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ABSTRACT The advent of the Artificial Intelligent Internet of Things (AIoT) has sparked a revolution in
the deployment of intelligent systems, driving the need for innovative data processing techniques. Due to
escalating data privacy concerns and the immense volume of data produced by IoT devices, decentralized
and distributed learning methods that are rapidly replacing traditional centralized learning play a pivotal role.
As AIoT systems become increasingly ubiquitous, the accompanying computational and storage demands
necessitate a departure from conventional paradigms towards more scalable, distributed, and decentralized
architectures. This paper delves into the background of AIoT, with a particular focus on the evolution
of distributed and decentralized learning mechanisms that operate without the need for centralized data
collection, thus aligning with the General Data Protection Regulation (GDPR) for enhanced data privacy. The
various distributed and decentralized learning strategies are the focus of this paper that facilitate collaborative
model training across multiple AIoT nodes, thereby not only improving the performance of the AIoT
system but also mitigating the risks of data concentration. The review further explores the adaptability of AI
algorithms in these distributed settings, assessing their potential to optimize system performance and learning
efficacy. The paper concludes with some use cases and lessons learned for decentralized and distributed
learning in various AIoT areas.

INDEX TERMS Artificial intelligent Internet of Things, distributed learning, split federated learning,
decentralized learning, artificial intelligence, graph-based learning.

I. INTRODUCTION
In recent years, with the rapid development of the Internet
of Things (IoT) and the massive growth of data generated
by devices, artificial intelligence (AI) algorithms have been
proposed to empower IoT systems with the ability to process
and analyze data to provide more accurate and extensive
services and decisions. The vast amount of data generated
in IoT systems also provides an excellent opportunity for
training AI models. This integrated technology combining AI
and IoT systems is known as the artificial intelligent Internet
of Things (AIoT), which has achieved unprecedented success
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in areas such as smart power grids [1], transportation [2],
and smart cities [3]. Artificial intelligence algorithms,
especially in the field of deep learning, bring highly accurate
decision-making and analysis to the service. However, its
huge computing overhead and a large number of data storage
resource requirements have also become a challenge for
AIoT. Traditional distributed learning plays a crucial role in
AIoT, which can parallelize data and models to distribute
in different edge devices in the AIoT system, reducing the
computing and storage pressure on a single AIoT device.

The General Data Protection Regulation (GDPR) is the
European Union’s privacy regulation for personal data, and
the protection and supervision of personal information has
reached an unprecedented level. Collected data from AIoT
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FIGURE 1. Roadmap for this survey paper.

will often contain personal privacy information, such as the
camera on the door lock in the smart home or the body status
information collected by smart health devices. Therefore, the
traditional centralized learning and data parallel distributed
learning on the cloud have data privacy vulnerabilities
and are no longer suitable for AIoT model learning. It is
replaced by emerging distributed and decentralized learning
paradigms based on data privacy, such as federated learning,
swarm learning, and split learning. The emerging distributed
learning solves the challenge of collaborative learning
between different edge nodes in AIoT without sharing data
by designing model parameter aggregation algorithms. As a
subset of distributed learning, decentralized learning removes
the central server that is easy to leak data privacy, and only
requires communication between edge nodes to complete the
training and update of AI models. It has been applied to
scenarios requiring higher data privacy, such as the Internet
of Medical (IoM) [4] and the Internet of Drones (IoD)
[5].

As the decision brain in AIoT, the applicability of
AI algorithms in distributed and decentralized learning
frameworks is particularly critical. As a result, researchers
are working to propose a number of different distributed
and decentralized learning frameworks to support more
machine learning and deep learning models. Deep learning

models, graph-based learningmodels, reinforcement learning
models, and traditional machine learning models such as
decision trees, SVM, clustering, etc., have been extended
frameworks for collaborative learning without sharing
data in the AIoT field. In addition, AI algorithms can
also be used as an optimization solution to solve the
challenges of distributed and decentralized learning. For
example, reinforcement learning can optimize the bias of
non-IID data to federated learning by intelligently selecting
client devices to participate in each round of federated
learning [6].

A. CONTRIBUTIONS OF THIS SURVEY
In this survey, we focus on the emerging fusion of distributed
and decentralized learning paradigms with the artificial
intelligent Internet of Things. This article will discuss how
distributed and decentralized learning can be effectively used
to address the challenges of data silos in GDPR-affected
AIoT and how artificial intelligence algorithms can adapt
and empower architectures for distributed and decentralized
learning. For ease of discussion, we identify and classify
the content of these emerging convergence paradigms
into the basic framework of AIoT, the evolution and
challenges of AIoT machine learning architectures (e.g.,
federated learning, split learning, swarm learning), and the
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empowered and adaptation of AI algorithms to distributed
and decentralized learning, shown in Figure 1. The main
contributions of this paper are summarized as the following
points:

• This paper focuses on the latest research work by
searching databases such as IEEE Xplore and Scopus,
covering more than 170 reference papers, and by
means of summary tables in different sections to
help researchers more clearly understand the latest
technologies of the current fusion paradigm, exist-
ing challenges, and research opportunities in the
field.

• The review covers emerging paradigms such as split
federated learning and personalized federated learning
use cases and their optimization directions. Compared
to the field of distributed learning in IoT, there are
many more papers using the emerging distributed
paradigm of federated learning discussions.We attempt
to provide balanced coverage of different distributed
and decentralized learning.

• This paper covers a wide range of AI-enabled tech-
nologies in distributed and decentralized learning. The
deployment, optimization, and enablement of machine
learning, deep learning, graph-based learning, and
reinforcement learning architectures in AIoT systems
are analyzed and discussed.

• This review starts from the basic architecture of AIoT
and analyzes the application methods of distributed and
decentralized learning in its different layers. Different
optimization schemes based on the limitations of AIoT
architecture are discussed. Finally, we propose future
research directions in this emerging field and identify
some open challenges that may stimulate research
thinking.

B. OUTLINE OF THIS SURVEY
The remainder of this article is organized as follows.
Section II introduces the recent related works in this area and
emphasizes the novelty of our article. Section III introduces
the basic architecture of AIoT and discusses the functions
of distributed and decentralized learning in different layers.
Section V provides a comprehensive overview of the general
concepts and frameworks of distributed and decentralized
learning in AIoT, compares the advantages and disadvantages
between them, and discusses lessons learned and optimized
use cases. Section VI reviews specific works and discusses
adaptability and enablement in AIoT systems from four
broad AI techniques: machine learning, deep learning, graph-
based learning, and reinforcement learning, which are also
classified as shown in Table 7. In Section VI, we present
some relevant use cases and application areas for distributed
and decentralized learning. We discuss the challenges to be
addressed and the vision for the future in section VII. Finally,
Section VIII draws the conclusion of the article. A list of
key acronyms and abbreviations used throughout the paper
is shown in Table 1.

TABLE 1. List of key acronyms.

II. RELATED SURVEYS AND PAPER NOVELTY
The utilization of distributed and decentralized learning in
the context of the Internet of Things (IoT) is advancing,
with numerous scholars examining existing work from
various viewpoints and providing insights into the future
trajectory of this field, as depicted in Table 2. Among the
most prominent distributed learning frameworks is federated
learning, and recent research has been primarily focused on
addressing the privacy challenges associated with federated
learning in the IoT domain. For instance, in [7], the
authors examine the transition from centralized to distributed
learning, compare these two architectures, and propose a
taxonomy of federated learning. However, this study lacks
a comprehensive review of distributed learning from an
IoT perspective. Similarly, [8] conducts a comprehensive
survey on the algorithms, frameworks, and technologies
implementing federated learning on IoT architecture and
discusses the privacy advantages of federated learning over
traditional distributed learning. Nevertheless, it lacks an
in-depth analysis of the latest federated learning, such
as personalized federated learning and fully decentralized
federated learning.

References [9] and [10] offer a comprehensive review of
federated learning for these two categories, complementing
the previous review. Yet, the examination of federated
learning in the context of AIoT represents only one facet
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TABLE 2. Summary of related works on reviewing distributed and decentralized learning.

of the crucial topics to be investigated in this survey.
For example, in [7], the authors investigate the evolution
from centralized to distributed learning, compare these two
architectures, and propose a taxonomy of federated learning.
However, it lacks a comprehensive review of distributed
learning from an IoT perspective. Reference [8] conducted
a comprehensive survey on the algorithms, frameworks,
and technologies that implement federated learning on IoT
architecture and discussed the privacy advantages of feder-
ated learning compared with traditional distributed learning.
However, it lacks the framework to investigate the latest

federated learning, such as personalized federated learning,
full decentralized federated the previous review. However,
federated learning in the context of AIoT is only one part
of the important topics we will investigate in this survey.
We will also focus on other recent innovations in distributed
and decentralized learning algorithms. References [9] and
[10] provides a comprehensive review of federated learning.

Existing surveys on privacy issues related to distributed
learning have approached the topic from various novel angles.
The works in [11], [12], and [13] mainly focus on reviewing
existing research on distributed learning, covering federated
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learning, machine learning, and communication for privacy.
The authors of [12] review and discuss the different types of
privacy and security attacks based on the distributed paradigm
and propose different defense mechanisms to deal with these
attacks. The authors in [13] reviewed the applicability, archi-
tecture, computational efficiency, and communication cost
of distributed machine learning in wireless communication
networks, and a variety of countermeasures are introduced
to protect the security and privacy of distributed systems.
Meanwhile, [11] summarizes the latest progress of distributed
training and inference of the combination of pervasive
computing and artificial intelligence in the field of IoT.
However, these surveys only focus on the general distributed
system architecture and do not provide a comprehensive and
in-depth summary of the more recent distributed architecture,
especially for split learning. Our survey aims to fill the
gap by comprehensively reviewing the latest distributed and
decentralized learning research at the layer of AI and IoT
fusion.

Different from the above papers, the authors of [14],
[15], and [16] review distributed and decentralized learning
from the perspective of edge computing. Reference [14]
investigated existing research on AIoT on edge computing
and reviews multiple edge computing algorithms and decen-
tralized learning as a solution to edge computing challenges.
From the perspective of multi-access edge computing, [15]
outlined the obstacles from the perspective of multi-access
edge computing [16] discussed the behavior of centralized,
decentralized, and distributed architectures from the per-
spective of edge services and reviewed performance metrics
for these frameworks. Although the above existing papers
have reviewed deep learning and distributed learning, they
have mainly limited their discussion to federated learning,
while other recent decentralized and distributed learning
discussions have been less. Our paper will strengthen the
investigation and discussion of other recent frameworks at
different layers of AIoT and compare the commonalities and
differences among these frameworks

Finally, as the latest review, the author conducted an
in-depth review of AI-based decentralized learning in [17],
[18], and [19]. Specifically, these papers covered the latest
decentralized frameworks, such as swarm learning, split
learning, and split federated learning. The investigation
in [17] provides different frameworks for emerging feder-
ated learning, split learning, and federated split learning
and compares the advantages and disadvantages between
different algorithms. However, decentralized learning in the
AIoT field is not the focus of this paper; it only focuses
on areas related to smart healthcare. The review content
in [18] and [19] is considered to be the most recent
survey in our investigation direction, because they review
the frameworks of distributed and decentralized learning
and their aggregation algorithms from an IoT perspective.
However, they do not fully study decentralized learning in
the AI-driven IoT framework. In [18], the author proposed an
in-depth survey of the framework of decentralized learning,

without the constraints under the IoT architecture, such as
sensor layer Medina and transport layer; these partitioning
strategies have a lot to do with the design and aggregation of
decentralized learning. Our paper represents a comprehensive
survey of decentralized and distributed learning at all the
different layers of the IoT framework driven by AI models.

III. FUNDAMENTALS OF ARTIFICIAL INTELLIGENT
INTERNET OF THINGS
Artificial intelligent Internet of Things is an ecosystem
of collaborative working between artificial intelligence
technology and Internet of Things systems. Among them,
IoT is the infrastructure of AIoT, which is able to implement
the acquisition of large amounts of sensor data to provide
data sources and the operation of the entire ecosystem.
AI is the analysis and decision-making core of AIoT,
which is responsible for mining potential information from
massive data to enhance the perception and decision-making
ability of IoT systems and realize intelligent interconnection.
Therefore, the main framework of AIoT is based on IoT
systems, but there will be some changes.

AIoT architecture utilizes a cloud-edge-end architecture
similar to the Internet of Things, which can also be defined
as cloud-fog-end architecture. As shown in Figure 2, the
end layer contains a large number of interconnected sensors
and actuators distributed over a wide area to sense their
surroundings and execute the decision instructions received
by the AI. The edge layer has multiple edge nodes to expand
the computing and storage capabilities of the devices at the
end layer, which can process, aggregate, and calculate the
collected data locally, reducing the dependence on the central
server. The fog layer is located between the edge layer and the
cloud server and is usually deployed near the cellular tower
to reduce the data transmission distance of the AIoT system
and shorten the corresponding time to make decisions as soon
as possible. The cloud is the central server, with massive
computing, storage, and bandwidth, which can coordinate the
edge layer and the fog layer to assist them in making deeper
AI decisions. The AIoT layers correspond to distributed and
decentralized learning frameworks as follows.

A. END LAYER
As the AIoT system perceives the external hub, the end layer
is mainly responsible for collecting the surrounding data
and performing small computing tasks or data preprocessing.
For example, smartwatches, smartphones, and Raspberry
PI devices are all end-layer devices. Devices at the end
layer usually have some computing and storage capabilities,
but due to their primary task being to collect data and
execute decisions, these resources are limited. In order to
utilize these computing resources and reduce the network
bandwidth of AIoT systems, researchers leverage distributed
learning and decentralized learning to collaborate on multiple
resource-limited devices to improve the overall learning
capability.
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FIGURE 2. Basic architecture of AIoT.

The data collected by the end layer is not always complete
and correct, and there may be data missing or outliers.
Grammenos et al. [20] proposed a principal component
analysis (PCA) method with differential privacy using the
emerging distributed framework of federated learning in
resource-constrained devices. Briguglio et al. [21] enhanced
unsupervised federated PCA by proposing a federated
learning version of supervised PCA that is more suitable
for end-layer devices with limited memory and improved
runtime. Furthermore, Narayanamurthy et al. [22] also
studied the introduction of the subspace learning method of
federated power method in wireless communication mode to
further deal with channel noise and related noise of local
sparse data. In this way, the influence of the disturbance data
collected by the end layer on the performance of the AIoT
system is reduced.

B. CLOUD LAYER
The cloud layer is particularly important in AIoT systems,
especially within the framework of the distributed learning
paradigm. It can be regarded as the AI decision-making brain
in the AIoT system, with massive computing and storage
capabilities to provide scalable computing and storage
resources for the AIoT system to assist the end layer, edge
layer, and fog layer in making deeper intelligent decisions.

In distributed learning, the global model of the AIoT system
is often trained in the cloud due to its powerful capabilities,
so the performance of its AI algorithm is the focus of central
distributed learning research.More specifically, the algorithm
of model parameter aggregation will affect the final result
of distributed learning, and the details will be discussed in
Section IV-C. In addition, a variety of different machine
learning models have been proposed to build on cloud-based
distributed learning, as described in Section V.

C. EDGE LAYER
The edge computing layer is closer to the device side of the
end layer and has fast reaction ability, but it cannot cope
with a large number of calculations and storage occasions.
Edge computing enables end-layer devices to respond quickly
without accessing the cloud, reducing transmission overhead
and improving fast response times. It is the focus of
distributed and decentralized learning and is responsible for
data caching, distributed machine learning and collaboration,
load balancing, and data privacy protection. In an architecture
without clouds, the edge layer can also be built in a
decentralized learning framework through the coordination
of multiple edge nodes. In addition, the edge layer is
responsible for authentication, authorization, offloading, and
communication with the cloud. It runs through the AIoT
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system like a human spine. Therefore, the research on
distributed learning and decentralized learning based on edge
computing is the most popular.

The ability to process real-time data is the biggest
difference between the edge layer and the cloud layer,
in addition to being resource-limited. Zhu and Jin [23]
proposed a real-time federated system RT-FedEvoNAS to
update the global model based on the subnets of each
generation of sampling and training without computing
through clouds, which accelerated the model convergence
and realized real-time data processing. For wearable edge
sensors, Nandy and Xhafa [24] proposed Fed-ReMECS,
a federated learning model for real-time emotion classifica-
tion based on multimodal flows. Real-time distributed and
decentralized systems that rely on AIoT edge layers can
address emergency scenarios with data-sharing constraints,
such as health detection of wearable devices, home fire
detection, and so on.

D. FOG LAYER
The fog layer is an extension and expansion of the cloud,
located in a local area network or gateway, which is not made
up of powerful servers but of huge peripherals that are weaker
and more dispersed and located outside of a large data center.
It contains various edge nodes, which are closer to the edge
device than the cloud and have more storage and computing
resources than the edge layer. The fog layer is more widely
distributed geographically and has a greater range ofmobility,
which makes it suitable for today’s growing number of smart
devices that do not require a lot of computing, especially for
some real-time and streaming applications that are sensitive
to time delays. Similar to edge computing, fog computing is a
distributed computing paradigm that reduces the dependence
on the cloud through real-time information processing and
collaborative learning of multiple nodes.

The fog layer optimizes some aspects of the distributed
and decentralized learning framework in the architecture
of AIoT systems. Due to its geographic distribution in
multiple locations, it is closer to edge devices than clouds,
reducing the network traffic required for model parameter
transmission in distributed learning. Rajagopal et al. [25]
introduced a distributed learning framework based on data
privacy, FedSDM, to realize faster real-time processing of
intelligent IoT medical data by integrating a cloud-fog-edge
framework. Compared with clouds, the fog layer has more
nodes that can train the global model collaboratively, thus
reducing the aggregation times of distributed learning models
and making them converge faster.

Saha et al. [26] proposed a fog-supporting federated
learning framework, FogFL, with the fog layer acting as the
global model aggregator for each round of communication
between the edge and the cloud, and its fog node reducing
the energy consumption of edge device communication
without affecting the convergence rate of the model. Third,
the fog layer can know the operation of each edge node
faster than the cloud layer, solve the situation of distributed

learning stagnation faster, and optimize the ability to allocate
resources [27]. Moreover, on edge nodes with limited
resources, the fog layer can also provide storage and
computing resources to achieve effective model offloading.
Sethi and Pal [28] proposed a federated learning technology
based on reinforcement learning, FedDOVe, to calculate
the unloading ratio and improve the load balancing of the
vehicle internet of things (IoV) by finding the best association
between the vehicle edge node and the fog layer.

E. PHASE SUMMARY OF ARTIFICIAL INTELLIGENCE
INTERNET OF THINGS LAYERS
The survey work in this section reveals the following
key points and insights for the fundamental concept and
architectures for AIoT:

• AIoT architecture is characterized by a cloud-edge-
end or cloud-fog-edge-end architecture. Distributed
learning paradigms are mostly designed around clouds,
providing computing and storage resources for the
training and computation of AI models in AIoT.
However, due to the single-point instability and
communication delay problems of the cloud, edge
computing is emerging.

• The edge layer is located closer to the terminal device,
replacing some computing and communication work of
the cloud, helping to deal with real-time tasks, freeing
the AIoT system’s dependence on the cloud. Therefore,
edge computing has become the most common method
of decentralized learning.

• Fog computing extends the function of the cloud,
providing more computing and storage resources
than the edge layer, and its current work is more
inclined to optimize resource allocation and reduce
communication latency and other auxiliary work.

IV. EVOLUTION OF AIOT MACHINE LEARNING
ARCHITECTURE
This section provides a detailed overview of the evolution
of machine learning models in AIoT architectures from
centralized learning to distributed learning to more recent
decentralized learning architectures due to data privacy secu-
rity concerns, as shown in Figure 3. Moreover, this section
also summarizes the emerging distributed and decentralized
learning frameworks, as shown in Table 6.

A. TRADITIONAL CENTRALIZED LEARNING FOR AIOT
With the increase of IoT devices, the amount of data that can
be collected becomes enormous, and a single device is no
longer enough to meet the needs of IoT application scenarios.
The use of machine learning models in AI decision-making
requires more data volumes to support its services. The
centralized learning paradigm is the first architecture to be
considered, collecting data from different edge devices to
the cloud and building machine learning models. Users can
request the cloud through API to get the service trained by
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FIGURE 3. Architecture of centralized learning, distributed learning, and decentralized learning.

the cloud model. The left side of Figure 3 demonstrates
centralized learning in the IoT framework. The most typical
cloud service providers are Amazon Web Services, Google
Cloud, and Microsoft Azure, which have large-scale data
storage and efficient computing power [29]. However, in the
paradigm of centralized cloud computing, the server is far
away from the data collection and the end users who need the
service, so there is extremely high communication latency.
The proposed fog computing paradigm meets the needs
of IoT scenarios that require strict communication delay
limits, such as the Internet of Vehicles [30] and wearable
devices [31]. Vehicle fog of centralized learning, as an
example, is shown in Figure 3. The fog node is closer to the
data source than the cloud server and can filter, such as by
aggregating device messages, to reduce the pressure on the
core network.

While this paradigm can collect more data to train deep
learning models to produce smarter services, this data may
come from the privacy of the users. This data may include
confidential company data (e.g., company financial data,
hospital patient data) or personal information (e.g., intimate
photos, health records), which could lead to a potential risk
if compromised by a cloud provider. Data privacy protection
in a centralized learning framework can be extended to
cloud-based privacy protection because if data in the cloud
is compromised, then the privacy of the client will also be
violated. The main existing cloud privacy protection systems
can be divided into three types: cryptography method, data
perturbation, and information concealment.

Cryptography methods mainly study the construction
of key management mechanisms, homomorphic cipher
schemes, and obfuscation methods, which are suitable
for privacy protection and different from traditional data
encryption and decryption. The representative technology is
homomorphic encryption [32]. It enables the cloud server
to calculate the ciphertext data without decrypting it so
that the plaintext of the ciphertext is calculated accordingly.
Jiang et al. [33] store medical data on a public cloud
server framework and train machine learning models using

homomorphic encryption techniques. Busom et al. [34] used
homomorphic encryption technology to solve the data privacy
problem of smart meters. Dowlin et al. [35] proposed the
CryptoNets framework to enable learned neural networks to
train input data based on homomorphic encryption.

The data perturbation mechanism aims to remove the
correlation between different private data, introduce noise
into the original data, and achieve privacy protection
through data anonymization (e.g., K-anonymity [36],
L-diversity [37], T-proximity [38], etc.), and prevent cluster
analysis, crowdsourcing computing, deep learning, and other
big data analysis. The most common approach is to adopt
differential privacy (DP) [39]. The purpose of differential
privacy is to ensure that any individual in the data set or
out of the data set has little influence on the final published
query results. Its mathematical definition can be expressed as
Pr [M (x) ∈ S] ≤ eε Pr

[
M

(
x ′

)
∈ S

]
, where the smaller ε is,

the higher the level of privacy protection. Differential privacy
protection can be realized by adding appropriate interference
noise to the return value of the query function. The commonly
used techniques are the Laplacian mechanism and the
exponential mechanism. For example, Rubinstein et al. [40]
proposed a differential private support vector machine (SVM)
learning mechanism in which Gaussian noise was added to
the output classifier in the model, and the prediction results
were similar to ordinary SVM. Zhang and Zhu [41] designed
a dynamic differential privacy mechanism based on ADMM
to analyze the impact of privacy on the accuracy of the
model’s output results. The differential privacy protection
method plays a very important role in the centralized learning
framework, so it is also extended to the edge computing
distributed learning framework [42]. This will be discussed
in detail later.

The method of information concealment is used to protect
metadata and transfer metadata in a changing form, and
the corresponding restoration control parameters should
be separated from the information itself for storage and
transmission. Digital watermarking is one of the represen-
tative methods, which directly imprints some identification
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information (that is, digital watermarking) into the digital
carrier (including multimedia, documents, software, etc.) but
does not affect the use value of the original carrier and is
not easy to be perceived or noticed by human perceptual
systems (such as visual or auditory systems). Cao et al. [43]
proposed a heterogeneous cloud platform based on CPU
and FPGA to achieve high scalability and generalization of
digital watermarking programs to make cloud computing
more private. Digital watermarking technology can also be
combined with other privacy technologies. For example,
Dong et al. [44] used homomorphic encryption technology
and digital watermarking technology to protect the copyright
of images stored in the cloud server and to safely detect
the dishonest behavior of the cloud. Moreover, to solve the
response delay problem of watermarking in cloud computing,
Cheng et al. [45] introduced edge computing technology and
proposed an image digital watermarking method combined
with homomorphic encryption, which is superior to the
original privacy protection scheme.

While there are already a number of privacy technologies
that address data privacy in centralized learning frameworks,
as summarized in Table 3, the data collected comes from edge
devices in different geographies and is, therefore, subject
to different data privacy regulations. Moreover, there are
structural drawbacks to centralized learning. The first is the
response delay of the cloud server because the data needs to
be transmitted for a long time to reach the cloud. The second
is the cost of data transmission because a lot of data upload
and offload takes a certain amount of time, and the network
transmission is not free. To overcome these challenges, the
machine learning in the AIoT framework can be changed on
a physical level.

TABLE 3. Cloud privacy method for centralized learning.

B. TRADITIONAL DISTRIBUTED LEARNING FOR AIOT
Compared with traditional centralized learning, distributed
learning can solve the problem of the computational amount
of themachine learningmodel being too large and the training
data pair and the model is too large. Distributed learning
utilizes data distributed across multiple devices for machine

learning or deep learning to improve model performance and
scale to larger training data and larger models. As shown
in the middle of Figure 3, the training data is divided into
disjoint data fragments and sent to each client. The client
conducts model training locally and sends the gradient or
model parameters to the central server, which aggregates the
received parameters. Both synchronous and asynchronous
distributed stochastic gradient descent (SGD) algorithms are
suitable for distributed learning. There are three paradigms
for distributed learning architecture, with different algorithms
and models adapting to different paradigms, but the basic
framework is the same, as shown in Figure 4. These
paradigms are as follows:

FIGURE 4. Data and model parallelism in distributed learning.

1) DATA PARALLELISM
The training data is distributed across multiple clients, and
the same model is trained locally on the client. When
each compute node completes a model update, the model
parameters calculated by each client are transferred to the
central server for aggregation operations to update the final
model. The main purpose of data parallelism is to avoid
the limitation of how much training data cannot be stored
in a single client and to reduce the time cost of model
computation.

2) MODEL PARALLELISM
Amodel is divided into parts (e.g., layers of a DNNmodel are
divided into different parts) and distributed among different
clients. The results of the calculation are transferred between
clients to generate the final model. This paradigm is used to
address the memory capacity limitations of machine learning
models.

3) HYBRID PARALLELISM
The hybrid parallel paradigm combines the properties of
model parallelism and computational parallelism. Data paral-
lelization is used between clients, and model parallelization
is used for a single client.

The architecture of distributed learning determines that
it has privacy issues due to data sharing among multiple
clients and the synchronization of parallel training of models.
Therefore, there have been some advances in distributed
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learning privacy protection. For example, Xie et al. [46]
proposed a privacy-protecting near-end gradient algorithm
for a model of asynchronously updated distributed learning
tasks. In view of the geographical distribution environment of
data, Vulimiri et al. [47] proposed to protect data privacy by
restricting the location of data transmission. Zhou et al. [48]
formulated the special privacy of geographically distributed
data centers as an optimization problem with multiple
constraints and proposed a solution on Azure.

C. DISTRIBUTED LEARNING FOR PRIVACY IN AIOT
Although there has been a lot of work on the use of privacy
protection technology to protect the privacy of distributed
learning, it still cannot meet the privacy provisions of many
laws and regulations; the fundamental reason is that the
central server has too much control over data and computing.
As a result, recently proposed new distributed learning
architectures such as federated learning (FL), split learning
(SL), and hybrid split federated learning (SFL) have been
popular in terms of data privacy. Compared with basic
distributed machine learning, they have absolute control over
the data, and the central server cannot directly or indirectly
manipulate the data on the compute node, and the compute
node can stop computing and communication at any time and
exit the learning process. In this section, we will explore the
distributed strategies and concepts underlying FL, SL, and
SFL.

1) FEDERATED LEARNING
Federated learning is a distributed machine learning frame-
work with privacy protection, which aims to allow decentral-
ized participants to collaborate on machine learning model
training without sharing private data with other participants.
In addition to decentralized local users, federated learning
participants can also be multiple enterprises facing the
dilemma of data silos, where they have independent databases
but cannot share them with each other. Federated learning
ensures the security and privacy of data by designing
encrypted parameter passing instead of remote data trans-
mission during training. Google [49] first applied federated
learning to Gboard (Google Keyboard), combined user
terminal devices, trained local models using local data of
users, and then aggregated and distributed model parameters
in the training process to achieve the goal of accurately
predicting the next word. As shown in Figure 5, the key steps
for basic federated learning are as follows:

1) Client selection: The central server samples from a
set of clients that meet the eligibility requirements.
The conditions selected may include whether the
device is idle or a channel condition for transmission.
For example, the mobile phone is selected as the
client. To avoid affecting device users, the selected
device must be idle and have network transmission
conditions.

2) Model initialization and transfer: The central server
selects the appropriate machine learning model based

FIGURE 5. Architecture of federated learning for AIoT.

on the required task and initializes the model param-
eters. The communication rounds with the client are
then set up, and the initial model is transferred to the
client.

3) Client local computation and update: Each selected
device computes locally the updates to the model
received from the central server by executing a training
program.

4) Model aggregation and selection: The central server
collects the aggregate of updated device models and
computes the next version of the global model. The
machine learning process is implemented by minimiz-
ing a loss function that calculates updates based on
each batch of data on the client t . Therefore, the final
result can be calculated by using the weighted average
method for the calculated loss function fi(w) on each
client, i.e.,

Fk (w) = 1/nk
∑

i∈Pk
fi(w) (1)

f (w) = min(
∑K

k=1
nk/nFk (w)) (2)

where nk is the number of batches on each client and fi(w)
is the updates calculated based on the data of each batch on
the client. After the central server aggregates the parameters
and completes the global model push, it broadcasts the new
global model again to the selected client and repeats the 3)
and 4) steps until the model converges.

FedSGD [50] algorithm has provided the basic architecture
for federated learning, but because edge devices have abso-
lute control over themselves, there are still some problems
in centralized federated learning that need to be optimized.
The aggregation algorithm is the focus of centralized
federated learning steps. Table 6 compares the aggregation
optimization algorithms commonly used at present. For
the different challenges faced by federated learning, the
classic optimization algorithm often used as a baseline is as
follows:

VOLUME 12, 2024 101025



H. Xu et al.: Decentralized and Distributed Learning for AIoT

2) SYSTEMS HETEROGENEITY
Differences in communication and computing power exist
between devices. In FedAvg [50], selected clients train the
same epoch locally. Although the author points out that
raising the epoch can effectively reduce communication
costs, with a larger epoch, many devices may fail to
complete the training on time, and those clients that fail
to complete the training will be dropped. Either dropping
this part of the client model directly or using this part
of the unfinished model to aggregate will have a bad
effect on the convergence of the final model and cause the
parameter deviation of the model. To alleviate this problem,
Scaffold [51] proposes a strategy of constantly correcting
the model update direction in the local training stage, that
is, adding a patch item at each update step to prevent the
update direction from going wrong. It also reduces traffic
by maintaining a control variate in each round. This control
variable can be adjusted according to gradient changes in
the global model, making communication between each
device more compact. The algorithm not only overcomes
the problem of device heterogeneity using the variance
reduction technique but also reduces the communication cost
without sacrificing model performance. Both algorithms use
synchronous methods to implement federated learning, but
global synchronization is difficult due to limited computing
capacity and battery time. FedAsync [52] is an asynchronous
federated optimization algorithm that introduces a hybrid
hyperparameter that adaptively controls the trade-off between
convergence speed and variance reduction to solve the error
strategy of asynchronous algorithms. Asynchronous training
is relatively more flexible and shows the advantage of being
more general in the case of discrete and heterogeneous delays
in the system without waiting for other devices to participate
in global aggregation.

3) STATISTICAL HETEROGENEITY
The data of different users cannot be distributed indepen-
dently. Since the parameters of the local client training model
will not only deviate greatly from the parameters trained
by other clients but also from the parameters of the server
global model, it is necessary to ensure that the update of
the local client model cannot deviate too much from the
server global model. FedAVGM [53] makes an improvement
on the basis of FedAvg. It introduces momentum to update
weight w on the server side, which improves the training
effect of the FedAvg algorithm on non-independent, equally
distributed data. In addition, this paper also proposes a
non-IID data generation method in FL based on Diliclet
distribution. FedProx [54] solves this problem by adding a
proximal term to the optimization goal, which causes the
model to pay more attention to local model weights that
are close to the global model weights when updated. In this
way, the negative effects of non-independent data and device
heterogeneity can be reduced, and themodel performance can
be improved. Unlike the FedProx algorithm, the core idea
of FedNova [55] is to use a normalized average method to

eliminate target inconsistencies while maintaining fast error
convergence. In each iteration, local training is performed on
each device, and the local model parameters are normalized.
Then, the normalized parameters are sent to a central server.
A central server collects parameter updates from all devices
and normalizes them to reduce target inconsistencies. The
server then distributes the updated model parameters back to
the devices so that training can continue in the next iteration.
The advantage of FedNova is that it is able to eliminate target
inconsistencies due to data heterogeneity while maintaining
fast error convergence.

4) LIMITED COMMUNICATION
The communication delay between all compute nodes is
high, and the network stability is poor, which requires
a high fault tolerance mechanism. FedBoost [56] solves
the problem of communication limitations by combining
federated learning with an Ensemble algorithm. Unlike
working with gradient compression, it reduces the cost of
server-to-client and client-to-server communication. In addi-
tion to optimizing the communication limits of federated
learning, this algorithm also ensures the privacy of the
transmission process. Generally, the algorithm completes
SGD locally on the client to improve communication
efficiency. FedBR [57] uses label-agnostic pseudo-data to
improve the performance of heterogeneous data from the
perspective of data heterogeneity. Because FedBR does not
require labeling of pseudo-data or large pseudo-data sets,
communication costs are reduced. Communication efficiency
has always been a major focus in the optimization of
federated learning. Therefore, many algorithms will take into
account the communication efficiency of the algorithm while
optimizing other problems, including [50], [51], [53], and
[54].

In addition to the three major shortcomings mentioned
above, federated learning also extends the problem of model
heterogeneity due to the different task requirements of each
client. To address these heterogeneity challenges, an effective
approach is to personalize the device, data, and model
levels to mitigate heterogeneity and obtain high-quality
personalized models for each device, i.e., personalized fed-
erated learning. To address these heterogeneity challenges,
personalized federated learning is proposed to mitigate
heterogeneity and obtain high-quality personalized models
for each device by personalizing the device, data, and model
levels [58].
Mansour et al. [59] implemented personalized prediction

of the model by incorporating contextual features. The
data interpolation technology has the characteristics of low
communication cost and data security protection. Transfer
learning [60] can also serve as a framework for personalized
federated learning to build personalized models for new users
by aggregating models from different environments and fine-
tuning them. Multi-task personalized federated learning [61]
aims to use the commonality and difference between tasks
to learn together and determine which layer should be

101026 VOLUME 12, 2024



H. Xu et al.: Decentralized and Distributed Learning for AIoT

shared by discriminating the correlation between tasks so
as to improve the generalization ability of the model. Meta-
learning [62] is a learning-to-learn learning method, which
makes themodel results universal to all kinds of tasks through
training. Strategies that are insensitive to tasks and have
strong generalization ability can be learned through meta-
learning, which is suitable for application in personalization.
FedDK [63] algorithm introduced knowledge distillation
technology to a federated learning framework and circulated
knowledge between each client to form a personalized model
for each group by transferring knowledge distillation from the
local model to global distillation. In order to solve the non-
IID problem, FedRep [64] proposed to use the base layer to
learn the dimensionality reduction representation of global
feature representation between data, based on the concept
that data usually has global feature representation and the
statistical heterogeneity between clients or tasks is mainly
concentrated on labels. In order to alleviate the impact of
non-IID on model training, personalization is realized by
using a personalization layer as the unique local head of each
client. Hanzely and Richtárik [65] proposed a new gradient
descent method, LLGD, that seeks trade-offs between global
and local models so that each device can individually train
private data without communication. Each client should learn
not a single global model but a mixture of the global model
and its own local model.

5) SPLIT LEARNING
Split Learning (SL) is a distributed model training scheme.
The core idea is to split the network structure, with
each device only retaining a part of the network and the
sub-network structure of all devices, forming a complete
network model. In the training process, different devices only
perform forward or reverse calculations on the local network
structure. The results are passed on to the next device [66].
As with federated learning, split learning ensures that local
data does not leave the local device and, therefore, effectively
reduces the risk of data privacy leakage.

Depending on the location of the data and labels, the SL
framework comes in a variety of configurations, as shown
in Figure 6. Simple vanilla split learning is the most classic
architecture, which consists of only one client node and
one server node. Take the DNN model as an example. The
DNN model has divided into two subnetworks: the client
node retains the local training data and the subnetwork
with the input layer, and the server node is responsible
for receiving and calculating the gradient of the second
submodel according to the forward results and labels of the
client node and feeding back to the client [67]. However,
the label information in the server may be shared with the
client, so there will be data privacy issues. The U-shaped
structure solves this problem. In this architecture, both the
client and the server hold the final layer of the neural
network, which communicates twice through forward and
backward calculations so that the client can locally calculate
the gradient based on the complete forward calculation result

and label [68]. The latest architecture of distributed learning
is a vertically partitioned data architecture for multi-party
heterogeneous data scenarios [69]. Multiple clients compute
part of the model of their own local training data, and
the server’s cut layer is responsible for concatenating and
completing the remaining forward calculation on the server
side. The reverse calculation process is the opposite of the
forward calculation. However, in a vertically partitioned data
architecture, the client’s label information is shared with the
server.

FIGURE 6. Architecture of classical split learning.

Based on the split learning of the vertical data partitioning
architecture, there are three variants: Extended vanilla SL,
SL for multi-task, and multi-hop SL. [70]. The Extended
vanilla SL architecture is a multi-party heterogeneous data
Client that cuts the layer and sends it to another client before
sending it to the Server for processing. The SL for multi-task
architecture is used to solve different supervised learning
tasks. The multi-modal data from different clients are spliced
in the cut layer of forward calculation in the client and sent
to multiple servers, respectively, and each server completes
a model training. The multi-hop SL framework organizes
multiple clients and a Server training model in a sequential
manner. The first Client sends the cut layer forward to the
second Client, and the last client sends the cut layer forward
to the Server to complete the remaining forward calculation.
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Split learning has two advantages over federated learning;
one is that neither the edge device nor the cloud has full
control over the complete model and is, therefore, more
secure. Second, it can realize the heterogeneity of the edge-
cloud model, which is more conducive to the training of
low-resource equipment. SL solves the problem of edge
device computing resource limitation in FL, but it also
leads to higher communication costs. Because the model is
split into two sub-models, frequent forward and backward
computational interactions between the sub-models can lead
to additional communication overhead. Singh et al. [71]
compared the communication costs of federated and split
learning and showed that SL ismore efficient than FL in terms
of communication efficiency as the parameters of the client
and model are increased. However, as the amount of local
data increases, federal learning performs better. In addition,
Gao et al. [72] built FL and SplitNN frameworks on the actual
IoT edge device Raspberry Pi to compare their learning per-
formance and device computing overhead. The experimental
results show that SL has better learning performance than
FL under unbalanced data distribution, while federation has
better learning performance under non-IID data distribution.
In the case of limited communication bandwidth, FL has
a lower communication overhead than SL. Table 4 shows
distributed learning options in different scenarios.

TABLE 4. Distributed learning options in different scenarios.

In order to solve the problem of excessive communication
cost of split learning, there has been much research to
optimize SL. Since the underlying logic of SL is to
exchange frequent interactions between clients for low
computing overhead on edge devices, balancing computing
overhead and communication frequency is the key to SL
optimization. Chopra et al. [73] proposed that AdaSplit
reduces the communication cost of algorithms by reducing
the communication load and communication frequency.
AdaSplit’s framework divides the training into local and
global stages. In the global stage, the server does not pass
the model gradient to the client, and the client needs to
use the local loss function for training so as to eliminate
the client’s dependence on the server gradient and reduce
the communication load. The framework also introduces a
UCB policy to prioritize communication with clients who
need to improve performance, thereby reducing the frequency
of communication. The authors also propose the 3C-score
framework, which includes the computational overhead,
communication cost, and collaboration performance of SL
to help evaluate later split learning algorithms. Furthermore,
Ayad et al. [74] introduced an autoencoder and an adaptive

thresholdmechanism to an IoT systemwith limited resources.
In terms of split learning, AE was added to the neural
network to reduce the amount of data sent by the client in the
forward computation, and an adaptive threshold mechanism
was added to track the gradient to reduce the updated amount
of post-feedback communication.

Most of the current research aims to reduce the load of
split learning communication by compressing the transmitted
information. Zheng et al. [75] compared different information
compression methods on SL, including cut layer size reduc-
tion, top-k sparsification, quantization, and L1 regularization.
A stochastic top-k sparsification method is proposed, which
is superior to other sparsification methods in model con-
vergence, generalization, and compression ratio. It reduces
the communication cost of SL while ensuring the accuracy
of training. Hsieh et al. [76] proposed a quasi-orthogonal
batch compression method based on circular convolution
for SL (C3-SL) and features in high-dimensional space to
compress the features on the split learning cut layer to
represent dimensions, thereby reducing the communication
cost of feature transmission and 2.25 times the computational
overhead comparedwith the original dimension compression.

Chen et al. [77] optimized the problem of low com-
munication efficiency from the architecture of SL. In this
paper, a loss-based asynchronous training framework is
proposed. When the loss of the model is greater than a certain
value, the client model will be updated, thus reducing the
communication frequency of split learning. Moreover, the
model gradient of server transmission is further quantified to
reduce the communication load of the asynchronous training
framework and reduce the communication cost.

6) HYBRID SPLIT FEDERATED LEARNING
As mentioned above, both federated learning and split
learning have their own shortcomings as distributed learning
paradigms. The main disadvantages of federated learning
are that it is difficult to train a complete large-scale model
with limited resources at the edge device side, and there
are security risks in accessing both local and global models
equally between client and server [78]. The disadvantage of
split learning is that only one client interacts with the Server at
the same time while the other clients are idle, so the problem
of communication overhead exists [79].

Hybrid split Federated Learning (SFL) is proposed to
combine the advantages of two distributed learning methods
and optimize the shortcomings of each. SplitFed [80] is
the classic architecture of SFL, as shown in Figure 7.
In the framework, multiple clients compute in parallel as
resource-constrained edge devices and connect directly to
the central server and the Fed server, where the Fed server
is the server used to execute the FedAvg algorithm on the
local model of multiple clients. Each Client performs parallel
forward calculation based on its own data and sends its own
cut layer to the Main Server. Then, the Main Server performs
parallel forward and reverse calculations corresponding to
each Client. Finally, theMain Server sends the corresponding
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cut layer to each Client. The Main Server uses FedAvg to
aggregate the gradients of local multi-part models. After
receiving the gradient information sent by the Main Server,
each Client carries out the backpropagation process of the
local model, and then all the clients upload the gradient of the
local model to the Fed Server for FedAvg calculation. Finally,
the aggregation results are synchronized with each client to
update the local model. The SplitFed framework has similar
model accuracy and better model convergence compared to
SL.

FIGURE 7. Classic architecture of hybrid split federated learning [80].

There are also two variants of SplitFed
called splitFedv1(SFLV1) and splitFedv2. The difference
between the two depends on the match between the
server-side and the client-side [80]. In the splitfedv1
algorithm, the server-side corresponds to the client side
one by one, and the client-side model executes in parallel
and uses FedAvg aggregation to wait for the global server-
side model. splitFedv2 (SFLV2) abandons the Fedavg part,
improves the accuracy of the model by randomly selecting
the client order and updating the model with each forward
and backward propagation, and also avoids the problem
of catastrophic forgetting in splitfedv1. SplitFedv3 [81]
was also proposed to help the SFL avoid the problem of
catastrophic forgetting. Its client sub-network corresponds
to each client one by one, and the server sub-network is
an average version, thus avoiding catastrophic forgetting
problems caused by sequential training of client datasets.
The SFLG framework [82] promoted SFL by combining
splitfedv1 and splitfedv2 to realize the function of flexibly
selecting different numbers of server terminals according to
the resources and number of edge servers.

The paper also evaluates the learning performance, com-
puting overhead, and communication overhead of FL, SL, and
SFL under heterogeneous data distribution on a real-world
IoT edge device, Raspberry Pi, shown in Table 5. On IID
and balanced data sets, the convergence rate of the SL model
is better than that of the FL model, but SL will have an
unstable learning curve affected by the number of clients,
and the performance of SFLv1 is close to FL. Moreover, the
learning performance of SL is more affected by the number of
clients under the unbalanced data distribution. Under non-IID

data, FL has better learning performance than SL, and the
performance of SFL is also close to FL, so it is proved
that combining FL and SL optimizes the problem that the
client cannot retain contribution under non-IID data of SL.
The experiment also shows that when training small models
on a limited number of edge devices, the training time and
communication overhead of SL is worse than that of FL, but
SFL achieves less training time under the same overhead.

TABLE 5. Different distributed learning performance in Raspberry Pi.

The basic framework of SFL is a combination of model
splitting in SL and client parallelism in FL. Therefore, the
categories of SFL can be classified based on model decompo-
sition types and parallel training strategies. Zhang et al. [83]
demonstrated that different model decomposition strategies
lead to increased transmission costs and time-to-model
convergence, thereby reducing the optimization effect of
SFL. As a part of the SL algorithm, model decomposition
directly affects the overall training cost and data privacy of
SFL, which can be divided into static decomposition and
dynamic decomposition. SplitFed learning splits the model
according to an assumed split point. There are also works
on decomposition under specific models. The FESTA [84]
architecture considers a specific model architecture, Vision
Transformer (ViT), as a deep learning model for image
processing in the SFL framework. ViT consists of three
parts: the head for extracting features, the body for feature
dependencies, and the tail for feature mapping, so it is easier
to be decomposed in the SL part. Tian et al. [85] conducted
model segmentation for the BERT model in the FedBert
framework. The embedded layer and header layer of the
BERT model have less computing load and can be divided
into resource-constrained edge devices for training, while the
transformer layer is computationally intensive and needs to
be decomposed into important servers with higher computing
power for training and aggregation.

However, static decomposition methods lack the adaptabil-
ity of other models to the generalization and system hetero-
geneity of IoT. FedSyL [86], HFSL [87], and ARES [88]
frameworks can select split points suitable to minimize
the cost of training per round by adaptive analysis of the
computational overhead of client and model training. For
example, the HSFL framework utilizes the context bandit
learning algorithm (LinUCB [89]) to find an optimal split
point for each client in each training round to adaptively
offload part of the model training from the client to the
server in SFL, thereby reducing training latency. It is an
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end-edge-cloud architecture layered structure, so it also
addresses the impact of heterogeneous devices on the SFL
framework, shown in Figure 8. computational overhead,
transmission costs, etc., in the SFL framework. FedLite
framework [90] reduced the communication overhead of SFL
with as little loss of model accuracy as possible by clustering
the training data and only transmitting the clustering centroid
to the server using the method of quantifying. GSFL archi-
tecture [91] grouped clients and shared servers in the group
for parallel training, thus avoiding the process of sequential
training for all clients and reducing the cost of training
time. Furthermore, Yin et al. [92] combined split decision,
bandwidth, and computational resource optimization into
a multi-objective problem and proposed a GAN-driven
algorithm to find a solution. A parallel scheme without label
sharing is designed to reduce client idleness in the split.
Han et al. [93] designed an auxiliary network for the model
based on the idea of local-loss-based training [94], which
can use the output of the cut layer to calculate the local
loss function instead of processing the loss function at the
model output so that the client can update the model without
receiving the model gradient. The client does not need to
wait for gradients, and the server does not need to transmit
gradients, thus reducing the communication overhead and
training latency of SFL.

FIGURE 8. Centralized HSFL framework [75].

D. DECENTRALIZED LEARNING FOR PRIVACY IN AIOT
Decentralized learning is a paradigm in distributed learning,
which uses distributed accounting and storage, but there is no
centralized node, and the rights and obligations of any node
are equal, as shown in the right of Figure 3. The data blocks in
the system are jointly maintained by nodes with maintenance
functions in the whole system, and any node stops working
will not affect the overall operation of the system. Since the
clients can train the model together without the need to trust
the center, data privacy is better than centralized distributed
learning because the global model is not centralized in one
place, but different clients perform parameter aggregation
operations at each stage, so it is not vulnerable to attacks or

model update backward inference operations. Furthermore,
due to every node is equal, the risk of a single point of
failure is avoided. However, full decentralization also leads to
higher communication costs and higher computing resource
requirements. This is not very friendly to resource-limited
edge devices.

FIGURE 9. Network topology of decentralized learning.

As shown in Figure 9, there are many network topologies
for decentralized learning, including Line, Ring, Mesh, Star,
Bus, Tree, and Hybrid, of which the ring topology is the
most commonly used. As shown in the right side of Figure 3,
it represents a decentralized learning architecture that applies
the sequential model transfer strategy in ring topology. The
initial client C1 trains the local data model in the given
order and transmits the model parameters to the subsequent
client C2. The client C2 aggregates the parameters calculated
by the client C3 and trains the local data model, and then
transmits the model parameters to the subsequent client C4.
The remaining clients loop in sequence until the model
converges.

Another model-sharing strategy for ring topology is node
selection based on dynamic probability. This strategy aims to
dynamically select a client based on probabilistic considera-
tions to act as a ‘‘server’’ at a certain stage to aggregate model
parameters of other clients and train the local model. In each
parameter aggregation stage, a client is selected based on the
probability of performing an aggregation operation, knowing
that the termination condition is met, which may include the
limit of global communication rounds or the accuracy rate
of the model. This section will discuss some of the most
prominent decentralized learning frameworks.

1) GOSSIP LEARNING
Gossip learning [104] is a random peer-to-peer architecture
for clients to share and learn knowledge by gossip proto-
col. Each client initializes a local model and periodically
transmits it to the selected node in the network. The
selection of nodes adopts gossip-based peer sampling. The
selected nodes aggregate operations by averaging model
parameters and updating the model with local data. This
mechanism makes the model walk randomly in the network
and update at the access node. Hegedus et al. [105]
compared gossip learning and centralized federated learning
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and considered compression techniques applicable to the two
methods. The results show that gossip learning is superior
to centralized federated learning in scenarios where data is
evenly distributed on nodes. Experiments prove that it can
be a new alternative to centralized federated learning under
communication optimization in the future.

As a decentralized learning framework, gossip learning
also has the challenge of high communication costs. Ref-
erences [95], [96], and [97] proposed different random
optimization algorithms based on gossip to accelerate the
convergence of the global model, reduce iteration, and
improve the communication efficiency of gossip learning.
In [96], Choco-SGD considers a decentralized optimization
setting where each node computes the gradient of its
local function and applies a compression operator to the
gradient, thereby reducing the communication load. Nodes
communicate with their neighbors, including sending and
receiving compressed gradients. The convergence rate of
the algorithm for strongly convex targets is O(1/(nT ) +

1/(T δ2ω)2), where T is the number of iterations, δ is the
characteristic gap of the connection matrix and the first term
O(1/(nT )) in the rate is equivalent to a centralized baseline
with precise communication.

2) FULL DECENTRALIZED FEDERATED LEARNING
Decentralized Federated Learning (DFL) [106] is derived
from federated learning and has no central server for
aggregating model updates. Instead, nodes (clients) com-
municate directly with each other to share information and
update their models. Its learning process involves peer-to-
peer communication between participating nodes, with each
node updating its model based on its own data as well as
models or gradients it may receive from its neighbors. Its
architecture is more flexible than basic federated learning
and reduces the risk of data privacy because it does not need
to be centralized on a central server. In the case that the
client needs to communicate with the central node several
times, DFL can also improve the communication efficiency
of model convergence. Furthermore, gossip learning, as a
communication protocol-based decentralized learning, can
also be combined with DFL to reduce the network bandwidth
of message transmission [107].

In addition to some of the challenges shared with central-
ized federated learning, there are some specific challenges
with DFL. Since there is no centralized server to manage
clients in DFL, it may lead to confusion in communication
among clients with heterogeneous systems. For example,
in the sequential model transfer policy pair topology, the
client can only wait for the model parameters from the
previous client, and this dependence can lead to deadlock
in the network. To solve this problem, paper [98] proposed
a method for clients to request other clients in advance
before aggregation so as to know the status of other clients
and prevent network stagnation. In addition, the lack of a
central server also leads to issues with aggregation fairness.
Lack of incentives can cause clients to choose to only get

trained models from other clients without providing their
own local data and computing resources. This behavior will
affect the trust between clients and make them reluctant to
provide their own knowledge. Kang et al. [99] proposed an
incentive mechanism that quantifies the reliability of clients
by assigning credit scores so that clients with higher credit
scores (knowledge contributions) reap greater rewards.

Because of the peer-to-peer communication strategy of
DFL, blockchain technology can be easily built on it
to protect data privacy. Blockchain is a new application
mode of computer technology that includes distributed data
storage, peer-to-peer transmission, consensus mechanisms,
encryption algorithms, etc. It uses cryptography to ensure
the security of data transmission and access and realizes
the establishment of trust and acquisition of rights between
different nodes through a consensus mechanism. Referenc-
ces [100], [101], and [102] proposed to integrate blockchain
technology into DFL’s distributed framework to enhance data
privacy. Its essence is to achieve data privacy and the security
of a decentralized learning framework through blockchain
technology architecture. From the aspect of data security, the
client’s local data is protected from external attacks through
the chain data structure. From the aspect of model gradient or
parameter transmission, it uses cryptographic methods, such
as differential privacy, to protect the security of parameter
transmission and access. From the perspective of the DFL
incentive mechanism, trust between nodes is established
through a consensus algorithm to prevent the occurrence of
free-riding behavior in clients.

3) SWARM LEARNING
Group learning [108] is a decentralized learning framework
based on blockchain technology with inherent features of
global collaboration and knowledge sharing. It does not
have a dedicated central server, but each swarm edge node
builds an independent model, retains local private data, and
shares model parameters in the swarm network, as shown in
Figure 10. Data privacy and security in the Swarm network
are maintained by the Ethereum blockchain, where smart
contracts enable the network to select nodes identified with
appropriate authorization measures to perform parameter
merging each time synchronization stops. Swarm learning
builds a middle layer and an application layer on each
node to integrate machine learning platforms, blockchains,
models, and Swarm API for execution in heterogeneous
edge nodes. Since swarm learning builds blockchain technol-
ogy, differential privacy algorithms, functional encryption,
or cryptographic transfer learning methods can all be an
extension of its data privacy protection. This technology was
first applied in the field of clinical machine learning with
strict data privacy. In [109], authors applied multiple datasets
of cancer histopathology to verify the effectiveness and inter-
pretability of swarm learning training with cross-regional
participants, and the results showed that swarm learning was
superior to most locally trained models and comparable to the
performance of models trained on combined datasets.
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TABLE 6. Summary of emerging distributed and decentralized learning.

Zhu et al. [103] proposed a deep reinforcement learning
SDRL based on swarm learning designed for robotic

manipulation in dynamic and complex environments, proving
that swarm learning can be applied not only in the clinical
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FIGURE 10. Swarm network [103].

field. SDRL implements collaborative learning of multiple
robot agents using group learning methods so that each
agent contributes to and benefits from the shared learning
experience. Actor-critic strategy optimization has also been
added to the framework to allow each robot to evaluate
its behavior (Actor) and associated rewards (Critic), thus
facilitating a more nuanced learning process. In the swarm
network, robots share their learning experiences (loss func-
tion gradient) with each other through a blockchain network
(Ethereum V2.0 platform) to achieve collaborative learning.
Experimental results show that the SDRL method enhances
the learning process of multiple agents. In addition, the more
agents involved, the faster the learning.

E. PHASE SUMMARY OF DECENTRALIZED AND
DISTRIBUTED LEARNING ARCHITECTURES FOR AIOT
The survey work in this section summarized the different
frameworks and architectures of distributed learning and
decentralized learning, and investigate the approaches used
by recent works to address the challenges in this field. This
section reveals the following key points and insights for
decentralized and distributed learning for AIoT:

• The evolution from traditional centralized learning to
emerging decentralized learning reveals the need for
data privacy and security in AIoT systems that no
longer rely on a single server for computing and stor-
age. Instead, multiple tasks are accomplished through
collaborative learning by multiple edge devices.

• Although there has been a lot of research on federated
learning to make it easier to deploy on AIoT systems
by optimizing aggregation algorithms, there are still
scenario limitations. Split federated learning combines
the benefits of split and federated learning, reducing
communication costs while being easy to deploy on
resource-constrained edge devices.

• Decentralized learning is a large branch of distributed
learning that maximizes the performance of each edge
device by removing a central server. It solves many of

the problems of distributed learning due to the central
server, but there is less research on it.

V. DISTRIBUTED LEARNING AND DECENTRALIZED
LEARNING FOR AI TECHNOLOGY IN AIOT
In AIoT, artificial intelligence algorithms are used to process
and analyze large-scale data generated by the Internet of
Things. AI technology is centralized, and it focuses on
model accuracy, computational overhead, and memory. The
edge devices of the Internet of Things generally lack
computing resources, are heterogeneous, and have data-
sharing constraints, so the construction of AI algorithms on
IoT devices is a challenge. Not only that, but real-time or
near real-time execution of these computationally intensive
solutions is also a challenging problem for AIoT [110]. This
requires AI to be distributed and decentralized as a means
of dividing data, models, and policies into smaller parts to
satisfy device training costs, communication latency, and
privacy constraints. Conversely, AI also empowers distributed
and decentralized learning architectures to optimize their
performance in AIoT. Therefore, this section is divided into
three subsections from the perspective of AI algorithms
to discuss the optimization of AI technology in IoT by
distributed and decentralized learning frameworks and the
role of AI in these frameworks. Table 7 shows a summary of
the distributed and decentralized AI technologies discussed
in this section.

A. MACHINE LEARNING BASED FRAMEWORKS
Machine learning is a subset of AI algorithms and the most
mainstream and lightweight algorithm in AIoT systems. This
chapter mainly discusses the machine learning that requires
distributed and decentralized learning in AIoT systems and
is the most generalized: support vector machine, tree-based
learning, and clustering.

1) SUPPORT VECTOR MACHINE
Support vector machine (SVM) is a class of supervised
learning algorithms for classification and regression anal-
ysis. The main goal of SVM is to find a hyperplane in
n-dimensional space with logarithmic data points for obvious
classification, and it is also possible to perform nonlinear
classification using kernel methods. In [111], the authors
studied the optimization of SVM called FedSVM with linear
cores using a hierarchical federated learning approach to
reduce SVM communication overhead at the edge-fog-cloud
layer and enhance the privacy security of industrial IoT data.
As shown in Figure 11, FedSVM is used for predictive
maintenance (PM), where the main task at the fog stage of its
framework is to identify the hyperplane that can effectively
isolate failure data from health data for all equipment on
the plant site. The hyperplane of fog level identification uses
federal average aggregation at the cloud level to enhance the
privacy of edge data, and the specific sub-gradient descent
mechanism is adopted in the parameter updating process
at fog level for loss function f (w) can be represented as
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∂f (w) =
1
D

∑N
i=1 ∂fi(w) + 2λw to improve the model to

improve the accuracy and reliability, where D is the data
sample from edge device, and λ represented a regularizer
added to the local loss function. The average accuracy of
the FedSVM algorithm can exceed 85%, and since the fog
server does not have to wait for the edge device to update the
parameters, the model runs in FedSVM in a quarter of the
normal federated learning framework.

FIGURE 11. FedSVM architecture [111].

FedSVM is a centralized federated learning framework
that is difficult to adapt to spatially dispersed medical data
that requires higher data privacy. However, the FedEHR
approach [112] developed a decentralized, federated learning
architecture based on FedSVM for the Medical Internet of
Things domain (IoMT) using a Soft-margin L1-regularised
sparse Support Vector Machine (sSVM) Classifier, which
is designed to process large amounts of medical data to
accurately predict and diagnose heart disease. The Sparse
characteristic of the classifier allows it to focus on the most
important features, improving interpretability and efficiency
in processing complex heart health data. Clustering Primitive
Double Splitting (cPDS) method This iterative technique
is used to manage the decentralization of healthcare data.
It combines both primitive and dual aspects to ensure
fast and accurate convergence to solve large-scale sSVM
optimization problems. In decentralized setting comprising
m devices, cPDS method for sSVM can be expressed as
min
θ,θo

∑m
j=1 ki(θ, θ0) + 0.5ψj

∥∥θj∥∥22 + ρj
∥∥θj∥∥1, where ki(θ, θ0)

is kernel function in SVM model to represent the hyperplane
ki (θ, θ0) = max

{
0, 1 − ℓi(ϕτi θ + θ0)

}
denotes a hinged

loss function related to sample i. ψ and ρ indicates
the co-efficients for penalty, and ∥θ∥1 represent sparsity.
In addition, the paper optimizes the information transmission
of the framework and adopts the round-robin algorithm
to allocate communication resources evenly and reduce
transmission costs. Compared to GA-SVM [113], FedSVM,
and SVM, FedEHR can achieve an accuracy of nearly 99%

after 1000 rounds of communication, which is higher than
other models.

The previous frameworks all use the nature of federated
learning to protect data privacy. Hsu et al. [114] proposed
a federated learning system PPFL for detecting Android
malware to introduce secure multi-party computing (SMPC)
to protect data privacy for the SVM model. In the initializa-
tion phase, PPML randomly selects a large prime Q from
the federated learning group that is required in the locally
generated SMPC so that the random value of each client is
unknown to other clients and servers to ensure the security
of the client model. The client uses additional key sharing
to protect the parameters of its local model from being
accessed and, sends the parameters to the server to aggregate
the encryption parameters using SMPC, and then sends the
updated global model back to the client for decryption and
update. PPFL is not affected by the number of clients, and
the model accuracy is close to 94%; the communication load
size is only 145KB, and the communication time is very short
at 0.912 ms.

SVM can not only solve the problem of linear separability
but also map the data in the high-dimensional space by
transforming the kernel function for linear separability so it
can represent most linear models. Because of the versatility
and good generalization of kernel functions, it is suitable for
personalized federated learning to change the corresponding
kernel functions according to the needs of clients. Moreover,
since SVM works by mapping data to high-dimensional
space for classification, it is also suitable for building
on nodes with sparse data in distributed or decentralized
AIoT environments. However, the data distribution and
communication overhead ofmultiple clients under distributed
or decentralized is a big challenge for SVM. In AIoT, due
to data privacy protection, there will be data heterogeneity
and imbalance, so SVM makes it difficult to choose the right
kernel function, and it ismore sensitive to data imbalance than
other machine learning algorithms, which will affect the final
model accuracy. Since SVM model convergence requires
more communication times, communication overhead is also
a big challenge for the SVM model.

2) TREE-BASED LEARNING
Tree-based learning (DT) is a tree-structured machine
learning algorithm that selects the partition with the greatest
entropy reduction in a dataset. In this model, internal nodes
represent data attributes, branches represent feature value
conditions, and hierarchical feature differentiation addresses
classification and regression problems. The unique structure
necessitates a distinct architecture for decentralized and
distributed learning. Specially for Gradient boosting decision
tree (gbdt) [115] is a decision tree-based ensemble learning
technique, typically using decision trees, to minimize prede-
fined loss functions.

Li et al. [116] designed SimFL, a horizontal federated
learning framework for designing a federated environment
with loose privacy constraints in a gradient-boosting decision
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tree, to solve the problem of inefficient and insufficient
model accuracy due to the use of secret sharing and homo-
graphic encryption methods to protect data privacy. This FL
framework has two stages: preprocessing and training. In the
preprocessing, participants first use a randomly generated
locally sensitive hash (LSH) function

{
Fk (xmi )

}
k=1,2,···L to

calculate the hash value such that the hash values of two
adjacent points are highly equal, and the hash values of two
non-adjacent points are highly unequal, so that there are
infinite input data for the same hash value, where xmi ∈ Imis
instance in each participates Pm. Therefore, when the hash
value is broadcast, other participants cannot infer the input
data, thus achieving the effect of protecting the data. In the
training, each participant uses the similarity information
together to train several trees one by one. Once a tree is built in
one party, it is sent to the other parties to update the gradient.
In the SimFL, the computer overhead is O (2NL + Nd),
the communication overhead is 8T

[
N +

(
2D − 1

)
(M − 1)

]
(assume there are T trees, M parties, N total instances, and
L hash functions), and the test error is much lower than
TFL [89], [117].

The aforementioned framework applies to parties with
horizontally distributed data, while there are limitations in
scenarios where the data is divided by characteristics between
different parties called vertical federations. Cheng et al.
[118] considered this situation and proposed a SecureBoost
algorithm based on XGBoost [119], which is an optimiza-
tion of GBDT. In SecureBoost, participants are divided
into Active Party (with labels) and Passive Party (with
data). Passive Party is passed to the Active party data
pair [party (id) , featureid (k) , threshold id (v) ,G

i
{kv},H

i
{kv}]

which represent the party i to ensure the distribution of data
features and the value of sub-points is not leaked. Since
there are many parties involved in federated learning, it is
necessary for the parties to calculate the sum of derivatives
of different features at different loci and data transfer, record
the best features, and save the values of the best loci on
their respective platforms to generate lookup tables for the
subsequent prediction process. During the training process,
the information that the Active party can grasp includes the
sample space on the nodes in the splitting process, the number
of features owned by each party, the specific derivative value,
which party the splitting nodes in the regression number come
from, and the splitting threshold of their own characteristics,
while Passive party can only grasp the sample space and
the splitting threshold. This ensures the privacy of the tree’s
information.

Similarly, under the GBDT model, Yamamoto et al. [120]
developed the eFL-Boost algorithm, which is different from
SimFL in that eFL-Boost selects one of the data owners to
build the tree and uses the tree structure and weights instead
of instance and weighted gradients. eFL-Boost constructs
decision trees in two stages: local tree structure determination
and global leaf weight calculation, shown in Figure 12. In the
first stage, the selected participants apply the local data set
to build the tree structure, and each data owner calculates

the gradient sum of each leaf and sends it, thus reducing
the communication cost of the framework. In the global leaf
weight calculation, since the leaf weight is directly related to
the GBDT output, eFL-Boost aggregates the local gradient
calculates the global leaf dimension, and adds the completed
tree to the global model, thus reducing the accuracy loss of
the model. In terms of data privacy, eFL-Boost has a lower
risk than TFL and F-GBDT-G [121] because the inference of
data mainly comes from the change of gradient variance in
the leaf nodes, while each tree built-in eFL-Boost is based on
global distribution and thus has reduced privacy risk.

FIGURE 12. eFL-Boost architecture [120].

AdaBoost or Gradient Boost are both tree-based machine
learning but are also ensemble learning approaches that aim to
improve the performance of a single model by combining the
output of multiple weakmodels. Each weakmodel focuses on
a different aspect of the data and combines their predictions
together to create more accurate and robust models. However,
most AIoT devices are resource-limitation edge devices, so it
is difficult to train the models with large computational
costs. Therefore, the tree model-based Boost algorithm is
suitable for deployment in AIoT distributed or decentralized
environments, running weak models (local tree models) with
low computational overhead on edge devices and aggregating
them to create more powerful global tree models by means
of data privacy protection such as transmission parameters.
From the perspective of edge device computing overhead,
data privacy, and processing heterogeneous data, tree-based
learning is suitable for building distributed or decentralized
AIoT environments. However, tree-based learning methods
are sensitive to the distribution of training data, so dealing
with non-IID data due to distributed or decentralized data is
a challenge.

3) CLUSTERING
Distributed and decentralized learning is commonly used
when labels are available. However, in tasks where labels
are unavailable or difficult to obtain due to strict data-
sharing restrictions, unsupervised learning offers a solution.
Clustering, a typical unsupervised learning method, aims to
divide data into clusters based on specific characteristics,
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ensuring that points within the same cluster are more similar
to each other than to those in different clusters.

Based on Lloyd’s K-means clustering algorithm, Den-
nis et al. [122] propose an unsupervised federated learning
k-FED and find that statistical heterogeneity (often seen as
a challenge in supervised learning) can be advantageous
in the context of federated clustering. K-means is one
of the clustering algorithms that updates the initialized
random centroid by calculating the average of all points
assigned to the cluster and reassigning data points to divide
into multiple clusters. The paper establishes two types of
separation hypotheses in heterogeneous environments: active
separation and inactive separation of devices that contain and
do not contain two cluster points, respectively. The paper’s
analysis is based on two types of separation assumptions in
heterogeneous environments: active separation and inactive
separation of devices that contain and do not contain two
cluster points, respectively. For active cluster pairs, the sep-
aration requirement can be defined as ∥µ (Tr ) , µ (Ts)∥2 ≥

c
√

m0(1r+1s)
2 , where µ (Tr ) and µ (Ts) are the mean of clus-

ters Tr , Ts,1r and1s are associate cluster-specific quantities,
c is constant value. For inactive cluster pairs, separation
requirement is ∥µ (Tr ) , µ (Ts)∥2 ≥ 10

√
m0(1r +1s),

which is weaker than for active pair. If every active cluster
pair meets the active interval requirement and every inactive
cluster pair meets the inactive interval requirement, then
the data points in the federated learning framework can be
efficiently classified by k-FED, proving that k-FED can work
effectively under the weak cluster separation requirement
in heterogeneous networks. The paper also demonstrates
K-FED’s communication efficiency and ability to benefit
from statistical heterogeneity under the FEDMINST and
Shakespeare datasets [123].

Similarly, for statistical heterogeneity, Lubana et al.
[124] developed a cluster-based self-supervised learning
method, Orchestra, to divide client data into distinguishable
clusters to solve the data heterogeneity in federated learning
and resource limitations of edge devices and introduced
representation learning to transform client raw data into
feature spaces that capture underlying patterns or structures
in the data. Orchestra clusters locally based on the client’s
data representation and aggregates on the server using
the local centroid for global clustering, quantifying the
separation between clusters using ‘‘δ, inter-Cluster mixing’’.
The relationship between clustering quality and model
generalization performance can be expressed as ε (f ) < ζx +

O(2δ+ (G−1)δ2), where ζx used to measure the similarity of
the latent variable of the two clusters in the distribution x and
O is a constant that depends on the size of dataset. δ affects
the performance of the model, so it needs to be minimized.
Because in Orchestra’s architecture, the client only needs
to perform data processing and clustering locally, and only
the cluster centroid is exchanged between the clients, it is
suitable for resource-limited device deployment and has
low communication overhead. The experiment demonstrated
Orchestra’s robustness to statistical heterogeneity, number of

customers, participation rate, local era, and communication
efficiency, and its performance improved with increasing data
heterogeneity.

AI algorithms can not only be built in a distributed
and decentralized environment to protect data privacy but
also enable distributed and decentralized learning in an
optimized way to reduce the loss of model accuracy.
Sattler et al. [125] proposed cluster Federated Learning
(CFL) to address the limitations of federated learning in
data heterogeneity, with the aim of grouping clients with
similar data distributions into clusters, allowing for multi-
task learning, where each cluster has a model suitable for
its specific data distribution. The CFL will cluster clients
based on the cosine similarity of the gradient update, which
can be expressed as cosine_similarity

(
∇i,∇j

)
=

∇i·∇j

∥∇i∥∥∇j∥
,

where ∇i,∇j are the gradient updates from clients i and j,
respectively. Based on these similarities, clients are clustered
so that clients in the same cluster have high cosine similarity
in their gradient updates, indicating similar data distribution.
The model of each client cluster is refined to better suit the
specific data characteristics of that cluster, thus minimizing
interference from the disparate distribution of data. The
clustering and refining process of the CFL is recursive,
as shown in Figure 13, until all clients within each cluster
are reached consistently. Experiments show that the accuracy
of the model gradually increases with the cluster splitting
of clients, and the accuracy of the five-layer convolutional
neural network on the CIFAR-10 dataset can reach nearly
65%.

FIGURE 13. CFL dividing the customer groups by recursively [125].

Clustering can be used as a representative algorithm
for unsupervised machine learning. Because it is based
on the principle of grouping entities that exhibit a high
degree of similarity, it is possible to form client clusters
with similar data classifications or subsets of global data
with more homogeneity in each cluster. Based on this
feature, clustering algorithms can effectively solve statistical
heterogeneity in distributed or decentralized environments
by modeling different clients more accurately. Clustering
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algorithms are also an option for designing personalized
federated learning, where models can be fine-tuned for the
unique data distribution of each cluster and thus potentially
achieve better performance than generalized models. From
a data privacy perspective, data or client clustering can
be implemented without major changes to the distributed
protocol, so it maintains the privacy-protecting features of
federated learning. However, overly homogenous clustering
can result in models that perform well on cluster-specific
data but poorly on more diverse or invisible data, leading
to overfitting. In addition, the wrong clustering may cause
the model to be poorly optimized for the actual data
distribution of the customer, thus reducing the model
performance.

B. DEEP LEARNING BASED FRAMEWORK
Deep learning is a subset of AI algorithms that can model
and automatically learn from data using multi-layered neural
networks and thus perform well on large and complex
datasets. Due to the architecture of deep learning being
more complex than machine learning, it is more widely
built-in distributed or decentralized learning architectures.
This section will discuss structured data-based deep learning,
generative adversarial, graph-based deep learning, and deep
reinforcement learning.

1) STRUCTURED DATA-BASED LEARNING
Convolutional neural networks (CNN) and recurrent neural
networks (RNN) are the most widely used deep learning
algorithms, and even Long short-term memory (LSTM) is
considered an extension of RNN. They have multiple layers
and are used to process large, structured data, such as images,
speech, text, or time series, so the computational overhead
and parameters of the model are very large, and it is difficult
to build globally on the edge of IoT devices.

When dealing with sequence data such as text, learn-
ing models of RNN-based architectures are often used.
Abedi et al. [126] proposed a FedSL framework combining
federated learning and split learning to split recurrent neural
networks to process multi-segment sequence data distributed
in the client. As shown in Figure 14, in order to process
sequentially partitioned data distributed among multiple
clients while maintaining privacy, the paper separates the
RNN from the hidden layer and splits the network into two
subnetworks at the sequence segment split points (denoted as
τk and τk+1). The left subnetwork is trained using data from
clientk , and the right subnetwork is trained using data from
client l. The right subnetwork needs to activate the hidden
state of the left subnetwork and vice versa the loss gradient.
This exchange facilitates forward and backward propagation,
gradient calculation, and parameter updating in the two
subnetworks without the need to share raw data or complete
model parameters. After local training, the subnetwork is sent
to the federation server. These subnetworks are aggregated
to form a global model, similar to the operation of federated

learning. While maintaining data privacy, FedSL can achieve
higher accuracy than Fedavg with fewer communication
rounds.

FIGURE 14. Split RNN [126].

However, traditional RNNS have limitations, especially
when dealing with long sequences, which are prone to prob-
lems such as disappearing gradients and explosions. Long
short-term memory (LSTM) networks, as special RNNS,
overcome the gradient disappearance problem with more
complex internal structures, including gates that regulate
the flow of information. These gates (forget gates, input
gates, and output gates) allow the LSTM to retain or discard
information for a long time, making it more efficient for long
sequences of data. In [127], authors proposed LSTMSPLIT,
which combines the LSTM network with partition learning
for sequential time series data classification and applies
differential privacy technology to add noise to the output of
interested parties to ensure data privacy. The LSTM network
is divided into clients and servers at the specified layer
(split layer) and can update the configuration with different
weights, both centralized and decentralized, as shown in
Figure 15. Compared to split-1DCNN, LSTMSPLIT has
a higher time complexity (LSTM itself has a higher time
complexity), but it has a higher accuracy, reaching 98.5% on
the ECG dataset.

FIGURE 15. SL architecture of the LSTM network [127].

In the aspect of image recognition, the CNN-based
model performs better. Ayad et al. [128] proposed a split
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learning framework based on a convolutional neural network
variant Time Convolutional network model (TCN) and took
advantage of semi-supervision for classifying ECG records
in IoM. This paper introduces the autoencoder (AE) in split
learning architecture, which includes the encoder on the client
side and the decoder on the server side. The encoder learns
to create a smaller latent vector from the split layer output,
which is then sent to the server. The server’s decoder uses
this latent vector to approximate the original encoder input.
The aim of AE is to reduce data transmission during training.
The authors also use an adaptive thresholdmechanism (ATM)
to control the number of gradient updates sent to the client
during backpropagation to further optimize communication
efficiency. The system performs similarly to the original split
learning system while reducing the communication overhead
between server and client by 71% and client computing by
46.5%. Since the model size of the deep convolutional neural
network model hinders the training of resource-constrained
edge devices, He et al. [129] proposed a federated learning
algorithm FedGKT for group knowledge transfer training,
which aims to keep benefit from both Fedavg and SL.
FedGKT can transfer knowledge from many compact CNNS
trained at the edge to large CNNS trained on a cloud server
through knowledge distillation, exchanging hidden features
instead of exchanging in FedAvg. The entire model inherits
the benefits of SL with reduced communication bandwidth.
Compared to edge training using FedAvg, FedGKT uses
9 to 17 times less computational power and requires 54 to
105 times fewer parameters.

Generative adversarial network (GAN) training is divided
into two stages. The first is to train the discriminator, which
is used to distinguish real samples from fake samples. The
task of the training generator is to create the same data as the
real sample. The two models work together against training
to make the resulting data more accurate. The reason for the
poor training performance of the distributed learningmodel is
the lack of data, and the role of GAN can solve this problem.
In [130], authors proposed the PerGED-GAN framework
to solve the systematic and statistical heterogeneity of
federated learning by generating adversarial networks for
personalized federated learning. The local model trained in
the previous step for each client in the PerGED-GAN is
regarded as a discriminator in the GAN to train the generator
network and use it to generate new datasets. The Central
server aggregates and redistributes samples of generated
data collected from customers, ensuring that customers learn
from each other without directly sharing data or models.
When the customer’s model architecture and data distribution
changed significantly, the PerFED-GAN approach showed
a significant improvement in average test accuracy (42%).
Similarly, Wu et al. [131] also proposed a split-federation
learning FedCG using GAN. The novelty of FedCG is that
it shares the client generator instead of the extractor with
the server to aggregate the shared knowledge of the client,
improve model performance, and keep the feature extractor
local for privacy.

2) GRAPH-BASED LEARNING
Graph-based learning encompasses machine learning tech-
niques that utilize graph structures to model complex
relationships and interactions between data nodes. In this
context, nodes represent entities such as clients, individuals,
or sensors, and edges represent relationships or interactions
between these entities. This architecture is particularly
suitable for modeling complex interactions in IoT systems
and for adapting to changes in IoT device nodes to maintain
an accurate network representation. Additionally, graph-
based learning effectively represents nodes and relationships
in distributed and decentralized learning, facilitating the
construction of client relationships and optimizing the
challenges posed by system heterogeneity. Authors [132]
proposed a unified framework for federated learning applied
to graph neural networks, which is shown in Figure 16, and
divided graph learning into three distributed and distributed
types based on real-world data sets and application scenarios:
graph-level setting, subgraph-level setting, and graph node-
level setting. The graph-level setup is primarily aimed at large
and diverse data sets that may constitute GNN training, but
that cannot be shared directly across silos. Subgraph-level
setting scenarios where the client holds only a portion of the
global data. The graph-level setting is an edge device where
local data may be sensitive, and only its k-hop neighbors can
see it.

FIGURE 16. Formulation of federated graph neural network [132].

In graph level, Xie et al. [133] proposed a graph Cluster
Federated Learning (GCFL) framework to deal with non-
independent co-distributed graph structures and node features
in federated learning Settings that standard federated learning
methods such as FedAvg cannot handle. Due to the graph
structure and features of the graph data being different,
gradients in the graph neural network (GNN) can capture
the differences in the graph structure and features. Therefore,
GCFL can realize client dynamic clustering by using the
gradient of client transmission. Clustering occurs when a
general federated learning method approaches a static point,
the criteria for which can be expressed as δmean =

|Gi|
G 1θi <

ε1, where 1θi represents the gradient transmitted by client i,
ε1 is used to decide the static point.When the maximum norm
of transmitted gradients exceeds δmax = max(1θi) > ε2, the
clusters are split. In each cluster, servers’ aggregate gradients
by cluster, and the goal of each client is to find the optimal
model parameters that are close to the true solution. For graph
data distributed across 30 clients, GCFL compared Fedavg
and FedProx to improve accuracy by 13.27%.

As graph data becomes larger and larger, it is difficult to
collect and store on a single-edge device, so a distributed
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learning architecture based on subgraphs is proposed. At the
subgraph level, Zhang et al. [134] proposed FedSage, a fed-
erated learning architecture that uses graph neural network
model-GraphSage combined with the FedAvg algorithm to
enable multiple edge devices to hold a subgraph of a larger
graph without directly sharing the graph data. The article
also proposed FedSage+, extending FedSage by adding
the missing neighbor generator NeighGen. NeighGen solves
the challenge of missing links between local subgraphs by
generating such links and repairing subgraphs, which consists
of two parts: an encoder He and a generator Hg, shown in
Figure 17.He computes node embeddings, whileHg includes
a linear regression model dGen and a feature generator
fGen. dGen predicts the number of missing neighbors,
and fGen generates the feature vectors of these neighbors.
Experiments show that FedSage+ has generalization, and
it can also achieve 86% accuracy on Cora’s data set in
the case of missing nodes. Also, at the subgraph level, the
authors [135] introduced FED-PUB on GNN, which empha-
sizes personalized learning of subgraphs within different
communities. Unlike GraphSage, it uses function embedding
for similarity estimation and personalized sparse masks to
customize the learning process for each subgraph without
explicitly focusing on missing links. In contrast, under the
Cora PubMed dataset, the accuracy of FED-PUB is better
than that of FedGNN [136], and the GCFL and Fedsage+
mentioned in the article. Both approaches propose novel
solutions to the different challenges posed by the distributed
nature of subgraph data and the inherent complexity of graph
structure information.

FIGURE 17. Missing neighbor generation and node classification [134].

The architecture of distributed and distributed learning can
also be represented in a graph structure, where each client
represents nodes in the graph and does not necessarily own
the graph data. At the node level, Meng et al. [137] propose
a split federated learning method, CNFGNN, for processing
spatiotemporal data generated by IoT edge devices. The
CNFGNN model unraveled the modeling of node-level
temporal dynamics and server-level spatial dynamics. At each
node (client), encoder-decoder models extract temporal
features from local data and make predictions. The central
server uses a graph neural network (GNN) to propagate these
extracted node time features and output node embeddings
that encapsulate the relationship information between nodes.
To capture complex spatial dynamics, CNFGNN uses GNN
to generate node embeddings containing all node relationship
information. The central server collects the hidden state of
all nodes as input to the GNN. The split learning structure
is designed to minimize the amount of data that needs to

be transferred between nodes and servers. The experiment
also demonstrates the applicability of CNFGNN in real traffic
prediction scenarios.

Distributed learning can also directly process graph
data generated by edge devices. Pei et al. [138] propose
D-FedGNN, a graph data federation learning architecture that
does not rely on a centralized server, for scenarios where
privacy and data ownership are critical. D-FedGNN operates
in a fully decentralized manner. Each client independently
trains its GNN model using its local data, and the GNN
model is responsible for processing the client’s private graph
data. In this paper, a decentralized parallel stochastic gradient
descent (DP-SGD) method is proposed to update the model
parameters of each client in a decentralized environment.
The model updating process in the client involves forward
computation through the graph convolution layer, which can
be expressed as H = δ(D ·X ·W ), where δ is active function,
D is the adjacency matrix encoding edge information, X is
the node embedding andW is the weight matrix of the GNN.
The training process in D-FedGNN involves alternating
between client-side local model update and aggregation
phases, an approach that reduces communication overhead.
In the experiment, it takes less time than FedGraphNN to run
110 federated model aggregation.

3) DEEP REINFORCEMENT LEARNING
Reinforcement learning (RL) involves agents interacting with
a dynamic environment, focusing on sequential decision-
making problems. Agents choose actions based on current
environmental conditions, which then change as a result of
these actions. Agents receive rewards based on their decisions
and the resulting environmental changes, described by the
Markov decision process (MDP). Deep reinforcement learn-
ing (DRL) integrates deep learning’s perception capabilities
with RL’s decision-making abilities, employing deep neural
networks to learn the Q-value function, thus addressing
challenges with large state and continuous action spaces.
In distributed learning, local client learning can be seen as
the agent’s strategy in DRL, with information transmission
representing agent interaction. Deep reinforcement federated
learning (DRFL) is particularly popular for optimizing issues
in federated learning.

Reinforcement learning can optimize the bias of devices to
participate in each round of federated learning, from non-IID
data to federated learning, by intelligently selecting clients.
In [6], authors proposed the FAVOR control framework
to solve the bias caused by non-IID data and accelerate
convergence by using reinforcement learning to actively
select the optimal subset of devices in each round of
communication. In addition, a Deep Q network (DQN) based
reinforcement learning agent is proposed for device selection
in FL, where the state space includes the weights of the global
model and the model weights of each client device, and the
operation space is simplified to select one of N devices per
turn, shown in Figure 18. Moreover, the FAVOR framework
has been evaluated on the MNIST, FashionMNIST, and
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CIFAR-10 datasets, demonstrating a significant reduction in
the number of communications required for training com-
pared to FedAvg. On this basis, Meng et al. [139] proposed
that FedRLCS improved the greedy strategy and action space
of the dual DQN (DDQN) algorithm and introduced the
top-p sampling strategy into the algorithm. This method
can select some optimal clients for model aggregation, thus
significantly reducing the communication rounds required for
federation learning convergence. FedRLCS achieves target
accuracy with 58% and 64% fewer communication rounds
than FedAvg.

FIGURE 18. DDQN agent interacts with the FL server [6].

Reinforcement federated learning can also solve the
resource allocation problem in distributed learning to
improve the overall efficiency of the system. In [140], the
authors propose a concurrent joint reinforcement learning
(CFRL) divided into three phases: policy creation, policy
execution, and model updating. The edge host creates a
resource allocation policy and shares it with the server,
and the server regenerates the resource allocation policy.
According to these policies, tasks are assigned or unloaded,
and rewards are allocated accordingly. Both edge hosts and
servers update their local DQNwith the rewards they receive.
Compared with standard DRL, CFRL improves the overall
resource utilization of the client, especially in the later stages
of learning. Similarly, Nguyen et al. [141] used the Markov
decision process (MDP) model to describe its resource
allocation problem and carried out adaptive strategies through
DQN, a variant of Q-Learning. The difference is that this
article’s DQN is used to optimize themodel owner’s decisions
on energy and channel selection. Comparedwith traditional Q
learning, greedy algorithm, and random algorithm, the DQN
strategy shows a faster convergence rate and higher reward.

Deep reinforcement learning also provides new solutions
to data privacy issues in distributed and decentralized
learning. In [142], the authors provide an FRL architecture in
which each agent works on its own independent IoT device,
sharing the gradient of the loss function and transmitting
mature policy model parameters to other agents. This scheme
solves the security problem related to training control strategy
due to scalability. Actor-critic proxima policy Optimization
(Actor-Critic PPO) is incorporated into each agent as the
main method of the framework, which ensures that updates
to the policy model do not deviate significantly from

the previous policy while ensuring data privacy, resulting
in smoother updates and more stable learning. Similarly,
in [143], the authors developed the FL2S mechanism,
a hierarchical asynchronous FL framework. It leverages
DRL to select participants with sufficient computing power
and high-quality datasets to ensure reliable data sharing by
sharing local data models rather than source data. FL2S
improves the efficiency of the client-server federated learning
architecture by selecting high-quality data nodes with power-
ful computing power. A deep deterministic strategy gradient
(DDPG)method is used, which involves two neural networks:
an online network (actor network) and a target network
(critic network) using experiential playback to ensure state
independence. Both prove that deep reinforcement learning
can provide data privacy in data sharing and processing for
distributed learning frameworks while improving processing
efficiency and learning speed.

In [144] and [145], this paper presents the offload
optimization of deep reinforcement learning on distributed
learning. The Fedadapt algorithm [144] mentioned above
uses reinforcement learning methods, including proximal
policy optimization, to determine which deep neural net-
work layers can be offloaded to the server to adapt to
changing network bandwidth during parameter transmission.
In [145], The authors consider task offloading strategies and
resource allocation strategies in a fog computing environment
using DRL, specifically the Advantage Actor-Critic (A2C)
algorithm, where a network of actors (responsible for
generating action) and a network of critics (responsible for
evaluating an Actor’s performance and directing his or her
next moves). At each time step, the edge route receives the
offload request and makes the decision. This paper adopts a
multi-agent approach to simplify the problem. The complete
offload decision action is decomposed into three sub-actions,
and different rewards are designed for three different sub-
actions, including the total cost of the offload decision,
the upload delay of channel resource allocation, and the
processing delay of fog node resource allocation. The cost of
the A2C strategy over the random strategy was reduced from
about 1.1 seconds to 0.2 seconds, an 81% reduction.

C. PHASE SUMMARY OF AI ALGORITHM FOR
DISTRIBUTED LEARNING AND DECENTRALIZED
LEARNING
The survey work in this section provides a summary of
different AI techniques used in distributed learning as shown
in Table 7 and outlines the challenges each AI technology
faces in solving IoT system issues through distributed
learning. This section reveals the following key points and
insights for AI architectures and algorithms in decentralized
and distributed learning:

• Based on the data sharing constraint, AI algorithms
need to adapt to different decentralized and distributed
learning frameworks according to their own architec-
tures, and some AI algorithms will lose their original
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TABLE 7. Summary of AI technology for distributed and decentralized learning.

model performance, so the original algorithms need to
be optimized.

• AI algorithms can also optimize existing frameworks
for decentralized and distributed learning, reducing
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statistical heterogeneity and system consistency, espe-
cially for reinforcement learning.

• The architecture of deep learning results in a huge
amount of computation and is difficult to apply
to resource-limited edge devices, so the combined
framework of split learning and federated learning in
DNNs needs to be considered.

• The graph, subgraph, and node levels of graph-based
learning have shown their performance in distributed
and decentralized learning, but large-scale graph data
has not been well implemented.

VI. APPLICATION OF DISTRIBUTED LEARNING AND
DECENTRALIZED LEARNING IN THE AIOT SYSTEM
This section will discuss five applications utilizing decentral-
ized and distributed learning fusion in artificial intelligence
Internet of things: (1) intelligent industrial Internet of things;
(2) precision agriculture; (3) smart cities; (4) smart home; (5)
smart healthcare. Moreover, more detailed applications are
also described in these categories. Table 8 shows a summary
of applications using decentralized and distributed learning
for AIoT.

TABLE 8. Summary of applications using distributed and decentralized
learning in AIoT.

A. INTELLIGENT INDUSTRIAL INTERNET OF THINGS
The Industrial Internet of Things (IIoT) is to integrate all
kinds of acquisition and control sensors or controllers with
perception and control capabilities into all aspects of the
industrial production process through IoT perception and
communication technology, thereby improving production

efficiency and reducing product costs and resource consump-
tion. However, since the data information of IIoT is usually
related to the safe production of engineering manufacturing
and the fault diagnosis of machines, traditional centralized
learning methods are no longer suitable for intelligent
IIoT, which needs to protect the privacy of industrial
data. Therefore, decentralized and distributed learning as an
emerging collaborative learning paradigm for data privacy
protection has been utilized and optimized by researchers to
develop more effective solutions in this area.

Zhang et al. [146] introduced a three-tier federated learning
architecture of device-edge-cloud in a distributed intelligent
IIoT network and utilized deep reinforcement learning
to dynamically select participating devices to rationally
allocate computing resources in the network. The key to
this approach is the ‘‘Federation reinforcement’’ (RoF)
based on deep multi-agent reinforcement learning. Classical
replay techniques for efficient learning and convergence are
formulated through the actor-critic network architecture and
off-policy formula so that RoF schemes can execute the
decision to make the best device selection and resource
allocation on edge servers. In addition, this method also
combines elements such as maximum entropy to improve
the exploration and stability of reinforcement learning.
This paper presents a federal learning framework based on
reinforcement learning that has the potential to minimize
evaluation losses while complying with latency and energy
constraints in an intelligent IIoT environment.

Industry 4.0 is an emerging concept that combines mul-
tiple technologies to solve data-driven industrial problems.
Meng et al. [147] proposed a privacy-enhanced, non-
interactive federated learning framework, PEFL, to prevent
adversaries from exploiting shared parameters to disrupt
industrial applications. PEFL implements differential privacy
and encryption by using a distributed Gaussian mechanism to
perturb local gradient vectors before aggregation operations,
and only the server can properly decrypt them to protect
participants’ data privacy. This approach also ensures that the
aggregator is forget-safe, preventing adversaries from leaking
data from the intelligent IIoT network by acquiring local gra-
dients and sharing parameters. While providing a high degree
of data privacy, PEFL guarantees 97.5% accuracy and low
communication overhead when implementing convolutional
neural networks.

Robotic systems are also the domain of the Industrial
Internet of Things, which automates the work of multiple
robots on an industrial assembly line by managing them.
Majcherczyk et al. [148] proposed a decentralized feder-
ated learning framework, Flow-FL, that can be applied to
machine-connected teams for collective learning. Flow-FL
is data-driven in the arrangement of learning rounds, and
the global state of the framework is maintained in shared
memory based on the Gossip protocol. Specifically, the
weights of the global model are stored in the shared memory,
and when one of the robots has collected enough training
data, the model weights are extracted from the distributed
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shared memory to build a local model. The effectiveness
of Flow-FL is verified by the problem of agent trajectory
prediction in robot systems. In addition, Ho et al. [149] also
studied a joint deep reinforcement learning framework based
on the federated learning FedAvg aggregation algorithm.
In this paper, proximal policy optimization (PPO) is adopted
to realize the task scheduling of an automated warehouse
with heterogeneous autonomous robot systems. Compared
with other distributed learning algorithms, the performance
of average queue length is improved in this method.

B. PRECISION AGRICULTURE
Precision agriculture (also called Smart agriculture) is a
modern agricultural technology that combines IoT systems
and AI algorithms to make precise decisions and planning
by analyzing and learning from large amounts of agricultural
data, such as soil characteristics, climate change, etc., which
is collected from IoT sensors. This system has been widely
used in land use efficiency, quality inspection, and farm
and resource management to minimize labor and cost and
improve agricultural production efficiency [166]. Collabora-
tive communication technology andmachine learningmodels
have been used to predict agricultural productivity and reduce
production risks, but most of these data exist in government
departments or individual farmers who are unwilling to share
data, so traditional distributed learning has challenges.

Due to weather data, soil data, and crop data being decen-
tralized, crop productivity forecasting requires collaborative
learning from multiple participants. T et al. [150] developed
a federal learning framework based on deep residual network
regression models such as ResNet-16 and ResNet-28 to
predict soybean yield in a decentralized environment using
the FedAvg algorithm. The paper uses a dataset containing
three types of data, including weather data, soil composition,
and crop management data. The data is distributed across
different clients and is partitioned horizontally, so clients all
use the same set of features to distribute the data. Based
on the performance indexes of MSE, RMSE, MAE, and r,
this method performs better than traditional data-centralized
training.

Idoje et al. [151] designed an ultra-tuned federal average
model for smart farms, which aims to build a smart farm
network by adopting a multi-label agricultural data set, with
climate data as the independent variable and crop type as
the label, to predict the type in the farm. In this paper, the
Gaussian naive Bayes classifier model is adopted and built
in a decentralized platform duet. Local data is trained by
edge nodes on the farm, and updated weights are sent to
the aggregator to complete model convergence. The proposed
model evaluated various harmonic average values with crop
category as the label, and the optimal harmonic average was
generated by the FedAvg model.

Pest diseases have also been a major problem affecting
agricultural productivity. As traditional pest detection is faced
with problems such as uneven and insufficient crop data and

diversity of pests and diseases, Deng et al. [152] proposed
a fast regional convolutional neural network (R-CNN) based
on federated learning technology to solve diseases and pests
in orchards. The R-CNN network in the framework was
replaced by ResNet-101 to prevent problems with gradient
dispersion and gradient explosions during training and to
ensure the original structure of small-size targets (pests).
In this paper, the distributed computing paradigm based on
federated learning can realize a shared model that integrates
the data advantages of all parties in the case of data isolation.
The FedAvg algorithm is improved by adding a restriction
to prevent the large difference between the local model and
the global model, and a fixed period is set to obtain the
optimal solution in convergence speed and communication
cost. The accuracy of the improved distributed computing
model in multiple pest detection can reach 89.34%, and the
target detection training speed is increased by 59% compared
with the benchmark.

C. SMART CITIES
With the surge in urban population, urbanization in various
countries is faced with many challenges, such as traffic jams,
waste of resources, and urban planning. As a kind of AIoT
concept, smart cities are proposed by integrating IoT devices
and sensors to collect multiple types of data about different
areas, such as vehicle flow, wastewater discharge, smart grid,
and other data, and learn and analyze these data through
AI technology to provide more effective decision-making
proposals for city managers. Traditional centralized learning
methods that rely on cloud computing have been unable
to adapt to the diversified expansion of devices in smart
cities while emerging decentralized and distributed learning
realize decentralized smart city applications and ensure that
data privacy is not leaked. This section will summarize the
applications of smart cities from three aspects: intelligent
transportation, smart grid, and Unmanned Aerial Vehicle
(UAV) management.

1) SMART TRANSPORTATION
Intelligent transportation brings the information of the
sensors of the traffic control system and the information
of the vehicle to the edge of the Internet of Things
network to achieve collaborative training of the global model
without damaging the personal information of the vehicle
and improve the efficiency of traffic scheduling. Xu et al.
[153] designed an asynchronous federated learning scheme,
DBAFL, based on the dynamic scaling factor of blockchain
to learn traffic conditions over time to achieve intelligent
public transportation, helping drivers improve driving safety
and fuel utilization efficiency. DBAFL is built by the Bus and
Roadside Unit (RSU) and introduces a new committee-based
consensus algorithm that periodically selects new committees
from the RSU based on the hash value of the latest block to
defend against DDoS attacks. The experiment of DBAFL on
heterogeneous devices proves that DBAFL has a low time
cost and good performance in terms of privacy protection.
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The Internet of Vehicles (IoV) is also a part of intelligent
transportation, which realizes functions such as autonomous
driving through collaborative learning of multiple vehicles.
Xie et al. [154] utilized the federal learning framework
FedSNN in the networking of vehicles to enable multiple
vehicles to cooperate in training traffic sign recognition tasks
and introduced a spike neural network (SNN) based on neural
receptive field to achieve higher accuracy recognition by
extracting information from the pixels and spatial dimensions
of traffic signs. In FedSNN, connected vehicles use the
local traffic sign data set to train the local model of SNN
and then upload it to the neighboring RSU node for model
parameter aggregation and loop until the model converges.
Similarly, Liu et al. [155] proposed a federated learn-based
gated recurrent unit neural network algorithm (FedGRU) for
collaborative learning in vehicle networking for traffic flow
prediction.

2) SMART GRID
A smart grid is a branch of smart cities that utilizes artificial
intelligence to learn real-time data collected by IoT sensors
deployed on the grid to provide more stable, cost-effective,
and safe power regulation decisions for the grid. Due to the
privacy of power resources, AIoT, based on the emerging
decentralized and distributed learning framework, has been
widely used in smart grids. Su et al. [156] propose a
hierarchical federated learning framework with edge-cloud
collaboration and employ Deep Q networks (DQN) of deep
reinforcement learning to push the best training strategy to the
user’s local model based on multidimensional user privacy
information and state space. The proposed framework also
adds incentives to prevent free riders from taking more of the
profits learned in the network. The paper uses simulators to
demonstrate that federal deep reinforcement learning in smart
grids demonstrates the possibility of collaborative learning
between multiple users without sharing data.

The security of the grid is also a constant consideration.
Ashraf et al. [157] developed a federal learning approach
FedDP for data privacy, using a federal vote classifier (FVC)
that is based on majority pass consensus to select traditional
machine learning methods such as SVM, KNN, and RF for
detecting energy theft in smart grids. FedDP consists of a theft
detection station (TDS) and a central server (CS), where TDS
is a low-power device that obtains real-time data of energy
utilization from smart meters for storage and is responsible
for uploading the local newly connected model parameters to
CS, and CS is responsible for collecting themodel parameters
of TDS to train the global model. Compared with the existing
model, FedDP has the highest accuracy, which can reach
91.67%, and is suitable for small edge nodes with limited
computing resources.

3) UAV MANAGEMENT
Unmanned Aerial Vehicles can also be called drones in
various areas of the smart city and play roles such as
the distribution of goods, vehicle flow monitoring, and so

on. Since the drone swarm is decentralized, it needs to
communicate with each other and learn collaboratively to
complete the task, so distributed learning and decentralized
learning are suitable for the Internet of drones (IoD).
Donevski et al. [158] investigated the problem of distributed
node scheduling transmission for unmanned aerial vehicles
(UAVs) and proposed a federated learning framework for
UAV orchestration. In this framework, continuous convex
programming and deep reinforcement learning are used to
solve the complex trajectory planning optimization problem
of UAV static nodes and improve the complex node arrange-
ment of UAVs. For the path planning problem of UAVs,
Gad et al. [159] proposed a federated learning algorithm
based on knowledge distillation, which uses soft labels to
reduce the communication overhead between UAVs and
uses a self-organized map (SOM) algorithm to represent the
topology of UAVs nodes, so as to generate the best UAVs
path planning for intelligent monitoring of sparsely populated
areas.

D. SMART HOME
The smart home is a subset of pervasive computing, which
uses communication technology and intelligent control tech-
nology to connect small devices in the home (e.g., lighting
systems, audio and video equipment, air conditioning control,
security systems, network appliances, etc.) together to form
the Internet of Things network, establishing an environment
full of computing and communication capabilities. The
integration of AIoT technology into smart home is to learn
the user’s preferences through environmental perception and
user preference analysis so as to adapt to adjust the user’s
living environment, thereby improving the intelligence and
comfort of living. Each perceptron in the smart home involves
the user’s personal privacy, so in order to solve the problem
of data privacy, the emerging distributed and decentralized
learning framework provides a better outcome solution for
AIoT technology.

In response to the problem that AIoT in smart homes may
lead to user privacy disclosure or cyber-attacks, Yu et al. [160]
proposed a multi-task federated learning framework, LoFTI,
to learn customized context-aware strategies from multiple
smart homes to prevent cyber threats, such as unconventional
automatic window opening. LOFTI builds historical data sets
by collecting IoT access and context information records
from edge nodes of the smart home, where edge nodes
extract key features from the data set to capture contextual
access patterns. The learning framework will use federated
multi-task learning to build machine learning models and
will be trained through federated learning patterns to achieve
situational awareness and avoid abnormal access to the smart
home from outside. LOFTI’s false positive rate is 49.5%
lower than the most advanced whole-home learning.

Lee et al. [161] proposed a federated learning model
based on deep reinforcement learning consisting of a local
home energy management system (LHEMS) and a global
server (GS) to intelligently manage the energy consumption
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of multiple smart homes with household appliances, solar
photovoltaic systems, etc. Each LHEMS in the framework
uses the energy consumption data based on the global model
to build a local model, and its GS, as an aggregator, uses the
FedSGD algorithm to build a global model. The framework
proposed in this paper is suitable for many households with
different electrical parameters and comfort requirements.

The consumer Internet of Things (CIoT) is a branch
of the smart home and is an Internet network composed
of the Internet of Things terminals used by the consumer
home. Access to the cellular network is its main mode
of communication, so there will be more restrictions on
data sharing. For cross-island CIoT devices in smart homes,
Rasti-Meymandi et al. [162] proposed a new personalized
graph Federation IoT learning framework GFIoTL based on
graph filtering and a new graph signal processing (GSP)
aggregation rule called G-Fedfilt. GFIoT can not only
aggregate the gradient of the device but also customize its
special model according to the needs of each device. The
essence of the G-Fedfilt aggregation algorithm is to consider
domain-specific and domain-independent gradient updating.
It uses a graph filter to aggregate the model parameters
of edge devices and incorporates the FedAvg aggregation
algorithm in a special case to make federated learning
adjustably personalized. Different from other personalized
federated learning, GFIoTL considers the relationship of
edge devices on the graph network, and the aggregation
rules can also cluster edge devices based on the connectivity
of the graph. Compared with the traditional FedAvg, the
classification accuracy of GFIoTL is improved by 3.99%, and
the communication efficiency is higher under the condition of
system heterogeneity.

E. SMART HEALTHCARE
Smart healthcare can also become the Internet of Medical
Things (IoMT), collecting data through the use of responsive
devices or sensors to check and monitor a patient’s physical
state to improve the accuracy of detection and the efficiency
of diagnosis. With the proliferation of patients and the
diversification of treatment methods, the data generated
by IoMT increases, and AIoT learns various data through
AI technology to help doctors make auxiliary decisions
and shorten treatment time, providing a convenient medical
environment for patients. However, large and diverse data is
difficult to find in a single healthcare institution, and patient
data is subject to strict privacy restrictions, making it difficult
to collect and share. Therefore, the emerging decentralized
and distributed learning technology solves this problem well
and is applied in many fields of IoMT, including medical
imaging diagnosis, wearable medical monitoring, and online
medical systems.

The decentralized learning framework is most widely
used in smart health because of its stricter constraint on
data sharing. Lian et al. [163] propose a privacy-enhanced
decentralized, federated learning system, DEEP-FEL, that
allows different medical devices to learn collaboratively

without sharing raw data. DEEP-FEL is a decentralized
architecture of layered ring topology that utilizes edge servers
to communicate and store data and build local training
models to exchange and aggregate model parameters with
other institutions. The RingAVG algorithm is designed to
optimize the aggregation algorithm of the ring topology and
update the local model by receiving and aggregating model
parameters from different medical institutions. During the
communication process, manual perturbation is also added
to DEEP-FEL to enhance the privacy protection of model
parameters. On the data sets of skin cancer and COVID-
19 scans, the proposed framework has good performance in
terms of communication efficiency and privacy protection.

Similarly, Tedeschini et al. [164] have proposed a fully
decentralized federated learning framework for the diagnosis
of medical imaging. The proposed framework is based
on the consensus-driven Federal Average method (CFA),
which enables the full decentralization of point-to-point
communication links by enabling healthcare sites to directly
send local model parameters to authenticated other healthcare
sites without a parameter server (PS). This paper also uses
message queue-based Telemetry Transfer (MQTT) transport
protocol to realize real-time local model parameter exchange
between heterogeneous medical nodes and proposes a set of
optimized information embedded in the payload of MQTT
to represent the real-time learning process in each period.
The predictive performance and real-time performance of the
proposed framework are confirmed by a real-world case of
brain tumor segmentation.

Split learning, as a distributed learning framework that
can conduct collaborative learning in multiple modes of
patient data, also has good effects in smart healthcare.
Vepakomma et al. [70] proposed splitNN, a split-learning
framework, for the task of training local deep learning
networks in each healthcare department and conducting
multi-party collaborative training of the same global model
by passing the parameters of the local model. SplitNN can
effectively reduce the parameters of model training and
make the IoMT network more lightweight. Furthermore,
Yoo et al. [165] proposed a new split-learning concept,
‘‘multi-site split-learning,’’ to realize a global medical image
classification model shared and cooperated by multiple
hospitals under the protection of data privacy. The proposed
framework includes multiple hospitals and a server, and
the hospital only needs to train the first hidden layer and
transmit the confidential feature map to the server so that
the patient’s private information is retained locally. Medical
data on CT scans, X-ray bone scans, and cholesterol levels of
COVID-19 patients are used to demonstrate the performance
of the proposed framework in privacy protection and medical
imaging diagnosis.

VII. OPEN CHALLENGES AND OPPORTUNITIES
This section presents various open challenges encountered
in decentralized and distributed learning for AIoT. The
challenges captured in this work include privacy security
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protection, real-time collaborative learning, incentive mech-
anisms, multimodal distributed and decentralized learning,
heterogeneous challenges and opportunities for management,
network, and data sharing in AIoT.

A. PRIVACY SECURITY PROTECTION
Although decentralized learning paradigms such as federated
learning and split learning are designed to prevent the
leakage of data privacy, data privacy, and system security
protection are still the challenges in the inference of models
and the transmission of parameters. 1) In the phase of
transmitting model gradients or parameters, the attacker will
deduce against local or global model parameters to obtain
information from the client. At present, the defense method
adds noise to the transmitted parameters through encryption
technology, such as differential privacy, at the expense of
model convergence efficiency and accuracy in exchange for
data privacy protection. 2) In the model inference phase,
an attacker will steal training data or local models, such
as Byzantine attacks and backdoor attacks, to affect the
performance of the global model or sub-task. In [167],
authors protect the privacy and security of distributed systems
by reducing the variance of stochastic gradient as a means
of joint variance reduction of stochastic gradient descent,
which is robust in Byzantine attacks. Therefore, developing
more lightweight privacy or encryption algorithms and more
generalized robust distributed and decentralized learning is a
direction worth studying.

In addition, although encryption technology protects the
privacy and security of parameters during transmission,
it still faces some challenges. Some encryption techniques,
such as differential privacy, add different levels of noise
to the parameters. This noise can lead to a decrease in
model accuracy, and for devices with limited resources, it is
difficult for their computing resources to handle parameters
injected with noise. On the other hand, even if some
encryption techniques are lossless, they will still increase the
communication overhead of distributed learning. Therefore,
designing powerful privacy protection platformsmay become
an opportunity for distributed learning in the future direction.

B. REAL-TIME COLLABORATIVE LEARNING
Real-time is a challenge for distributed and decentralized
learning for AIoT. Distributed and decentralized learning
usually uses synchronous protocols for model aggregation,
which makes it difficult to adapt to rapidly changing envi-
ronmental information and heterogeneous hardware settings.
In [168], authors proposed a hierarchical pace control
framework to coordinate the overall training progress in
a federated learning system. Therefore, it is a solution to
introduce an adaptive asynchronous aggregation protocol for
consuming real-time streaming data.

Another challenge to achieving real-time collaborative
learning is the deployment and implementation of AI models
in IoT devices. Therefore, in addition to the improvement of

communication protocols, the improvement of acceleration
technology and deep learning models is also a future
direction. From the perspective of hardware adaptation of AI
models, acceleration techniques such as pruning, and quan-
tification can reduce the pressure on storage and computing
resources that exist when the model is deployed on the device
side. This frees most devices from their dependence on cloud
servers, enabling real-time collaborative training. But this
affects the accuracy of the AI model. From the perspective
of hardware, the development of lightweight hardware to
support the training of AI models is also one of the future
directions.

C. INCENTIVE MECHANISM
Participating in distributed and decentralized learning con-
sumes computing resources, hogs network bandwidth, and
shortens the life of edge devices. Most popular distributed
training algorithms use small batches of random gradient
descent, which in actual training requires waiting for the
slowest device in each synchronization batch, resulting in
random optimization of full synchronization tends to be slow,
i.e. subject to the ‘‘lag effect’’, which is more pronounced in
heterogeneous networks. At present, most research assume
that all terminal devices can participate in distributed learning
unconditionally, but the actual situation is that ‘‘selfish’’ end
devices will not provide enough resources to participate in
distributed learning, which will affect the training efficiency
of distributed learning. Therefore, the lack of adequate
incentives to incentivize clients to bear these costs and
contribute is a challenge at this stage.

In order to solve this problem, the managers of the
system should consider the establishment of an incentive
mechanism from two angles: 1) Evaluate the contributions
of each participant; 2) Give participants reasonable rewards.
He et al. [169] introduced contract theory as an incentive
mechanism for federated learning, designing contracts by
analyzing the cost and data label distribution differences of
participants’ devices. Game theory is also one of the future
directions of incentive mechanism in distributed learning.
Different from the incentive based on the fair mechanism, it is
based on the untrustworthy risk of encouraging more devices
to contribute their resources through different rewards.
Research on incentive-driven distributed and decentralized
learning is an important direction in the future, which can
build more efficient AIoT systems.

D. MULTIMODAL DISTRIBUTED AND DECENTRALIZED
LEARNING
Although there has been a lot of research on decentralized
learning and distributed learning in structured data such
as images, audio, text, etc., the application of utilizing
multimodal data flows in AIoT has not yet been explored.
However, in AIoT system, the data generated by different
sensors and devices usually have different modes, such as
tactile, visual, and auditory, so it is crucial to establish
a multi-modal distributed learning framework. Feng et al.
[170] proposed FedMultimodal as a benchmark for federated
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learning in multimodal learning, covering five representative
multimodal applications. Therefore, the study of distributed
and decentralized learning algorithms on multi-modes to
achieve extreme data heterogeneity is a future direction in the
field of AIoT.

Current research on multimodal distributed learning
mainly uses the following methods: 1) A new representation
space is established before the final decision level to mix
the representation of data of different modes. 2) Extract
the representation from different modes and send it to the
server to align the different modes [171]. These two methods
have privacy and security problems from the client and
server levels respectively. Therefore, developing more secure
distributed and distributed learning models and improving
their robustness are also future research directions.

E. HETEROGENEOUS CHALLENGE
As mentioned in the article, statistical heterogeneity and
system heterogeneity are the most challenging issues in
distributed and decentralized learning for AIoT. These
challenges are due to changes in client device hardware
conditions (CPU, memory), network connection (3G, 4G,
5G, WiFi), and power supply (battery power), each device in
the distributed learning network may have different storage,
computing, and communication capabilities. Network and
device limitations can cause only a few devices to be active
at a time. Moreover, devices usually generate and collect
data on the network in different distribution ways, and
the amount and characteristics of data across devices may
vary greatly, so the data in the federal learning network
is non-independent and identically distribute. At present,
the mainstream machine learning algorithms are mainly
established based on the assumptions of IID data. Therefore,
heterogeneous non-IID data features pose great challenges
to modeling, analysis and evaluation. A lot of work has
been done to address these challenges, but another effective
approach called personalized federated learning mentioned
in the article is personalization at the device, data, and
model level to mitigate heterogeneity and get high-quality
personalized models for each device. Personalized federated
learning may be the focus of future research on heterogeneity
challenges. In addition, the exploration of providing standard
communication protocols for heterogeneous devices and
networks to support the communication quality of different
types of edge devices and cloud servers is also an urgent
challenge for distributed and decentralized learning.

F. FURTHER CHALLENGES AND OPPORTUNITIES FOR
MANAGEMENT, NETWORKING, AND DATA SHARING IN
AIOT
With the deployment of large-scale end devices and the
explosive growth of data volume of AIoT, wireless com-
munication has been widely used in distributed learning
and decentralized learning technologies. Distributed learning,
such as federated learning, can learn and infer models

locally without sharing data, thus reducing data exchange
and bandwidth usage in wireless communication networks.
In fact, bandwidth limitations and network latency also
remain major obstacles. Distributed learning requires fre-
quent parameter transmission and model synchronization,
and the existing network infrastructure may not be able
to meet the demand for high bandwidth and low latency,
resulting in inefficient data transmission and slower model
training. Especially in edge computing environments, where
the stability of network connections is critical, any network
interruption can lead to data loss or model inconsistencies
during training. In addition, distributed sensors and devices
are often powered by batteries with limited computing
and storage capacity, making it difficult to support highly
dynamic service environments. So, efficiently allocating
and scheduling communication and computing resources to
optimize overall system performance is a challenge.

To address these challenges, various communication
offloading, caching, and cloud, fog, and edge computing
mechanisms allocate resources across heterogeneous net-
works, respectively, becoming solutions for low latency
and on-demand services. Sun et al. [172] optimized joint
caching and computation strategies to minimize transmission
bandwidth under latency and local cache constraints. With
the introduction of the 6th generation wireless networks (6G)
concept, distributed and decentralized learning in AIoT will
become more dependent on reliable, low-latency network
management [173]. AI/ ML-based management and network
resource allocation and scheduling technologies, such as
DRL, will become more reliable solutions to support the
networks of the future. Nguyen et al. [141] proposed a DQL
algorithm for resource allocation in a mobile-aware federated
learning network using a deep Q-Network (DQN), which can
find optimal decisions about energy and channels without any
prior network knowledge.

VIII. CONCLUSION
This paper has presented a comprehensive survey of
paradigms for decentralized and distributed learning for
artificial intelligent Internet of Things. This review aims to
provide useful references and discuss how to apply these new
paradigms to solve the collaborative learning of large-scale
edge devices based on data privacy in AIoT. This survey
covers the various patterns and architectures of decentralized
and distributed learning and gives insights into the optimiza-
tion algorithms of these paradigms, such as in terms of data,
devices, and parameter transmission. The paper discusses the
generality and empowerment provided by AI algorithms in
AIoT over different distributed and decentralized learning
frameworks, including machine learning, deep learning,
and reinforcement learning. Use cases and applications for
decentralized and distributed learning for AIoT have been
given. The review has also uncovered open challenges
that remain to be resolved and given recommendations for
future work in the following areas: (1) Data privacy and
model security for AIoT systems; (2) Real-time processing
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and collaborative learning based on real-time data streams;
(3) Incentive mechanism for participants; (4) Decentralized
and distributed learning for dealingwithmultimodal data; and
(5) Statistical, systems and model heterogeneity challenges.
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