
Received 7 June 2024, accepted 28 June 2024, date of publication 2 July 2024, date of current version 23 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3422182

Enhancing Performance of Massive MU-MIMO
System With LR-RTS: A Low-Complexity
Detection Algorithm
KALAPRAVEEN BAGADI 1, (Senior Member, IEEE), VISALAKSHI ANNEPU 2,
NAGA RAJU CHALLA 3, FRANCESCO BENEDETTO 4, (Senior Member, IEEE),
THOKOZANI SHONGWE 5, (Senior Member, IEEE),
AND KHALED RABIE5,6, (Senior Member, IEEE)
1School of Electronics Engineering, VIT-AP University, Amaravati 522237, India
2School of Computer Science and Engineering, VIT-AP University, Amaravati 522237, India
3Department of ECE, Bapatla Engineering College, Bapatla 522102, India
4SP4TE–Signal Processing for Telecommunications and Economics Laboratory, Economics Department, University of Roma Tre, 00145 Rome, Italy
5Electrical and Electronic Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa
6Department of Engineering, Manchester Metropolitan University (MMU), M15 6BH Manchester, U.K.

Corresponding authors: Khaled Rabie (k.rabie@mmu.ac.uk) and Naga Raju Challa (nagaraju.challa@becbapatla.ac.in)

ABSTRACT In recent years, the deployment of massive multiuser multiple-input multiple-output
(MU-MIMO) systems with hundreds or even thousands of antennas at the enhanced-mobile broadband
station (e-MBBS) has gained considerable attention in the research community and industry for emerging
applications such as millimeter-wave (mm-wave) communications, 5G and Beyond, Beamforming and
spatial division multiple access (SDMA) and IoT and Wearable Devices. In this paper, we propose a novel
low-complexity detection algorithm, namely lattice reduction associated reactive Tabu search (LR-RTS),
capable of providing near-optimal detection performances by mitigating both the inter-antenna interfer-
ence (IAI) and multi-user interference (MUI). The lattice reduction (LR)-based precoding scheme is first
incorporated by the mobile user to suppress the IAI. Then, the novel LR-associated RTS detection algorithm
is used at the e-MBBS to mitigate the MUI. The initial signal vector of this algorithm is chosen from
the solution of the LR pre-coded ZF detector. Simulation results and comparisons with state-of-the-art
methods show that the proposed solution outperforms heuristic search-based algorithms, namely likelihood
ascent search (LAS) and linear detection methods like zero-forcing (ZF). In addition, our method offers a
better tradeoff between performance and computational complexity for systems with a massive number of
antennas and higher-order QAMmodulations, showing a performance gain between 2dB and 9dB versus the
conventional techniques.

INDEX TERMS Enhanced mobile broadband station, inter-antenna interference, lattice reduction, multi-
user multiple input multiple output, multi-user interference, reactive-Tabu search.

I. INTRODUCTION
Massive multiple-input and multiple-output (MIMO) tech-
nology has brought forth a new era of possibilities and
challenges in the rapidly evolving landscape of wireless
communication. This cutting-edge technology, characterized
by deploying many antennas at both the transmitter and
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receiver ends, holds immense potential for revolutionizing
howwe experience wireless connectivity [1]. MassiveMIMO
has become a foundation of modern wireless communica-
tion standards by significantly improving link reliability,
throughput, channel capacity, and spectral efficiency without
additional spectrum resources [2]. MIMO technology plays a
pivotal role in enhancing link reliability and throughput with
its multiple antennas. It achieves this by increasing channel
capacity and spectral efficiency without requiring additional
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FIGURE 1. Representation of IAI and MUI.

spectrum resources [3], [4]. As a result, MIMO technol-
ogy has become integral to wireless communication stan-
dards, including IEEE 802.11n (Wi-Fi) [5], IEEE 802.11ac
(Wi-Fi) [6], high-speed packet access plus (HSPA+) [7],
long-term evolution (LTE) (4G) [8], and LTE-advanced [9].
The large-scale multi-userMIMO (MU-MIMO) paradigm,

commonly known as massive MIMO, represents a sig-
nificant advancement in wireless communication technol-
ogy. It is worth noting that when a MIMO system is
equipped with a considerable number of antennas, it is often
termed an extremely large-scale MIMO (XL-MIMO) [10] or
ultra-massive MIMO (UM-MIMO) [11]. However, in prac-
tical terms, a base station (BS) with hundreds of antennas
is typically referred to as a massive MIMO [12]. Realizing
the full potential of Massive MIMO, particularly in large-
scale MU-MIMO systems, presents significant challenges.
This paper explores the critical issues affecting such sys-
tems’ performance-complexity trade-offs. These challenges
encompass mitigating IAI, managing MUI, accurate esti-
mation of channel state information (CSI) for numerous
channels, synchronization, and hardware implementation.
Among these challenges, IAI and MUI, as depicted in Fig. 1,
are critical obstacles that significantly constrain the per-
formance of large-scale MU-MIMO systems. The primary
objective of this research paper is to address these issues
by introducing a novel low-complexity detection algorithm,
lattice reduction associated reactive Tabu search (LR-RTS).
By effectively mitigating IAI and MUI, this algorithm
enhances the performance of large-scale MU-MIMO sys-
tems, thus unlocking the full potential of massive MIMO in
future wireless communication.

This paper focuses on the LR-RTS algorithm and its imple-
mentation in large-scale MU-MIMO systems. Additionally,
it provides a comparative analysis of LR-RTS with existing

detection algorithms in terms of computational complexity
and performance improvements. Ultimately, this research
aims to contribute to the advancement of massive MIMO
technology, making it a more viable and efficient solution for
future communication challenges.

A. RELATED WORK
The core principle behind the massive MU-MIMO sys-
tem is the coherent superposition of wavefronts [13].
However, realizing this system presents several signal pro-
cessing challenges, impacting the trade-off between per-
formance and complexity. The key challenges include
(i) addressing IAI [14], (ii) mitigating MUI [15], (iii) accu-
rately estimating CSI for a vast number of channels,
(iv) managing synchronization, and (v) handling hardware
implementation [16], [17]. IAI and MUI stand out as the
primary bottlenecks and critical obstacles within the mas-
sive MU-MIMO system, as they significantly degrade its
performance. Therefore, the primary objective of mas-
sive MU-MIMO techniques is to mitigate these interfer-
ences by using an efficient multiuser detection (MUD)
that maintains computational efficiency. Many antennas
within each MU’s confined space are needed to meet the
futuristic demands of MUs and to deliver high through-
put within limited spectrum bandwidth. This arrangement,
however, can lead to IAI issues. An effective pre-coding
technique is employed at the transmitter to counteract
IAI, facilitating detection at the receiver. The commonly
used ZF and minimum mean square error (MMSE) pre-
coders, while low in computational complexity, tend to
yield poor bit error rate (BER) performance [18]. Non-
linear pre-coders such as dirty paper coding (DPC) [19],
constant envelope [20], Tomlinson–Harashima (THP) [21],
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and vector-permutation (VP) [22] can achieve near-optimal
BER performance. However, their computational complexi-
ties scale with the number of antennas at each MU, posing a
trade-off between performance and complexity in designing
pre-coding techniques for large-scale MU-MIMO systems.
Hence, there is a need for a pre-coding technique that
offers reduced computational demands while maintaining
near-maximum likelihood (ML) performance [23].
Recently, LR-based algorithms emerged as a prominent

pre-coding scheme, striking a balance between low com-
plexity and achievable sum rate performance [24], [25],
[26], [27]. The LR technique is a robust metaheuristic
approach that is useful in pre-coding for massive MU-MIMO
systems. It transforms the channel matrix into a nearly
symmetric and more constrained channel basis within the
same lattice. Consequently, it eliminates channel correla-
tion, alleviating IAI at a MU [28]. The MUI poses another
substantial challenge to the effectiveness of MU-MIMO sys-
tems [29]. This interference arises when multiple MUs are
closely located, resulting in a notable similarity in the chan-
nel impulse responses (CIRs) of the MUs [30]. The CIRs
act as spatial signatures for individual MUs. The MUD
techniques employed at the receiver are used to tackle the
impact of MUI. The primary goal of MUD schemes is to
reconstruct the transmitted signal vector of the desired user
from the received signal vector while effectively canceling
interference stemming from undesired users. Various detec-
tion schemes have been proposed in the existing literature
to combat these interferences and enhance data through-
put [31], [32]. One of the notable detectors is the ZF channel
inversion (ZF-CI) method [33]. Nevertheless, the ZF-CI
detector yields subpar performance when the channel faces
adverse conditions due to the conversion of the pre-coding
vector into a non-unitary matrix, which amplifies noise.
The MMSE channel inversion (MMSE-CI) method stabilizes
MUI and effectively eliminates each user’s noise [34]. How-
ever, it suffers from the drawback of yielding undesirable
BER, particularly in large MIMO systems with higher-order
modulation schemes. The matched filter channel inversion
(MF-CI) detector is an alternative detector designed for
channel-free environments, specifically single-input, single-
output (SISO) systems [35]. Block diagonalization (BD)
detectors are introduced in [36] to eliminate interferences.
Nonetheless, BD detectors are complex structures primarily
suited for the downlink scenario. Though the sphere decod-
ing (SD) detector is proposed to improve BER performance,
its overall complexity becomes unmanageable in the context
of large MU-MIMO systems [37].
Recent research has explored search-based detectors ded-

icated to combating MUI issues in large-scale MU-MIMO
systems, achieving complete MUI removal and effectively
transforming the MU-MIMO system into a set of indepen-
dent single-user MIMO (SU-MIMO) systems. Conventional
MIMO linear and non-linear detectors can be employed
for such SU-MIMO connections. Nguyen et al. propose
time-domain multi-user interference cancellation schemes

to address carrier frequency offsets (CFOs) in uplink
OFDMA systems [38]. By using multiple OFDMA mod-
ulators at the base station, their method compensates for
CFO impacts, significantly improving performance over con-
ventional receivers and frequency-domain schemes, even
tolerating CFOs up to 40% of subcarrier spacing. A similar
approach was presented in [39] for CFO issues in uplink
OFDMA. The multi-user interference cancellation scheme,
using multiple OFDM demodulators, corrects and mitigates
the negative effects of CFOs at the receiver, showing consid-
erable performance gains in numerical evaluations. Bazzi and
Chafii introduce amethod for designing dual-functional radar
and communication (DFRC) waveforms with adjustable
peak-to-average power ratio (PAPR) [40]. Using the alter-
nating direction method of multipliers (ADMM), their
approach minimizes multi-user communication interference
while adhering to radar chirp constraints. The method shows
superior performance and adaptability to imperfect CSI in
simulations. On the other hand, the LAS method operates
as an iterative search-based detector that actively seeks an
improved solution within the neighborhood of the signal
space [42], [43], [44], [45]. Although LAS is a local and
iterative approach, it outperforms ZF and MMSE detectors,
although with minimal additional complexity. LAS com-
mences with an initial solution vector, often the result of
ZF or MMSE detection, and continues to refine the initial
vector until saturation in improving the ML cost function is
observed. In its conventional form, LAS explores the arrange-
ment by sequentially altering each information symbol of
the initial solution vector associated with all transmitting
antennas. An RTS-based detection algorithm was introduced
to enhance BER performance in large-scale MU-MIMO sys-
tems while minimizing computational complexity [46], [47].
RTS is an iterative search technique that delves into a local
search space to explore neighborhoods and identify substan-
tial solutions. The low-complexity RTS detector begins with
an initial solution and probes the surrounding neighborhood.
Even when the current solution is suboptimal, it selects the
best vector among the neighboring solutions.

Most existing research has addressed either IAI or MUI,
whereas this work focuses explicitly on both. Thus, this paper
explores the LR-RTS MUD scheme for large-scale MU-
MIMO systems, aiming to achieve near-optimal performance
with less complexity.

B. CONTRIBUTIONS
This research paper makes several significant contributions
to the field of large-scale MU-MIMO systems, as outlined
below:
• Introduction of LR-RTS Algorithm: This paper presents
the LR-RTS algorithm, which is tailored explicitly
for large-scale MU-MIMO systems and effectively
addresses both IAI and MUI.

• Simultaneous Mitigation of IAI and MUI: Unlike prior
approaches that focus on either IAI or MUI, LR-RTS
offers a unified solution, effectively tackling both
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FIGURE 2. Block diagram of a proposed LR-Aided RTS detection scheme.

interferences concurrently, thereby enhancing system
performance comprehensively.

• Improved Performance-Complexity Trade-off: LR-RTS
achieves a refined balance between detection per-
formance and computational complexity, delivering
near-optimal results with significantly reduced compu-
tational demands compared to existing methods.

• Application to large-scale MU-MIMO systems: we
showcase the effective application of our proposed
method to (and its superiority in enhancing the perfor-
mance of) large-scale MU-MIMO systems by means of
a comprehensive comparative analysis against state-of-
the-art methods, such as LAS and ZF.

This paper is structured as follows: Section II presents the
mathematical model of a large-scale MU-MIMO with LR
pre-coding. Section III discusses conventional MUD tech-
niques. Section IV defines the Neighborhood Concept and
introduces the search-based LR-LAS detector. Our proposed
LR-based RTS detection scheme is detailed in Section V.
Section VI presents simulation results and comparisons with
existing techniques, while we draw our conclusions from the
research findings in Section VII.

II. SYSTEM MODEL
The block diagram in Fig. 2 illustrates a proposed massive
MU-MIMO system implementing hybrid LR- RTS detection.
In the context of an uplink scenario within this large-scale
MU-MIMO framework, the system comprises an e-MBBS
equipped with a NR substantial number of receiving antennas

and K independent MUs, with each MU being equipped
with its own set of transmitting antennas. Consequently, the
collective count of transmitting antennas sums to the total
number NT represented by K × MT , where NT ≤ NR. Here,
each MU can simultaneously transmit data to the e-MBBS,
which is also equipped with receiving antennas, all oper-
ating on the same channel. Given the sheer magnitude of
antennas at both the e-MBBS and MUs, this system is appro-
priately categorized as a large-scale MU-MIMO system. The
e-MBBS receiver is designed to acquire comprehensive CSI,
encompassing the entire system. In contrast, each k th MU is
equipped to acquire its own specific CSI, which pertains to
the channel between the e-MBBS and that particular MU.
It is important to note that each MU remains unaware of
the system’s CSI associated with other MUs. Since there is
no collaboration or sharing of information among different
users, the CSI between the k th user and the e-MBBS regarding
the other (K – 1) users is unavailable. In the block diagram
of the MU-MIMO system, the information bit vector for
the k th user is denoted as dk =

[
dk,1, dk,2, . . . , dk,MT

]T ,
where k = 1,2,. . . , K .. Each dk,m represents the stream of
information bits used to generate the data symbol for the
mth antenna of the k th user, and the T operation denotes
the transpose operation. This vector serves as the basis for
generating an un-coded complex data symbol vector bck =[
bk,1, bk,2, . . . , bk,MT

]T
∈ CMT . These un-coded symbol

vectors are subsequently processed and encoded as sck through
LR pre-coding, effectively mitigating IAI encountered at
each MU. The resulting complex pre-coded signal vector
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sck =
[
sk,1, sk,2, . . . , sk,MT

]T
∈ CMT is then transmitted

over MT transmitting antennas through a user-specific com-
plex channel Gck , representing the channel coefficient matrix
between the e-MBBS and the kth MU.
The complex channel coefficient matrix is denoted as:

Gck =


gk11 gk12 · · · gk1MT

gk21 gk21 · · · gk2MT
...

...
. . .

...

gkNR1 gkNR2 · · · gkNRMT

 (1)

With this channel matrix, the (NR × 1)-dimensional complex
received signal vector at the e-MBBS from K concurrent
MUs is mathematically expressed as follows:

yc =
K∑
k=1

Gcks
c
k + w

c, (2)

where wc =
[
w1,w2, . . . ,wNR

]T is an (NR × 1)-dimensional
vector consisting of independent and identically distributed
Additive White Gaussian noise (AWGN) with a zero mean
and variance σ 2

w. For convenience, the complex MIMO sys-
tem model presented in (2) is transformed into an equivalent
real-valued system as follows:

y =
K∑
k=1

Gksk + w, (3)

where

sk =
[
Re(sck )

T Im(sck )
T
]T
∈ R2MT×1,

yk =
[
Re(yck )

T Im(yck )
T
]T
∈ R2NR×1,

c =
[
Re(cc)T Im(cc)T

]T
∈ R2NR×1

and Gk =
[
Re(Gck ) −Im(Gck )
Im(Gck ) Re(Gck )

]
∈ R2NR×2MT .

In this context, Re(.) and Im(.) indicate the real and imaginary
components, respectively.

A. LR PRE-CODING ALGORITHM
IAI can significantly degrade the Signal-to-Interference-plus-
Noise Ratio (SINR) in MIMO systems, leading to reduced
data rates, decreased reliability, and impaired spectral effi-
ciency. By mitigating IAI through precoding techniques,
we aim to alleviate these adverse effects and enhance the
overall performance of MIMO systems. LR serves as an
effective pre-coding strategy designed to enhance the perfor-
mance of large-scale MU-MIMO systems while significantly
reducing computational demands. This technique relies on
CSI at each UE, denoted as Gk . The primary objective of LR
is to transform the given channel basis vector,Gk , into a novel
basis vector situated within the shortest Euclidean space.
When Gk comprises an orthogonal lattice basis vector, the
decision boundary region of the linear system closely aligns
with that of the ML system. As a result, the orthogonality

within a lattice basis vector has a profound impact on the
performance of the large-scale MU-MIMO receiver. Various
channel vectors can commence with the same lattice basis,
facilitating the design of nearly orthogonal bases Ĝk for a
corresponding lattice basis vector Gk . Within the framework
of LR pre-coding, channel coefficients take on the role of
lattice points, and these lattices are refined into improved
lattices through the well-established Lenstra, Lenstra, and
Lovász (LLL) reduction algorithm. This algorithm, known
for its efficiency as a suboptimal reduction technique, swiftly
identifies the nearest shortest basis vector within any lattice
in polynomial time complexity. By harnessing the power of
the LLL algorithm, the original channel matrix Gk is trans-
formed into a new equivalent channel matrix, denoted as Ĝk ,
as follows:

Ĝk = GkT , (4)

where T stands for an unimodular transformation matrix
attained through the LLL algorithm, and each element within
T belongs to the set of Gaussian integers.
A lattice constitutes an assortment of distinct vectors,

specifically the columns forming the channel matrix of the
k th MU, denoted as L(Gk ). In a real-valued channel matrix,
Gk can be represented through a collection of linearly inde-
pendent basis vectors, commonly referred to as lattice basis.
Consequently, the lattice can be defined as:

L (Gk) = L
(
g1, g2, . . . , g2MT

)
= Gksk , (5)

where gi, i = 1, 2, . . . , 2MT represents the ith column of the
k th MU’s channel matrix. This lattice undergoes a transfor-
mation process, resulting in a new lattice denoted as L(Ĝk ),
wherein the transformed channel Ĝk is obtained through a
series of elementary column operations. These operations
encompass sign reflection, column swapping, and column
translation, all applied to the original channel matrixGk [18].
Collectively, these elementary column operations yield an
unimodular matrix Tk with dimensions (2MT × 2MT ). This
unimodular matrix allows us to express Ĝk as a product of
Gk and Tk . Importantly, the unimodular matrix exclusively
comprises integer elements, with a determinant det(Tk ) equal
to either+1 or−1. The transformed channel, a result of these
elementary column operations, maintains the same lattice
structure L(Ĝk ) = L(Gk ). It is worth noting that the inverse
of unimodular matrices also exists and consists entirely of
integer values T−1k ∈ Z2MT×2MT , enabling us to define Gk as
ĜkT−1k . The expression for the received signal, as provided
in (3), is now adapted for a Large-Scale MU-MIMO system
with LR pre-coding, and it is articulated as follows

yLR =
K∑
k=1

GkT kT−1k sk + w =
K∑
k=1

Ĝkbk + w, (6)

where bk = T−1k sk and sk represent the (2MT × 1)-
dimensional real-valued un-coded and pre-coded signal vec-
tors of the k th MU, respectively.

VOLUME 12, 2024 97089



K. Bagadi et al.: Enhancing Performance of Massive MU-MIMO System With LR-RTS

III. CONVENTIONAL MUD SCHEMES
Numerous detection schemes have been put forth in the exist-
ing body of literature, as elaborated below. Among these,
the ML can recover the transmitted symbol vector s from all
A2NT potential transmitted vectors that closely approximate
the received signal vector y, considering the specific channel
matrix G, which can be expressed as:

ŝML−D = arg
s∈A2NT

min ∥y− Gs∥2 , (7)

where, G = [G1,G2, . . . ,GK ] is the overall channel
matrix, ||. || represents L2 norm. The ML cost function is
defined as:

φ (s) = ∥y − Gs∥2 =
2NR∑
i=1

∣∣∣∣∣∣yi −
2NT∑
j=1

gijsj

∣∣∣∣∣∣
2

, (8)

While the ML detector is a powerful technique, it becomes
impractical for large MU-MIMO systems due to its expo-
nential computational complexity. In such cases, alternative
detectors with lower accuracy, such as the matched fil-
ter (MF), ZF, and MMSE detectors, are employed to mitigate
MUI while maintaining a more manageable computational
complexity. The mathematical expressions for detecting the

real-valued symbol vector ŝ =
[
ŝT1 , ŝT2 , . . . , ŝTK

]T
, where

ŝk =
[
Re

(
ŝck

)T Im
(
ŝck

)T ]T
, using these various detectors, are

provided as follows

ŝMF−D = GHy, (9)

ŝZF−D =
(
GHG

)−1
GHy, (10)

ŝMMSE−D =
(
GHG+ σ 2

n I
)−1

GHy. (11)

Conventional MUD detectors achieve a uniform signal-
to-noise ratio (SNR) for all detectors. However, reducing
the MUI separately is difficult, leading to performance-
complexity trade-offs between the systems, especially for
large MU-MIMO systems.

IV. SEARCH-BASED DETECTION TECHNIQUES
Neighbor search-based detection schemes have been pro-
posed to achieve better BER performance with less computa-
tional complexity, as discussed below.

A. NEIGHBORHOOD DEFINITION
The pre-coded symbol vector s contains L neighborhood
symbols OL(s), which are as follows: Let us define a symbol
vector ŝ, where ŝ ∈ OL (s). Then, there will be a total of

(
2NT
L

)
possible symbols for such ŝ. The sets of indices at which s
and ŝ vary are represented by Ik , where k = 1, 2, . . . ,

(
2NT
L

)
.

A neighborhood vector ŝ ∈ OL (s) is:

ŝi =

{
ϕj, ϕj ∈ φ and i ∈ Ik ,∀ϕj ̸= si
si, i /∈ Ik ,

(12)

where ϕ =
{
±1,±3, . . . ,±

(√
b− 1

)}
2NT×1

, i takes values

from 1 to 2NT , and j ranges from 1 to L. Thus, the total

number of vectors in OL(s) amounts to
(√

b− 1
)L (

2NT
L

)
.

To illustrate this concept, let’s consider a 16-QAM mod-
ulation scheme, where the real equivalent constellation set
ϕ is characterized by {–3, –1, 1, 3}, and a symbol vector
OL(–3) is formed with a length of 3, comprising {–1, 1, 3}.
The 1-symbol neighborhood of this OL(s) vector can be
created by sequentially modifying each element, one at a
time, with the other elements from the ϕ set. For instance,
with regard to the first element of the symbol vector, we gen-
erate 3 vectors in the 1-symbol neighborhood: [–1, 3, –1],
[3, –1,3], and [3, 3, –1]. A similar process is applied to the
other two locations, generating an additional 6 symbol vec-
tors. Consequently, two optimal neighborhood sets for each
symbol within ϕ can be defined as follows:OL(–3)= {–1, 1},
OL(–1) = {–3, 1}, OL(1) = {–1, 3}, and OL(1) = {1, –1}.
This theory can be extended to all symbol vectors, resulting
in M neighborhood vectors for each symbol vector, where
M = |OL(s)|. The minimum and maximum values for M are
set to 1 and L − 1, respectively.
Considering the definition of neighborhood, various ver-

sions of LAS algorithms emerge, such as 1-LAS, multiple
LAS (MLAS), multiple output selection LAS, and RTS.
These neighborhood-based algorithms primarily aim to iden-
tify the best vector, which represents the symbol vector with
the minimum Euclidean distance, among the neighborhood
candidates. However, a significant challenge lies in selecting
the initial solution vector and defining the search space.
Typically, linear detectors are chosen as initial solution vec-
tors. An LR-ZF detector is considered to improve the initial
solution vector’s quality, as the hard decisions made by the
LR-ZF detector tend to be more reliable than the linear detec-
tors. Further details regarding this will be discussed in the
subsequent section

B. LATTICE REDUCTION ASSISTED LIKELIHOOD ASCENT
SEARCH (LR-LAS) DETECTOR
In the context of large-scale MU-MIMO systems, the MUI
stemming from these simultaneous MUs tends to be more
conspicuous than the IAI. Consequently, the performance of
conventional detectors becomes notably constrained. While
the ML detector delivers superior BER performance, its com-
putational complexity exceeds the capabilities of large-scale
MU-MIMO systems. Therefore, the challenge lies in devising
nearly optimal detectors with minimal complexity, a pivotal
consideration for the practical deployment of large-scaleMU-
MIMO systems. In this context, the low-complexity LAS
detector emerges as an attractive solution, as its performance
closely rivals that of the ideal ML detector. The LAS detector
initializes its search process with the aid of the ZF detector
vector, subsequently exploring the neighborhood solution
space around the initial solution vector. This initial solution
for the LAS detector consists of neighborhood symbols that
yield the lowest ML cost value.
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Let

ŝLR−ZF =
[
(ŝ1)T , (ŝ2)T , . . . , (ŝK )T

]T
=

[
ŝ1, ŝ2, . . . , ŝ2NT

]T
,

be the real-valued solution attained from LR-assisted ZF
detector and is defined as:

ŝLR−ZF =
(
Ĝ
H
Ĝ

)−1
Ĝ
H
yLR. (13)

where, Ĝ = [Ĝ1, Ĝ2, . . . , ĜK ] is the overall trans-
formed channel matrix. Let O = [o1, o2,. . . , oL] be the
set consisting of all possible trail vectors, where oj =[
o1,j, o2,j, . . . , o2MT ,j

]T , j = 1, 2,. . . , L. If the nth symbol is
the intended symbol, the elements of the trial vector OL are
selected in accordance with the following

oi,j =

{
ϕj if i = n
ŝi if i ̸= n,

where j = 1, 2, . . . ,L and

i = 1, 2, . . . , 2NT (14)

Thus, the estimation of the nth data symbol is obtained
through the LR-LAS detector as follows

ŝn,LR−LAS
= arg min

s=oj,j=1,2,...,L
∥y− Gs∥2 , n = 1, 2, . . . , 2NT . (15)

The LR-LAS detector requires the evaluation of (L × 2NT )
ML cost functions to detect all users. The performance of the
LAS detector is primarily influenced by two key parameters:
the selection of the initial solution vector and the definition of
the search space. LAS can attain superior BER performance
with reduced computational complexity when an appropriate
initial solution is chosen. Nonetheless, a major challenge
for LAS is the early termination problem, primarily due to
its relatively limited search space, which is impractical for
extensive constellations and massive MU-MIMO systems.
To address this challenge and achieve the best error rate per-
formance with minimized computational load, we introduce
the LR-RTS detector in this study.

V. PROPOSED LATTICE REDUCTION ASSISTED REACTIVE
TABU SEARCH (LR-RTS) DETECTOR
Reactive Tabu Search represents an iterative and heuristic
detection approach that heavily relies on local neighborhood
exploration. It offers notably superior performance, particu-
larly in the context of large-scale MU-MIMO systems, often
involving a substantial number of antennas, ranging from
tens to several thousand. Much like the LAS method, the
RTS algorithm commences its operations with an initial solu-
tion vector. Typically, this initial vector is provided by the
LR-ZF detector. The algorithm then establishes a neighbor-
hood symbol vector based on specific criteria, subsequently
transitioning to the best neighboring vector within that neigh-
borhood. If, during this transition, the best neighboring vector
results in a higher ML cost function value, the current solu-
tion vector is preserved as the initial solution. This strategy
helps the algorithm escape local minima. The entire process

persists for a predetermined number of iterations, with the
best solution vector across all these iterations ultimately rec-
ognized as the final solution vector. This approach introduces
a unique aspect wherein solution vectors from the preceding
few iterations, often referred to as ‘‘Tabu,’’ play a crucial
role in defining the neighborhood for the solution vector
in a particular iteration. By doing so, the RTS algorithm
effectively navigates the solution space while adhering to a
‘‘Tabu period,’’ which represents the cumulative number of
these preceding iterations. The overall sequence of the RTS
algorithm unfolds as follows.

A. REACTIVE TABU SEARCH (RTS) ALGORITHM
The RTS algorithm commences with an initial solution vec-
tor ŝ(0)ZF−D derived from the ZF detector as given in (13).
To generate the best initial solution vector, we propose the
LR-associated ZF (LR-ZF) detector ŝ(0)LR−ZF as an initial
solution. Create all neighborhood symbol vectors using the
ŝ(0)LR−ZF , and define the maximum number of iterations τmax.
Later, the ML cost functions of each neighborhood vector
are determined, and the best neighborhood vector among all
(lowest ML cost metrics) is selected. The RTS algorithm
supports both local and global solutions. At first, the initial
solution is treated as a global solution. The best neighborhood
vector updates the global solution. During each iteration of
the RTS algorithm, indexed as k (where k = 1, 2,. . . , τmax),
if the value of the ML cost function is found to be lower
than the cost of the global solution, the best neighborhood
vector is utilized to enhance the global solution. The ML
cost function for the global solution is then updated to match
the best neighborhood cost function. Conversely, suppose the
best neighborhood cost function at the kth iteration surpasses
the cost function of the global solution. In that case, the
move of the equivalent neighborhood vector is stored in the
tabu matrix at specified intervals. This strategic limitation
of moves at defined intervals is crucial in helping the RTS
algorithm steer clear of local minima. In both scenarios,
the initial solution for the subsequent iteration is configured
as the best neighborhood vector, followed by the update of
the tabu matrix and the tabu period. Ultimately, the RTS
algorithm is concluded when the established condition is met.
Otherwise, once again, it creates all neighborhood symbol
vectors with the help of the initial solution vector ŝ(0)LR−ZF .
The data symbol vector belonging to the real-valued solution
attained from LR assisted ZF detector at k th iteration is
defined as

ŝkLR−ZF = [(ŝk1)
T , (ŝk2)

T , . . . , (ŝk2NT )
T ]T

= [ŝk1, ŝ
k
2, . . . , ŝ

k
2NT ]

T , (16)

where ŝki = OL(s),L ∈ {1, 2, . . . , 2NT } and the neighborhood
vector of ŝkLR−ZF is defined as

Qk (u, v) =
[
qk1 (u, v)T , qk2 (u, v)T , . . . , qk2NT (u, v)T

]T
,

(17)
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where u= 1, 2,. . . ,2NT and v= 1, 2,. . . ,M . The neighboring
vector is defined as

qki (u, v) =

{
ŝki , for i ̸= u

ϕv

(
ŝku

)
, for i = u.

(18)

As a result, there will be 2MNT vectors in the solution space
and only one coordinate different from the given vector.
The neighborhood of the provided vector is prepared from
these 2MNT vectors. A move is an operation on ŝkLR−ZF that
produces ŝk+1LR−ZF which is a member of ŝkLR−ZF vector neigh-
borhood. If ŝk+1LR−ZF = Qk (u, v), the algorithm is said to have
executed the move (u, v). Therefore, some 2MNT candidates
can be considered for a move during any given iteration.
Additionally, the cardinality of the union of all moves from all
L2NT potential solution vectors is 2LMNT , which is the total
number of conceivable ‘‘ distinct ’’ moves. A move cannot be
considered for that many additional iterations if its ‘‘Tabu’’
value is a non-negative integer.

B. TABU MATRIX CALCULATION AND
STOPPING CRITERION
The matrix whose elements represent the Tabu values of
moves is called a Tabu matrix τ and has the dimension
2LMNT . The solution vector contains 2NT coordinates, and
each coordinate of the solution vector consists of L rows in
a Tabu matrix τ where τ ∈ OL(s). The indices of the rows
corresponding to the u coordinate are from (u – 1)L + 1
to uL, where u ∈{1, 2,. . . , 2NT }. TheM columns of the Tabu
matrix τ represent the symbol neighborhoods of the symbols
corresponding to each row. In other words, the (p, r)th entry
of the matrix τ corresponds to the (u, v)th entry of ŝkLR−ZF ,
where u =

[
p−1
L

]
+1 and v= r , where p= 1, 2,. . . , 2LNT and

r = 1, 2,. . . , M . The entries of the Tabu matrix are upgraded
in each iteration are described as:

τ (p, r) = max {τ (p, r)− 1, 0} . (19)

The Tabu matrix is terminated if it reaches the maximum
number of iterations τmax. Additionally, the method is ter-
minated if the current solution is a local minimum and the
overall number of solution repetitions exceeds τmax. The nth

data symbol is assessed from the LR-RTS detector as

ŝn,LR−RTS = arg min
s=q(u,v), u=1,2,...,2NT

v=1,2,...,M

∥∥∥yLR − Ĝs∥∥∥2 ,

n = 1, 2, . . . , 2NT (20)

The LR-RTS detector evaluates the (2LMNT ) number of ML
cost functions to detect all users. The vector with the lowest
ML cost function when the algorithm was stopped would,
therefore, be the vector representing the algorithm’s solution.
The RTS algorithm can attain near-optimal performance for
large MIMO systems and higher-order modulation schemes.
Moreover, it has been demonstrated that the average per-bit
complexity RTS is O(NTNR), thus making it appealing for
large-MIMO signal detection.

Algorithm 1 Lattice Reduction Associated Reactive Tabu
Search Detection (LR-RTS-Detection)
Step 1: Initialize the system parameters

Inputs:s, G, b, i, j, L, M, O, k,ϕ , r, u. v. p, τ , y
Output:ŝn,LR−RTS

Step 2: Generate LLL based LR precoding Scheme
fork = 1 to K ;
GkTk ← Ĝk ; LLL-based LR precoding
T−1k sk ← bk ; LR precoding Signal Vector(
GHG

)−1
GH y← ŝZF−D; LR solution vector

end for
Step 3: Generate the neighbourhood signal vector based on the
LR-ZF solution vector treated as an initial solution vector.

[o1(s), o2(s), . . . . . . ,oL (s)]← OL (s)[
ϕ1, ϕ2, . . . . . . ,ϕ2NT

]
← ϕ

if i = n
ϕj ← Oi,j

else
Oi,j ← ŝi

end
Step 4: Calculate and Upgrade the Tabu matrix.

for p = 1, 2,. . . ,2NT L
for r = 1, 2,. . . , M

if
τ ← OL (s)

else
τ (p, r) = max {τ (p, r)− 1, 0}

end if
end for
end for

Step 5: Define the initial solution vector
[ŝk1, ŝ

k
2, . . . , ŝ

k
2NT ]

T
← ŝkLR−ZF

Step 6: Choose the best neighbourhood vector from the initial
solution which has the lowest cost among all neighbours.

for u = 1 to 2NT
for v = 1 to M
if i = u
qki (u, v)← ϕv

(
ŝku

)
else
qki (u, v)← ŝki
end if

end for
end for

Step 7: Generate the final LR RTS solution Vector
for n = 1, NT

arg min
s=q(u,v), u = 1, 2, . . . , 2NT

v = 1, 2, . . . ,M

∥y− Gs∥2 ← ŝn,LR−RTS

end for

VI. SIMULATION RESULTS
The simulation analysis focuses on an uplink model of a
large-scale MU-MIMO system, where the MUs serve as
transmitters, and the e-MBBS as receivers. In the simulation
results, the proposed LR-RTS detector’s performance is sys-
tematically compared with the average BER of each MU,
obtained using various traditional detectors such as ZF,
LR-ZF, ZF-LAS, LR-LAS, and SISO-AWGN detectors.
These performance metrics are averaged over 100 data
frames, each consisting of 1000 data symbols, to ensure the
reliability and accuracy of the results.
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TABLE 1. Simulation parameters.

The simulation assumes that multiple MUs transmit their
data over a block fading channel, which remains constant
during the transmission of a single full data frame. The
channel matrix comprises complex random elements that are
statistically independent, resembling a Rayleigh flat fading
channel [45]. Table 1 includes the other critical parameters
used in the evaluation process to provide a comprehensive
view of the simulation setup.

FIGURE 3. BER performance comparison among LR-RTS and conventional
MUDs.

A. PERFORMACE STUDY
This section evaluates the error rate performance of LR-RTS
detection and compares it with traditional detectors in large-
scale MU-MIMO systems, with each user employing a
4-QAM modulation scheme, as illustrated in Fig. 3. In such
systems, ZF detection exhibits sub-optimal performance,

especially in high SNR scenarios while mitigating MUI,
resulting in higher BER. On the other hand, LR-RTS lever-
ages lattice reduction, outperforming ZF by enhancing BER.
LR-ZF combines ZF with lattice reduction for better perfor-
mance. ZF-LAS adds search-based optimization to ZF, with
LR-RTS often surpassing it by employing lattice reduction
and advanced search strategies. LR-LAS combines lattice
reduction with LAS optimization, with LR-RTS potentially
offering better BER due to its specific search strategy and
refined lattice reduction. LR-RTS also excels in a simplified
SISO-AWGN scenario, further improving BER compared to
LR-ZF. LR-RTS significantly enhances BER compared to
the baseline in MU-MIMO systems, where MUI is a chal-
lenge. The improved BER in LR-RTS is attributed to lattice
reduction and the reactive Tabu search-based optimization.
Lattice reduction transforms the channel matrix favorably,
and the reactive Tabu search efficiently explores the solution
space, yielding superior solutions in large-scale MU-MIMO
systems. Fig. 3 reveals that the classical ZF detector mitigates
partial MUI but doesn’t nullify IAI, while LR-ZF suppresses
partial MUI after nullifying IAI, resulting in better perfor-
mance. In such systems, MUI’s importance exceeds that of
IAI, and the LR–LAS detector excels in reducing high MUI,
outperforming ZF and LR-ZF. LR-RTS consistently outper-
forms all classical detectors, achieving a 2 dB SNR for a
10−1 BER level, while ZF, LR-ZF, ZF-LAS, LR-LAS, and
SISO detectors require 9 dB, 7 dB, 6 dB, 5 dB, and 2 dB,
respectively.

FIGURE 4. BER performance of LR-RTS for different antenna
configurations.

In Fig. 4, we examine the BER performance of neighbor-
hood search-based detection schemes, specifically LR-LAS
and the proposed LR-RTS, with each user employing 4-QAM
modulation. We analyze these performance outcomes across
different antenna configurations, namely 16×16, 64×64, and
128×128, as displayed in Fig. 4.With an increase in antennas,
the MUI in the system also rises, resulting in a gradual
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FIGURE 5. Convergence of LR-RTS for different antenna configurations.

increase in BER. However, when compared to the LR-LAS
detector, the proposed LR-RTS boasts a significantly larger
search space, enabling it to effectively mitigate both IAI
and MUI, thereby achieving near-optimal performance. This
analysis is vividly illustrated in Fig. 4. For instance, when
accommodating 16×16, 64×64, and 128×128 antenna con-
figurations at an 8dB SNR, the LR-LAS detector yields BER
values of 0.087, 0.0426, and 0.02, respectively. In contrast,
the proposed LR-RTS detector achieves BER values of 0.075,
0.031, and 0.014, respectively, which closely approximates
the BER performance of a SISO system, which records a BER
of 0.006, as shown in Fig. 4.
Figure 5 offers a detailed view of how the proposed

LR-RTS detector converges across different antenna configu-
rations. This analysis focuses on the impact of the maximum
number of tabu iterations (τmax) on the detector’s perfor-
mance. It becomes clear that the effectiveness of the RTS
detector is closely tied to the choice of the search space.
When the search space is larger, the RTS detector achieves
improved (BER performance while requiring fewer compu-
tational resources. Fig. 5 illustrates the BER performance for
various scenarios, including SISO and antenna configurations
of 16×16, 32×32, 64×64, and 128×128.With 300 iterations
(τmax = 300), the proposed LR-RTS detector delivers BER
results of 0.00253, 0.005, 0.009648, 0.02468, and 0.0358 for
the respective configurations. This information underscores
the impact of the search space size on the efficiency of the
LR-RTS detector and its ability to deliver low BER values
across different antenna setups.

Furthermore, it is crucial to examine the SNR differences
between the proposed LR-RTS detector and the SISO sys-
tem across various QAM schemes, as illustrated in Fig. 6.
This analysis helps us understand the impact of modulation
choices on the required SNR to sustain a BER threshold
of 10−3. Fig. 6 reveals intriguing insights, showing signifi-
cant SNR variations for different QAM modulation schemes

FIGURE 6. BER performance of LR-RTS for different modulation
techniques.

when targeting a 10−3 BER floor. Specifically, the SNR
improvements of the LR-RTS detector over SISO-AWGN
are approximately 1 dB, 5 dB, 9 dB, and 17 dB for
4-QAM, 16-QAM, 64-QAM, and 256-QAM, respectively.
These findings, depicted in Fig. 6, highlight the varying SNR
requirements based on the modulation scheme, providing
valuable information for optimizing communication systems.

TABLE 2. Comparative analysis of detectors regarding the assessment of
ML cost function calculations.

B. COMPUTATIONAL STUDY
We conducted a comparative study involving the LR-RTS
detector, ZF-LAS, and ML detectors, focusing on their
respective computational intricacies, as delineated in Table 2.
This table provides a metric for evaluating computational
complexity, quantifying the number of cost function cal-
culations needed for the ML detectors. Further, Table 3
illustrates the implementation complexity in terms of the
count of additions and multiplications. It is worth noting
that the ZF-LAS scheme demonstrated notably low computa-
tional complexity. ZF-LAS accomplishes its solution through
localized searches at each transmitting antenna, rendering
it relatively computationally efficient. In sharp contrast, the
ML detector embarks on a comprehensive global search
across all transmitting antennas of all users to pinpoint
the optimal solution, resulting in significantly higher com-
putational complexity. The LR-RTS detector, as proposed,
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TABLE 3. Comparative analysis of computational complexities among various detection techniques.

FIGURE 7. Complexity comparison among LR-RTS and classical
techniques.

operates with a more extensive search space across all trans-
mitting antennas for each user, aiming to uncover nearly
optimal solutions. Consequently, the computational complex-
ity of the LR-RTS detector falls somewhere in between
ZF-LAS andML. It successfully balances computational effi-
ciency and performance, enabling it to approach near-optimal
levels of performance with only a slight increase in
complexity.

Additionally, Fig. 7 delves into the complexity pertaining
to the quantity of multiplications, particularly as the number
of users increases. In Fig. 7, we compare the computational
complexity of the LR-RTS technique to that of traditional
detectors, encompassing ZF, LR-ZF, ZF-LAS, and LR-LAS.
This comparative analysis shows that the LR-RTS tech-
nique exhibits a slightly higher level of complexity than
conventional detectors. However, it is crucial to under-
score that this increase in complexity remains marginal,

especially when juxtaposed with the significantly elevated
computational demands of the ML detector, a point under-
scored both in Fig. 7 and Table 3. Hence, the additional
computational complexity incurred by the LR-RTS technique
is fully justified by its capacity to achieve performance
levels nearing the ideal standard. Both LAS and RTS are
low-complexity signal detection algorithms utilized in Mas-
sive MIMO systems, each offering unique approaches and
trade-offs. LAS aims to converge to a local maximum of the
likelihood function, whereas RTS explores a larger neigh-
borhood, potentially reaching a global maximum closer to
the true signal. Consequently, RTS generally exhibits supe-
rior BER performance, as evidenced in Fig. 3, although at
the expense of increased complexity, as depicted in Fig. 7.
Conversely, LAS explores a smaller neighborhood, result-
ing in significantly lower complexity compared to RTS,
rendering it suitable for resource-constrained applications.
However, it’s worth noting that RTS’s complexity is sub-
stantially lower than that of the ML detector, as illustrated
in Table 2 and Table 3.

The space complexity of the LR-RTS algorithm primarily
depends on the storage requirements for lattice basis matrices
and the data structures used in the Tabu search. The lattice
reduction process requires storing the lattice basis matrix,
which has dimensions proportional to the number of antennas
and users in the MU-MIMO system. Specifically, for an
(NR ×NT ) MU-MIMO system, the space complexity for stor-
ing the lattice basis matrix isO(NR ×NT ). The RTS algorithm
involves maintaining a list of previously visited solutions
(Tabu list) to avoid cycles and improve search efficiency.
The size of this list affects the space complexity. Typically,
the Tabu list size is a small fraction of the search space,
resulting in a manageable space complexity. The additional
storage for Tabu search operations, such as candidate solu-
tions and search heuristics, adds an overhead of O(k), where
k is the maximum number of repetitions allowed in RTS.
Combining these factors, the overall space complexity of the
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LR-RTS algorithm can be expressed as O(NR ×NT ) + O(k).
Since k is generally much smaller than (NR ×NT ), the dom-
inant term is O(NR ×NT ). Thus, the space complexity of the
LR-RTS algorithm is primarily determined by the need to
store the lattice basis matrices, making it O(NR ×NT ). This
ensures that the algorithm remains efficient and scalable for
large-scale MU-MIMO systems, balancing performance with
practical memory usage.

VII. CONCLUSION
Our study has presented a novel and promising solution for
enhancing the performance of large-scale MU-MIMO sys-
tems, specifically addressing the challenge of maintaining
reliable communication in large-scale setups. Our research
focuses on developing and evaluating the LR-RTS algorithm,
which serves as a low-complexity detection technique for
these complex and high-capacity wireless systems. Our
research findings demonstrate that LR-RTS achieves near-
optimal solutions by leveraging lattice reduction and Tabu
search-based optimization while maintaining a significantly
reduced computational complexity compared to traditional
approaches. We have shown that LR-RTS starts with a sound
initial solution, LR-ZF, to provide a foundation of accuracy.
It guarantees equal or greater accuracy than conventional
methods like ZF-LAS and LR-LAS. Notably, the result-
ing BER is significantly lower with LR-RTS, making it a
compelling choice for MU-MIMO systems. Furthermore,
the proposed LR-RTS algorithm balances near-optimal per-
formance and manageable computational demands, which
is particularly crucial in large-scale MU-MIMO scenarios.
In the ever-evolving landscape of wireless communication,
LR-RTS represents a breakthrough in enhancing the capa-
bilities of Massive MIMO systems, offering the potential to
meet the growing demands of high-performance and large-
scale communication networks.
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