
Received 21 May 2024, accepted 23 June 2024, date of publication 2 July 2024, date of current version 12 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3422098

Noise-Tolerant Trajectory Distance Computation
in the Presence of Inherent Noise for Video
Surveillance Applications
YONGJIN KWON 1,2, JINYOUNG MOON 1, AND YEONSEUNG CHUNG2
1Superintelligence Creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea
2Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

Corresponding author: Yongjin Kwon (scocso@etri.re.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government [Ministry of Science and ICT (MSIT)] (No. 2014-3-00123, Development of High Performance Visual BigData
Discovery Platform for Large-Scale Realtime Data Analysis and No. 2020-0-00004, Development of Previsional Intelligence based on
Long-term Visual Memory Network).

ABSTRACT As the importance of trajectory analysis arises in video surveillance, it becomes crucial to
define the dissimilaritymeasure between two trajectories. Although theHausdorff distance can be considered
as a viable candidate for the measure, it is challenging to deal with noise present in trajectories since the
Hausdorff distance is susceptible to noise so that even a single noise point may significantly distort the
distance computation. In this paper, we propose a novel approach to alleviate the influence of inherent
noise by setting noise-like points apart from ordinary points with a novel spatial tree structure during
trajectory distance computation, without additional noise detection processes. In particular, we present Ron-
tree, an extension of the existing spatial tree structure, that seamlessly finds permanent noise-like points,
which are considered to have a low possibility of being ordinary points, and then keeps them in a separate
auxiliary R-tree, without any separate process of disclosing noise-like points.We exploit Ron-tree to compute
the noise-tolerant trajectory distance by modifying an existing algorithm for the Hausdorff distance. We also
build an algorithm for noise-tolerant trajectory search to ensure accurate and high-quality search results even
with noisy trajectories. The empirical results show that in all cases, our proposed approach yields the distance
closest to the true one than any other competitor. The effectiveness of our approach is further examined by
applying our noise-tolerant trajectory search to a real video surveillance dataset.

INDEX TERMS Trajectory distance, noise-tolerant Hausdorff distance, trajectory search, video surveillance.

I. INTRODUCTION
Trajectories, generated by tracking or sensing moving
objects, are regarded as key features that provide the
concise characteristics and semantics in their movements [1].
An enormous number of studies have investigated methods
of analyzing and utilizing trajectories, such as trajectory
clustering [2], [3], [4], [5], trajectory prediction [6], [7],
[8], trajectory classification [9], [10], [11], trajectory pat-
tern mining [12], [13], [14], and trajectory representation
learning [15], [16], [17], [18]. Especially as the demand

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

for vision-based surveillance technology continues to esca-
late [19], trajectory analysis can serve as a valuable tool
for video surveillance. For example, by scrutinizing the
trajectories of individuals appearing in videos, it is possible
to recognize human behaviors, detect anomalous activities,
and even forecast future events [20], [21], [22]. This
information aids in the efficient automatic video analysis,
a capability particularly beneficial in scenarios such as smart
cities [23]. In these contexts, where numerous cameras
generate substantial amounts of videos, relying solely on
manual review of all footage is impractical [24].

In trajectory analysis, it is important to measure how
similar or dissimilar two trajectories are from each

92400

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-8818-4657
https://orcid.org/0000-0002-6616-824X

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 1. Examples of trajectories with a few noise points in the MIT
trajectory dataset [29].

other [25], [26]. One candidate for this measure is the
Hausdorff distance [27]. The Hausdorff distance between two
nonempty point sets A and B in Rd is defined by

H (A,B) = max{h(A,B), h(B,A)},

where h(A,B), called the directed Hausdorff distance,
is defined by

h(A,B) = max
a∈A

{
min
b∈B

dist(a, b)
}

,

where dist(·, ·) is the Euclidean distance in Rd . Treating a
trajectory as a point set, the Hausdorff distance can be easily
adopted to compute the distance between two trajectories.

A predominant disadvantage of the Hausdorff distance
is its sensitivity to noise, which is usually unavoidable in
real-world applications. Even a single noise point in either
set can substantially affect the distance [28]. As shown
in Fig. 1, which presents some trajectories from the MIT
trajectory dataset [29], one of the well-known datasets in
video surveillance, trajectories may contain one or several
noise points, due to undesirable factors such as tracking
errors. Although these noise points are a minuscule fraction
of the trajectories, the trajectory distance based on the
Hausdorff distance is significantly affected by such noise
points. One might suggest that the emerging techniques for
object detection and tracking could be employed to handle the
inherent noise, but the noise is often inevitable in real-world
applications even with such advanced algorithms in
place.

To address the unwanted impact of noise, onemay consider
detecting noise points within trajectories [30] to reduce their
influence by omitting them from the distance computation.
This approach, however, usually requires ancillary imple-
mentations and computational resources for noise detection,
which are not even a crucial part of the distance computation
itself. Alternatively, one can use a modified distance designed
for noise tolerance. There are several variants to mitigate the
effect of noise. The partial Hausdorff distance [27] considers

FIGURE 2. An example of an underestimation of the Hausdorff distance
caused by a noise point.

the kth largest value of minb∈B dist(a, b) among a ∈ A,
rather than taking the maximum over A, when computing
h(A,B). Similarly, the fractional Hausdorff distance [31]
takes the q% quantile of minb∈B dist(a, b) for a ∈ A.
For example, it is recommended to use the 95% quantile
of the distances in h(A,B) to evaluate the performance of
brain tumor segmentation methods [32]. More variants of
the Hausdorff distance can be found in [33]. Although these
variants require only slight modifications to the distance
computation without additional noise detection processes,
they may fail to diminish the influence of noise because they
typically operate under the assumption that noise points lead
to an overestimation of the distance. This is not always the
case, as a noise point may, in fact, cause an underestimation
of the distance, as shown in Fig. 2.

In this paper, we propose a novel approach to compute
the noise-tolerant trajectory distance based on the Hausdorff
distance in the presence of noise. Unlike existing methods,
our approach eliminates the additional costs associated
with noise detection while still preventing noise-like points
inherent in noisy trajectories from being factored into the
distance computation. In particular, instead of concerning the
extra efforts for extracting noise-like points, we attempt to
segregate noise-like points from ordinary points by adopting

VOLUME 12, 2024 92401

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

a novel spatial tree structure during trajectory distance
computation. We initially pay attention to Ro-tree [34],
a variant of R-tree used for trajectory distance computation
in [35], that isolates noise-like objects in internal nodes
at a higher level during the construction. Although Ro-tree
can distinguish a few noise-like points from the others,
Ro-tree has insufficient space to store noise points that
usually occur proportionally to the length of the trajectory.
Thus, we introduce Ron-tree, a variant of Ro-tree, that finds
permanent noise-like points during the point insertion, which
are considered to have a very low possibility of becoming
ordinary points, and then stores them in a separate auxiliary
R-tree. To compute the noise-tolerant distance, we modify
an incremental algorithm for computing the Hausdorff
distance [35], to visit ordinary points only by substituting
Ron-tree for traditional R-tree, so that the distance would be
close to the true distance (i.e., the distance between ordinary
trajectories). In addition, we leverage the noise-tolerant
trajectory distance to trajectory search, with the aim of
finding the closest trajectories to a given query trajectory,
to provide accurate and high-quality search results, even
on noisy trajectories. The experimental results demonstrate
that our method produces a distance that is closer to the
true distance than any other approach. We also verify the
effectiveness of our noise-tolerant trajectory distance by
applying our noise-tolerant trajectory search to a real video
surveillance dataset.

The main contributions of this paper can be summarized as
follows.
• We propose a novel structure Ron-tree that seamlessly
detaches permanent noise-like points in a trajectory and
then keep them in a separate auxiliary tree. It resolves
the problem of the previous Ro-tree and accomplishes
the isolation of noise-like points.

• We exploit Ron-tree to develop an algorithm for
computing the noise-tolerant trajectory distance. This
algorithm is a simple adapation of an existing algorithm
for the Hausdorff distance.We also extend the use of this
algorithm to noise-tolerant trajectory search.

• We empirically demonstrate that assuming the presence
of noise, our noise-tolerant distance is closer to the
true one than any other method. We also show that
our algorithm for noise-tolerant trajectory search returns
more accurate and high-quality search results than other
competitors.

• We utilize our noise-tolerant trajectory search to a real
video surveillance dataset.We verify the effectiveness of
our noise-tolerant trajectory distance by showing that the
noise-tolerant trajectory search algorithm can not only
identify relevant trajectories with some noise points, but
it can also provide more semantically closer results to
query trajectories with irregular mid-points.

The rest of this paper is arranged as follows. Section II
presents related studies on computations of the Hausdorff
distance and noise handling in a trajectory. Section III
revisits the structure of Ro-tree and then extends it to our

proposed Ron-tree. Section IV explains a modified algorithm
for computing the noise-tolerant trajectory distance based on
the Hausdorff distance using Ron-tree, and then describes
how to employ the noise-tolerant distance for noise-tolerant
trajectory search. Section V presents the experimental results
of the noise-tolerant trajectory distance. Finally, Section VI
concludes the paper and discusses future work.

II. RELATED WORK
A. HAUSDORFF DISTANCE AND ITS COMPUTATIONS
The Hausdorff distance is a dissimilarity measure that
computes the extent to which two sets differ from each other.
One of the notable advantages of the Hausdorff distance is
that it is not restricted to a particular type of set. For example,
the Hausdorff distance can quantify the similarity between
two point sets, even though they have different sizes, without
establishing a one-to-one mapping between them [36].
Thus it is frequently used in a number of applications,
such as image processing and retrieval [37], [38], [39],
[40], three-dimensional (3D) mesh matching [41], [42], and
pattern recognition [43], [44], as well as trajectory analysis
[25], [45].

The simplest way to compute the directed Hausdorff
distance between two point sets A and B is to iterate a nested
loop, where the inner loop scans all points b in B for a given
a ∈ A to compute minb∈B dist(a, b), and the outer loop scans
all points a in A to compute h(A,B). Since this simple method
requires high computational complexity, several studies have
been suggested to build an efficient and practical algorithm
for computing the Hausdorff distance. Nutanong et al. [35]
exploited R-trees to avoid scanning all points in A and B.
After building R-trees of A and B, their algorithms traverse
the R-trees in an appropriate order, based on the lower and
upper bounds of the Hausdorff distance, to quickly visit each
pair of a ∈ A and b ∈ B, whose distance appears to be close to
h(A,B). Taha and Hanbury [46] proposed an early breaking
optimization that terminates the inner loop before scanning
all points in B if it is determined that the inner loop cannot
update the current candidate of h(A,B). Chen et al. [47]
enhanced the early breaking optimization, called the local
start search algorithm, to terminate the inner loop in an
earlier iteration, with the aid of a space-filling curve. They
argued that the spatial locality of points is helpful for
finding unnecessary points that do not contribute to h(A,B).
Zhang et al. [48] presented an octree-based approach, which
is a slight improvement in the local start search algorithm,
to accelerate the early breaking optimization for dense point
sets. Ryu and Kamata [49], unlike other algorithms based
on the early breaking optimization for stopping the inner
loop, suggested a strategy of ruling out to reduce the number
of iterations of the outer loop. To compute h(A,B), their
method sampled a small subset Bs of B and then computed
a temporary candidate of h(A,B) and a list of temporary
minimum distances of A by computing h(Bs,A), the directed
Hausdorff distance in the opposite direction, which was used
to exclude unnecessary points in A.

92402 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

B. DETECTING NOISE POINTS IN A TRAJECTORY
Trajectories generated from various applications, including
video surveillance, may contain noise because of the
inevitable errors arising from sensing devices or tracking
algorithms. A number of different approaches have been
proposed to detect noise points in a trajectory. One approach
is trajectory smoothing, which exploits mean/median fil-
ters [50]. For each point ai in a trajectory A, the mean
filter estimates the true point by âi =

∑n
j=1 ai−n+j/n,

where n is the sliding window size. The median filter,
which is more tolerant to noise, chooses the true point
âi by the median of ai−n+1, ai−n+2, · · · , ai−1, ai. Another
way of identifying noise points is to apply a heuristic
rule [51]. For example, if the speed at the point ai, which
is computed based on the time interval and distance from
ai−1, exceeds a predefined threshold, then we concern ai
as a noise point. Custers et al. [52] leveraged the physical
properties of moving objects to extract noise points in
a trajectory. In their study, a specific physical model is
assumed, and then a maximum consistent subsequence of
the trajectory is computed using that physical model. Then
the points that are not included in the subsequence are
considered as noise points. Chen et al. [26] suggested a way
of substituting noise points through Lagrange interpolation.
Their method compares neighboring points to determine
noise points that exceed a predefined distance threshold,
assuming that the movement of each object is limited. These
approaches, however, require additional implementations and
computational resources for noise-detecting algorithms and
processes, which are not even an essential part of the distance
computation.

III. RON -TREE
In this section, we first describe the structure and inser-
tion/deletion process of Ro-tree [34], and we then investigate
how Ro-tree fails to capture noise points. Traditional spatial
tree structures, such as R-tree and its variants, have no
ability to distinguish noise-like points from ordinary points.
Although Ro-tree attempts to separate noise-like points,
it often fails due to the inadequate space in this tree for noise-
like points.

To address this limitation, we introduce Ron-tree, a novel
extension of Ro-tree, where permanent noise-like points,
which are not likely to be ordinary points, are identified
during the insertion process and isolated into a separate
auxiliary tree. This separation resolves the failure of
Ro-tree in effectively handling noise-like points. These noise-
like points, which may distort the distance calculation, will
be excluded from the distance computation in our proposed
method. This integrated approach eliminates the need for
additional noise detection or smoothing algorithms, stream-
lining the process of noise-tolerant distance computation.

A. REVISITING RO-TREE
Ro-tree [34], a variant of R-tree, is a balanced tree structure
for spatial data, which isolates noise-like objects in internal

nodes at a higher level. While R-tree relies on heuristics
to maintain the minimum bounding rectangle (MBR) of
each node as small as possible, Ro-tree identifies noise-like
objects that cause significant changes in the MBR of each
internal node during the insertion and deletion processes
without additional efforts. This assessment of the extent of the
MBR changes is performed using the outlier identification
algorithm [53]. By setting aside noise-like objects, the nodes
in Ro-treemaintain smallerMBRs than those in R-tree, so that
Ro-tree achieves a better spatial query performance.

1) OUTLIER IDENTIFICATION ALGORITHM
We briefly describe the outlier identification algorithm [53],
which enables Ro-tree to disclose noise-like objects during
the insertion and deletion process. Given a set of objects S and
a number p, the purpose of the outlier identification algorithm
is to find an optimal subset P of S consisting of p objects such
that the gain (see below) of shrinking the MBR of S to the
MBR of S − P is maximized. In other words, it aims to find
p sacrifices in S to shrink the MBR of S as much as possible
by deleting them. In practice, it returns a suboptimal subset
T of S consisting of at most p objects such that the gain of
shrinking the MBR of S to the MBR of S − T is larger than a
significant fraction of the maximal gain in a greedy fashion.
The algorithm is leveraged to select sacrifices to be reinserted
or pushed up in Ro-tree, when a node overflows.
The gain of shrinking a rectangle represents how much the

quality of the rectangle is improved. Specifically, the gain of
shrinking a rectangle R1 to R2 is defined by

G(R1,R2) = 1−
Q(R1)
Q(R2)

=
Q(R1)− Q(R2)

Q(R2)
,

where the quality of a rectangle R with width w and height h
is defined by

Q(R) =
1

w× h

(
min{w, h}
max{w, h}

)α

.

for parameter α ∈ [0, 1]. Conversely, the loss of expanding a
rectangle R2 to R1 is defined by the gain of shrinking R1 to
R2, i.e.,

L(R2,R1) = G(R1,R2).

Since inserting an object into a target node incurs an
expansion of the MBR of the node, the insertion operation at
any leaf or internal node requires the calculation of the loss
measure in Ro-tree.

2) STRUCTURE OF RO-TREE
Similar to traditional R-tree, all leaf nodes in Ro-tree only
contain spatial objects and appear at the same level. Internal
nodes, unlike R-tree, may contain child nodes and some
spatial objects, and appear at a higher level. The node at the
highest level, called the root node, should have at least two
child nodes, unless the node itself is a leaf node. In addition,
each node has two parameters, namely m and M . Each
leaf node should have at least m and at most M spatial

VOLUME 12, 2024 92403

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 3. An exemplar of Ro-tree for a trajectory consisting of
800 points, with 5% noise points. Black points are true ordinary points,
red points are considered as noise-like points by Ro-tree, and blue points
are considered as ordinary points by Ro-tree but they are, in fact, noise
points.

objects, and each internal node should have at least m child
nodes and the sum of the number of its child nodes and
its spatial objects should not exceed M . Typically, m is set
to 0.4 M .
The insertion process of Ro-tree is described as follows.

If a spatial object O is inserted into an internal node N , then
we first try to find a child node C whose MBR contains O.
If C exists, then we recursively insert O into C . Otherwise, O
is regarded as a temporary noise-like object and is maintained
in N . When N overflows, i.e., N temporarily has more than
M entries of child nodes and noise-like objects, we first
try to remove some entries that are chosen by the outlier
identification algorithm, and then reinsert them back into Ro-
tree itself. If the reinsertion is not available, then we next
determine whether N has a sufficient number of noise-like
objects, and then select one of them to push down into a
child node. If the pushdown is also not available, then we
should split N into two internal nodes to be inserted into
the parent of N . We first split the child nodes in N into two
groups in a similar way as in R-tree, and then assign each
noise-like object into one of the groups in a way that the
group expands by accommodating the object with minimum
loss. On the other hand, if a spatial object O is inserted into a
leaf node N , then O is simply kept in N . When N overflows,
i.e., N temporarily has more than M spatial objects, we first
attempt to perform the reinsertion as described above, and
if the reinsertion is not available, then we split N into two
leaf nodes to be inserted into the parent of N by dividing the
spatial objects in a similar way in R-tree. Moreover, after the
splitting ofN , we reveal noise-like objects for each of them by
the outlier identification algorithm to push up into the parent
node.

In the deletion process of Ro-tree, a notable difference
compared with traditional R-tree is that the deletion may
occur at an internal node, as well as a leaf node. If a spatial
object O is isolated at an internal node N as a noise-like
object and is to be deleted, then we simply eliminate it and

adjust the MBR of N and all the ancestors of N . In this case,
N cannot underflow since the number of child nodes remains
unchanged. If a spatial object O is located at a leaf node N
and is to be deleted, then we first eliminate it and handle
the underflow of N and all the ancestors of N , if necessary.
When a leaf node N underflows, i.e., N temporarily has less
than m spatial objects, we first check whether the parent of
N has a noise-like object O′. If O′ exists, then we push down
O′ into N to make N have m spatial objects. Otherwise, N
is removed from the parent of N , and the remaining spatial
objects in N are reinserted back into Ro-tree. The deletion of
N may cause an underflow of the parent of N , which is an
internal node. When an internal node N underflows, i.e., N
temporarily has less than m child nodes, we first push down
noise-like objects in N into child nodes to anticipate splitting
some child node to resolve the underflow problem. If N has
nomore noise-like objects, thenN is removed from the parent
node, and the remaining child nodes in N are reinserted back
into Ro-tree. During the deletion process, if node N does not
underflow, then we adjust the MBR of N and all the ancestors
of N .

3) FAILURE OF RO-TREE
While the construction of Ro-tree may distinguish a few noise
objects from the others, Ro-tree may fail to perceive some
noise points when there are more noise points in a given
trajectory, which usually appear proportionally to the length
of the trajectory. For example, consider an internal node N
that has 12 leaf nodes as children, with parametersm = 6 and
M = 16. Then N can maintain approximately 120 points
at its children, which are in some part of the trajectory.
If the trajectory has a small number of noise points so that
N contains 1-3 noise points, then they can be isolated at N
without any problems since N can keep four noise points.
If the trajectory has 5% noise points, however, then there
would be 5-7 noise points in N , but N has insufficient room
to isolate them. Although the ancestors of N can also retain
some noise-like points, the situation becomes even worse
when there are other internal nodes suffering from the lack
of capacity for noise-like points since the number of internal
nodes at higher levels is much smaller than that of internal
nodes at lower levels. In such a situation, the insertion of
Ro-tree is likely to push down noise points into leaf nodes,
which means that the noise points would be considered as
ordinary points. Fig. 3 shows a failure of Ro-tree to extract
true noise points from ordinary points.

B. STRUCTURE OF RON -TREE
Ron-tree is an extension of Ro-tree to alleviate the inadequate
space for noise-like objects. The key intuition is that we
attach a separate auxiliary R∗-tree [54] that keeps permanent
noise-like objects, which are not likely to be ordinary objects,
chosen from temporary noise-like objects. Let R be an
Ron-tree. The main structure of R is almost identical to that
of Ro-tree. With the root node R.root(), all leaf nodes contain

92404 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 4. An exemplar of Ron-tree for the same trajectory as Fig. 3.
(a) Black points are true ordinary points, red points are considered as
temporary noise-like points by the main tree of Ron-tree, and blue points
are considered as ordinary points by the main tree of Ron-tree but they
are in fact noise points. (b) Both points are considered as permanent
noise-like points, but gray points are in fact ordinary points.

ordinary objects and internal nodes may have temporary
noise-like objects as well as child nodes. In addition,
R possesses an auxiliary tree, accessed by R.noise_tree(),
that has the same structure as R∗-tree. All leaf nodes of
R.noise_tree() include permanent noise-like objects, and
internal nodes contain only child nodes.

Permanent noise-like objects are selected at the pushup
during the insertion process. Recall that in Ro-tree, after a leaf
nodeN is split into two leaf nodes, we discriminate noise-like
objects from the other ordinary objects in both nodes. The
noise-like objects are then pushed up into the parent node
PN . The problem arises when PN does not have adequate
space to save them. In Ro-tree, it can be resolved by the
overflow treatment; instead, we concern it as a chance to find
permanent noise-like objects. We first compute the optimal
loss associated with each noise-like object in PN , which is
the smallest loss associated with expanding theMBR of some

child node by adding the object. Note that it suffices to check
the noise-like objects that are pushed up from N since we
already maintain a list of noise-like objects in PN that are
sorted by the optimal loss in ascending order [34]. We choose
noise-like objects that exceed the space limit and that have
the largest optimal losses compared to the others, and then
we push them up into the parent of PN . This process may
continue until we arrive at the root node. Since the root node
does not have a parent, the noise-like objects that cannot
be kept in the root node are treated as permanent noise-
like objects, and they are finally moved to R.noise_tree().
Through this process, temporary noise-like objects that
are most significantly different from ordinary points are
classified as permanent noise-like objects. Note that Ron-
tree involves only a minimal additional construction cost
compared to Ro-tree. Specifically, Ron-tree slightly modifies
the overflow treatment process of Ro-tree, to recognize and
segregate permanent noise-like points, which requires a small
auxiliary tree construction cost.

Fig. 4 exemplifies how Ron-tree distinguishes noise-like
points from ordinary points. The main tree of Ron-tree,
as shown in Fig. 4 (a), excludes points that are farther from
the trajectory, and the remaining noise points are isolated as
temporary noise-like points (red points). The main tree may
contain some false positives (blue points), but they would
not be considered as being harmful in that they are almost
adjacent to ordinary points. On the other hand, the auxiliary
tree of Ron-tree in Fig. 4 (b) shows that apparent noise points
are likely to be considered as permanent noise-like points
(red points) during the construction of Ron-tree. The auxiliary
tree, however, also contains a number of ordinary points (gray
points), which is the unwilling behavior. This is due to the loss
measure used in the insertion process [53]. The loss measure
increases as the smaller rectangle expands.While noise points
may expand a larger rectangle because of their nature, a new
ordinary point may cause a larger loss since ordinary points
are usually confined within a smaller rectangle. Note that
such sacrifices are located within the trajectory in Rd , so they
affect the trajectory distance computation to a much lesser
extent.

The deletion of a spatial object O from R is easily
implemented by calling the deletions of O from both R and
R.noise_tree(). Note that Ron-tree requires more deletion
costs than Ro-tree since we should determine which tree
contains O by traversing both its main tree and auxiliary tree.
In this paper, however, the deletion costs are not critical in that
we are dealing with trajectories that are already generated,
so that we are not likely to update individual points in them.

IV. NOISE-TOLERANT TRAJECTORY DISTANCE
COMPUTATION
This section describes an algorithm, called NT-Inc-HausDist,
for noise-tolerant trajectory distance computation based on
the Hausdorff distance. We choose the incremental algorithm
(Inc-HausDist) [35] as a starting point for achieving noise
tolerance. Unlike other state-of-the-art algorithms, including

VOLUME 12, 2024 92405

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

early breaking optimization [46], diffusion search [48],
and ruling out [49] algorithms, Inc-HausDist is an R-tree-
based algorithm so that Ron-tree can be easily applied to
the algorithm with small modifications. NT-Inc-HausDist
exploits Ron-tree to effectively filter out noise-like points
to ensure that the trajectory distance calculated remains
close to the true distance even between noisy trajectories.
In addition, we leverage Ron-tree to noise-tolerant trajectory
search to guarantee superior search results even on noisy
trajectories.

Note that we can similarly build two other algorithms
(NT-BF-HausDist and NT-DF-HausDist) based on the two
branch-and-bound algorithms in [35]. The details of these
algorithms are given in Appendix A.

A. NOISE-TOLERANT TRAJECTORY DISTANCE
COMPUTATION
As stated, the directed Hausdorff distance h(A,B) for given
trajectories A and B can be computed by iterating a nested
loop, where the inner loop visits all points B and the outer
loop all points in A. To avoid scanning all points in A and
B, the incremental algorithm, Inc-HausDist [35], constructs
R-trees for A and B (RA and RB, respectively) and then
traverses both trees simultaneously using a nested structure
of priority queues. Starting from the root nodes of RA
and RB, we determine which tree is further traversed by
comparing the heights of the exploring nodes NA and NB.
While traversing either tree, we compute the lower/upper
bounds of the distance from A to B, and then use them as
keys for the inner and outer priority queues. We continue the
traversals until we arrive at a point in RA and a point in RB
simultaneously, at which we return the current upper bound
as the desired distance from A to B. A significant advantage
of Inc-HausDist is that it exploits a tighter upper bound by
considering as an upper bound of h(A,B) the minimum of
the upper bounds of the distance from NA to each node NB
in a subset of nodes in RB, which is determined through
the traversal of RB. Theorem 1 shows the correctness of the
tighter upper bound of h(A,B).
Theorem 1: If B1, · · · ,Bn are disjoint subsets of B and

B =
⋃n

i=1 Bi, then

h(A,B) ≤ min
1≤i≤n

h(A,Bi),

where h(A,B) denotes any upper bound of h(A,B).
Proof: For any i = 1, · · · , n, Bi ⊂ B so that

min
b∈B

dist(a, b) ≤ min
b∈Bi

dist(a, b).

Hence,

h(A,B) = max
a∈A

{
min
b∈B

dist(a, b)
}

≤ max
a∈A

{
min
b∈Bi

dist(a, b)
}

= h(A,Bi)

≤ h(A,Bi).

Algorithm 1 NT-TravLeft(NA, SPQ,MPQ)
Input: Node NA from RA, SecPQ SPQ, MainPQMPQ
Output: UpdatedMPQ

1: if NA is a leaf node then
2: for each point PA in NA do
3: NewSPQ← Create a SecPQ
4: MinUB←∞
5: for each entry (NB, ·) in SPQ do
6: LB← MinDist(PA,NB.shrunkenMBR())
7: NewSPQ.push(NB,LB)
8: UB← MaxDist(PA,NB.shrunkenMBR())
9: MinUB← min(MinUB,UB)
10: end for
11: MPQ.push(PA,MinUB,NewSPQ)
12: end for
13: else ▷ NA is an internal node
14: for each child node CA in NA do
15: NewSPQ← Create a SecPQ
16: MinUB←∞
17: for each entry (NB, ·) in SPQ do
18: LB← MinDist(CA.shrunkenMBR(),

NB.shrunkenMBR())
19: NewSPQ.push(NB,LB)
20: UB← MaxDist(CA.shrunkenMBR(),

NB.shrunkenMBR())
21: MinUB← min(MinUB,UB)
22: end for
23: MPQ.push(CA,MinUB,NewSPQ)
24: end for
25: end if
26: returnMPQ

Since it holds for all i = 1, · · · , n, we have

h(A,B) ≤ min
1≤i≤n

h(A,Bi). □

1) NOISE-TOLERANT DIRECTED TRAJECTORY DISTANCE
COMPUTATION
To accomplish noise tolerance, we adopt Inc-HausDist to
compute the noise-tolerant directed trajectory distance, called
NT-Inc-HausDist. It has three differences from Inc-HausDist.
First, we do not visit both temporary and permanent
noise-like points in A and B. We do not traverse the auxiliary
tree, and even we do not touch temporary noise-like points
that are isolated in the main tree. Thus, only ordinary points
are visited so that we can achieve a noise-tolerant distance
that would be close to the true one. Next, we use shrunken
MBRs to compute the lower/upper bound of the noise-
tolerant distance. The lower/upper bound of the distance
between a node NA in RA and node NB in RB is computed
by comparing the MBRs of NA and NB. We can reduce
the MBR that covers temporal noise-like points, as well
as ordinary points, to the shrunken MBR that covers only
ordinary points, since temporary noise-like points are not
visited during the computation of the noise-tolerant distance.

92406 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

Algorithm 2 NT-TravRight(NA,UB, SPQ,MPQ)
Input: NodeNA fromRA, Upper boundUB, SecPQ SPQ,
MainPQMPQ
Output: UpdatedMPQ

1: (NB, ·)← SPQ.pop()
2: MinUB← UB
3: if NB is a leaf node then
4: for each point PB in NB do
5: LB← MinDist(NA.shrunkenMBR(),PB)
6: SPQ.push(PB,LB)
7: UB← MaxDist(NA.shrunkenMBR(),PB)
8: MinUB← min(MinUB,UB)
9: end for

10: else ▷ NB is an internal node
11: for each child node CB in NB do
12: LB← MinDist(NA.shrunkenMBR(),

CB.shrunkenMBR())
13: SPQ.push(CB,LB)
14: UB← MaxDist(NA.shrunkenMBR(),

CB.shrunkenMBR())
15: MinUB← min(MinUB,UB)
16: end for
17: end if
18: MPQ.push(NA,MinUB, SPQ)
19: returnMPQ

The shrunken MBRs produce a tighter upper bound, which
improves the performance of NT-Inc-HausDist because the
computation of the upper bound is a crucial part of the
algorithms. Finally, to compute the lower and upper bounds
of the noise-tolerant distance between NA and NB, we use
MinDist and MaxDist [55], rather than HausDistLB and
HausDistUB [35], because HausDistLB and HausDistUB
work under the assumption that each border of the MBR
contains at least one ordinary point, which would not be true
in Ron-tree (and Ro-tree). There would be noise-like points in
NA,NB or the nodes at lower levels that lie at some border
of the MBRs, and even of the shrunken MBRs, while no
ordinary point lies at the border. Hence, we choose looser
but accurate functions, MinDist and MaxDist, to compute
the lower and upper bounds. Note that using the less
tighter lower/upper bounds is likely to cause a decline in
computational performance.

In the incremental method, we exploit a nested structure
of priority queues, as described in [35], which has a main
priority queue (MainPQ), and each entry of MainPQ contains
a secondary priority queue (SecPQ). MainPQ maintains an
entry (node NA, number UB,SecPQ SPQ), where NA is a
node from RA, UB is an upper bound of the noise-tolerant
distance from NA to B, and SPQ is the associated SecPQ
that determines the next node in RB to be explored. For each
entry (NA,UB, SPQ) of MainPQ, the associated SecPQ takes
entries (node NB, number LB), where NB is a node from RB
and LB is an lower bound of the noise-tolerant distance from
NA toNB. Note thatMainPQ arranges its entries in descending

Algorithm 3 NT-Inc-HausDist(A,B)
Input: Trajectory A, Trajectory B
Output: Noise-tolerant directed trajectory distance from
A to B

1: return NT-Inc-HausDist∗(A,B, 0)

2: function NT-Inc-HausDist∗(A,B,LB)
Input: Trajectory A, Trajectory B, Lower bound LB
Output: Maximum of LB and noise-tolerant directed
trajectory distance from A to B

3: RA← Create an Ron-tree for A
4: RB← Create an Ron-tree for B
5: MPQ← Create a MainPQ
6: InitSPQ← Create a SecPQ
7: InitSPQ.push(RB.root(), 0)
8: MPQ.push(RA.root(),∞, InitSPQ)
9: while MPQ is not empty do
10: (NA,UB, SPQ)← MPQ.pop()
11: if UB ≤ LB then
12: return LB
13: end if
14: (NB, ·)← SPQ.top()
15: if NA and NB are both points then
16: return UB
17: else if NA is farther from the leaf than NB then
18: NT-TravLeft(NA, SPQ,MPQ)
19: else
20: NT-TravRight(NA,UB, SPQ,MPQ)
21: end if
22: end while
23: end function

order, while SecPQ arranges its entries in ascending order.
This nested structure is well associated with the directed
Hausdorff distance since it is a type of max-min distance.

NT-Inc-HausDist exploits two functions, NT-TravLeft
(Algorithm 1) and NT-TravRight (Algorithm 2), to traverse
RA and RB, respectively. NT-TravLeft(NA, SPQ,MPQ) for
a node NA in RA explores each point PA (if NA is a leaf
node) or child node CA (if NA is an internal node) in NA
and updates MPQ as follows. For each entry (NB, ·) in SPQ,
a new SecPQ NewSPQ takes an entry (NB,LB), where LB
is a lower bound of the distance from PA or CA to NB, and
MinUB is set to the minimum of the upper bounds of the
distance from PA or CA to NB. MPQ are then updated by
adding an entry (PA or CA,MinUB,NewSPQ). On the other
hand, NT-TravRight(NA,UB, SPQ,MPQ) for a node NA in
RA explores the points PB (if NB is a leaf node) or child nodes
CB (if NB is an internal node) in NB, where NB is the first
component of the entry dequeued from SPQ, and updates
MPQ as follows. We first initializeMinUBwithUB. For each
point PB or child node CB in NB, an entry (NB,LB) is inserted
into SPQ, where LB is a lower bound of the distance from
NA to PB or CB, and MinUB is given by the minimum of the

VOLUME 12, 2024 92407

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

upper bounds of the distance from NA to PB or CB. Finally,
we updateMPQ by adding an entry (NA,MinUB, SPQ).

As described in Algorithm 3, NT-Inc-HausDist returns the
result of the starred algorithm (NT-Inc-HausDist∗) with third
argument 0 (Line 1). NT-Inc-HausDist∗ takes two trajectories
A,B and a nonnegative number LB as arguments. Note that
the third argument LB plays the role of terminating the
algorithm if we explore a node with an upper bound UB
that is smaller than LB. NT-Inc-HausDist∗ first initializes
InitSPQ with entry (RB.root(), 0) and MPQ with entry
(RA.root(),∞, InitSPQ) (Lines 5 to 8). In the while loop
(Lines 9 to 22), the entry (NA,UB, SPQ) is dequeued from
MPQ. If UB ≤ LB, then the algorithm returns LB in that
the distance is even smaller than UB. We also look up the
head entry (NB, ·) of SPQ. If NA and NB are both points,
then UB is the desired distance since NB is the closest point
for NA by the ascending ordering of SPQ, and NA yields the
highest distance from any other points in A by the descending
ordering ofMPQ. Otherwise, we further traverse either RA or
RB, by comparing the heights of NA and NB.

2) NOISE-TOLERANT UNDIRECTED TRAJECTORY DISTANCE
COMPUTATION
To compute the noise-tolerant undirected trajectory distance,
we use a similar approach to that provided in [35]. Let

L1 = MinDist(RA.root().shrunkenMBR(),

RB.root().shrunkenMBR()),

L2 = MinDist(RB.root().shrunkenMBR(),

RA.root().shrunkenMBR()).

Note that L1 and L2 are lower bounds of the noise-tolerant
distance from A to B and from B to A, respectively. By the
definition of H (A,B), both h(A,B) and h(B,A) themselves
can be treated as lower bounds of H (A,B). Based on this
observation, if L1 > L2, then we first compute d1 as the
noise-tolerant distance from A to B using NT-Inc-HausDist.
Taking LB = d1 as an argument, we compute d2 as
the noise-tolerant distance from B to A using the starred
algorithm (NT-Inc-HausDist∗), to guarantee that d2 ≥ d1.
Then d2 will be the desired distance between A and B. If L1 ≤
L2, then we simply change the order of A and B and then
proceed to the calculation.

B. NOISE-TOLERANT TRAJECTORY SEARCH
For a given query trajectory Q, trajectory search finds the
closest trajectory to Q from a collection of trajectories D,
where the closeness is measured by the Hausdorff distance.
TrajSearch [35] is an incremental algorithm for trajectory
search whenD consists of ordinary trajectories. We introduce
an algorithm for noise-tolerant trajectory search (called NT-
TrajSearch), assuming that trajectories in D are noisy, which
is also a modification of TrajSearch. For simplicity, we only
consider the noise-tolerant undirected trajectory distance
as the closeness measure, but the algorithm can be easily
extended to directed ones.

Algorithm 4 NT-TrajSearch(P,RB)
Input: Query trajectory Q, Trajectory set D
Output: Trajectory with the smallest noise-tolerant
undirected trajectory distance from Q

1: MQ← Create an MBR of Q
2: Ron

D ← Create a collection of Ron-trees for D
3: RD ← Create an R-tree for the main trees ofRon

D
4: PQ← Create a priority queue in ‘‘ascending order’’
5: PQ.push(RD.root(), 0,False)
6: while PQ is not empty do
7: (ND, dN , IsFinal)← PQ.pop()
8: if ND is a trajectory then
9: if IsFinal then
10: return dN
11: else
12: d ← noise-tolerant trajectory undirected dis-

tance between ND and Q
13: PQ.push(ND, d,True)
14: end if
15: else ▷ ND is either a leaf or internal node
16: for each trajectory or child node CD in ND do
17: d ← max(MinDist(MQ,CD.MBR()),

MinDist(CD.MBR(),MQ))
18: PQ.push(CD, d,False)
19: end for
20: end if
21: end while

NT-TrajSearch is described by Algorithm 4. NT-Traj-
Search takes a query trajectory Q and a trajectory set D as
arguments. We first build Ron-trees for all trajectories in D,
and then create an R-treeRD for the main trees of those Ron-
trees. Initially, a priority queue PQ, which contains entries
(node ND, number dN , boolean IsFinal) in ascending order,
takes an entry (RD.root(), 0,False). For each iteration of
the while loop (Lines 6 to 20), the entry (ND, dN , IsFinal)
is dequeued from PQ. If ND is actually a trajectory, then
we either return dN if isFinal is true, or we compute the
noise-tolerant undirected trajectory distance d between ND
and Q using one of the noise-tolerant algorithms (NT-DF-
HausDist, NT-BF-HausDist, or NT-Inc-HausDist), and then
enqueue the entry (ND, d,True) into PQ if isFinal is false.
Otherwise, we estimate the lower bound of the noise-tolerant
undirected trajectory distance between Q and each trajectory
or child nodeCD inND using theirMBRsMQ andCD.MBR()
to find a trajectory with a smaller lower bound in a best-first
manner. Owing to the nature of Ron-trees, it is safe to use as
the lower bound the maximum of MinDist(MQ,CD.MBR())
and MinDist(CD.MBR(),MQ).

V. EXPERIMENTS
This section presents the experimental results of the proposed
algorithms. We first examine how the estimated trajectory
distance based on Ron-tree is noise-tolerant in the presence
of noise. We also present the results of the noise-tolerant

92408 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 5. Comparison of the RMSEs of the noise-tolerant directed trajectory distances, as well as the exact directed distance. (a) The
noise ratio of A varies and B is ordinary. (b) The noise ratio of B varies and A is ordinary. (c) The noise ratio of A varies and the noise
ratio of B is 10%. (d) The noise ratio of B varies and the noise ratio of A is 10%.

trajectory search compared to the true results. Then we
show, as an example application, the qualitative results of the
noise-tolerant trajectory search in video surveillance.

In our experimental studies, we used the following
datasets.

• Weused theOldenburg road network [56] to quantitively
examine the proposed algorithms. Specifically, each
ordinary trajectory generated is the shortest path in the
network, whose end points are randomly picked and
whose length is 2,000±1% units. Each trajectory was
represented as a point set, where points on the trajectory
were sampled at five different resolutions: 400, 800,
1,200, 1,600, and 2,000. To create noisy trajectories,
we follow the transformation method in [57] so that
we select 5%, 10%, 15%, 20%, and 25% of the points
on each ordinary trajectory, but we add Gaussian noise,
rather than a fixed margin, to simulate the natural
uncertainty [58], with zero mean and standard deviation
of 500 units, respectively. The trajectory dataset was
arranged according to the resolution and noise ratio
(including ordinary trajectories).

• We exploited the MIT trajectory dataset [29] to verify
the effectiveness of the noise-tolerant trajectory distance
in video surveillance by applying our noise-tolerant tra-
jectory search algorithm (NT-TrajSearch). This dataset

is constituted of 40,453 object trajectories recorded
over five days from a single stationary camera in a
parking lot.

A. NOISE-TOLERANT TRAJECTORY DISTANCE
COMPUTATION
In this experiment, we explored the closeness of the
noise-tolerant distances between trajectories A and B to the
true distances, based on the following four cases.
(a) The noise ratio of A is varied, while B is ordinary (i.e.,

non-noisy).
(b) The noise ratio of B is varied, while A is ordinary.
(c) The noise ratio of A is varied, while the noise ratio of B

is 10%.
(d) The noise ratio of B is varied, while the noise ratio of A

is 10%.
These four cases cover all possible scenarios that could occur
during the noise-tolerant trajectory directed and undirected
distance computation. Conditions (a) and (b) assess the
results of varying noise ratios in one trajectory while keeping
the other trajectory non-noisy. Conditions (c) and (d) evaluate
the effect of varying noise ratios in one trajectory while the
other trajectory has a fixed noise ratio.

For comparison, we examined the Hausdorff distance (HD),
100α%-quantile fractional Hausdorff distance (α-FHD)

VOLUME 12, 2024 92409

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 6. Comparison of the RMSEs of the noise-tolerant undirected distances, as well as the exact undirected distance. (a) B is
ordinary and the noise ratio of A varies. (b) A is ordinary and the noise ratio of B varies. (c) The noise ratio of B is 10% and the noise
ratio of A varies. (d) The noise ratio of A is 10% and the noise ratio of B varies.

with α = 0.99, 0.98, 0.97, 0.96, and 0.95, and the pro-
posed noise-tolerant trajectory distance (NT-HD (Ron-tree)).
α-FHD is a well-known variant of Hausdorff distance that
is frequently employed in the presence of noise [32], [59].
In particular, α-FHD computes trajectory distance without
requiring separate noise detection or smoothing, making
it suitable for comparison with our approach. In addition,
we also examined the noise-tolerant distance based on Ro-
tree (NT-HD (Ro-tree)), which can be easily implemented
by adapting our proposed algorithms. Note that all distance
measures are compared to the true distance, which is
considered as the distance between two trajectories obtained
in the ideal case where noise detection completely filters out
all noise points.

To measure how close the noise-tolerant distance is to the
true distance, we used the root mean squared error (RMSE),
which is defined by

RMSE =

√∑n
i=1 (̂di − di)2

n
,

where n is the number of pairs of trajectories, d̂i is the
noise-tolerant distance of the ith pair, and di is the true
distance of the ith pair of ordinary trajectories. Note that in
this experiment, we set the resolutions of both A and B to
2,000, and n = 200.

Fig. 5 shows the RMSEs of the directed distances. First,
we analyze the case where both A and B are ordinary,
to ensure the practical feasibility of noise-tolerant trajectory
distance computation in the absence of noise. As shown in
Fig. 5 (a), where the noise ratio of A is 0 (and in Fig. 5
(b), where the noise ratio of B is 0), it can be observed
that the RMSEs of all methods approach 0. Specifically, the
RMSE of NT-HD (Ron-tree) (≤ 20) is much closer to 0 than
those of α-FHDs (α < 0.99) and is comparable to those of
0.99-FHD and NT-HD (Ro-tree). This indicates that our
proposed method is also applicable to situations when no
noise is present in the trajectories.

Next, we examine the cases where either A, B, or both
are noisy. As expected, HD has large RMSEs for all cases
where noise is present. In addition, α-FHDs, although they
have been considered as a noise-tolerant alternative, also have
large RMSEs for all cases except the case (a) since under
(a), noise points in A cause the overestimation of h(A,B),
which is the underlying assumption of α-FHDs. Moreover,
contrary to the expectation that α-FHD would become more
noise-tolerant as α decreases, in the cases (c) and (d) where
both A and B are noisy, α-FHDs are even larger RMSEs than
HD, and as α decreases from 0.99 to 0.95, the RMSE of α-
FHD becomes larger. This is because the noise points inA and
in Bwould appear to cancel each other out to some extent, but
α-FHDs would only remove the effects of the noise points

92410 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 7. Accuracy measures of the results of noise-tolerant trajectory search, as well as the exact trajectory search (HD). In the left
column, the k closest trajectories are retrieved from a collection of 2,000 ordinary trajectories. In the right column, we search the k
closest trajectories from a set of 2,000 noisy trajectories with a noise ratio of 10%.

in A, which leads to larger RMSEs. NT-HD (Ro-tree) has
somewhat smaller RMSEs than HD for the cases (a) and (b),
which implies that Ro-tree can capture a certain number of
noise points. However, Ro-tree has the limitation of its ability
to extract all noise points, so NT-HD (Ro-tree) still has large
RMSEs for all noise ratios ≥ 0.05, and NT-HD (Ro-tree) has
similar RMSEs to HD for the cases (c) and (d). In contrast,
Ron-tree can extract most of the noise points with the aid
of the separate auxiliary tree, and thus the proposed NT-HD
(Ron-tree) outperforms the other distances in all cases.

Fig. 6 compares the RMSEs of the undirected distances.
Since the distances themselves are symmetric, the RMSEs of
the cases (a) and (b), and of the cases (c) and (d) show similar
patterns. We can observe that the behaviors of undirected
HD, NT-HD (Ro-tree), and NT-HD (Ron-tree) are similar
to those of the directed ones for all cases. In contrast, α-
FHDs, a widely adopted noise-tolerant alternative, show
moderate RMSEs between Fig. 5 (a) and (b) for cases
(a) and (b), respectively, and Fig. 5 (c) and (d) for cases
(c) and (d), respectively. In particular, this phenomenon
is more pronounced in cases (a) and (b) with ordinary
trajectories. Considering that the undirected distance is
defined as the maximum of directed distances (h(A,B) and
h(B,A)), α-FHD may reduce the effect of noise points
in situations like Fig. 5 (a), where noise points cause the
overestimation of directed distances. Conversely, in situations

like Fig. 5 (b), where noise points cause the underestimation
of directed distances, α-FHD may fail to adequately mitigate
the noise effect, leading to either of these scenarios being
reflected in the results of noise-tolerant undirected distance.
Consequently, the RMSE of α-FHDs shown in Fig. 6 (a)
and (b) can be higher than that in Fig. 5 (a) but lower than that
in Fig. 5 (b). Overall, NT-HD (Ron-tree) outperforms the other
distances in all cases. This is because Ron-tree can adequately
exclude most of the noise points from the process of distance
calculation, as we anticipated. Thus, the noise-tolerant results
reaffirm the effectiveness of our proposed method in the
presence of noise.

Additional experimental results on the performance mea-
sures of the proposed noise-tolerant algorithms are provided
in Appendix B.

B. NOISE-TOLERANT TRAJECTORY SEARCH
This experiment demonstrates the accuracy of the results
of the trajectory search methods compared with the true
results. We compared the proposed noise-tolerant trajectory
search NT-TrajSearch (NT-HD (Ron-tree)) to the exact (i.e.,
noise-sensitive) trajectory search TrajSearch (HD). We also
implemented the noise-tolerant trajectory search based onRo-
tree (NT-HD (Ro-tree)) by revising NT-TrajSearch. Note that
since these algorithms explore trajectories in an incremental
manner, it can be easily modified to find the k closest

VOLUME 12, 2024 92411

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 8. Examples of the results of the exact trajectory search (HD) and the noise-tolerant trajectory search (NT-HD) algorithms. For each example,
the red line indicates the query trajectory, and the yellow lines indicate the top-1, top-2, and top-3 results of the trajectory search algorithms.

trajectories to the query trajectory Q. We used the following
measures to compute the accuracy.

(a) Recall: the fraction of the number of the k returned
trajectories that are actually members of the true k
closest trajectories, i.e.,

Recall =
|{T1, · · · ,Tk} ∩ {T ∗1 , · · · ,T ∗k }|

k
,

where Ti is the ith returned trajectory and T ∗i is the true
ith closest trajectory. Note that 0 ≤ Recall ≤ 1, and
Recall = 1 when the result is correct.

(b) Overall Ratio [60]: the average of the rank-i approxima-
tion ratios for i = 1, · · · , k , i.e., for a query trajectoryQ,

Overall Ratio =
1
k

k∑
i=1

H (Ti,Q)
H (T ∗i ,Q)

,

where Ti is the ith returned trajectory and T ∗i is the true
ith closest trajectory. Note that Overall Ratio ≥ 1, and
Overall Ratio = 1 when the result is correct.

We prepared two trajectory sets; one consisted of 2,000
ordinary trajectories (ordinary set) and the other consisted
of 2,000 noisy trajectories with a noise ratio of 10% (noisy
set). In both trajectory sets, the resolution of each trajectory
was set to 2,000. Each record was obtained by averaging
the results of 200 different query trajectories, which were
ordinary and had a resolution of 2,000, with varying k .

Fig. 7 shows the accuracy measures of trajectory search
results. For the ordinary set, all methods return high-quality
search results in terms of Recall and Overall Ratio. For the
noisy set, however, we observe that HD and NT-HD (Ro-tree)
show poor search results. In particular, the Recalls of HD and
NT-HD (Ro-tree) were even smaller than 0.5 when k ≤ 20,
i.e., over the half of search results were different from the

92412 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

true ones. The Overall Ratios of HD and NT-HD (Ro-tree)
were also far from 1, which implies that the quality of the
search results is quite poor. On the other hand, NT-HD (Ron-
tree) still shows accurate and high-quality search results, i.e.,
both Recall and Overall Ratio are very close to 1 for any k .
In summary, assuming the existence of noise, NT-TrajSearch
(NT-HD (Ron-tree)) outperforms all other algorithms for
trajectory search in accuracy measures.

C. NOISE-TOLERANT TRAJECTORY SEARCH IN VIDEO
SURVEILLANCE
In this experiment, we apply our noise-tolerant trajectory
search, as a representative example, to the MIT trajectory
dataset [29], one of the well-known real surveillance datasets
that includes a diverse set of trajectories with varying levels of
noise, as shown in Fig. 1. Through this experiment, we vali-
date the effectiveness of our noise-tolerant trajectory distance
under real-world conditions. Particularly, we demonstrate
that our method can not only identify relevant trajectories
despite the inclusion of some noise points, but also provide
more semantically closer results to query trajectories.

Fig. 8 shows the results of the exact trajectory search (HD)
and our noise-tolerant trajectory search (NT-HD) algorithms
given two exemplar query trajectories. For each example, the
red line indicates the query trajectory, and the yellow lines
indicate the top-1, top-2, and top-3 results of the trajectory
search algorithms.

Fig. 8 (a) shows that the top-2 result (blue box) of
our noise-tolerant trajectory search algorithm includes some
noise points. If these visually identifiable noise points are
excluded, we would notice that the resulting trajectory is
similar to the query trajectory. This ability to perceive relevant
trajectories that may inherently include noise points is the
distinct advantage of our noise-tolerant trajectory search
algorithm over the exact trajectory search algorithm. Notably,
in certain applications such as hidden follower detection [61],
where the requirement is to identify relevant trajectories even
in the presence of noise, our noise-tolerant trajectory search
algorithm could potentially be a valuable tool for discerning
truly similar trajectories.

Fig. 8 (b) demonstrates the results of each trajectory search
algorithmwhen the query trajectory does not follow a straight
line along the road, but instead detours under the red car in the
parking lot. The top-1 result (red box) of the exact trajectory
search algorithm presents a trajectory that passes under the
red car, despite the difference with the query trajectory. This
is because the mid-point of the query trajectory under the red
car acts as a noise point, and it causes the underestimation
of the trajectory distance. In contrast, the top-1 result (blue
box) of our noise-tolerant trajectory search algorithm shows
a trajectory that is semantically closer to the query trajectory.
This example suggests that when a query trajectorywith some
irregular mid-points is given, our noise-tolerant trajectory
search algorithm can provide more meaningful and robust
results than the exact trajectory search algorithm.

VI. CONCLUSION
In this paper, we presented a novel approach for computing
the noise-tolerant distance between trajectories, assuming
the presence of noise that sporadically appears in video
surveillance applications. In contrast to previous studies,
we attempted to obviate noise points inherent in trajectories
during the distance computation without the need for addi-
tional efforts. Specifically, we developed a novel structure,
Ron-tree, a variant of Ro-tree, that detaches permanent
noise-like points from ordinary points during the point
insertion process and keeps them in a separate auxiliary
tree. We presented NT-Inc-HausDist, a modification of
the incremental algorithm for the Hausdorff distance, that
exploits Ron-tree for preventing noise-like points from being
involved in the computation process to achieve noise-tolerant
trajectory distance computation. In addition, we employed
the noise-tolerant distance for trajectory search, called
NT-TrajSearch. The experimental results demonstrated that
on noisy trajectories, the distance produced by our proposed
approach was closer to the true distance than that produced by
any other approach. Moreover, we applied our noise-tolerant
trajectory search to a real video surveillance dataset and
showed the effectiveness of our noise-tolerant trajectory
distance.

Although this paper specifically focuses on video surveil-
lance applications, our noise-tolerant trajectory distance can
be applied to trajectories in other fields as well. For example,
it is worth considering the application of our method to
GPS-based trajectories [26], which often provide incorrect
locations, especially if the signals from satellites are blocked
by walls or buildings [62]. Moreover, we expect that our
approach could be applied to trajectories generated from var-
ious IoT devices. As part of future work, we aim to enhance
the structure of Ron-tree to ensure the tighter lower/upper
bounds of the noise-tolerant trajectory distance, increasing
the performance of the proposed algorithms. In addition,
we aim to enhance the quality of Ron-tree by decreasing
the number of false negatives, i.e., ordinary points that are
regarded as noise-like points, as discussed in Section III-B.
We also plan to develop noise-tolerant computations for other
distances, such as the Fréchet distance [63], which is also
known to be noise-sensitive [57], [64].

APPENDIX A BRANCH-AND-BOUND ALGORITHMS
To compute the directed Hausdorff distance h(A,B) for given
trajectories A and B, the two branch-and-bound algorithms,
DF-HausDist and BF-HausDist [35], first traverse an R-
tree for A (called RA) in a depth-first and best-first manner,
respectively. Starting at the root node of RA, we compute an
upper bound of the distance from each child node or point
of the exploring node to the root node of an Ron-tree for B
(called RB), and we then sort the nodes or points by the upper
bound in descending order. We explore the one that has the
highest upper bound and repeat the same process until we
reach a point. If a point has the highest upper bound, then
we traverse RB in a best-first manner to compute the distance

VOLUME 12, 2024 92413

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

Algorithm 5 NT-DistToNN(P,RB)
Input: Point PA, Ron-tree RB for a trajectory B
Output: Noise-tolerant distance from PA to B

1: PQ← Create a priority queue in ‘‘ascending order’’
2: PQ.push(RB.root(), 0)
3: while PQ is not empty do
4: (NB, dN)← PQ.pop()
5: if NB is a leaf node then
6: for each point PB in NB do
7: d ← dist(PA,PB)
8: PQ.push(PB, d)
9: end for

10: else if NB is an internal node then
11: for each child node CB in NB do
12: d ← MinDist(PA,CB.shrunkenMBR())
13: PQ.push(CB, d)
14: end for
15: else ▷ NB is a point
16: return dN
17: end if
18: end while

from each point in NA to B. If the distance is larger than any
other upper bound, then it is returned as the distance from A
to B. Theorem 2 ensures that DF-HausDist and BF-HausDist
return the exact value of h(A,B).
Theorem 2: If A1, · · · ,An are disjoint subsets of A and

A =
⋃n

i=1 Ai, then

h(A,B) = max
1≤i≤n

h(Ai,B).

Proof: From the definition of h(A,B),

h(A,B) = max
a∈A

{
min
b∈B

dist(a, b)
}

= max
a∈

⋃n
i=1 Ai

{
min
b∈B

dist(a, b)
}

= max
1≤i≤n

[
max
ai∈Ai

{
min
b∈B

dist(ai, b)
}]

= max
1≤i≤n

h(Ai,B). □

The branch-and-bound algorithms for noise-tolerant
directed trajectory distance computation, NT-DF-HausDist
and NT-BF-HausDist, have almost identical structures to
DF-HausDist and BF-HausDist, respectively. Similar to NT-
Inc-HausDist, they also have the same differences from
DF-HausDist andBF-HausDist: visiting only ordinary points,
exploiting shrunken MBRs, and computing the looser
lower/upper bounds.

We first begin with the function NT-DistToNN(PA,RB) for
a point PA ∈ A, which computes the noise-tolerant distance
from PA to B. As shown in Algorithm 5, NT-DistToNN
traverses RB in a best-first manner. We first create a priority
queue PQ, which takes entries (node NB, number dN) and
arranges them in ascending order with respect to dN . Initially,

Algorithm 6 NT-DF-HausDist(A,B)
Input: Trajectory A, Trajectory B
Output: Noise-tolerant trajectory distance from A to B

1: return NT-DF-HausDist∗(A,B, 0)

2: function NT-DF-HausDist∗(A,B,LB)
Input: Trajectory A, Trajectory B, Lower bound LB
Output: Maximum of LB and noise-tolerant trajectory
distance from A to B

3: (RA,RB)← Create Ron-trees for A and B
4: MaxLB← MinDist(RA.root().shrunkenMBR(),

RB.root().shrunkenMBR())
5: MaxLB← max(MaxLB, LB)
6: return NT-DF-HausDist†(RA.root(),RB,MaxLB)
7: end function

8: function NT-DF-HausDist†(NA,RB,MaxLB)
Input: Node NA from RA, Ron-tree RB, Maximum lower
bound MaxLB obtained so far
Output: Noise-tolerant trajectory distance fromNA toB

9: dH ← 0
10: if NA is a point then
11: return max(MaxLB,NT-DistToNN(NA,RB))
12: else
13: LB← MinDist(NA.shrunkenMBR(),

RB.root().shrunkenMBR())
14: MaxLB← max(MaxLB, LB)
15: Create an empty list L
16: if NA is a leaf node then
17: for each point PA in NA do
18: UB← MaxDist(PA,

RB.root().shrunkenMBR())
19: L ← (PA,UB)
20: end for
21: else ▷ NA is an internal node
22: for each child node CA in NA do
23: UB← MaxDist(CA.shrunkenMBR(),

RB.root().shrunkenMBR())
24: L ← (CA,UB)
25: end for
26: end if
27: Sort L in descending order
28: for each element (CA,UB) in L do
29: if UB ≥ MaxLB then
30: d←NT-DF-HausDist†(CA,RB,MaxLB)
31: dH ← max(dH , d)
32: MaxLB← max(MaxLB, dH)
33: else
34: return dH
35: end if
36: end for
37: return dH
38: end if
39: end function

we insert (RB.root(), 0) into PQ and proceed to the while loop
(Lines 3 to 18). At the beginning of each iteration, the entry
(NB, dN) is dequeued from PQ. If NB is a leaf node, then
we compute the noise-tolerant distance d from PA to each
point PB in NB and insert the entry (PB, d) into PQ. If NB

92414 VOLUME 12, 2024

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

Algorithm 7 NT-BF-HausDist(A,B)
Input: Trajectory A, Trajectory B
Output: Noise-tolerant trajectory distance from A to B

1: return NT-BF-HausDist∗(A,B, 0)

2: function NT-BF-HausDist∗(A,B,LB)
Input: Trajectory A, Trajectory B, Lower bound LB
Output: Maximum of LB and noise-tolerant trajectory
distance from A to B

3: RA ← Create an Ron-tree for A
4: RB ← Create an Ron-tree for B
5: PQ← Create a priority queue in ‘‘descending order’’
6: PQ.push(RA.root(),∞)
7: while PQ is not empty do
8: (NA, dN)← PQ.pop()
9: if dN ≤ LB then

10: return LB
11: end if
12: if NA is a leaf node then
13: for each point PA in N do
14: d ← NT-DistToNN(PA,RB)
15: PQ.push(PA, d)
16: end for
17: else if NA is an internal node then
18: for each child node CA in NA do
19: d ← MaxDist(CA.shrunkenMBR(),

RB.root().shrunkenMBR())
20: PQ.push(CA, d)
21: end for
22: else ▷ NA is a point
23: return dN
24: end if
25: end while
26: end function

is an internal node, then we compute the lower bound of the
distance from PA to each child node CB in NB and we insert
the entry (CB, d) into PQ. The iteration continues until NB is
a point, at which time dN is returned as the desired distance.
The depth-first algorithm NT-DF-HausDist is given by

Algorithm 6. NT-DF-HausDist itself simply invokes the
starred algorithm NT-DF-HausDist∗ with third argument 0
(Line 1). NT-DF-HausDist∗, with two trajectories A,B and a
nonnegative number LB, traverses RA for A in a depth-first
manner by calling a recursive function NT-DF-HausDist†.
This function takes a node NA, an Ron-tree RB, and a
nonnegative number MaxLB, which implies a lower bound
of the distance obtained so far. In NT-DF-HausDist†, if NA
is a point (Lines 11 to 12), then we compute the maximum
of MaxLB and the result of NT-DistToNN(NA,RB). If NA is
a leaf node or an internal node (Lines 17 to 27), then we
compute the upper bound of the distance from each point PA
in NA or from each child node CA in NA to the shrunken MBR
of RB.root(), respectively. Concerning the upper bound as a
key, we recursively traverse points or child nodes in NA in
descending order. During this process, we update dH to the
largest distance computed so far, and update MaxLB to the
maximum of dH and the current lower bound (Lines 31 to 33).

If points or nodes have an upper bound smaller thanMaxLB,
then we do not visit them since the distance produced by them
cannot exceedMaxLB.

Algorithm 7 describes how NT-BF-HausDist works.
Similar to NT-DF-HausDist, the starred algorithm NT-BF-
HausDist∗ is called with third argument 0 at the beginning
(Line 1). NT-BF-HausDist∗ takes the same arguments and
has the same role as NT-DF-HausDist∗, but it traverses RA
for A in a best-first manner. At first, a priority queue PQ,
which keeps entries (node NA, number dN) in descending
order, takes an entry (RA.root(),∞). For each iteration of the
while loop (Lines 7 to 25), the entry (NA, dN) is dequeued
from PQ. If dN ≤ LB, then the algorithm terminates since dN
is the current upper bound of the distance so that the distance
would be at most LB. If NA is a leaf node, then we compute
the noise-tolerant distance d from each point PA in NA to B
by calling NT-DistToNN(PA,RB), and then insert the entry
(PA, d) into PQ. If NA is an internal node, then we compute
the upper bound of the distance from each child node CA in
NA to the shrunken MBR of RB.root() and insert the entry
(CA, d) into PQ. The while loop proceeds until NA is a point,
at which time dN is returned as the desired distance.

APPENDIX B PERFORMANCE MEASURES OF THE
NOISE-TOLERANT TRAJECTORY DISTANCE
COMPUTATION
Although we pay more attention to the closeness rather
than the performance, it is anticipated that our noise-tolerant
algorithms have reasonable performance. The purpose of this
experiment is to investigate the behavior of the performance
measures of our noise-tolerant algorithms (NT-DF-HausDist,
NT-BF-HausDist, and NT-Inc-HausDist), compared to the
original algorithms (DF-HausDist, BF-HausDist, and Inc-
HausDist), respectively. The following performance mea-
sures, presented in [35], were used.

(a) Tree traversal cost: the number of R-tree, Ro-tree,
or Ron-tree nodes visited.

(b) Distance calculation cost: the number of MinDist and
MaxDist computations.

(c) Priority queue cost: the number of enqueue and dequeue
operations.

We computed the performance measures according to
different resolutions of A, while we set the resolution of B to
2,000, and vice versa. Each record was obtained by averaging
the results of 200 different pairs of ordinary trajectories.

Figure 9 displays the performance measures of the three
noise-tolerant algorithms compared to the original algorithms
when both A and B are ordinary. The traversal costs and
priority queue costs of NT-DF-HausDist, NT-BF-HausDist,
and NT-Inc-HausDist are approximately twice as large as
those of DF-HausDist, BF-HausDist, and Inc-HausDist,
respectively. This is because the noise-tolerant algorithms
compute lower and upper bounds by MinDist and MaxDist,
so they visit more points or child nodes than the original
algorithms that use HausDistLB and HausDistUB, which

VOLUME 12, 2024 92415

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

FIGURE 9. Performance measures of the noise-tolerant algorithms when both A and B are ordinary trajectories. In the left column, the
resolution of A varies, while the resolution of B is fixed, and conversely in the right column.

provide tighter lower and upper bounds for the trajectory
distance, respectively. On the other hand, the distance
calculation costs of NT-DF-HausDist and NT-BF-HausDist
are still larger than those of DF-HausDist and BF-HausDist,
but the performance gap becomes smaller than that of the
other costs. In addition, the distance calculation cost of NT-
Inc-HausDist is lower than that of Inc-HausDist. Although
HausDistLB and HausDistUB provide tighter lower and
upper bounds, they require much higher computation costs
than MinDist and MaxDist. In particular, the distance
calculation cost of Inc-HausDist per visited node is much
higher than those of DF-HausDist and BF-HausDist, while

NT-Inc-HausDist has a comparable distance calculation cost
per visited node to NT-DF-HausDist and NT-BF-HausDist.

REFERENCES

[1] Z. Shao andY. Li, ‘‘Integral invariants for spacemotion trajectorymatching
and recognition,’’ Pattern Recognit., vol. 48, no. 8, pp. 2418–2432,
Aug. 2015, doi: 10.1016/j.patcog.2015.02.029.

[2] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and X. Qin, ‘‘Fast large-scale
trajectory clustering,’’ Proc. VLDB Endowment, vol. 13, no. 1, pp. 29–42,
Sep. 2019, doi: 10.14778/3357377.3357380.

[3] L. Li, S. Erfani, C. A. Chan, and C. Leckie, ‘‘Multi-scale trajectory
clustering to identify corridors inmobile networks,’’ inProc. 28th ACM Int.
Conf. Inf. Knowl.Manag.NewYork, NY, USA:Association for Computing
Machinery, Nov. 2019, p. 2253, doi: 10.1145/3357384.3358157.

92416 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.patcog.2015.02.029
http://dx.doi.org/10.14778/3357377.3357380
http://dx.doi.org/10.1145/3357384.3358157

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

[4] D. Qiao, X. Yang, Y. Liang, and X. Hao, ‘‘Rapid trajectory clustering
based on neighbor spatial analysis,’’ Pattern Recognit. Lett., vol. 156,
pp. 167–173, Apr. 2022, doi: 10.1016/j.patrec.2022.03.010.

[5] J. Yang, Y. Liu, L. Ma, and C. Ji, ‘‘Maritime traffic flow clustering analysis
by density based trajectory clustering with noise,’’ Ocean Eng., vol. 249,
Apr. 2022, Art. no. 111001, doi: 10.1016/j.oceaneng.2022.111001.

[6] T. Wu, P. Lei, F. Li, and J. Chen, ‘‘Space-time tree search for long-term
trajectory prediction,’’ IEEE Access, vol. 10, pp. 117745–117756, 2022,
doi: 10.1109/ACCESS.2022.3213691.

[7] M. Huynh and G. Alaghband, ‘‘Online adaptive temporal memory with
certainty estimation for human trajectory prediction,’’ in Proc. IEEE/CVF
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2023, pp. 940–949, doi:
10.1109/WACV56688.2023.00100.

[8] C. Yang and Z. Pei, ‘‘Long-short term spatio-temporal aggregation for
trajectory prediction,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 4,
pp. 4114–4126, Apr. 2023, doi: 10.1109/TITS.2023.3234962.

[9] J.-G. Lee, J. Han, X. Li, and H. Gonzalez, ‘‘TraClass: Trajectory classi-
fication using hierarchical region-based and trajectory-based clustering,’’
Proc. VLDB Endowment, vol. 1, no. 1, pp. 1081–1094, Aug. 2008, doi:
10.14778/1453856.1453972.

[10] K. K. Santhosh, D. P. Dogra, P. P. Roy, and A. Mitra, ‘‘Vehicular trajectory
classification and traffic anomaly detection in videos using a hybrid
CNN-VAE architecture,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 8,
pp. 11891–11902, Aug. 2022, doi: 10.1109/TITS.2021.3108504.

[11] Q. Gao, F. Zhou, T. Zhong, G. Trajcevski, X. Yang, and T. Li,
‘‘Contextual spatio-temporal graph representation learning for reinforced
human mobility mining,’’ Inf. Sci., vol. 606, pp. 230–249, Aug. 2022, doi:
10.1016/j.ins.2022.05.049.

[12] C.-C. Hung,W.-C. Peng, andW.-C. Lee, ‘‘Clustering and aggregating clues
of trajectories for mining trajectory patterns and routes,’’ VLDB J., vol. 24,
no. 2, pp. 169–192, Apr. 2015, doi: 10.1007/s00778-011-0262-6.

[13] D.-W. Choi, J. Pei, and T. Heinis, ‘‘Efficient mining of regional movement
patterns in semantic trajectories,’’ Proc. VLDB Endowment, vol. 10, no. 13,
pp. 2073–2084, Sep. 2017, doi: 10.14778/3151106.3151111.

[14] Y. Kwon, K. Kang, J. Jin, J. Moon, and J. Park, ‘‘Hierarchically linked
infinite hidden Markov model based trajectory analysis and semantic
region retrieval in a trajectory dataset,’’ Exp. Syst. Appl., vol. 78,
pp. 386–395, Jul. 2017, doi: 10.1016/j.eswa.2017.02.026.

[15] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, ‘‘Deep rep-
resentation learning for trajectory similarity computation,’’ in Proc.
IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 617–628, doi:
10.1109/ICDE.2018.00062.

[16] T.-Y. Fu and W.-C. Lee, ‘‘Trembr: Exploring road networks for trajectory
representation learning,’’ ACM Trans. Intell. Syst. Technol., vol. 11, no. 1,
pp. 1–25, Feb. 2020, doi: 10.1145/3361741.

[17] C. Gao, Z. Zhang, C. Huang, H. Yin, Q. Yang, and J. Shao, ‘‘Semantic
trajectory representation and retrieval via hierarchical embedding,’’ Inf.
Sci., vol. 538, pp. 176–192, Oct. 2020, doi: 10.1016/j.ins.2020.05.107.

[18] C. Feng, Z. Pan, J. Fang, J. Xu, P. Zhao, and L. Zhao, ‘‘Aries: Accurate
metric-based representation learning for fast top-k trajectory similarity
query,’’ in Proc. 31st ACM Int. Conf. Inf. Knowl. Manag. New York, NY,
USA: Association for ComputingMachinery, Oct. 2022, pp. 499–508, doi:
10.1145/3511808.3557239.

[19] A. D. Pazho, C. Neff, G. A. Noghre, B. R. Ardabili, S. Yao, M. Baharani,
and H. Tabkhi, ‘‘Ancilia: Scalable intelligent video surveillance for the
artificial intelligence of things,’’ IEEE Internet Things J., vol. 10, no. 17,
pp. 14940–14951, Sep. 2023, doi: 10.1109/JIOT.2023.3263725.

[20] W. Liu, G. Wei, Y. Wang, and R. Wu, ‘‘Indoor multipedestrian
multicamera tracking based on fine spatiotemporal constraints,’’ IEEE
Internet Things J., vol. 10, no. 11, pp. 10012–10023, Jun. 2023, doi:
10.1109/JIOT.2023.3235148.

[21] M. Fernández-Sanjurjo, M. Mucientes, and V. M. Brea, ‘‘Real-time
multiple object visual tracking for embedded GPU systems,’’ IEEE
Internet Things J., vol. 8, no. 11, pp. 9177–9188, Jun. 2021, doi:
10.1109/JIOT.2021.3056239.

[22] J.-S. Ham, D. H. Kim, N. Jung, and J. Moon, ‘‘CIPF: Crossing intention
prediction network based on feature fusion modules for improving
pedestrian safety,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2023, pp. 3665–3674.

[23] H. Shin, K. Na, J. Chang, and T. Uhm, ‘‘Multimodal layer surveillance map
based on anomaly detection using multi-agents for smart city security,’’
ETRI J., vol. 44, no. 2, pp. 183–193, Apr. 2022, doi: 10.4218/etrij.2021-
0395.

[24] S. Y. Nikouei, Y. Chen, A. J. Aved, and E. Blasch, ‘‘I-ViSE: Interactive
video surveillance as an edge service using unsupervised feature queries,’’
IEEE Internet Things J., vol. 8, no. 21, pp. 16181–16190, Nov. 2021, doi:
10.1109/JIOT.2020.3016825.

[25] J. Bian, D. Tian, Y. Tang, and D. Tao, ‘‘Trajectory data classification:
A review,’’ ACM Trans. Intell. Syst. Technol., vol. 10, no. 4, pp. 1–34,
Jul. 2019, doi: 10.1145/3330138.

[26] Y. Chen, P. Yu, W. Chen, Z. Zheng, and M. Guo, ‘‘Embedding-
based similarity computation for massive vehicle trajectory data,’’ IEEE
Internet Things J., vol. 9, no. 6, pp. 4650–4660, Mar. 2022, doi:
10.1109/JIOT.2021.3107327.

[27] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, ‘‘Comparing
images using the Hausdorff distance,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 15, no. 9, pp. 850–863, Sep. 1993, doi: 10.1109/34.232073.

[28] J. Ribera, D. Güera, Y. Chen, and E. J. Delp, ‘‘Locating objects without
bounding boxes,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 6472–6482, doi: 10.1109/CVPR.2019.00664.

[29] X. Wang, K. T. Ma, G.-W. Ng, and W. E. L. Grimson, ‘‘Trajectory analysis
and semantic region modeling using nonparametric hierarchical Bayesian
models,’’ Int. J. Comput. Vis., vol. 95, no. 3, pp. 287–312, Dec. 2011, doi:
10.1007/s11263-011-0459-6.

[30] M. Pálková, O. Uhlík, and T. Apeltauer, ‘‘Calibration of pedestrian
ingress model based on CCTV surveillance data using machine learning
methods,’’ PLoS ONE, vol. 19, no. 1, Jan. 2024, Art. no. e0293679, doi:
10.1371/journal.pone.0293679.

[31] K. Liu, H. Ma, L. Zhang, Z. Cai, and H. Ma, ‘‘Strip adjustment of
airborne LiDAR data in urban scenes using planar features by theminimum
Hausdorff distance,’’ Sensors, vol. 19, no. 23, p. 5131, Nov. 2019, doi:
10.3390/s19235131.

[32] B. H. Menze et al., ‘‘The multimodal brain tumor image segmentation
benchmark (BRATS),’’ IEEE Trans. Med. Imag., vol. 34, no. 10,
pp. 1993–2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.

[33] M.-P. Dubuisson and A. K. Jain, ‘‘Amodified Hausdorff distance for object
matching,’’ in Proc. 12th Int. Conf. Pattern Recognit., 1994, pp. 566–568,
doi: 10.1109/icpr.1994.576361.

[34] T. Xia and D. Zhang, ‘‘Improving the R∗-tree with outlier handling
techniques,’’ in Proc. 13th Annu. ACM Int. Workshop Geographic Inf. Syst.
New York, NY, USA: Association for Computing Machinery, Nov. 2005,
pp. 125–134, doi: 10.1145/1097064.1097083.

[35] S. Nutanong, E. H. Jacox, and H. Samet, ‘‘An incremental Hausdorff
distance calculation algorithm,’’ Proc. VLDB Endowment, vol. 4, no. 8,
pp. 506–517, May 2011, doi: 10.14778/2002974.2002978.

[36] D. Zhang, F. He, S. Han, L. Zou, Y. Wu, and Y. Chen, ‘‘An efficient
approach to directly compute the exact Hausdorff distance for 3D point
sets,’’ Integr. Comput.-Aided Eng., vol. 24, no. 3, pp. 261–277, Jul. 2017,
doi: 10.3233/ica-170544.

[37] H.-J. Son, S.-H. Kim, and J.-S. Kim, ‘‘Text image matching without
language model using a Hausdorff distance,’’ Inf. Process. Manag., vol. 44,
no. 3, pp. 1189–1200, May 2008, doi: 10.1016/j.ipm.2007.11.004.

[38] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H. Bunke,
‘‘Approximation of graph edit distance based on Hausdorff match-
ing,’’ Pattern Recognit., vol. 48, no. 2, pp. 331–343, Feb. 2015, doi:
10.1016/j.patcog.2014.07.015.

[39] D. Karimi and S. E. Salcudean, ‘‘Reducing the Hausdorff distance
in medical image segmentation with convolutional neural networks,’’
IEEE Trans. Med. Imag., vol. 39, no. 2, pp. 499–513, Feb. 2020, doi:
10.1109/TMI.2019.2930068.

[40] S. Cho, J. Paeng, and J. Kwon, ‘‘Densely-packed object detection
via hard negative-aware anchor attention,’’ in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis. (WACV), Jan. 2022, pp. 1401–1410, doi:
10.1109/WACV51458.2022.00147.

[41] Y. Gao, M. Wang, R. Ji, X. Wu, and Q. Dai, ‘‘3-D object retrieval with
Hausdorff distance learning,’’ IEEE Trans. Ind. Electron., vol. 61, no. 4,
pp. 2088–2098, Apr. 2014, doi: 10.1109/TIE.2013.2262760.

[42] M. Narendra, M. L. Valarmathi, and L. J. Anbarasi, ‘‘Watermarking tech-
niques for three-dimensional (3D) mesh models: A survey,’’ Multimedia
Syst., vol. 28, no. 2, pp. 623–641, Apr. 2022, doi: 10.1007/s00530-021-
00860-z.

[43] G. Mastorakis, T. Ellis, and D. Makris, ‘‘Fall detection without peo-
ple: A simulation approach tackling video data scarcity,’’ Exp. Syst.
Appl., vol. 112, pp. 125–137, Dec. 2018, doi: 10.1016/j.eswa.2018.
06.019.

VOLUME 12, 2024 92417

http://dx.doi.org/10.1016/j.patrec.2022.03.010
http://dx.doi.org/10.1016/j.oceaneng.2022.111001
http://dx.doi.org/10.1109/ACCESS.2022.3213691
http://dx.doi.org/10.1109/WACV56688.2023.00100
http://dx.doi.org/10.1109/TITS.2023.3234962
http://dx.doi.org/10.14778/1453856.1453972
http://dx.doi.org/10.1109/TITS.2021.3108504
http://dx.doi.org/10.1016/j.ins.2022.05.049
http://dx.doi.org/10.1007/s00778-011-0262-6
http://dx.doi.org/10.14778/3151106.3151111
http://dx.doi.org/10.1016/j.eswa.2017.02.026
http://dx.doi.org/10.1109/ICDE.2018.00062
http://dx.doi.org/10.1145/3361741
http://dx.doi.org/10.1016/j.ins.2020.05.107
http://dx.doi.org/10.1145/3511808.3557239
http://dx.doi.org/10.1109/JIOT.2023.3263725
http://dx.doi.org/10.1109/JIOT.2023.3235148
http://dx.doi.org/10.1109/JIOT.2021.3056239
http://dx.doi.org/10.4218/etrij.2021-0395
http://dx.doi.org/10.4218/etrij.2021-0395
http://dx.doi.org/10.1109/JIOT.2020.3016825
http://dx.doi.org/10.1145/3330138
http://dx.doi.org/10.1109/JIOT.2021.3107327
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.1109/CVPR.2019.00664
http://dx.doi.org/10.1007/s11263-011-0459-6
http://dx.doi.org/10.1371/journal.pone.0293679
http://dx.doi.org/10.3390/s19235131
http://dx.doi.org/10.1109/TMI.2014.2377694
http://dx.doi.org/10.1109/icpr.1994.576361
http://dx.doi.org/10.1145/1097064.1097083
http://dx.doi.org/10.14778/2002974.2002978
http://dx.doi.org/10.3233/ica-170544
http://dx.doi.org/10.1016/j.ipm.2007.11.004
http://dx.doi.org/10.1016/j.patcog.2014.07.015
http://dx.doi.org/10.1109/TMI.2019.2930068
http://dx.doi.org/10.1109/WACV51458.2022.00147
http://dx.doi.org/10.1109/TIE.2013.2262760
http://dx.doi.org/10.1007/s00530-021-00860-z
http://dx.doi.org/10.1007/s00530-021-00860-z
http://dx.doi.org/10.1016/j.eswa.2018.06.019
http://dx.doi.org/10.1016/j.eswa.2018.06.019

Y. Kwon et al.: Noise-Tolerant Trajectory Distance Computation in the Presence of Inherent Noise

[44] M.-E. Yadamjav, Z. Bao, B. Zheng, F. M. Choudhury, and H. Samet,
‘‘Querying recurrent convoys over trajectory data,’’ ACM Trans. Intell.
Syst. Technol., vol. 11, no. 5, pp. 1–24, Oct. 2020, doi: 10.1145/3400730.

[45] Y. Zheng, ‘‘Trajectory data mining: An overview,’’ ACMTrans. Intell. Syst.
Technol., vol. 6, no. 3, pp. 1–41, May 2015, doi: 10.1145/2743025.

[46] A. A. Taha and A. Hanbury, ‘‘An efficient algorithm for calculating the
exact Hausdorff distance,’’ IEEE Trans. Pattern Anal.Mach. Intell., vol. 37,
no. 11, pp. 2153–2163, Nov. 2015, doi: 10.1109/TPAMI.2015.2408351.

[47] Y. Chen, F. He, Y. Wu, and N. Hou, ‘‘A local start search algorithm to com-
pute exact Hausdorff distance for arbitrary point sets,’’ Pattern Recognit.,
vol. 67, pp. 139–148, Jul. 2017, doi: 10.1016/j.patcog.2017.02.013.

[48] D. Zhang, L. Zou, Y. Chen, and F. He, ‘‘Efficient and accurate Hausdorff
distance computation based on diffusion search,’’ IEEE Access, vol. 6,
pp. 1350–1361, 2018, doi: 10.1109/ACCESS.2017.2778745.

[49] J. Ryu and S.-I. Kamata, ‘‘An efficient computational algorithm for
Hausdorff distance based on points-ruling-out and systematic random
sampling,’’ Pattern Recognit., vol. 114, Jun. 2021, Art. no. 107857, doi:
10.1016/j.patcog.2021.107857.

[50] W.-C. Lee and J. Krumm, ‘‘Trajectory preprocessing,’’ in Computing With
Spatial Trajectories. New York, NY, USA: Springer, 2011, pp. 3–33, doi:
10.1007/978-1-4614-1629-6_1.

[51] T. He, J. Bao, R. Li, S. Ruan, Y. Li, C. Tian, and Y. Zheng, ‘‘Detecting
vehicle illegal parking events using sharing bikes’ trajectories,’’ in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining. New York,
NY, USA: Association for Computing Machinery, Jul. 2018, pp. 340–349,
doi: 10.1145/3219819.3219887.

[52] B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, and
F. Staals, ‘‘Maximum physically consistent trajectories,’’ in Proc. 27th
ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst. New York, NY,
USA: Association for Computing Machinery, Nov. 2019, pp. 79–88, doi:
10.1145/3347146.3359363.

[53] D. Zhang and T. Xia, ‘‘A novel improvement to the R∗-tree spatial
index using gain/loss metrics,’’ in Proc. 12th Annu. ACM Int. Workshop
Geographic Inf. Syst. New York, NY, USA: Association for Computing
Machinery, Nov. 2004, pp. 204–213, doi: 10.1145/1032222.1032253.

[54] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ‘‘The R∗-
tree: An efficient and robust access method for points and rectangles,’’
in Proc. ACM SIGMOD Int. Conf. Manag. Data. New York, NY, USA:
Association for Computing Machinery, May 1990, pp. 322–331, doi:
10.1145/93597.98741.

[55] H. Samet, Foundations of Multidimensional and Metric Data Structures.
Burlington, MA, USA: Morgan Kaufmann, 2006.

[56] T. Brinkhoff, ‘‘A framework for generating network-based moving
objects,’’ GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002, doi:
10.1023/A:1015231126594.

[57] H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng, ‘‘A survey of trajectory
distance measures and performance evaluation,’’ VLDB J., vol. 29, no. 1,
pp. 3–32, Jan. 2020, doi: 10.1007/s00778-019-00574-9.

[58] K. Fernande, P. Gharani, and V. Raghu, ‘‘TRAJEDI: Trajectory dissim-
ilarity,’’ in Sustainable Interdependent Networks II. Cham, Switzerland:
Springer, 2019, pp. 135–146, doi: 10.1007/978-3-319-98923-5_8.

[59] H. Du, L. Chen, J. Qian, J. Hou, T. Jung, and X.-Y. Li, ‘‘PatronuS:
A system for privacy-preserving cloud video surveillance,’’ IEEE J.
Sel. Areas Commun., vol. 38, no. 6, pp. 1252–1261, Jun. 2020, doi:
10.1109/JSAC.2020.2986665.

[60] Y. Tao, K. Yi, C. Sheng, and P. Kalnis, ‘‘Efficient and accurate
nearest neighbor and closest pair search in high-dimensional space,’’
ACM Trans. Database Syst., vol. 35, no. 3, pp. 1–46, Jul. 2010, doi:
10.1145/1806907.1806912.

[61] D. Xu, R. Hu, Z. Xiong, Z. Wang, L. Luo, and D. Li, ‘‘Trajectory is
not enough: Hidden following detection,’’ in Proc. 29th ACM Int. Conf.
Multimedia. New York, NY, USA: Association for Computing Machinery,
Oct. 2021, pp. 5373–5381, doi: 10.1145/3474085.3475664.

[62] B. Park and S. Lee, ‘‘Robust range-only beacon mapping in multipath
environments,’’ ETRI J., vol. 42, no. 1, pp. 108–117, Feb. 2020, doi:
10.4218/etrij.2018-0614.

[63] H. Alt and M. Godau, ‘‘Computing the fréchet distance between two
polygonal curves,’’ Int. J. Comput. Geometry Appl., vol. 5, pp. 75–91,
Mar. 1995, doi: 10.1142/s0218195995000064.

[64] Y. Tao, A. Both, R. I. Silveira, K. Buchin, S. Sijben, R. S. Purves,
P. Laube, D. Peng, K. Toohey, and M. Duckham, ‘‘A comparative analysis
of trajectory similarity measures,’’ GISci. Remote Sens., vol. 58, no. 5,
pp. 643–669, Jul. 2021, doi: 10.1080/15481603.2021.1908927.

YONGJIN KWON received the B.S. degree
in computer science and engineering from
POSTECH, Republic of Korea, in 2009, and the
M.S. degree in computer science and engineering
from Seoul National University, Republic of
Korea, in 2012. He is currently a Senior Researcher
with the Visual Intelligence Research Section,
Superintelligence Creative Research Laboratory,
Electronics and Telecommunications Research
Institute (ETRI), Republic of Korea. His research

interests include machine learning, information theory, and human behavior
forecasting.

JINYOUNG MOON received the B.S. degree in
computer engineering from Kyungpook National
University, Daegu, Republic of Korea, in 2000, and
the M.S. degree in computer science and the Ph.D.
degree in industrial and systems engineering from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, Republic of Korea,
in 2002 and 2018, respectively. She is currently
a Principal Researcher with the Visual Intelli-
gence Research Section, Superintelligence Cre-

ative Research Laboratory, Electronics and Telecommunications Research
Institute (ETRI), Republic of Korea. Her research interests include machine
learning, video understanding, video action detection and anticipation, and
temporal moment localization by natural language.

YEONSEUNG CHUNG received the B.S. degree
in statistics from Korea University, Seoul, Repub-
lic of Korea, in 2000, and the M.S. degree in
biostatistics and the Ph.D. degree in biostatistics
from the University of North Carolina at Chapel
Hill, USA, in 2005 and 2009, respectively. She is
currently an Associate Professor with the Depart-
ment of Mathematical Sciences, Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Republic of Korea. Her research interests

include nonparametric Bayesian modeling, environmental epidemiology,
and other statistical applications in biomedical research.

92418 VOLUME 12, 2024

http://dx.doi.org/10.1145/3400730
http://dx.doi.org/10.1145/2743025
http://dx.doi.org/10.1109/TPAMI.2015.2408351
http://dx.doi.org/10.1016/j.patcog.2017.02.013
http://dx.doi.org/10.1109/ACCESS.2017.2778745
http://dx.doi.org/10.1016/j.patcog.2021.107857
http://dx.doi.org/10.1007/978-1-4614-1629-6_1
http://dx.doi.org/10.1145/3219819.3219887
http://dx.doi.org/10.1145/3347146.3359363
http://dx.doi.org/10.1145/1032222.1032253
http://dx.doi.org/10.1145/93597.98741
http://dx.doi.org/10.1023/A:1015231126594
http://dx.doi.org/10.1007/s00778-019-00574-9
http://dx.doi.org/10.1007/978-3-319-98923-5_8
http://dx.doi.org/10.1109/JSAC.2020.2986665
http://dx.doi.org/10.1145/1806907.1806912
http://dx.doi.org/10.1145/3474085.3475664
http://dx.doi.org/10.4218/etrij.2018-0614
http://dx.doi.org/10.1142/s0218195995000064
http://dx.doi.org/10.1080/15481603.2021.1908927

