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ABSTRACT Commitment schemes are cryptographic schemes that can be applied to zero-knowledge
proof construction and blockchain construction. Recently, lattice-based cryptography has been intensively
investigated due to the promising potential in quantum cryptography. Accordingly, commitment schemes
based on lattice assumptions have been studied for practical applications. Notably, applications often require
committing an arbitrary message with low communication costs, so commitment schemes must be satisfied
with fewer length restrictions and fewer extensions to the messages. Several studies have been conducted to
achieve the problem, including the study published by Baum et al. in 2018. However, the output length of
their scheme is large in relation to the input length. We design a length-extension-free commitment scheme
ComMWM in which the length of the message string is large relative to the length of the commitment
string, improving on the commitment scheme of Baum et al. Furthermore, we prove that the hiding and
binding properties of ComMWM are based on the hardness of the decisional search knapsack problem and
extended search knapsack problems, respectively. Finally, we evaluate the computation costs of generating
commitment value between ours and Baum et al.’s commitment scheme.

INDEX TERMS Commitment scheme, lattice-based protocol, hiding property, binding property, AES-128.

I. INTRODUCTION
Commitment schemes are important cryptosystems since
they are used in blockchain construction [2], [3] and the
zero-knowledge proof construction [4], [5]. A commitment
scheme is executed between the commitment phase and the
decommitment phase. In a commitment scheme, commitment
string and decommitment string are used. The commitment
string is the encrypted value of the message string, and
the decommitment string includes the message. During
the commitment phase, the sender sends the commitment
string to the receiver. During the decommitment phase,
the sender sends the decommitment string to the receiver.
The receiver verifies whether the decommitment string is
constructed from the commitment string. In other words,
the receiver can verify whether the commitment string and
decommitment string are valid or not in the decommitment
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phase. The commitment scheme is secure when both the
binding property and the hiding property satisfied [6], [7].
In the binding property, we have to prove that the sender
cannot construct a commitment string from two different
decommitment strings. In the hiding property, when the
receiver gets two different commitment strings, we have to
prove that the receiver cannot determine whether they are
composed of one or the other before the decommitment
string is sent in the decommitment phase. In other words,
the receiver cannot get any partial message information in
the commitment phase. Lattice-based commitment schemes
have attracted much attention in recent years since they can
prevent quantum computer attacks.

A. EXISTING RESEARCH
In 1982, Blum proposed the concept of a one-way com-
mitment scheme but Blum did not propose the concrete
construction [8]. The first commitment scheme was designed
based on the hardness of factoring by Goldwasser et al.
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in 1988 [9]. Another scheme based on the discrete logarithm
problem was developed by Pedersen in 1991 [10]. Also,
Halevi and Micali proposed the commitment scheme based
on the collision resistance hash function (Message Digest) in
1996 [11].

A commitment scheme is a key tool for designing crypto-
graphic protocols. Furthermore, commitment schemes have
numerous applications, such as threshold encryption [12]
and electronic voting [13]. In particular, the security of
the protocol against malicious attacks can be enhanced by
using commitment schemes to construct zero-knowledge
proof [14]. If a commitment scheme is designed based on
post-quantum cryptography, its security can be guaranteed in
the long term.

Research on post-quantum commitment schemes is impor-
tant since they can prevent attacks from quantum computers.
One of the post-quantum commitment schemes is the
lattice-based commitment scheme. Several security notions,
including the module short integer solution problem (M-SIS),
search knapsack problem (SKS), and decisional knapsack
problem (DKS), exist in conjunction with the lattice problem.
The objective of M-SIS is to determine a search short
vector of ring polynomial x that satisfies A · x = 0 from
ring polynomial matrix A. M-SIS essentially exemplifies
the vector knapsack problem over a particular ring. SKS,
expressed as SKS2n,k,β , is the problem of searching for a short
vector of ring polynomial x that satisfies (I ||A) ·x = 0, where
A is a polynomial ring matrix, and I is an identity matrix.
DKS, expressed as DKS∞m,k,β , is a problem of determining
whether a distribution is uniform or originates from A · x.
In 2008, Kawachi et al. constructed the first lattice-based

commitment scheme [15], based on the SIS problem
committed to vectors over binary numbers. However, the
message length or dimensionality of committable messages is
restricted to small-norm vectors to maintain the binding prop-
erty. This limitation is not found in the standard cryptographic
commitment scheme based on the discrete logarithm or
factoring problems. In the lattice-based commitment scheme,
several studies have tried to eliminate the limitation on
message length. Benhamouda et al. used the ring-learning
with errors (R-LWE) problem to construct a commitment
scheme with the small limitation of the message length [16]
in 2015 (BKLP15). BKLP15 eliminates certain restrictions
on the message length using the residue ring of a polynomial
ring. The message length of BKLP15 is one, and the output
length of BKLP15 is k . In contrast, Baum et al. constructed a
commitment scheme based on the knapsack problem [14] in
2018. This scheme is referred to as BDLOP18. The message
length and the output length of BDLOP18 are m − n and m
respectively.

Although the aforementioned schemes offer less restricted
input lengths, their output lengths are still extensions of
their message lengths. A commitment scheme with less
restriction of input length with respect to output length is
needed for message transmission at a smaller communication
cost.

B. OUR CONTRIBUTION
We define the novel concept of the extension ratio (ER) in a
commitment scheme as

ER =
|length of commitment string|
|length of message string|

.

The extension ratio (ER) is the ratio of the output length
to the input length of a commitment scheme. For example,
when the input length is m and the output length is m, the
input and output length have the same ratio, ER = 1.
Consequently, ER measures the ratio of messages sent in
a commitment scheme. We call the commitment scheme
with ER = 1 as a length-extension-free commitment
scheme. On the other hand, ER of BKLP15 and BDLOP18
is 2. In this paper, we propose a commitment scheme
satisfying ER = 1 to realize a length-extension-free
commitment scheme. We propose the ER = 1 commitment
scheme by extending the lattice-based commitment scheme
in BDLOP18 [14]. Our proposed commitment scheme is the
smallest ER lattice-based commitment scheme. We remark
that it is obvious that a commitment scheme based on the
hash function satisfies ER < 1. However, it is not easy
to apply them to zero-knowledge Boolean or arithmetic
circuits [17]. In this paper, we focus on the commitment
scheme that are based on some mathematical assumptions
and could be combined with some zero-knowledge Boolean
or arithmetic circuits. In BDLOP18 [14], the commitment
string cBDLOP

m−n,m (x, r) is constructed by using the message
string x, public parameter A, random vector r , and positive
integer n. BDLOP18 is defined as follows, focusing on the
lengths of the message and commitment strings:

cBDLOP
m−n,m (x, r) = A · r +

[
0n

x

]
.

Here, the message length and the output length of
cBDLOP
m−n,m (x, r) are m − n and m respectively. Note that this
scheme exactly extends the length of the commitment string
to that of the message string. BDLOP18 satisfies the binding
property under SKS2n,k,β and the hiding property under
DKS∞m,k,β .

We designed a commitment scheme in which the length of
the commitment string has no expansion to the length of the
message string. To achieve this, we implemented a message
vector x to commitment string cm,m(x, r) by using a public
parameter A and a random vector r . The construction of our
proposed commitment scheme is expressed as follows.

cm,m(x, r) = A · r + x.

Here, the message length and the output length of cm,m(x, r)
is m. Consequently, our proposed cm,m(x, r) optimizes the
length of the commitment string to that of the message string,
thus satisfying an ER of 1. The binding property of our
cm,m(x, r) is secure based on Extended-SKS2n,k,β problem.
The hiding property of our cm,m(x, r) is secure based on
DKS∞m,k,β problem.
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This paper is the final version of the studies presented at
ISPEC 2021 [1]. In this paper, the following sections have
been added:

• A detailed proof of the binding and hiding properties of
ComMWM.

• An evaluation comparing ComMWM, BDLOP18, and
BKLP15.

• Suggested parameters for ComMWM, BDLOP18, and
BKLP15 based on AES-128.

• Implement ComMWM and the BDLOP18 commitment
schemes and compares the computation cost.

Since our commitment scheme can input larger messages
within the same output length comparedwith BDLOP18 [14],
various applications that make use of commitments can
improve their performance by using our commitment
scheme. For example, the location-based service proposed by
Peng et al. [18] and blockchains in combination with neural
networks such as [19] are good applications that can use our
commitment scheme.

C. PAPER ORGANIZATION
Section II summarizes the definitions and the notations.
Section III describes previous research on our design. Our
commitment scheme is presented in detail in Section IV.
A comparison between our commitment scheme and existing
schemes is described in Section V. Finally, the paper is
concluded in Section VI.

II. PRELIMINARIES
This section summarizes all the notations and definitions used
throughout the paper.

A. LATTICE PROBLEM
This subsection describes the basic notations and definitions
required for the lattice problem. First, we summarize the basic
notation of the lattice problem used in this paper, and then we
define the lattice problem.

• R: set of real numbers
• Z: set of integers
• N: set of positive integers
• q: prime number
• N (= 2r ): degree of polynomial rings
• F2: prime field with a characteristic of 2
• Lattice L: set of all linearly independent integer linear
combinations of vectors

• vol(L): volume of lattice L
• polynomial rings R = Z[X ]/⟨XN + 1⟩
• polynomial rings Rq = Zq[X ]/⟨XN + 1⟩
• In each f ∈ R, let f denote as f = 6ifiX i and each norm
expressed as

– ||f ||1 = 6i |fi|: l1 norm
– ||f ||2 =

(
6i|fi|2

)1/2
: l2 norm

– ||f ||∞ = max|fi|
i

: l∞ norm

• In: identity matrix with n× n

• Sβ : set of all elements x ∈ R with l∞-norm at most β
• C: subset of S1 that encompasses challenges
• κ: maximum l1 norm of any element in C
• σ = 11 · κ · β ·

√
k · N : standard deviation used in zero-

knowledge proof
• gamma function 0(s) =

∫
∞

0 ts−1 · e−tdt
• (x i)1≤i≤n: 1 ≤ i ≤ n th column element of vector x.

Next, we define the lattice problem.
Definition 1 (Lattice Problem [20]): Let R be the set

of real numbers and let Rn be the Euclidean space
of n-dimensional real vectors. If a1, . . . , an are linearly
independent vectors in an Rn, then we say that the
set {

∑n
i=1 kiai|k1, . . . , kn are integers} is a lattice in Rn.

We denote lattice by L(a1, . . . , an). The set a1, . . . , an is
called a basis of the lattice.

B. RELATED WITH COMMITMENT SCHEME
This subsection describes the basic notation and definitions
of commitment schemes used in this paper and describes the
definitions of the security problem necessary to securely con-
struct a commitment scheme.We introduce an abbreviation of
notations used in this paper in Table 1.

• 1k : security parameter
• Sender: sender
• Receiver: receiver
• ComMWM: our proposed commitment scheme
• com: commitment string
• dec: decommitment string
• message space: domain of messages that can be
committed

• PP: public parameter used in a commitment scheme
• ε(k): negligible function with k
• PPT : probabilistic polynomial-time algorithm
• ⊥: rejection output for the invalid inputs
• Hw(x): Hamming weight of x
• 1(x): ratio of ‘‘1’’s in x, also called as the relative
Hamming weight

• extension ratio (ER): the ratio of the output length to the
input length of a commitment scheme

• Length-extension-free commitment scheme: the com-
mitment scheme which satisfies ER=1

We define a commitment scheme that follows [21].
Definition 2 (Commitment Scheme [21]): A commitment

scheme Com(Sender, Receiver) is constructed by the
commitment phase and the decommitment phase between
Sender and Receiver.
In the commitment phase, Sender constructs a com-

mitment string com from a message string a and public
parameter PP. Sender also constructs decommitment string
dec which includes a by executing Sender(1k , a,PP) →
(com, dec). Sender sends commitment string com to
Receiver.
In the decommitment phase, Sender sends decommit-

ment string dec to Receiver. Then, Receiver verifies
whether com can be constructed from dec by executing
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TABLE 1. Abbreviations used in this paper.

Receiver(com, dec). If com is not constructed from dec
during commitment phase, Receiver(com, dec) outputs a
special string ⊥. Otherwise, Receiver(com, dec) outputs
message string a.

We define the computational binding property of a
commitment scheme. The computational binding property
defines the difficulty for a malicious PPT adversary A to
construct the commitment string com. When it is difficult
to construct the same commitment string com from the
different message strings a, a′ by the PPT adversary A,
the commitment scheme satisfies the computational binding
property. A more detailed definition is given in Definition 3.
Definition 3 (Computational Binding Property [14]): Let

M be a message space, let a ∈ M be a message string, let
com be a commitment string, and let dec be a decommitment
string where dec is a string used byReceiver for verification
in the decommitment phase. Sender construct a commitment
string by executing Com(Sender, Receiver), and A be a
PPT adversary. The commitment scheme satisfies the binding
property if the following is satisfied.

Pr


KeyGen→ PP

A(PP)→ (dec, dec′, com) s.t. a ̸= a′∧
Sender(1k , a,PP) = (com, dec)∧
Sender(1k , a′,PP) = (com, dec′)

 < ε(k)

We next define the computational hiding property of a
commitment scheme. The computational hiding property
defines the difficulty for a malicious PPT adversary A to
identify the commitment string com. If the PPT adversary
A is given the commitment string com or a uniform
distribution u, and it is difficult to correctly identify which
distribution was given, the commitment scheme satisfies the
computational hiding property. A more detailed definition is
given in Definition 4.
Definition 4 (Computational Hiding Property [7], [14]):

LetM be a message space, let com be a commitment string
constructed from a message string a ∈ M, and let A be
a PPT adversary. A given a commitment string com or a
uniform distribution u, and the commitment scheme satisfies
the computational hiding property when the probability that
A can determine either is less than ε(k).

|Pr [A(com) = 1]− Pr [A(U ) = 1]| < ε(k)
We define the statistical distance before we define the
statistical hiding property.
Definition 5 (Statistical Distance [11]): Let φ1 and φ2 as

probability distributions, let S as a finite set. The statistical

distance between two probability distribution d (φ1, φ2) can
be defined as

d (φ1, φ2) =
1
2

∑
x∈S

|φ1(x)− φ2 (x) |.

Definition 6 (Statistical Hiding Property [11]): Let a ∈
{0, 1}∗ be a message string, let Com(Sender, Receiver)
be a commitment scheme constructed from a, let Ck (a)
denote the distribution over the commitment string for
a, and let φ1, φ2 be a probability distributions. Ck (a)
is then the distribution of the first coordinates of the
pair obtained by the algorithm Sender(1k , a). φ1 denotes
the probability distribution of Ck (a1) and φ2 denotes the
probability distribution of Ck (a2) where a1 ̸= a2. ∀a1, a2 ∈
{0, 1}∗, the commitment scheme Com(Sender, Receiver)
satisfies statistically hiding property if the following equation
satisfies

d (φ1, φ2) < ε(k)

where ε(k) is a negligible function in k.
Definition 7 (Shortest Vector Problem(SVP) [22]): Given

an input basis B = (b1, . . . , bn) of a lattice L, the shortest
vector problem (SVP) aims to identify a non-zero shortest
vector in L.
Definition 8(M−SISq,m,m+k,γ (Module Short Integer Solu-

tion Problem) [23]:) Let Rq denote as Rq = Zq[X ]/⟨XN +1⟩,
and given A′ ∈ Rm×(m+k)q sampled uniformly at random. The
M − SISq,m,m+k,γ problem is to find z ∈ Rm+k such that
A′z = 0 and 0 < ||z||2 ≤ γ .
The following definition 9 pertains to the SKS.
Definition 9 SKS2n,k,β (Search Knapsack) Problem) [14]:)

Let Adv be a PPT adversary, and let A′ ∈ Rn×(k−n)q be a
random matrix. The SKS2n,k,β problem involves identifying a
short vector y ∈ Skβ satisfying [In A′] · y = 0n, when given

A′ ∈ Rn×(k−n)q .

Pr[Adv(A′)→ y =

 y1
...

yk

 ̸= 0|

||yi||2 ≤ β ∧ [In A′] · y = 0n ∧ A′← Rn×(k−n)q ] ≤ ε(k).

Next, We introduce an extension of Definition 9, hence-
forth referred to as the Extended-SKS2n,k,β (extended-search
knapsack) problem.
Definition 10 (Extended-SKS2n,k,β (Search Knapsack) Prob-

lem: Let Adv be a PPT adversary, and let A′ ∈ Rn×(k−n)q be
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a random matrix. The Extended-SKS2n,k,β problem involves
identifying either a short vector y ∈ Sn+kβ satisfying [In A′ In]·
y = 0n or a short vector y ∈ Skβ satisfying [In A′] · y = 0n,

when given A′ ∈ Rn×(k−n)q .

Pr[Adv(A′)→ y =

 y1
...

yn+k

 ̸= 0|

||yi||2 ≤ β ∧ [In A′ In] · y = 0n ∧ A′← Rn×(k−n)q ]

≤ ε(k)

or either

Pr[Adv(A′)→ y =

 y1
...

yk

 ̸= 0|

||yi||2 ≤ β ∧ [In A′] · y = 0n ∧ A′← Rn×(k−n)q ] ≤ ε(k).

The following Definition 11 pertains to the DKS.
Definition 11 (DKS∞m,k,β (Decisional Knapsack Problem

) [14]:) Let Adv be a PPT adversary, let A′ ∈ Rm×(k−m)q
be a random matrix, and let Im be an identity matrix.
The DKS∞m,k,β problem involves determining whether the
distribution arises from a uniform distribution u, or arises
from a short y = (y1, . . . , yk ) ∈ Skβ , A

′
∈ Rm×(k−m)q , and Im.

| Pr[b = 1|b← Adv
(
A′, [Im A′] · y

)
∧

A′← Rm×(k−m)q ∧ y← Skβ ]

− Pr[b = 1|b← Adv
(
A′, u

)
∧ A′← Rm×(k−m)q ] |< ε(k).

III. PREVIOUS RESEARCH
We describe the previous research in this section.We describe
the commitment scheme ComBDLOP [14].

The commitment scheme ComBDLOP was constructed by
Keygen, Commitment Phase by Sender, and Decommitment
Phase in Receiver in Algorithm 1, Algorithm 2, and
Algorithm 3, respectively.

ComBDLOP(S, R):

Algorithm 1 Keygen

Input: security parameter 1k

Output: A =
[
A1
A2

]
∈ Rm×kq .

1: Select matrix In, 0(m−n)×n,A′1 ∈ R
n×(k−n)
q and define as

A1 = [In A′1]
2: Select matrix In, 0(m−n)×n, Im−n,A′2 ∈ R

(m−n)×(k−m)
q and

define as A2 = [0(m−n)×n Im−n A′2].

3: return
[
A1
A2

]

After the Algorithm 2,Sender sends decommitment string
(x ′, r ′) ∈ Rm−nq × Skβ as dec to Receiver. Then, Receiver
executes the following as Algorithm 3.

Algorithm 2 Commitment Phase by Sender

Input:
[
A1
A2

]
∈ Rm×kq

Output: cBDLOP
m−n,m (x, r) ∈ Rmq

1: Select a message string x ∈ Rm−nq and r ∈ Skβ (random
string), with ||ri||2 ≤ 4 · σ ·

√
N

2: A commitment string is constructed from (x, r) as

cBDLOP
m−n,m (x, r) =

[
A1
A2

]
· r +

[
0n

x

]
.

3: return cBDLOP
m−n,m (x, r)

Algorithm 3 Decommitment Phase in Receiver

Input:
[
A1
A2

]
∈ Rm×kq , cBDLOP

m−n,m (x, r) ∈ Rmq , and dec =

(x ′, r ′) ∈ Rm−nq × Skβ
Output: x ′ ∈ Rm−nq or ⊥

1: Receiver computes cBDLOP
m−n,m (x ′, r ′) =

[
A1
A2

]
· r ′ +[

0n

x ′

]
from dec = (x ′, r ′) and verifies cBDLOP

m−n,m (x, r) =

cBDLOP
m−n,m (x ′, r ′).

2: Receiver outputs x if it satisfies cBDLOP
m−n,m (x, r) =

cBDLOP
m−n,m (x ′, r ′) and that for all i, ||ri||2 ≤ 4 · σ ·

√
N .

Otherwise, Receiver outputs ⊥.
3: return x ′ ∈ Smβ or ⊥

Figure 1 shows each relation between input and output
in ComBDLOP and ComMWM, where ComMWM will be
presented in Section IV.

FIGURE 1. Relation between input and output (ComBDLOP vs
ComMWM).

IV. OUR PROPOSAL
The following section proposes the length-extension-free
commitment scheme referred to as ComMWM. We pro-
vide proof of the computational hiding and binding
properties of ComMWM that ensure the scheme’s effi-
ciency. We also provide proof of the scheme’s sta-
tistical hiding and binding properties, which ensure
security.
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A. (OPTIMAL) EXTENSION RATIO
We rigorously defined the length-extension-free commitment
scheme and examined how ComBDLOP does not satisfy the
length-extension-free commitment scheme.
Definition 12 (Length-Extension-Free Commitment

Scheme): For a commitment schemeCom(Sender, Receiver),
the extension ratio ER between the commitment and message
string lengths is defined as

ER =
|length of commitment string|
|length of message string|

.

If the commitment scheme satisfies ER = 1, we call
the commitment scheme a length-extension-free commitment
scheme.

B. PROPOSED COMMITMENT SCHEME
Our length-extension-free commitment scheme, called
ComMWM throughout this paper, comprises three algorithms:
Keygen, Commitment Phase by Sender, and Decommit-
ment Phase in Receiver. We describe each algorithm in
Algorithm 4, Algorithm 5, and Algorithm 6 respectively.

ComMWM(Sender, Receiver):

Algorithm 4 Keygen

Input: security parameter 1k

Output: A =
[
A1
A2

]
∈ Rm×kq .

1: Select matrix In, 0(m−n)×n,A′1 ∈ R
n×(k−n)
q and define as

A1 = [In A′1]
2: Select matrix In, 0(m−n)×n, Im−n,A′2 ∈ R

(m−n)×(k−m)
q and

define as A2 = [0(m−n)×n Im−n A′2].

3: return
[
A1
A2

]

Algorithm 5 Commitment Phase by Sender

Input:
[
A1
A2

]
∈ Rm×kq

Output: cm,m(x, r) ∈ Rmq
1: Select amessage string x ∈ Smβ and random string r ∈ Skβ ,

with ||ri||2 ≤ 4 · σ ·
√
N

2: Construct a commitment string as

cm,m(x, r) =
[
A1
A2

]
· r + x.

3: return cm,m(x, r)

After the Algorithm 5,Sender sends decommitment string
(x ′, r ′) ∈ Smβ × Skβ as dec to Receiver. Then, Receiver
executes the following as Algorithm 6. FromAlgorithm 5, the
input length of x of ComMWM is mN , and the output length
of cm,m(x, r) ismN . Thus, the ratio of the output length to the
input length of ComMWM is

ER =
|length of commitment string|
|length of message string|

Algorithm 6 Decommitment Phase in Receiver

Input:
[
A1
A2

]
∈ Rm×kq , cm,m(x, r) ∈ Rmq , and dec = (x ′, r ′)

Output: x ′ ∈ Smβ or ⊥
1: Receiver Computes cm,m(x ′, r ′) by using dec =

(x ′, r ′). Receiver verifies whether cm,m(x ′, r ′) satisfies
cm,m(x ′, r ′) = A · r ′ + x ′.

2: If it satisfies cm,m(x, r) = cm,m(x ′, r ′) and ||ri||2 ≤ 4 ·σ ·
√
N , Receiver outputs the message string x ′. Otherwise,

Receiver outputs ⊥.
3: return x ′ ∈ Smβ or ⊥

=
mN
mN
= 1.

ComMWM satisfies ER=1 and ComMWM is length-extension-
free commitment scheme. The following subsection provides
proof of the computational binding and hiding properties in
the proposed commitment scheme.

C. BINDING PROPERTY AND HIDING PROPERTY
In this subsection, we show the computational hiding and
binding properties of ComMWM. The computational hiding
property of ComMWM is proved by using the technique
of computational hiding property of Baum et al. [14]. The
computational binding property of ComMWM is proved by
Extended-SKS2n,k,β problem which is a similar technique of
the computational binding property of Baum et al. [14].

We have proven our scheme’s computational hiding
property based on the DKS∞m,k,β problem in Theorem 1
and its computational binding property based on Extended-
SKS2n,k,β problem in Theorem 2.
Theorem 1: For any x ∈ Smβ , let k be the length of a

random number r ∈ Skβ and A · r+ x be a commitment string.
If there exists a PPT algorithm A that has an advantage ε in
breaking the hiding property of ComMWM, then there exists
another algorithm A′ that can solve the DKS∞m,k,β problem
with ε.

Proof:We first assume that A can break computational
hiding property. Then, we subsequently demonstrate how
another A′ tries to solve the DKS∞m,k,β problem.
A′ obtains the value (B, t) = Rm×kq ×Skβ from theDKS∞m,k,β

problem. Here, B can be expressed as

B = [Im B′]

where B is constructed from B′ ∈ Rm×(k−m)q . Next, A′
computes A ∈ Rm×kq (public parameter). By using R ∈

Rn×(m−n)q , In (identity matrices), Im−n (identity matrices), and
B ∈ Rm×kq , A ∈ Rm×kq can be calculated as

A =
[

In Rn×(m−n)

0(m−n)×n Im−n

]
· B.

Next, we illustrate how A′ computes the commitment string
cm,m.
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If we select xb, A′ selects x ∈ Smβ and computes cm,m as

cm,m =

[
In R

0(m−n)×n Im−n

]
· t + xmb .

Then, A′ sends cm,m to A. After A obtains the value cm,m,
it guesses whether cm,m is constructed by ComMWM or a
uniform distribution.

If t is constructed by t = B · r , then cm,m can be expressed
as follows.

cm,m =

[
In R

0(m−n)×n Im−n

]
·
[
Im B′

]
· r + xmb

= A · r + xmb
In other words, if t = B · r , cm,m is expressed using the
same equation as that of the commitment scheme ComMWM.
Consequently, A can identify cm,m as ComMWM with a
probability higher than ε.
If t ̸= B · r , however, cm,m cannot be expressed with

the commitment scheme ComMWM. Consequently, A can
determine that cm,m is obtained from a uniform distribution
when t ̸= B · r . Thus, A′ can identify how t was constructed
by observing the answer fromA. Therefore,A′ can solve the
DKS∞m,k,β problem.
From Theorem 1, our ComMWM satisfies the computa-

tional hiding property under the DKS∞m,k,β problem with an
advantage of ε.

We now present a proof of the computational binding
property of ComMWM.
Theorem 2: For any x ∈ Smβ , let k be the length of a

random number r ∈ Skβ , A ∈ Rm×kq be a public parameter,
and m be the output length of A · r + x. Assume that there
exists a PPT algorithmA that has an advantage ε in breaking
the binding property of the commitment schemeComMWM,A
can find

([
r1
x1

]
,

[
r2
x2

])
which satisfies A ·r1+x1 = A ·r2+

x2 ∧ ||
[
r1 − r2
x1 − x2

]
||2 ≤

√
(m+ k) · β ∧ x1 ̸= x2. Then, there

exists another algorithm A′ that incurs an equivalent time
complexity and has an advantage ε in solving the Extended-
SKS2n,k,β problem.

Proof: We first assume that A can break the computa-
tional binding property of ComMWM. We try to determine
whether another adversary A′ is able to solve the Extended-
SKS2n,k,β problem. A′ obtains the value A′1 ∈ R

n×(k−n)
q from

the oracle of the Extended-SKS2n,k,β problem and attempts to
obtain y, which satisfies

[In A′] · yk = 0n

or

[In A′ In] · yn+k = 0n.

To gain y, adversary A′ computes A′1 ∈ Rn×(k−n)q in
Algorithm 7, and then sends A ∈ Rm×kq to adversaryA. Then,
A breaks the binding property of ComMWM and outputs([

r1
x1

]
,

[
r2
x2

])
(1)

Algorithm 7 Step of Adversary A
Input: A′1 ∈ R

n×(k−n)
q

Output: A ∈ Rm×kq

1: Select matrix In, 0(m−n)×n, Im−n,A′2 ∈ R
(m−n)×(k−m)
q

2: Construct the matrix as

A =
[

In A′1
0(m−n)×n Im−n A′2

]
3: return A

to A′, which satisfies A · r1 + x1 = A · r2 + x2 ∧

||

[
r1 − r2
x1 − x2

]
||2 ≤

√
(m+ k) · β ∧ x1 ̸= x2. Here,

A · r1 + x1 = A · r2 + x2.

Then sends the input values of Equation (1) to A′. A′
computes [

In A′1
]
· (r1 − r2)+ (x i1 − x

i
2)

1≤i≤n
= 0n (2)

and [
0(m−n)×n Im−n A′2

]
· (r1 − r2)+ (x i1 − x

i
2)
n+1≤i≤m

= 0m−n. (3)

A′ finds the solution of the Extended-SKS2n,k,β problem by
splitting it into the following cases: (x i1 − x

i
2)

1≤i≤n
= 0 and

(x i1 − x
i
2)

1≤i≤n
̸= 0.

• Case 1: (x i1 − x
i
2)

1≤i≤n
= 0

Equation (3) can be expressed as Equation (4)[
0(m−n)×n Im−n A′2

]
· (r1 − r2) = −(x i1 − x

i
2)
n+1≤i≤m. (4)

If r1 − r2 = 0, then, the LHS of Equation (4) is[
0(m−n)×n Im−n A′2

]
· 0 = 0,

and the RHS of Equation (4) is

− (x i1 − x
i
2)
n+1≤i≤m

̸= 0.

The LHS and RHS are mutually contradictory. Consequently,
if (x i1 − x i2)

1≤i≤n
= 0, then it always satisfies r1 − r2 = 0.

Because the length ||r1−r2|| is ||r1−r2|| ≤
√
k ·β ≤

√
m+ k ·

β, (r1 − r2) is the solution of the Extended-SKS2n,k,β problem.

• Case 2: (x i1 − x
i
2)
n+1≤i≤m

̸= 0:
We set r ′ = r1 − r2 and x ′ = (x i1 − x i2)

1≤i≤n. Then,
Equation (2) can be expressed as Equation (5)[

In A′1
]
· r ′ + x ′ = 0. (5)

Equation (5) can then be transformed into the following
equation.

[In A′ In] ·
[
r1
x1

]
= 0.
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Here, we can easily verify that ||
[
r1
x1

]
||2 =

√
n+ k · β <

√
m+ k ·β from the condition n < m. Consequently, from the

above equation and the condition that ||
[
r1
x1

]
||2 <

√
m+ k ·

β,
[
r1
x1

]
is the solution of Extended-SKS2n,k,β problem if (x i1−

x i2)
n+1≤i≤m

̸= 0.
Thus if an adversary A can break the computational

binding property, then there exists an adversary A′ that can
solve the Extended-SKS2n,k,β problem.

From Theorem 2, ComMWM satisfies the computationally
binding property under the Extended-SKS2n,k,β problem.

D. UNCONDITIONAL HARDNESS OF THE DKS∞

M,K ,β
PROBLEM
This subsection demonstrates that ComMWM satisfies the
statistical hiding property when certain parameter ranges
in the DKS∞m,k,β problem become unconditionally hard.
We prove the computational hiding property of ComMWM
in Theorem 1 and the computational binding property of
ComMWM in Theorem 2. In general, information-theoretic
security can guarantee higher security than computational
security because there is no need to make assumptions
about the adversary’s computational capabilities. In this
paper, we apply information-theoretic security to the hiding
property of commitment schemes, which we refer to as
statistical hiding property. To prove the statistical hiding
property of ComMWM, we present a lemma on how to
compute the statistical distance in Lemma 1, and then we
prove in Theorem 3 that ComMWM satisfies the statistically
hiding property by using Lemma 1.

To show the parameter conditions of theDKS∞m,k,β problem
for which ComMWM satisfies statistical hiding, we first
explain how to compute the statistical distance. In 2009,
Regev proved the modified version of the leftover hash
lemma [24]. This modification is specified in Lemma 1.
Lemma 1: Compute the Statistical Distance Between Two

Different Distributions [24]: Let G and ℓ be a finite Abelian
group and a positive integer. We select any ℓ elements
g1, . . . ., gℓ ∈ G, and consider the statistical distance
between the distribution given by the sum of a random
subset of g1, . . . ., gℓ and the uniform distribution on G. This
statistical distance cannot exceed

√
|G|/2ℓ. In particular, the

probability that it exceeds 4
√
|G|/2ℓ is at most 4

√
|G|/2ℓ.

Lemma 1 analyzes the sum of a given set’s random subset.
The following Theorem 3 analyzes the set cm,m = A · r + x.
From the method designed by Kawachi et al. [15], we can
determine the weights of cm,m to be uniformly distributed
by including a random number r . Therefore, it is possible to
employ Lemma 1 in this Theorem 3.
Theorem 3: Let x, x ′ ∈ Smβ , let k be the length of r ∈ S

k
β

(random number). The commitment string cm,m = A · r + x
is constructed from A ∈ Rm×kq , 1 < d < N be a power of

2, and A =
[

In A′1
0(m−n)×n Im−n A′2

]
. It satisfies A′1 ∈ R

n×(k−n)
q ,

A′2 ∈ R
(m−n)×(k−m)
q , and G = Rmq . Here, m is the output string

of ComMWM. We assume that q satisfies the condition of a
prime congruent to 2d + 1 (mod 4d), and also satisfies the
following

qm/k
· 22m/(k·N )

≤ β <
1
√
d
· q1/d .

The computationally unbounded algorithm computes the sta-
tistical distance overComMWM, and the uniform distribution
is at most 2−m.

Proof:

cm,m = {hA : S
m+k
β → Rmq } where

hA(y) = [A Im] · y.

Let g = (g1, . . . , gm+k ) and g be any element that belongs to
the finite Abelian group. For h ∈ G, we define

Pg(h) =
1

β(m+k)N

∣∣∣∣∣
{
y ∈ Sm+kβ |

k∑
i=1

yigi = h

}∣∣∣∣∣ .
The expectation of the statistical distance between the
uniform distribution and the distribution (A, hA(y)) over g is
computed as

Ex
g

 ∑
h∈Rmq

|Pg(h)− |1/G||

 .

The above equation can then be parsed as

Ex
g

 ∑
h∈Rmq

|Pg(h)− 1/qmN |

 ≤ √
qmN

β(m+k)N

from Lemma 1 and |G| = qmN . Likewise,
√

qmN

β(m+k)N can be
parsed as

log

√
qmN

β(m+k)N =
1
2
log

(
qmN

β(m+k)N

)
=

1
2

{
log qmN − logβkN

}
=

1
2
{m · N · log q− (m+ k) · N · logβ}

In contrast, the condition qm/k
· 22m/(k·N )

≤ β can be parsed
as follows

m · N · log q+ 2m < k · N · logβ

k · N · logβ < −m · N · log q− 2m.

From the conditions m > 0, k > 0,N > 0, and
above equations, 1

2 {m · N · log q− (m+ k) · N · logβ} can
be parsed as follows.

1
2
{m · N · log q− (m+ k) · N · logβ}

<
1
2
{(m · N · log q)− (k · N · logβ)}

<
1
2
{(m · N · log q)− (m · N · log q− 2m)}

= −m.
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Consequently, the expectation of the statistical distance
between the uniform distribution and (A, hA(y)) over g is
computed as

Ex
g

 ∑
h∈Rmq

|Pg(h)− 1/qmN |

 ≤ √
qmN

β(m+k)N < 2−m.

Our proposed ComMWM satisfies the statistical hiding
property based on theDKS∞m,k,β problem by using Theorem 3.
Consequently, we can state Theorem 4.
Theorem 4: Our ComMWM satisfies the statistical hiding

property based on the DKS∞m,k,β problem with the condition
of qm/k

· 22m/(k·N )
≤ β < 1

√
d
· q1/d . At the same time,

ComMWM satisfies the computational binding property based
on the Extended-SKS2n,k,β problem.

V. COMPARISON OF COMMITMENT SCHEMES
In this section, we calculate ER for each commitment scheme
and compare our commitment schemes.

In BKLP15, the input length is N and the output length is
mN . The parameter ER becomes

ER =
|length of commitment string|
|length of message string|

=
mN
N
= m > 1.

The computationally hiding and statistical binding property
of BKLP15 can be proven using D-R-LWE.

In BDLOP18, the input length is (m− n)N and the output
length is mN . The parameter ER becomes

ER =
mN

(m− n)N
=

m
m− n

> 1.

The hiding property and the binding property of BDLOP18
can be proven by the DKS∞m,k,β and SKS2n,k,β problems,
respectively. They also show how to develop a statistically
binding scheme and a statistically hiding scheme. Further-
more, they develop only computationally hiding and binding
properties.

InComMWM, the input/output length ismN . The parameter
ER becomes

ER =
mN
mN
= 1.

The hiding property and the binding property of our proposed
scheme ComMWM can be proven by the DKS∞m,k,β and
Extended-SKS2n,k,β problems, respectively. We also proved
that the commitment scheme ComMWM satisfies the statisti-
cal hiding property and the computationally binding property
in Theorem 4.
Comparison among existing commitment schemes and
ComMWM: In both BKLP15 and BDLOP18 satisfies ER > 1,
and our proposed ComMWM satisfies ER = 1. Consequently,
when sending the same message length, BKLP15 and
BDLOP18 require a larger output length (commitment
length) than ComMWM. Thus, our ComMWM can achieve
a smaller output length commitment scheme compared to
BKLP15 and BDLOP18. Table 2 compares ComMWM,
BKLP15, and BDLOP18 from the perspectives of security
and ER.

A. EVALUATION
This subsection evaluates the proposed ComMWM from the
point of view of the length of commitment. Using the
secure parameter evaluation in [25], ComMWM, BDLOP18,
and BKLP15 satisfy AES-128 security when (q,N ) =
(232, 1024). ComMWM, BDLOP18, and BKLP15 are imple-
mented with (q,N ) = (232, 1024), and the length of the
commitment value for a 2048-bit message is then evaluated
in Table 3.
When N = 1024, each scheme’s commitment length can

be computed as

m ∗ N = 2 ∗ 1024 = 2048 (bit) .

In BKLP15, the message length can be computed by 1∗N =
1024(bit). In BDLOP18, the message length can be computed
by (m−n)∗N = 1024(bit). In ComMWM, the message length
can be computed bym∗N = 2048(bit). From these analyses,
ComMWM allows a message length twice as long as the other
two schemes.

For example, if we want to send a 2048-bit message length,
ComMWM requires an input length of 2048 bits and an output
length (commitment length) of 2048 bits. On the other hand,
BKLP15 and BDLOP18 require an output length of 4096 bits
to send a 2048-bit message length. If a commitment scheme
or application has a limitation on output length, BKLP15 or
BDLOP18may be unable to send the desired message length.
Therefore, it is more feasible to use ComMWM than BKLP15
or BDLOP18 to realize a commitment scheme that can send
more input lengths. Our scheme ComMWM is therefore the
only commitment scheme that satisfies the condition ER = 1.

B. IMPLEMENTATION
This subsection evaluates the proposed ComMWM from the
point of view of the computational cost of commitment.
Note that the hiding property of ComMWM and BDLOP18
is based on the DKS problem, and the binding property
is based on a similar security problem. Thus, we imple-
ment ComMWM and BDLOP18 in terms of computational
complexity. We implement ComMWM and BDLOP18 with
(q,m, n) = (232, 2048, 1024), respectively, and show the
computational complexity of generating a 2048-bit message
length in Table 4.

We implement ComMWM using Python 3.10.6.1 Matrix
generation is done using theNumPy package. The experiment
involves generating commitment values 10000 times and
calculating the average time required to generate each
commitment value. We calculate the generation time of
the commitment values of the proposed ComMWM and
BDLOP18. The experiment is executed by reducing polyno-
mial rings to integers.

In Table 4, we calculate the time required to generate the
commitment values for ComMWM and BDLOP18. Table 3
shows that ComMWM can generate a 2048-bit message in
the same message space, while BDLOP18 can only generate

1The implementation is available at https://github.com/ENLINKER/
commitment_experiment
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TABLE 2. Comparison between commitment schemes.

TABLE 3. Parameter settings in ComMWM, BDLOP18, and BKLP15.

TABLE 4. Computation costs of generating commitment value between
ComMWM and BDLOP18.

a commitment for a half-length message size in the same
message space at a time. Thus, two operations are required
to generate a commitment value for a 2048-bit message in
BDLOP18. As shown in Table 4, ComMWM costs 49.6%
of the time required to generate the commitment values
compared with BDLOP18. Consequently, from Tables 3
and 4,ComMWM can sendmoremessages and spend less time
generating commitment values compared to BDLOP18.

C. OUR PROPOSED SCHEME CONTRIBUTES TO EXISTING
STUDIES
This subsection provides how our ComMWM contributes to
the existing studies. Galal and Youssef realized a sealed-bid
auction on the Ethereum Blockchain using a commitment
scheme [26]. By using the commitment scheme, their system
can be divided into two phases: a phase in which the bid
values of each user are collected secretly, and a phase inwhich
the winner can be determined. However, existing blockchains
have limited scalability [27]. In our ComMWM, the input
length and output length (commitment length) are the same
size, so even if the output length is limited, it is possible
to send an input length that is the same size as the output
length. Consequently, usingComMWM for sealed-bit auctions
on blockchains is one solution to the problem of limited
scalability of blockchains.

VI. CONCLUSION
This paper proposes a commitment scheme ComMWM that
satisfies

ER =
|length of commitment string|
|length of message string|

= 1.

To verify the practicality and efficiency of ComMWM,
we have proven that it satisfies the statistical hiding
property based on the DKS∞m,k,β problem, as well as the
computationally binding property based on the Extended-
SKS2n,k,β problem. We have suggested secure parameter
settings between the ComMWM, BDLOP18, and BKLP15
commitment schemes under AES-128. Finally, we imple-
mented ComMWM and BDLOP18 and compared the compu-
tation cost of generating a commitment value.

The research regarding the practical application of
lattice-based commitment schemes is crucial. This paper
defines the novel concept of ER, and commitment schemes
with ER = 1 will play an essential role in realizing
applications using lattice-based commitment, as any other
value of ER is insufficient for practical use. Furthermore,
ComMWM can send twice as large a message dimension as
BDLOP18 or BKLP15 which satisfies ER > 1. Our results
are therefore expected to play a crucial role in realizing
applications using lattice-based commitment schemes.
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