’’ J. Dyn. Syst., Meas., Control, vol. 145, no. 10,
pp. 1–23, Oct. 2023.

[17] A. Saeedzadeh, S. Habibi, and M. Alavi, ‘‘A model-based FDD approach
for an EHA using updated interactive multiple model SVSF,’’ in Fluid
Power Systems Technology, vol. 85239. New York, NY, USA: American
Society of Mechanical Engineers, 2021.

[18] A. Saeedzadeh, ‘‘Dynamic model-based estimation strategies for fault
diagnosis,’’ Ph.D. dissertation, Mech. Eng. Dept., McMaster Univ.,
Hamilton, ON, Canada, 2024.

[19] Y. Lu, H. Ma, E. Smart, and H. Yu, ‘‘Real-time performance-focused
localization techniques for autonomous vehicle: A review,’’ IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 7, pp. 6082–6100, Jul. 2022.

[20] F. Tufano, D. G. Lui, S. Battistini, R. Brancati, B. Lenzo, and S. Santini,
‘‘Vehicle sideslip angle estimation under critical road conditions via
nonlinear Kalman filter-based state-dependent interacting multiple model
approach,’’ Control Eng. Pract., vol. 146, May 2024, Art. no. 105901.

[21] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipati, and I. Kadar, ‘‘Ground
target tracking with variable structure IMM estimator,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 36, no. 1, pp. 26–46, Jan. 2000.

[22] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, ‘‘Multiple hypothesis tracking
revisited,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 4696–4704.

[23] M. Efe and D. P. Atherton, ‘‘The IMM approach to the fault detection
problem,’’ IFAC Proc. Volumes, vol. 30, no. 11, pp. 603–608, Jul. 1997.

[24] S. A. Gadsden, Y. Song, and S. R. Habibi, ‘‘Novel model-based estimators
for the purposes of fault detection and diagnosis,’’ IEEE/ASME Trans.
Mechatronics, vol. 18, no. 4, pp. 1237–1249, Aug. 2013.

[25] A. S. Lee, Y. Wu, S. A. Gadsden, and M. AlShabi, ‘‘Interacting multiple
model estimators for fault detection in a magnetorheological damper,’’
Sensors, vol. 24, no. 1, p. 251, Dec. 2023.

[26] Y. Zhang and J. Jiang, ‘‘Integrated active fault-tolerant control using
IMM approach,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 4,
pp. 1221–1235, Aug. 2001.

[27] M. Kheirandish, E. A. Yazdi, H. Mohammadi, and M. Mohammadi, ‘‘A
fault-tolerant sensor fusion in mobile robots using multiple model Kalman
filters,’’ Robot. Auto. Syst., vol. 161, Mar. 2023, Art. no. 104343.

[28] C. Sun, Y. Lin, and L. Li, ‘‘Intermittent monitoring-based adaptive fault-
tolerant control for uncertain nonlinear systems with actuator switching,’’
Int. J. Robust Nonlinear Control, vol. 34, no. 8, pp. 5063–5078, May 2024.

[29] Y. Baram and N. Sandell, ‘‘Consistent estimation on finite parameter sets
with application to linear systems identification,’’ IEEE Trans. Autom.
Control, vols. AC-23, no. 3, pp. 451–454, Jun. 1978.

[30] H. Bozdogan, ‘‘Model selection and Akaike’s information criterion (AIC):
The general theory and its analytical extensions,’’ Psychometrika, vol. 52,
no. 3, pp. 345–370, Sep. 1987.

[31] F. Gustafsson and F. Gustafsson,Adaptive Filtering and Change Detection,
vol. 1. Hoboken, NJ, USA: Wiley, 2000.

AHSAN SAEEDZADEH received the B.S. and
M.S. degrees in mechanical engineering from
the Amirkabir University of Technology, Tehran,
Iran, in 2013 and 2016, respectively. He is
currently pursuing the Ph.D. degree in mechanical
engineering with McMaster University, Hamilton,
ON, Canada.

From 2012 to 2016, he was a Research Assis-
tant with the Robotics and Automation Labora-
tory, New Technology Research Center (NTRC),

Tehran. He devoted three years to his role as a Mechanical Engineer within
an Iranian start-up enterprise. His research interests include fault detection
and diagnosis, state estimation, dynamic control, signal processing, and fluid
power control. He was a recipient of the Merit-Based Admission to the
Master of Science Program by the Honors Center, Tehran Polytechnic.

PEYMAN SETOODEH (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees (Hons.)
in electrical engineering from Shiraz University
and the Ph.D. degree in computational engi-
neering and science from McMaster University.
He was the Harrison McCain Visiting Professor
with the Marine Additive Manufacturing Centre
of Excellence (MAMCE), University of New
Brunswick, and an Associate Professor with the
School of Electrical and Computer Engineering,

Shiraz University. He was a Senior Research Engineer with the Huawei
Noah’s Ark Laboratory and a Lecturer with the Department of Electrical and
Computer Engineering,McMaster University. He is currently with the Centre
for Mechatronics and Hybrid Technologies (CMHT), McMaster University.
He has co-authored two books, such as Fundamentals of Cognitive Radio
and Nonlinear Filters: Theory and Applications. He is the co-author of an
article on ‘‘Cognitive Control,’’ which was featured as the cover story of
PROCEEDINGS OF THE IEEE in the December issue of the centennial year. His
research interests include cognitive systems, artificial intelligence, quantum
control, and nonlinear estimation. Hewas a recipient of theMonbukagakusho
Scholarship from the Ministry of Education, Culture, Sports, Science, and
Technology, Japan.

91942 VOLUME 12, 2024



A. Saeedzadeh et al.: Adaptive Estimation Using Interacting Multiple Model With Moving Window

MARJAN ALAVI (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
(control and instrumentations) from the K. N.
Toosi University of Technology, the M.Sc. degree
in Electrical Engineering (micro- and nano-
electronic devices) from the Sharif University
of Technology, and the Ph.D. degree in elec-
trical engineering from Nanyang Technological
University (NTU), Singapore.

In 2015, she joined the Energy Systems Group,
Department of Electrical and Computer Engineering, University of Toronto,
as a Postdoctoral Fellow. She is currently the Chair of the Manufacturing
Engineering Master of Engineering (MEME) Program, W. Booth School
of Engineering Practice and Technology (SEPT), McMaster University,
Canada. She is also an Assistant Professor with SEPT teaching in two
Bachelor of Technology (B.Tech.) programs: Automation Engineering
Technology Program and Software Technology - Degree Completion
Program (DCP). She is also an Associate Member of the Mechanical
Engineering and Computer and Electrical Engineering Departments,
McMaster University. She has several years of industrial experience as an
Electrical Engineer. She has been teaching several courses in electrical
engineering at college and university levels, including digital electronics,
embedded systems, the Internet of Things (IoT), artificial intelligence (AI),
and smart cities. Her research interests include model-based and data-driven
approaches for the diagnosis and prognosis of hybrid systems.

Dr. Alavi was a recipient of Singapore International Graduate Award
(SINGA), in 2010. She has served on the IEEEToronto Executive Committee
as the Treasurer for four years, from 2016 to 2020. She has served as the Vice
Chair for the IEEE Industrial Applications Society, in 2015, and the Vice
Chair of Women in Engineering (WIE), from 2018 to 2022. She is the Chair
of the Women in Engineering Affinity Group in Hamilton Section, Canada.
She was a Reviewer of IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. She is
the Guest Editor of Frontiers on the Internet of Things. She is a Professional
Engineer in the province of Ontario, Canada.

SAEID HABIBI (Member, IEEE) received the
Ph.D. degree in control engineering from the
University of Cambridge, U.K., in 1990. He has
considerablemanagerial and industrial experience.
He spent several years in the industry as a Project
Manager and a Senior Consultant with Cambridge
Control Ltd., U.K., where he was involved in auto-
motive and aerospace-related projects. In Canada,
he was with AlliedSignal Aerospace (presently
part of Honeywell) where his last appointment was

as a Senior Department Manager of systems engineering. He has received
corporate training in both functional and program management. In 2006,
he joined McMaster University, where he was the Chair of the Department
of Mechanical Engineering, from 2008 to 2013. He is a Tier I Canada
Research Chair and previously a Senior NSERC Industrial Research Chair
(IRC) (from 2011 to 2022, renewed in 2016). He is currently the Founder
and the Director of the Centre for Mechatronics and Hybrid Technologies.
He is a full-time Professor with the Department of Mechanical Engineering,
McMaster University. He is the Founder and the CEO of EECOMOBILITY
Inc., which is a Canadian start-up out of McMaster University, specializing
in battery testing and characterization, and AI software, and has developed
unique test and monitoring products. EECOMOBILITY’s products are
applicable to batteries, the automotive sector, and electrified powertrains.
His extensive technical background includes research into battery modeling
and control, state and parameter estimation, mechatronics engineering, fault
diagnosis and prognosis, advanced electric drive vehicles, vehicular power
and propulsion systems, and energy and sustainability. He has a strong
track record of HQP supervision, including 22 Ph.D. and 46 master’s
students, 13 PDFs, and 14 Research Engineers; many of whom have risen
to senior positions in industry, and four have faculty positions. He has over
200 publications in some of the top journals and three patents. He is a fellow
of the American Society of Mechanical Engineers (ASME) and a fellow of
the Canadian Society of Mechanical Engineers (CSME). He was a recipient
of several awards. He and his colleagues received the 2012 Best Paper Prize
from the IEEE Transportation Electrification Conference for the application
of their SVSF theory to condition monitoring of battery cells. He received
two corporate awards for his contributions to the AlliedSignal Systems
Engineering Process. He was a recipient of the Institution of Electrical
Engineers (IEE) F. C. Williams Best Paper Award for his contribution to the
variable structure systems theory.

VOLUME 12, 2024 91943


