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ABSTRACT In recent years, physics-informed neural networks (PINNs) have developed significantly as
a deep learning technology. In analogy to the selection of grid cells in traditional numerical methods, the
distribution of sample points used for training PINN can have a greater impact on the solution accuracy. Based
on the Residual-based Adaptive Refinement (RAR) algorithm, many improved adaptive sampling algorithms
have been proposed. However, these sampling algorithms rely on residuals as the error indicator and focus
only on the sample points within the solution domain. Therefore, we introduce a novel adaptive sampling
algorithm EI-RAR. This algorithm incorporates a new expected improvement (EI) function, which increases
focus on the sample points at the boundaries of the solution domain. Additionally, EI-RAR integrates
attention mechanism with a sample point generation algorithm, aimed at reinforcing the connection between
newly-added and existing sample points. To increase the accuracy of solving problems with sharp solutions,
we build upon the EI-RAR algorithm by incorporating gradient information of the residual values as a
criterion for sample point selection, leading to the development of a second adaptive sampling algorithm
EI-Grad. We select residual neural network and combine it with adaptive sampling algorithms for a series of
numerical experiments, aiming to reduce the phenomenon of gradient vanishing during the training process.
These experiments select the Diffusion equation, Burgers’ equation, Allen-Cahn equation, and Navier-
Stokes equation, respectively. Numerical results indicate that, with the same number of residual points, the
EI-RAR algorithm is more precise compared to other sampling methods, and the EI-Grad algorithm can also
effectively solve partial differential equations with sharp solutions.

INDEX TERMS Physics-informed neural networks, adaptive sampling, residual gradient, error indicator
function.

I. INTRODUCTION
With the development of computer technology in recent
decades, neural networks have developed rapidly and are
widely used in multiple fields, such as computer vision [1]
and natural speech processing [2]. In recent years, the
solution-fitting ability of neural networks has attracted a lot
of attention. Partial differential equations (PDEs) are derived
from the abstraction ormathematical modeling ofmany phys-
ical phenomena. Traditional numerical methods such as the
finite difference method [3], finite element method [4], and
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finite volume method [5], which are commonly employed in
various industrial applications, often encounter difficulties,
and consume considerable time due to the need for mesh
refinement.

In 2019, Raissi et al. [6] applied deep neural networks
to cases of solving PDEs and proposed the concept of
physical-informed neural networks (PINNs). To adherence to
the physical laws of the model, PDEs, along with their initial
or boundary conditions, are constructed using automatic dif-
ferentiation (AD) supported by TensorFlow/PyTorch. Then,
these physical laws are embedded into the loss function of
the neural network as a residual term to expand the space
of admissible solutions. After undergoing this process, the
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problem transforms into one of optimizing the loss function.
Owing to the mesh-free methodology [7], PINNs provide
a more streamlined and flexible approach compared to tra-
ditional numerical methods for solving partial differential
equations.

As described in summaries by Mojgani et al. [8], PINNs
have been employed to tackle a range of PDEs in phys-
ical problems in recent years, however, how to use it to
attain greater precision in predictions along with higher com-
putational efficiency requires deeper research. Overviewing
the published papers, there are four mainstreams enhancing
PINN currently: (1) Change of neural network structure.
PINNs generally use fully connected neural networks [9],
Cheng and Zhang [10] proposed Res-PINN using Resnet
block, Sun and Feng [11] constructed a second-order neu-
ral network structure analogous to Res-PINN for solving
parabolic PDEs, Stevens and Colonius [12] used the LSTM
structure and incorporated the spatiotemporal dynamics of
PDEs to reduce the error in solving time-varying PDEs,
Rodriguez-Torrado et al. [13] combined the attention mecha-
nismwith RNN to form the physics-informed attention neural
network (PIANN); (2) Domain decomposition. The domain
of PDEs is decomposed into discrete subdomains by Jagtap
et al. [14], then the PDEs are tackled in each subdomain
using PINN, after that, they [15] proposed a generalized
time-domain decomposition framework, which compensates
for the defect that the time domain cannot be decomposed;
(3) Loss balancing. Wang et al. [16], Bischof and Kraus [17]
and Xiang et al. [18] balanced the effect of the different terms
in the loss function and raised adaptive weights algorithms,
Thakur et al. [19] used backward Euler discretization of time
derivatives instead of AD and utilized the statistical properties
of the data to obtain the weights of the loss terms; (4) Adap-
tive sampling. Since Mao et al. [20] manually selected more
sampling points in specified areas using a priori knowl-
edge, adaptive sampling algorithms has been studied greatly.
Amainstreammethod of adaptive sampling algorithms is that
continuously include sample points exhibiting large residuals
in the training set during the PINN training process, like [21],
[22], [23], and [24]. Mao and Meng [25] combined the idea
of decomposing the domain by dividing the computational
domain into multiple subdomains, added new residuals to the
subdomains which contains larger mean value of residuals
and larger mean gradient value of latent solution than other
subdomains, finally calculated new errors by retraining the
PINN until the accuracy requirements are met.

In this paper, we study the effectiveness of the improve-
ment of the adaptive sampling algorithm on the performance
of PINN, whose loss function has an additional residual term
compared with the general neural network. To significantly
improve performance, we need to select a large number of
discrete spatiotemporal points within the domain, referred
to as residuals, to optimize the loss function in PINN. The
option of residuals is similar to grid cells in finite element,
so that we can expect that the distribution of residuals plays
an important role in PINN. However, many scholars, when

conducting research on PINN, mostly use simple uniform
sampling methods to generate training set, e.g., uniform ran-
dom sampling, Latin hypercube sampling (LHS) [26], and
the Sobol sequence [27] etc., which ignore the characteristic
of the solutions of PDEs, thus leading to poor accuracy
when solving certain PDEs. Adaptive sampling algorithms
typically use residuals as error indicator function, leading to
a sampling process that lacks attention to sample points on
boundaries. And these algorithms struggle with solving equa-
tions with sharp solutions. To address these sampling issues,
we have designed two new adaptive sampling algorithms
based on the concept of probabilistic sampling. Our main
contributions include: (1) construction of a new expected
improvement function to replace the residual value as a new
error indicator function, (2) integrating residual gradient with
adaptive sampling algorithms, (3) combination of point gen-
eration algorithm and attention mechanism for generating
sampling point admissible set.

The rest of this paper is organized as follows. Section II
provides a summarize of PINN and the Res-PINN frame-
work used in this paper. In Section III, we introduce the
adaptive sampling algorithms EI-RAR and EI-Grad based on
expected improvement function values and gradient informa-
tion. In Section IV, examples of the sampling algorithm are
given for a variety of PDEs in forward problems, includ-
ing Diffusion, Burgers’, Allen-Cahn, and Navier-Stokes
equation. In Section V, we summarize our work.

II. STRUCTURE OF PINNS
PINNs enhance the learning capabilities of the model by
integrating constraints based on physical laws. These con-
straints are derived from the partial differential equations
of the relevant physical models, along with their boundary
and initial conditions, aiding the model in effective learn-
ing and prediction. Consequently, PINNs can overcome the
challenges faced by traditional data-driven models due to
insufficient data, thereby improving the model’s robustness
and prediction accuracy.

A. SUMMARIZE OF PINNS
The main idea of PINNs is to employ neural network struc-
tures such as deep neural network (DNN), which are trained
to be approximators of the solutions of PDEs, to infer the
latent solutions in the PDEs. The general form of nonlinear
PDEs is written as (1).

ut +Nx [u] = 0, x ∈ �, t ∈ [0,T ]

u (x, 0) = h(x), x ∈ �

u (x, t) = g(x, t), x ∈ ∂�, t ∈ [0,T ] (1)

where (x, t)∈ �× [0,T ] represent the spatial and temporal
coordinates respectively, and subscripts represent the par-
tial differentiation of different variables, Nx is a nonlinear
spatiotemporal differentiation operator. The latent solution
u (x, t) is solved under the constraints of initial conditions
h(x) and boundary conditions g(x, t).
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According to the original definition of PINNs, a fully con-
nected neural network consisting of multiple hidden layers
utilized spatiotemporal coordinates (x, t) as the input of the
network, which fits the solution u(x, t) of the PDEs and
obtains the approximate solution û(x, t; θ ), where θ repre-
sents a series of network parameters, such as weights and
biases.

Before training the parameters θ , the loss function of
PINNs needs to be constructed. The trained neural network
can fit the latent solution u(x, t; θ ) to solve the PDEs, with
the residual is defined as (2).

f (x, t; θ) :=
∂

∂t
û (x, t; θ)+Nx

[
û (x, t; θ)

]
(2)

The mathematical laws in the physical model are embed-
ded in the loss function of the neural network as a priori
knowledge. Accordingly, the loss function formed by the
combination of physical model and neural network is in the
following form (3).

Loss = λf LPDE
(
θ;Nf

)
+ λbLBC (θ;Nb)+ λILIC (θ;Ni)

(3)

where LPDE, LBC, LIC correspond to the residuals, bound-
ary conditions, and initial conditions calculated by randomly
selected points in domain, respectively, and Nf , Nb, Ni denote
the quantity of points for residual term, boundary terms, and
initial terms.

FIGURE 1. Flowchart of the physics-informed neural networks (PINNs).

The above process is the whole procedure of constructing a
PINN for the physical model. First, convert an equation solv-
ing problem into a loss function minimization problem. Then,

adjust the parameters θ through gradient descent algorithm
including Adam [28] and LBFGS [29], to minimize the loss
function as much as possible. Finally, PINNs fit the physical
model with high precision. The framework of PINNs is shown
in FIGURE 1.

B. IMPROVEMENT OF NETWORK STRUCTURE
The network structure of PINNs is forward neural network,
while this structure is not suitable for all PDEs. He et al.
[30] introduce residual physics-informed neural network
(Res-PINN), and the residual neural network can retain the
information of the previous hidden layer during the training
process, preventing from vanishing gradient pathologies to
some extent.

In this paper, we will use ResNet to fit PDEs. ResNet
architectures simplify depth by embedding identity mappings
into the network structure, reducing the complexity associ-
ated with direct function fitting. As shown in FIGURE 2, each
residual block in ResNet uses shortcut connections to add the
output from a previous layer to subsequent layers, not only
alleviating the vanishing gradient problem but also preserving
information integrity throughout the training process.

FIGURE 2. Illustration of the residual block.

III. ADAPTIVE SAMPLING ALGORITHM FOR PINN
Solving PDEs with PINN requires sampling from the domain
of the physical model. In many PINN studies, a fixed number
of residuals at predetermined locations are selected from the
domain prior to training, and no additional sample points
are added during the training process. The sampling methods
frequently used in PINN are equispaced uniform grid, LHS,
etc.. These sampling algorithms can provide good solutions
in most cases except some specific PDEs. In addition, the
training of neural networks is a non-convex problem, and
suitable samples can lead to better training performance and
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higher accuracy. Therefore, we enhance the performance of
PINN by improving the sampling algorithm.

A. THE REVIEW OF ADAPTIVE PROBABILISTIC SAMPLING
METHOD
The RAR algorithm aims to improve the model’s accuracy
by adding new sample points in regions with high residuals.
However, this approachmay overlook regions that are already
well-trained, leading to instability during the training process.
Based on the RAR algorithm, many improved adaptive sam-
pling methods have subsequently been proposed.

Wu et al. [24] proposed the probabilistic sampling
algorithm RAR-D and built a probability density function
based on the residuals of sample points in the domain for
resampling, which ensures that regions with large residuals
are resampled with higher probability, while sample points
with small residuals are also taken into consideration. This
algorithm selects a set of sufficiently dense points S from the
solution domain after the initial training of PINN, calculates
the residual values ε (x, t) =

∣∣∣f (x, t; θ̂ )∣∣∣ for all sample
points in S, then calculates the probability of each point in
S according to the density function (4).

P (x, t) ∝
εk (x, t)

E
[
εk (x, t)

] + c (4)

where k ≥ 0 and c ≥ 0 are two hyperparameters. Then
calculate the sampling probability of all points according to
the probability mass function (5).

P̃ (x, t) =
P (x, t)∑
x∈S P (x, t)

(5)

Finally, the sample points are randomly selected from the
set of sufficiently dense points S according to previous sam-
pling probability and are merged into the initial set of sample
points to retrain PINN.

B. IMPROVEMENT OF ADAPTIVE SAMPLING ALGORITHM
RAR-D shows a significant improvement in accuracy com-
pared to traditional PINNs. However, in the computation
process, it employs a hard constraint approach to embed
the boundary and initial conditions into the neural network.
If the hard constraint approach is not adopted, there would
be a decrease in the solution accuracy. This is because the
sampling algorithm overly concentrates on the points within
the solution domain and neglects the points on the boundary.

To address the aforementioned issue, it is necessary to
reselect an appropriate error indicator function. This func-
tion plays a crucial role in selecting suitable sample points
from the admissible sample set S to effectively supplement
the PINN training dataset. As an error indicator function,
it should satisfy two characteristics [31], one is that it
should be mathematically equivalent to the error value e =∣∣u− û(x, t; θ)∣∣, and the other is that it should be easy to
calculate for each point (x, t). The error indicator function of
all current adaptive sampling algorithms utilizes the residual
of PDEs, but for some partial differential equation prob-
lems, this overreliance on the residual information will cause

the internal region in the domain to be over-refined, thus
neglecting solutions on the boundary. Therefore, we turn to
choose the modified expected improvement (EI) function
based on [32] referring to (6) as error indicator function in
this paper. This function is a modification of the EI function
originally proposed by Jones et al. [33]. for surrogate-based
optimization problems. The EI function evaluates the feasibil-
ity of new sample points by considering the predicted value
and its associated uncertainty.

EI (x, t) = sφ
(
−
y (x, t)
s (x, t)

)
= s · exp

(
−0.5

(
y2 (x, t)
s2 (x, t)

))
(6)

where y (x, t) represents the predicted value of PINN at this
point (x, t), and s (x, t) represents the corresponding residual
of PINN at this point (x, t).
The partial derivative of EI (x, t) is obtained as (7).

∂EI
∂s
= (1+

y2

s2
) · exp(−

y2

s2
)

∂EI
∂y
= −

y
s
· exp

(
−
y2

2s2

)
(7)

From the above process of the partial derivative, it is obvi-
ous that the partial derivative of the EI function with respect
to s is constantly greater than 0, which means that when the
residual corresponding to the sample point (x, t) increases
monotonically, the EI function value also increases. This
indicates that as an error indicator function, the EI function
can successfully identify sample points with higher residuals.
Besides, since s as the residual is constantly greater than 0, the
sign of the partial derivative of the EI function with respect
to y is merely influenced by the sign of y. When y < 0, the
partial derivative of the EI function with respect to y is greater
than 0, when y > 0, it is less than 0, which means that the EI
function value gradually increases when approaching y = 0.
Hence, maximizing the value of the EI function can find the
region where the predicted value of the PINN is close to 0.

However, the Dirichlet conditions of the partial differential
equation are typically non-zero. In this case, assuming the
Dirichlet conditions at the boundary points (x, t) are D(x, t),
the Expected Improvement function is modified as (8). Thus,
maximizing the EI function value can find sample points that
are closer to the Dirichlet conditions D(x, t).

EI
(
x, t

)
= s · exp

(
−
(y−D(x, t))2

2s2

)
(8)

In this way, the maximum value of the EI function can
identify sample points with larger residuals in the PINN
as well as sample points near the boundary of the domain.
This ensures effective selection of sample points within the
internal region, improving the solution accuracy within this
area while maintaining the sampling algorithm’s focus on the
boundary points. Additionally, this method balances the dis-
tribution of sample points across different regions, preventing
the increase in errors and instability in training caused by
over-focusing on a particular region, thereby enhancing the
overall accuracy and stability of the model.
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FIGURE 3. New admissible set generation process.

In the RAR-D algorithm, when resampling based on the
value of residuals, the sample point set of each sampling
is randomly generated in this iteration and is not associ-
ated with the admissible set in the last iteration, which
greatly increases the randomness of each sampling and is
not conducive to the convergence of PINN training and
the improvement of accuracy. To enhance the connection
between the existing sample points and the newly added ones,
we generate new sample points based on the existing ones and
use these points as the new admissible set. The generation
process is as (9).

xi,j = xi + kN (0, Ld ) , i = 1, . . . , I , j = 1, . . . , J (9)

where k is the hyperparameter, J > 0 is a well-specified
integer representing the quantity of newly generated sample
points, N (0, Ld ) stands for the d-dimensional normal distri-
bution, and I is the quantity of newly added sample points
in the last period. The process of generating admissible set
is shown in FIGURE 3. FIGURE 3 illustrates the process
of the sample point generation algorithm. Sample points are
randomly distributed within the computational domain and
a subset is selected based on the probability density func-
tion. Rectangular subdomains are then constructed around the
chosen sample points, within which new points are generated
using a normal distribution method. Ultimately, these newly
generated points form the new admissible set.

To further strengthen the connection between the two con-
secutive samplings, we introduce the attention mechanism
which means that we calculate residuals of newly generated
sample point using PINN in last sampling and this sampling
respectively. Then, these two residuals are coupled with each
other under attention mechanism [34]. The calculation pro-
cess of attention mechanism is (10).

w0 = a (y0, z0)

w1 = a (y1, z1)
...

wn = a (yn, zn) (10)

where y0, y1, . . . ,yn represent EI function values of points
calculated by the current PINN, z0, z1, . . . ,zn represent EI
function values of the same points calculated by the last
PINN, the function a(·) represents the coupling relation-
ship between these two residuals, which involves a form
of scalar operation, w0,w1, . . . ,wn are coefficients of sam-
pling probability. These coefficients multiplied by the sam-
pling probability of current points generates an updated
sampling probability.

The probability density function formula for the adaptive
sampling algorithm is updated to (11).

PEI (x, t) ∝ a (EIn,EIn−1)
EI k (x, t)

E
[
EI k (x, t)

] + c (11)

where EIn denotes the EI function value of points calculated
by the current PINN, and EIn−1 denotes the EI function
value of the same points calculated by the last PINN. In the
numerical experiments of the RAR-D algorithm, the results
are generally better under the parameter set of k = 2, c = 0.
We choose k = 2, c = 0 as parameters in the sampling
algorithm and calculate the probability mass function as (12).

P̃El (x, t) =
PEI (x, t)∑
x∈S PEI (x, t)

(12)

At this point, we can select the newly added sample points
based on the probability mass function. The algorithm is
described in detail as Algorithm 1.

When dealing with partial differential equations that have
sharp solutions, the aforementioned algorithm evidently does
not take into account the characteristics of such equations.
Therefore, it is necessary to incorporate gradient information
into the adaptive sampling algorithm as well. One of the
training objectives of PINN is to make the residual f (x; θ) of
each point in domain be zero. Yu et al. [35] further proposed
that the derivative of the residual of any point (x, t) should
also be zero.

Inspired by this idea, we enhance the adaptive sampling
algorithm based on the RAR-D algorithm and the gradient
information of the residual. If there are discontinuous solution

92134 VOLUME 12, 2024



Y. Liu et al.: Adaptive Sampling Method Based on EI Function and Residual Gradient in PINNs

Algorithm 1 EI-RAR Algorithm
Select the initial training point set S using uniformly
random sampling;

Train PINN in the training set S;
Select an admissible set L using uniformly random
sampling;
Repeat

S0 ←− According to (12) randomly sampled a set of
sufficiently dense points in the admissible set L;

S←− S ∪ S0;
Retrain PINN in the training set S;
In the points of S0, a new admissible set L is generated
based on (9);

Until the number of residuals or the average residual value
reaches the limit;

regions in the domain, underfitting will arise at the edges.
Consequently, larger residuals will occur in these edge areas,
and the gradient of the residuals will change significantly.
Therefore, identifying residual points with larger gradients
can enhance the PINN’s focus on discontinuous regions.
Derivation of the residuals comes to (13).

∇f (x; θ) =

(
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)
(13)

Calculate the ratio of the residual value of each sample
point to the residual values of other sample points, and obtain
the maximum and minimum absolute values of these ratios
as (14).

Rmαx = max


∣∣∣∣∣∣∣∣

∂f
∂x1
∂f
∂x2

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

∂f
∂x1
∂f
∂x3

∣∣∣∣∣∣∣∣ , · · · ,
∣∣∣∣∣∣∣∣

∂f
∂xn−1

∂f
∂xn

∣∣∣∣∣∣∣∣


Rmin = min


∣∣∣∣∣∣∣∣

∂f
∂x1
∂f
∂x2

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

∂f
∂x1
∂f
∂x3

∣∣∣∣∣∣∣∣ , · · · ,
∣∣∣∣∣∣∣∣

∂f
∂xn−1

∂f
∂xn

∣∣∣∣∣∣∣∣
 (14)

During each resampling, calculate Rmax and Rmin for all
sample points, and identify the sample points with the largest
Rmax and the smallest Rmin. Include these points in the initial
training sample set and retrain PINN along with the sample
points selected by the probability mass function. After incor-
porating gradient information, the details of the algorithm are
as shown in Algorithm 2.

IV. EXPERIMENTS
We evaluated the performance of Res-PINN with various
sampling algorithms including RAR-D sampling algorithm,
Grad-RAR sampling algorithm and the proposed sampling
algorithm in this paper. These algorithms are used for solv-
ing various PDEs and we compare the solution errors with
each other. To measure the effect of our proposed algorithm,
the relative L2 error between the exact value u(xi, ti) and
the approximate value û(xi, ti) at the sample point {xi, ti}Ni=1

Algorithm 2 EI-Grad Algorithm
Select the initial training point set S using uniformly
random sampling;

Train PINN in the training set S;
Select an admissible set L using uniformly random
sampling;
Repeat

S0 ←− According to (12) randomly sampled a set of
sufficiently dense points in the admissible set L;

S1 ←− Sample points corresponding to the maximum
and minimum ratios;

S←− S ∪ S0 ∪ S1;
Retrain PINN in the training set S;
In the points of S0 and S1, a new admissible set L is
generated based on (9);

Until the number of residuals or the average residual value
reaches the limit;

obtained by Res-PINN is used and is calculated as (15).

L2error : e =

√∑N
i−1

∣∣û (xi, ti)− u (xi, ti)
∣∣2√∑N

i−1 |u (xi, ti)|2
(15)

A. DIFFUSION EQUATION
Here, we consider a 1D diffusion equation, whose computa-
tional domain is [−1,1] × [0, 1].

∂u
∂t
=

∂2u
∂x2
+ e−t

(
− sin (πx)+ π2 sin (πx)

)
,

u(x, 0) = sin(πx),

u(−1, t) = u(1, t) = 0 (16)

where u represents the concentration of diffusion material.
The diffusion equation has an exact solution u (x, t) =
sin (πx)e−t . To maintain the accuracy of the contrast exper-
iments, we unify the structure of PINN used for multiple
sampling algorithms to Res-PINN. This network uses a
hyperbolic activation function (tanh) and it consists of three
residual blocks, each of which contains a fully connected
layer, and each layer contains 60 neurons.

Before the training commences, we randomly place
40 residual points within the computational domain and ran-
domly position 10 initial points along with 20 boundary
points. During the initial training phase of the PINN, we use
Adam optimizer with a learning rate of 5×10−4 to minimize
the loss function in PINN and iterate 104 times. Since the
diffusion equation does not have sharp solutions, we opt for
the EI-RAR algorithm proposed in this paper for solving it.
During the adaptive sampling process, for each added sample
point, we perform 1000 iterations using the Adam optimiza-
tion, until the number of added sample points reaches 4000.

Besides, we train the same experiment at least five times
for all PINNs with different sampling methods, such as
RAR-D sampling algorithm and EI-RAR sampling algorithm
proposed in this paper and calculate the mean and standard
deviation of the L2 errors in TABLE 1.
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FIGURE 4. New admissible set generation process. Results for the diffusion equations. (a) Predicted solution by EI-RAR sampling algorithm,
(b)pointwise error of diffusion equation using RAR-D sampling algorithm, (c) pointwise error of diffusion equation using EI-RAR sampling algorithm.

TABLE 1. Relative L2 error of diffusion equation with various sampling
algorithms.

From the TABLE 1, it is apparent that EI-RAR sampling
algorithm, employing Res-PINN, can solve the diffusion
equation more stably and accurately when boundary and ini-
tial conditions are not working as hard constrains in the neural
network. FIGURE 4. shows the pointwise error between the
concentration value and its corresponding exact value using
RAR-D sampling algorithm and EI-RAR sampling algorithm
in Diffusion equation. And it can be seen that the error has a
more uniform distribution in the figure produced by EI-RAR
with a better fit intuitively.

B. BURGERS’ EQUATION
The 1D Burgers’ equation is described as (17), whose com-
putational domain is [−1, 1] × [0, 1].

∂u
∂t
+ u

∂u
∂x
= ν

∂2u
∂x2

,

u (−1, t) = u (1, t) = 0,

u (x, 0) = − sin (πx) (17)

We select the parameter v = 0.01/π , consistent with the
parameter used by Raissi et al. [6] in their pioneering PINN
paper. When the diffusion coefficient is small, the nonlinear
solution of the convection term is steep, which means that
the Burgers’ equation has a steep solution. Choosing param-
eters used in previous studies allows our algorithm to be
more easily compared with these studies. Res-PINN chooses
tanh as the activation function, and to verify the validity
of selecting the EI function as the error indicator function,
boundary conditions and initial conditions are not constrained
to PINN as hard constrains during the calculation of Burgers’
equation.

Due to the sharp solutions presented by the Burgers’
equation, the EI-Grad algorithm proposed in this paper is

selected as the adaptive sampling algorithm during the train-
ing process. In the training phase, the initial training points for
the PINN are determined using a random sampling algorithm,
where 2000 interior points, 100 boundary sample points,
and 200 initial sample points are selected at random from
within the computational domain. We used Res-PINN with
four residual blocks, each containing a fully connected neural
layer with 50 neurons. During the initial training phase of the
PINN, we use Adam optimizer with a learning rate of 10−3 to
minimize the loss function in PINN and iterate 2× 104 times.
In the subsequent training phase of the PINN, parameters
are first updated by Adam optimizer with 103 steps, then,
they are trained by L-BFGS with 103 steps. Increase the
number of sampling points by 20 in each iteration until a
total of 2000 additional sampling points are reached. For each
kind of sampling algorithm of the PINN, we performed the
experiments multiple times.

Different sampling algorithms are combined with
Res-PINN to solve the one-dimensional Burgers’ equation,
and the mean values and standard deviation of errors are
calculated and shown in the TABLE 2. The table shows that
using the EI-Grad algorithm to solve the one-dimensional
Burgers’ equation without hard constraints is more accu-
rate and will have lower standard deviation, indicating that
EI-Grad algorithm makes the Res-PINN converge better.

TABLE 2. Relative L2 error of Burgers’ equation with different sampling
algorithms.

FIGURE 5. exhibits the plots of the pointwise error using
Random, and EI-Grad combined with the Res-PINN and the
reference plot of velocity values in the one-dimensional Burg-
ers’ equation. After adding the gradient information, the error
in the discontinuous region of the domain can be effectively
reduced, and EI-Grad sampling algorithm can reduce the
error level even further.
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FIGURE 5. Results for Burgers’ equation using different sampling algorithm. (a) Reference velocity, predict velocity and absolute error
obtained by random sampling algorithm, (b) reference velocity, predict velocity and absolute error obtained by RAR-D sampling algorithm,
(c) reference velocity, predict velocity and absolute error obtained by EI-Grad sampling algorithm.

C. ALLEN-CAHN EQUATION
We consider the Allen-Cahn equation as follows:

∂u
∂t
= D

∂2u
∂x2
+ 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1],

u(x, 0) = x2cos(πx),

u (−1, t) = u (1, t) = −1. (18)

where the value of the diffusion coefficient D is chosen to be
0.001.

Using the neural network and training procedure similar to
previous experiments, the Allen-Cahn equation is calculated
by random sampling algorithm, RAR-D sampling algorithm
and EI-RAR sampling algorithm. For the initial training of
PINN, we randomly select 2000 points within the interior,
100 points along the boundary, and 240 initial points within
the computational domain as initial training dataset. The

architecture of the PINN utilized is Res-PINN that consists
of four residual blocks, with each block containing a fully
connected layer of 64 neurons. In the subsequent training
phase of the PINN, we first employ the Adam optimizer for
103 steps to update the parameters. Then, the training con-
tinues with the L-BFGS optimizer for another 103 steps. The
training process includes progressively increasing the number
of sampling points by 20 per iteration until an additional
2000 sampling points have been incorporated.

The L2 errors corresponding to different sampling algo-
rithms are shown in the TABLE 3. It is evident that the
EI-RAR algorithm demonstrates a significant improvement
in the accuracy of solving Allen-Cahn equation.

To further demonstrate the generalization and applicability
of our proposed adaptive sampling algorithm, we use not
only a diffusion coefficient D = 0.001 but also test the
algorithm’s performance under different parameter settings,
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TABLE 3. Relative L2 error of Allen-Cahn equation with different
sampling algorithms for D = 0.001.

such as D = 0.0001 for Allen–Cahn equation with periodic
boundary conditions. In the initial training, we randomly
select 5000 sample points within the domain, along with
100 boundary points and 300 initial points. The network
architecture chosen is a residual neural network with four
residual blocks, each containing a fully connected neural
layer with 128 neurons. The adaptive sampling algorithm
iterates for 100 rounds, selecting 50 sample points in each
iteration. Finally, we present the L2 errors for different
sampling algorithms under the diffusion coefficient D =
0.0001 for the Allen-Cahn equation in the TABLE 4. The
results show that evenwith different parameter choices for the
partial differential equation, our algorithmmaintains stability
and accuracy.

TABLE 4. Relative L2 error of Allen-Cahn equation with different
sampling algorithms for D = 0.0001.

D. FLOW IN A LID-DRIVEN CAVITY
In this section, we focus on the classical benchmark prob-
lem in fluid dynamics, i.e., the two-dimensional lid-driven
cavity steady-state flow. The model is comprised of a
two-dimensional cavity which has a tangential velocity on the
upper boundary and zero velocity on other three boundaries,
just as shown in the FIGURE 6. This motion gives rise to a
flow phenomenon whose characteristics show a large vortex
in the center of the cavity and some small vortices in the
corners. And the value of Reynolds number affects the size
and number of vortices in the flow.

The motion is governed by the incompressible Navier-
Stokes equation, which can be written in dimensionless form
as (19).

(u · ∇)u =
1
Re
· ∇

2u−∇p,

∇ · u = 0 (19)

where u (x) = (u (x) , v(x)) is a velocity vector field, p is
a scalar pressure field, and the size of the computational
domain is x = (x, y) ∈ [0, 1]× [0, 1]. In addition, the upper
boundary of the cavity has a tangential velocity u = 1, and the
remaining three boundaries of the cavity have zero velocity,
and Re denotes the Reynolds number of the fluid, and we
choose Re = 100 in this case.

FIGURE 6. Schematic diagram of the problem description of flow in a
lid-driven cavity.

For the above Navier-Stokes equation, the residual form is
constructed according to the process of PINN as (20).

ruθ (x, y) := u
∂u
∂x
+ v

∂u
∂y
+

∂p
∂x
−

1
Re

(
∂2u
∂x2
+

∂2u
∂y2

)
rvθ (x, y) := u

∂v
∂x
+ v

∂v
∂y
+

∂p
∂y
−

1
Re

(
∂2v
∂x2
+

∂2v
∂y2

)
rcθ (x, y) :=

∂u
∂x
+

∂v
∂y

(20)

FIGURE 7. Parallel-PINN structure in velocity-representation of
Navier-Stokes equation.

FIGURE 8. Parallel-PINN structure in streamfunction-pressure
representation of Navier-Stokes equation.

According to the above residuals and the boundary condi-
tions in Navier-Stokes equation, the loss function in PINN is
defined as (21).

L (θ) = Lru (θ)+ Lrv (θ)+ Lrc (θ)+ Lub (θ)+ Lνb (θ)

(21)

where the first three terms represent residual loss terms
formed by the PDEs expressed by the law of conservation
of momentum and the law of conservation of mass, and the
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FIGURE 9. Results for lid-driven cavity steady-state flow using different sampling algorithm. (a) Reference velocity, predict velocity and absolute error
obtained by random sampling algorithm, (b) reference velocity, predict velocity and absolute error obtained by RAR-D sampling algorithm, (c) reference
velocity, predict velocity and absolute error obtained by EI-Grad sampling algorithm.

last two terms are the loss terms formed by the boundary
conditions in both directions of the lid-driven cavity flow.

In the process of solving this fluid mechanics problem, the
PDEs are expressed in the form of multiple latent solutions,
therefore, using only one forward neural network for training
to solve the cavity flow problem will cause a large error.
Besides, when the neural network is retrained after resam-
pling, the neural network becomes less robust due to this
simple structure, and it is easy to cause large oscillations in
the parameters. In this case, all parameters in the entire phys-
ical informed neural network are not optimized. Therefore,
we connect multiple neural networks together in parallel,
each of which uses the same spatiotemporal coordinates

as input in Res-PINN, to solve one of the multiple latent
solutions in the PDE. And we name this network structure
parallel-PINN. Then, all the multiple latent solutions solved
by the parallel-PINN utilize automatic differentiation to con-
struct the loss function for the lid-driven cavity flow problem.
The velocity-pressure representation using parallel-PINN is
shown schematically in FIGURE 7.
For the initial training of PINN, we randomly select

2000 points within the interior and 200 points along the
boundary within the computational domain as initial training
dataset. Two Res-PINNs are utilized in a parallel configu-
ration, where each Res-PINN is comprised of three residual
blocks, and each block contains 48 neurons.
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During the initial training phase of the PINN, we use
Adam optimizer with a learning rate of 5× 10−4 to minimize
the loss function and iterate 2× 104 times. Subsequently,
we utilize the L-BFGS optimizer to iterate for 2× 104 times..
In retraining the PINN, parameters are first updated by
Adam optimizer with 2× 103 steps, then, they are trained by
L-BFGSwith 3× 103 steps. Increase the number of sampling
points by 40 in each iteration until a total of 4000 additional
sampling points are reached.

The relative L2 errors corresponding to different sampling
algorithms are obtained by training the parallel-PINN and are
shown in TABLE 5.

TABLE 5. Relative L2 error of Navier-Stokes equation in
velocity-representation with different sampling algorithms.

In the case of solving the Navier-Stokes equation, the
stream function ϕ(x, y) is used and the continuity equation
in the system equation is automatically satisfied as a result,
i.e. (22).

u =
∂ϕ

∂y
, v = −

∂ϕ

∂x
(22)

The mapping relationship of the physical informed
neural network is (x, y) → (ϕ, p), which means
that streamfunction-pressure representation can effectively
reduce the number of parameters to be trained in Res-PINN.
The streamfunction-pressure representation using parallel-
PINN is shown schematically in FIGURE 8.
We use parallel-PINN combined with RAR-D sampling

algorithm, Grad-RAR sampling algorithm, and EI-Grad sam-
pling algorithm to solve the cavity flow problem. Plots for
reference velocity, predicted velocity and their pointwise
error are shown in FIGURE 9.
Corresponding to different sampling algorithms, the rela-

tive L2 errors, using the streamfunction-pressure representa-
tion of Navier-Stokes equation, are shown in TABLE 6.

TABLE 6. Relative L2 Error of Navier-Stokes equation in
streamfunction-pressure with different sampling algorithms.

Comparing the accuracies of parallel-PINN with different
sampling algorithms for the lid-driven cavity flow problem,
it is evident that the EI-Grad algorithm can reduce the solution
error of velocity and show better results solving the PDEs
involving multiple latent solutions..

In addition, after comparing the two different forms of
Navier-Stokes equation with sampling algorithm, it can
be found that the solution error for the lid-driven cav-
ity flow problem has a lower order of magnitude when
streamfunction-pressure representation is chosen.

V. CONCLUSION
In this paper, we notice that when solving PDEs, the adaptive
sampling algorithm can effectively improve the performance
of PINN, which is essentially similar to the selection of grid
cells in traditional numerical methods. Based on the concept
of probabilistic sampling using residual points, wemodify the
error indicator of general adaptive sampling algorithm and
propose the EI-RAR algorithm. First, we choose an expected
improvement function to replace the residual of the sample
points as the new error indicator function, which can make
us find the points closer to the boundary of the computa-
tional domain while focusing on the high residuals. Then,
the sample points with special residual gradient information
are added to improve the fitting accuracy of PINN in the
discontinuous solution region, which makes us to further pro-
pose the EI-Grad adaptive sampling algorithm.. In addition,
this paper introduces point generation algorithm and attention
mechanism into our algorithm, so that each iteration sampling
process can effectively use the last sampling information
and the convergence speed of the neural network increases.
Moreover, we choose residual neural network as the network
structure of PINN to reduce the probability of vanishing
gradient pathologies in training.

In order to verify that our sampling algorithm can effec-
tively enhance PINN,we chooseDiffusion equation, Burgers’
equation, Allen-Cahn equation and flow in a lid-driven cavity
as experiment tests. In Diffusion equation and Allen-Cahn
equation, compared with Random and RAR-D sampling
algorithms, EI-RAR has lower solution error and better
robustness. In Burgers’ equation, EI-Grad can significantly
reduce the solution error of the discontinuous region in the
solution domain. Regarding the problem of the flow in a
lid-driven cavity, we first choose parallel-PINN to increase
the complexity of PINN network structure. Then, velocity-
representation and streamfunction-pressure representation
are used to solve the Navier-Stokes equation. The results
show that the EI-Grad sampling algorithm can raise the solu-
tion accuracy of the velocity field dramatically.

In the future, we will mainly study how to select
error indicator function and probability sampling algorithm
to improve the solution accuracy and training speed of
PINN without hard constraints. Up to now, we have
only studied one-dimensional spatiotemporal problems and
two-dimensional spatial problems. Therefore, in the near
future, we will explore how to select sampling points of PDEs
in higher dimensions to increase their solution accuracy.
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