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ABSTRACT This research presents a multi-objective dispatch (MOD) for energy storage systems (ESS)
utilizing batteries and renewable energy resources (RES) in distribution network applications. This proposal
employs a convex weighting-based approach. The exact MOD nonlinear programming model, which is non-
convex due to the power balance constraint, is approximated using a second-order cone equivalent in order to
ensure a global optimum, leveraging the convex properties of the objective functions and the conic equivalent
in the complex-variable domain. The MOD, based on the linear combination of the objective functions via
the weighting-based method, enables the construction of the optimal Pareto front, as each combination of
the weighting factors generates a convex optimization sub-problem. The MOD analysis simultaneously
considers the minimization of the expected grid operating costs with regard to energy purchasing at the
substation terminals, the reduction of the operating costs associated with the RES and the ESS, and the
minimization of the expected daily energy losses. This researchmakes two contributions: 1) the incorporation
of the active and reactive power capabilities of the power electronic converters that interface with the ESS
and the RES and 2) a robust analysis via convex optimization to address the uncertainties related to the
expected daily generation and demand profiles. Numerical results obtained in the IEEE 33- and 85-bus test
system confirm the effectiveness and robustness of the proposed MOD in comparison with the continuous
genetic algorithm, the particle swarm optimizer, and the vortex search algorithm. In addition, the best metah-
euristic technique was employed for constructing the Pareto front and comparing its performance against the
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proposed convex approach for the 33-bus grid. In the case of the 85-bus grid, battery power losses were included to
demonstrate the effectiveness of this solution methodology in medium-scale distribution grids.

INDEX TERMS Energy losses minimization, grid operating cost minimization, multi-objective dispatch, second-
order conic equivalent, robust convex optimization, variable power factor operation, weighting-basedmulti-objective
methodology.

NOMENCLATURE
ACRONYMS
AC Alternating current.
DER Distributed energy resource.
ESS Energy storage system.
MOD Multi-objective dispatch.
RES Renewable energy system.
SoC State of charge.

PARAMETERS
1t Time period under analysis during a day of

operation (h).
SoCki Initial SoC of the battery system connected to

node k (%).
SoC Maximum SoC value allowed (%).
pk,inj Maximum active power absorption supported

by the battery system connected to
node k (W).

pk,inj Maximum active power injection supported
by the battery system connected to
node k (W).

sg Maximum apparent power allowed by the
substation connected to node k (V· A).

sbk Maximum apparent power allowed by the
battery system connected to node k (V· A).

sDERk Maximum apparent power allowed by the
DER connected to node k (V· A).

sgk Maximum current flowing through the distri-
bution line that connects nodes k and m (A).

v Maximum voltage magnitude allowed in the
nodes (V).

SoC Minimum SoC value allowed (%).
sg Minimum apparent power allowed by the

substation connected to node k (V· A).
v Minimum voltage magnitude allowed in the

nodes (V).
ϕk Battery charge/discharge coefficient (%/Wh).
C1k Energy purchasing costs at the substation

connected to node k (USD/kWh).
C2k Operating costs of the DER connected to

node k (USD/kWh).
C3k Operating costs of the battery system con-

nected to node k (USD/kWh).
COF1 Operating costs factor to normalize OF1

(1/kWh).
COF2 Operating costs factor to normalize OF2

(1/USD).

f DERkt Power availability factor regarding the DER
connected to node k during period t .

vnom Nominal voltage value at substation s.
ykm Admittance at position km of the nodal

admittance matrix (S).

SUBSCRIPTS
k,m Node.
km Branch.
s Substation.
t Period under analysis.

SETS AND OPERATORS
(·)∗ Conjugate of the complex argument.
|·| Absolute value of the complex argument.
∥·∥2 Euclidean norm of the complex argument.
�N Set containing all network nodes.
�T Set containing all time periods under

analysis.
�L Set containing all network branches.
real (·) Real part of the complex argument.

VARIABLES
SoCkt SoC of the battery system connected to node k

during period t (%).
SoC+

kt SoC of the battery system connected to node k
during the next period t (%).

hkt Squared magnitude of the voltage at node k during
period t (V2).

sDERkt Complex power generated by the DER connected to
node k during period t (V· A).

sgkt Complex power demanded by the load connected to
node k during period t (V· A).

sgkt Complex power generated by the substation con-
nected to node k during period t (V· A).

svkt Complex power injected/absorbed by the battery
system connected to node k during period t (V· A).

vst Complex voltage value at substation s during
period t (V).

wkmt Product of the conjugate voltage of node k with the
voltage of node m during period t (V2).

vkt Complex voltage value at node k during
period t (V).
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I. INTRODUCTION
Recent advances in renewable energy systems (RES) and
efficient energy storage systems (ESS) have sparked a global
awareness of the urgent need to reduce the carbon footprint
resulting associated with human activities [1], [2]. This
includes mitigating the adverse effects of human-induced
changes in weather patterns due to the significant emissions
of pollutants into the atmosphere, a defining trait of the
Anthropocene era [3]. For decades, researchers have studied
renewable energy generation from various sources, such as
solar, wind, geothermal, tidal, and hydraulic power, while
aiming for two main benefits: reducing the energy production
costs from fossil sources and mitigating the daily emissions
of carbon dioxide caused by human consumption in the trans-
portation and electricity sectors [4]. On the other hand, RES
have allowed supplying electricity to remote communities
far from central transmission or sub-transmission systems.
This, based on the concept of isolated microgrids [5], [6].
These electrical networks have typically been powered by
diesel generation sources. However, with the advancements
in renewable energy technologies, this paradigm is shifting,
as microgrids can now be powered by solar and wind
sources [7]. Nevertheless, even though RES are promising for
energy generation and have applications all around the world,
they pose two challenges: the unpredictability of renewable
energy resources and their non-controllability. This implies
that the effective integration of RES must incorporate ESS
to address daily variations in generation and demand, thus
ensuring the reliability, continuity, and quality of the energy
service for all end-users [8], [9].

For electrical network applications, and considering the
importance of ESS, recent advances in this area have
focused on developing chemical energy storage devices with
high energy density and competitive storage costs [10],
[11]. In this context, the ideal complements of RES are
lithium-ion batteries [12], [13], a technology that has been
influenced by advances in electrical vehicle applications.
These advances have made them very attractive for electrical
grids, as this technology is now mature and has competitive
market costs [14], [15]. In essence, the possibility of
improving the quality of the service provided by micro-
grids or active distribution networks lies in the effective
coordination of ESS and RES while considering different
operation indices and proposing multi-objective optimization
methodologies [16], [17].
The concept of electrical microgrid is often misunderstood

in the current literature. Some authors refer to them as
electrical networks that integrate RES and ESS, but they fail
to mention their defining feature: their ability to operate in
both grid-connected and isolated modes without affecting
the energy service [18]. In this sense, an electrical network
that incorporates RES and ESS but lacks the capabilities
for isolated operation is denoted as an active distribution
network [19]. Considering these differences, it is worth
mentioning that there are multiple approaches to addressing

the efficient integration and operation of ESS and RES,
each with different objectives, typically focusing on the
improvement of technical, economic, or environmental
indices. In the case of technical indices, the most typical
objective functions are related to energy losses [20], [21],
voltage deviations [22], [23], and voltage stability [24], [25].
Regarding the economic objective functions, focus is often
placed on the total generation and operation costs of the
grid [26] or the expected annual costs of energy losses [27],
among others. As for the environmental objective functions,
the minimization of the total carbon dioxide emissions
prevails, given its direct connection with the effects of global
warming and the worldwide commitment to reducing carbon
footprints [28]. Some of these approaches, which employ
both single- and multi-objective formulations, are presented
below.

The authors of [29] presented an energy management
system (EMS) for local energy communities based on
photovoltaic (PV) sources and an ESS based on batteries,
with the aim of reducing greenhouse gas emissions and
energy purchasing costs, as well as for increasing energy
self-sufficiency. Numerical simulations considering a real
electrical microgrid located in Valencia (Spain) and an annual
period with a resolution of one hour demonstrated that,
when an effective EMS dispatch is implemented, excellent
economic and environmental benefits can be obtained in the
case of large-scale microgrids with a high penetration of
residential users.

The work by [30] suggested the possibility of using
batteries for dynamically compensating active and reactive
power in medium-voltage distribution grids by effectively
controlling the power electronic converters interfacing the
batteries. Numerical results in the IEEE 33- and 69-bus
networks demonstrated the effectiveness of this approach in
comparison with a unitary power factor operation. The EMS
was formulated as a nonlinear programming model, and it
was solved using GAMS.

The authors of [26] applied three metaheuristic optimizers
to deal with the daily dispatch of batteries in a practical way:
the continuous genetic algorithm, the parallel version of the
vortex search algorithm, and the particle swarm optimizer.
Numerical results demonstrated the effectiveness of these
algorithms in two test feeders adapted for urban and rural
Colombian networks. However, the authors did not perform a
multi-objective analysis, in addition to operating the batteries
and the RES with a unitary power factor, considerably
reducing the potential for dynamic reactive power control in
ancillary services.

In [27], an optimization methodology for locating and
sizing renewable ESS and batteries in distribution networks
was presented. A simulated annealing algorithm was used
to determine the location and size of distributed energy
resources (DERs), while their operation was defined via a
piece-wise linearization technique. Numerical comparisons
with conic models demonstrated the effectiveness of this
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method in terms of processing times. As expected, both
convex approaches reached the optimal solution regarding
the objective function values (investment and operating
cost reductions). In addition, numerical variations were
implemented in feeders with sizes between 11 and 230 nodes.

The study by [31] applied a multi-objective optimization
methodology to manage batteries in power systems, which
considers the concept of virtual power plant applications.
Numerical validations using actual data from a low-voltage
distribution network in Alice Springs (Northern Territory,
Australia) evinced an effective coordination of each user’s
energy consumption priorities as a function of costs and
use preferences. To solve the multi-objective problem, the
classical multi-objective non-sorted genetic algorithm was
used, and the proposed EMS was validated using the
DIgSILENT power factory simulation tool.

In [33], a multi-objective optimization approach was pro-
posed, aimed at defining the optimal location and operation of
battery energy storage units in electrical distribution networks
while considering useful life maximization together with the
minimization of economic and environmental objective func-
tions. A multi-objective equilibrium optimization technique
was employed to obtain optimal Pareto fronts while ensuring
a diversity of solutions, and the IEEE 30- and 69-bus grids
were considered to measure the impact of effective battery
coordination in terms of the objective functions analyzed.

Additional works that address the effective coordination
of ESS and RES in electrical networks via single- or
multi-objective analyses include the multi-objective particle
swarm optimization approach [33], the weighting-based opti-
mization approach [34], [35], [36], genetic algorithms [37],
[38], the antlion optimizer [39], and the epsilon-constraint
method [40].
In this literature review, two major trends can be identified.

The first involves the use of metaheuristic optimization
algorithms to deal with the location and daily opera-
tion of batteries while considering technical, economic,
or environmental objective functions with both single- and
multi-objective approaches. The second trend examines the
possibility of using batteries as dynamic reactive power
compensators for increased technical or economic benefits.
However, in both contexts, the most common optimization
model is an EMS formulated as a nonlinear programming
problem, which makes finding the global optimum a difficult
task. In light of the above, the following are the main
contributions of this research.
i. The efficient EM design problem for RES and ESS in

distribution networks undergoes a significant transfor-
mation. Originally nonlinear and non-convex, it is con-
verted into a convex approximation via a second-order
conic equivalent (SOCE), with the main advantage that
the efficiency of the power converters can be considered
in the optimization model.

ii. A Pareto front is generated using the weighting-based
optimization method to minimize the expected daily
energy grid operation costs and energy losses. This

is achieved by considering the active and reactive
power control capabilities of the power electronic
converters interfacing the RES and ESS. In addi-
tion, comparisons are made against metaheuristic-based
approaches for single- and multi-objective formulations
that consider a unitary power factor operation in the RES
and ESS.

iii. The stochastic nature of PV generation and daily
demand profiles is incorporated via robust optimization,
thus maintaining the global optimization capabilities of
the SOCEmodel for the proposed EMS in the context of
a multi-objective operation.

Considering the scope of this contribution, it is essential
to highlight the following. (i) The location and size of the
RES and ESS were provided by the distribution company,
which implies that the main interest of this research is
to manage these resources efficiently without determining
these aspects. (ii) The average PV generation curves and the
daily demand profiles were also provided by the distribution
company based on historical data on the distribution grid’s
area of influence, so the robust analysis was performed
by adding percent variations of these data. (iii) For the
sake of comparison, the benchmark case corresponding
to the deterministic scenario considers a unitary factor
operation of the RES and ESS. However, additional results
are provided which consider a variable power factor,
in order to showcase the well-known advantages of dynamic
reactive power compensation in active distribution networks.
(iv) The evaluation of the proposed SOCE approach in an
85-bus feeder including four PV generation sources and
three ESS aims to confirm the effectiveness and robustness
of the proposed convex approximation with regard to the
numerical improvements reported for the IEEE 33-bus grid
system.

As for the first contribution of this research, it is essential
to mention that, in the specialized literature, different conic
approaches for reformulating power flow problems have
been proposed [41], [42]. For example, the authors of [43]
applied the branch optimal power flow formulation for
managing active and reactive power in distribution networks,
aiming to minimize power losses. The branch optimal power
flow formulation is a well-known convex approximation for
solving the power flow equations in strictly radial distribution
networks. However, the effectiveness of its application is con-
ditioned by the use of power losses in the objective function,
providing a deteriorated performance for different objective
functions. Additionally, the authors of [44] presented a
conic approach based on the bus injection reformulation,
which can be applied to both radial and meshed distri-
bution networks. Nevertheless, several approximations are
required, including trigonometric function transformations.
When comparing these approaches to our proposed SOCE,
the main advantages of our proposal become evident: its
applicability to radial and meshed distribution networks,
the possibility of handling different objective functions,
and the complex-variable domain reformulation, which is
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simpler in comparisonwith the real-variable analysis reported
in [43] and [44].

The remainder of this contribution is structured as
follows. Section II describes the general formulation of the
multi-objective dispatch problem using a complex-domain
variable model aimed at simultaneously minimizing the
expected energy losses and the energy purchasing and
operating costs of RES and ESS in distribution networks.
Section III presents the robust analysis employed to deal
with the uncertainties in demand behavior and renewable
energy availability. This analysis was performed using the
min/max concept applicable to convex optimization models,
as is the case of the second-order cone programming
equivalent used for reformulating the nonlinear programming
model that represents the multi-objective dispatch problem.
Section IV outlines the main characteristics of the IEEE
33-bus grid, which was adapted to the daily coordination
of RES and ESS, considering the actual operating char-
acteristics of a Colombian electrical network with regard
to demand profiles, solar generation availability, and daily
price variations. Section V lists the main numerical results
obtained with the single- and multi-objective approaches,
in addition to providing a comparative analysis against
metaheuristic optimizers in the literature. In addition, the
Pareto fronts are presented, which include uncertainties
and allow observing fundamental changes in the objective
functions, with variations in renewable energy or demand
curves. Finally, Section VI presents the main concluding
remarks of this work, as well as some proposals for future
research.

II. MULTI-OBJECTIVE DISPATCH MODELING
The proposed multi-objective dispatch (MOD) model for
ESS and RES considers two objective functions and their
corresponding constraints. These constraints are the nodal
potential balance, the power flowing through the distribution
lines, the batteries’ state of charge (SoC), and the regulation
and operation limits of the systems connected to the
distribution network.

A. OBJECTIVE FUNCTIONS
The objective function of the MOD model harmonizes two
objectives through a weighted formulation [45]. It is aimed
at minimizing both the energy losses (OF1) and the operating
costs (OF2) for a day of operation [46]. This is expressed as
follows:

min OF = ω
OF1
COF1

+ (1 − ω)
OF2
COF2

(1)

where ω ∈ [0, 1] is the weighting factor and COF1 , and
COF2 are factors that normalize the objective functions
OF1 and OF2, respectively. These objective functions can be

minimized [47]:

OF1 = real

∑
k∈�T

∑
k∈�N

∑
k∈�N

ykmvktv∗mt

 , (2)

OF2 =

∑
k∈�N

∑
t∈�T

real
(
C1ks

g
kt + C2ksDERk

)
1t

+

∑
k∈�N

∑
t∈�T

C3k

∣∣∣real (sbkt)∣∣∣1t , (3)

where vkt denotes the complex voltage at node k during
period t; ykm is the admittance at position km of the nodal
admittance matrix; sgkt is the complex power generated by the
substation connected to node k during period t; sDERkt is the
complex power generated by the DER connected to node k
during period t; sbkt is the complex power injected/absorbed
by the battery connected to node k during period t; C1k
represents the energy purchasing costs at the substation
connected to node k;C2k andC3k correspond to the operating
costs of the DER and the battery system connected to node k ,
respectively (these costs include daily management, upkeep,
and operation); �N and �T are the sets of all nodes and
all periods under analysis, respectively; 1t represents the
time period under analysis within a day of operation; and
the operators real (·), (·)∗, and |·| denote the real part, the
conjugate, and the absolute value of the complex argument,
respectively.

B. SET OF CONSTRAINTS FOR THE MOD MODEL
The optimal MOD of RES and ESS requires observing a
wide range of constraints based on technical and regulatory
considerations. These constraints include factors such as
energy balance and operating limits, as well as strict
compliance with regulatory requirements. These constraints
are explained below:

1) ELECTRICAL SYSTEM CONSTRAINTS
The constraints of the electrical distribution system are
determined by the nodal current balance in each node, the
minimum and maximum voltage limits established by the
applicable regulations, the maximum current flows supported
by the distribution lines, and the minimum and maximum
power generated by the substation [47].

a: NODAL CURRENT BALANCE(
sgkt + sDERkt + sbkt − dkt

vkt

)∗

=

∑
k∈�T

∑
m∈�N

ykmvmt , (4)

where dkt is the complex power demand at node k during
period t .

b: OPERATING VOLTAGE LIMITS

vst = vnom + 0j, (5)

v ≥ ∥vkt∥2 ≥ v, {∀ t ∈ �T , ∀ k ∈ �N } (6)
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where vst denotes the voltage values at the substation during
period t , and vnom is their nominal value [26].

c: CURRENT FLOW LIMITS

ikm ≥ ∥ykm (vkt − vmt)∥2 {∀ km ∈ �L , ∀ t ∈ �T } , (7)

where ikm is the maximum magnitude of the current that can
flow through the distribution line connected between nodes k
and m, and �L denotes the set that contains all branches in
the electrical system [48].

d: SUBSTATION LIMITS

sgk ≥
∥∥sgkt∥∥2 , {∀ t ∈ �T , ∀ k ∈ �N } (8)

sgk ≥ real
(
sgkt
)

≥ sgk , {∀ t ∈ �T , ∀ k ∈ �N } (9)

where sg and sg denote the maximum and minimum apparent
power allowed by the substation connected to node k .
It is important to mention that equality constraint (4)

corresponds to the nodal balance of the complex nodal
current in each node of the electrical distribution system. This
constraint is non-convex since there is an inverse rational
term represented by (vkt)∗. Equality constraint (5) defines
the voltage values at the substation, which is better known
as the slack node. Box constraint (6) plays a crucial role
in ensuring compliance with regulatory frameworks. These
frameworks define the minimum and maximum voltage
values necessary for the optimal functioning of the system.
Box constraint (7) ensures that the maximum current limits of
the transmission lines are not exceeded. This constraint is also
known as a second-order cone constraint. The second-order
cone constraint (8) limits the maximum apparent power of
the substation, while box constraint (9) ensures that its active
power remains within the capacity limits.

2) DER CONSTRAINTS
The constraints of the DERs are given by the minimum
and maximum apparent power generated, as well as by the
maximum active power injected into an electrical system.

a: OPERATING DER LIMITS

sDERk ≥

∥∥∥sDERkt

∥∥∥
2
, {∀ t ∈ �T , ∀ k ∈ �N } (10)

sDERk f DERkt ≥ real
(
sDERkt

)
≥ 0,

{
∀ t ∈ �T ,

∀ k ∈ �N

}
(11)

where sDERk is the maximum apparent power that a DER can
inject into or absorb from the electrical system at node k , and
f DERkt ∈ [0, 1] is a factor corresponding to the energy available
from theDER connected to node k during period t . This factor
is taken with respect to the maximum apparent power.

Note that the second-order cone constraints (10) and (11)
ensure that the apparent and active power of the DER remain
within their corresponding limits.

3) BATTERY SYSTEM CONSTRAINTS
The constraints corresponding to the battery systems are
determined by the maximum apparent and active power
injected into or absorbed by the electrical system, as well as
to their SoC.

a: MAXIMUM ACTIVE POWER INJECTION AND ABSORPTION

pk,inj ≥ real
(
sbkt
)

≥ pk,abs, {∀ t ∈ �T , ∀ k ∈ �N } (12)

where pk,inj is the maximum active power that can be injected
by the battery system connected to node k , and pk,abs is the
maximum active power that can be absorbed by it.

b: BATTERY SOC

SoC+

kt = SoCkt − ϕk real
(
sbkt
)

1t ,

{
∀ t ∈ �T ,

∀ k ∈ �N

}
(13)

SoC+

kt = SoCkti − ϕk real
(
sbkt
)

1t ,

{
∀ t = ti,
∀ k ∈ �N

}
(14)

SoCkt = SoCkf ,
{
∀ t = tf , ∀ k ∈ �N

}
(15)

SoC ≥ SoCkt ≥ SoC,
{
∀ t ∈ �T , ∀ k ∈ �N

}
(16)

where SoCkt is the SoC of the battery system connected to
node k during period t , while SoC+

kt is its SoC in the next
period under analysis; ϕk is the charge/discharge coefficient
of the battery connected to node k; SoCki and SoCkf denote
the initial and final SoC of the battery system connected
to node k , and SoC and SoC determine the maximum and
minimum SoC of battery systems.

c: MAXIMUM APPARENT POWER INJECTION AND
ABSORPTION

sbk ≥

∥∥∥sbkt∥∥∥2 , {∀ t ∈ �T , ∀ k ∈ �N } (17)

where sbk is the maximum apparent power flow that supports
the battery system connected to node k .

Box constraint (12) ensures that the maximum limits
regarding active power injection and absorption by the
battery systems remain within their capabilities. The equality
constraint (13) calculates the SoC of the battery system in
the next period, while the equality constraints (14) and (15)
establish the initial and final values of the battery systems’
SoC. Box constraint (16) ensures that the SoC of the batteries
is within their maximum and minimum allowed limits.
Finally, the SoC constraint (17) ensures that the ESS apparent
power injection and absorption remain within their maximum
limits.

III. ROBUST SOCP MODEL
A. SECOND-ORDER CONE APPROXIMATION OF MOD
MODEL
Second-order cone approximation has proven to be an
excellent method for solving the optimal power flow problem
in electrical distribution systems [42]. This section mainly
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focuses on specifying (4) [47]. First, this constraint is
rewritten as follows:(

sgkt + sDERkt + sbkt − dkt
)∗

=

∑
k∈�T

∑
m∈�N

ykmwkmt , (18)

where wkmt is a complex auxiliary variable defined as

wkmt = v∗ktvmt . {∀ t ∈ �T , ∀ k ∈ �N } (19)

Note that the constraint (18) is an affine equation, so it is
now convex. The issue lies in the complex auxiliary variable
defined in (19), which generates a quadratic non-convex
constraint [49]. Multiplying by the conjugate of wkmt in (19)
yields

wkmt (wkmt )∗ = v∗ktvmt
(
v∗ktvmt

)∗
∥wkmt∥22 = ∥vkt∥22 ∥vmt∥22
∥wkmt∥22 = hkthmt , (20)

where hkt is a real auxiliary variable set as hkt = ∥vkt∥22. This
constraint can be rewritten as follows:

∥wkmt∥22 =
1
4

(hkt + hmt)2 −
1
4

(hkt − hmt)2

4 ∥wkmt∥22 + (hkt − hmt)2 = (hkt + hmt)2∥∥∥∥( 2wkmt
hkt − hmt

)∥∥∥∥
2

= hkt + hmt . (21)

Note that the hyperbolic constraint (21) remains non-
convex [50]. Hence, the equal is relaxed to transform it into a
second-order cone constraint:∥∥∥∥( 2wkmt

hkt − hmt

)∥∥∥∥
2

≤ hkt + hmt . (22)

On the other hand, it is important to mention another
constraint that needs to be included for ensuring a logical
result from the product between the conjugate voltage of node
k and the voltage of node m, as given by (19). This constraint
is

wkmt = w∗
mkt . {∀ t ∈ �T , ∀ km ∈ �L} (23)

Constraint (7) is related to the current flow limits of each
distribution line and must be expressed as a function of
real and complex auxiliary variables [50]. Therefore, this
constraint is multiplied by the conjugate of vkt , thus yielding

skm ≥ ∥ykm (hkt − wkmt)∥2 ,

{
∀ t ∈ �T ,

∀ km ∈ �L

}
(24)

where skm is the maximum apparent power that can flow
through the distribution line that connects nodes k and m.
For ease of reading, the convex version of the entire MOD

optimization model is shown below.

a: MOD MODEL OBJECTIVE FUNCTION

min OF

= ω
OF1
COF1

+ (1 − ω)
OF2
COF2

(25)

OF1 = real

∑
k∈�T

∑
km∈�L

ykmw∗
kmt

 , (26)

OF2 =

∑
k∈�N

∑
t∈�T

real
(
C1ks

g
kt + C2ksDERk

)
1t

+

∑
k∈�N

∑
t∈�T

C3k

∣∣∣real (sbkt)∣∣∣1t , (27)

b: SET OF CONSTRAINTS(
sgkt + sDERkt + sbkt − dkt

)∗

=

∑
k∈�T

∑
m∈�N

ykmwkmt , (28)

hst =
(
vnom

)2
, {∀ t ∈ �T , ∀ s ∈ �N } (29)

v2 ≥ hkt ≥ v2, {∀ t ∈ �T , ∀ k ∈ �N } (30)

skm ≥ ∥ykm (hkt − wkmt)∥2 ,

{
∀ t ∈ �T ,

∀ km ∈ �L

}
(31)

sgk ≥
∥∥sgkt∥∥2 , {∀ t ∈ �T , ∀ k ∈ �N } (32)

sgk ≥ real
(
sgkt
)

≥ sgk , {∀ t ∈ �T , ∀ k ∈ �N } (33)

sDERk ≥

∥∥∥sDERkt

∥∥∥
2
, {∀ t ∈ �T , ∀ k ∈ �N } (34)

sDERk f DERkt ≥ real
(
sDERkt

)
≥ 0,

{
∀ t ∈ �T ,

∀ k ∈ �N

}
(35)

pk,inj ≥ real
(
sbkt
)

≥ pk,abs, {∀ t ∈ �T , ∀ k ∈ �N }

(36)

SoC+

kt = SoCkt − ϕk real
(
sbkt
)

1t ,

{
∀ t ∈ �T ,

∀ k ∈ �N

}
(37)

SoC+

kt = SoCkti − ϕk real
(
sbkt
)

1t ,

{
∀ t = ti,
∀ k ∈ �N

}
(38)

SoCkt = SoCkf ,
{
∀ t = tf , ∀ k ∈ �N

}
(39)

SoC ≥ SoCkt ≥ SoC,
{
∀ t ∈ �T , ∀ k ∈ �N

}
(40)

sbk ≥

∥∥∥sbkt∥∥∥2 , {∀ t ∈ �T , ∀ k ∈ �N } (41)∥∥∥∥( 2wkmt
hkt − hmt

)∥∥∥∥
2

≤ hkt + hmt ,
{

∀ t ∈ �T ,

∀ k,m ∈ �N

}
(42)

wkmt = w∗
mkt . {∀ t ∈ �T , ∀ km ∈ �L} (43)

Note that this model is convex, so its global optimum can
be ensured.

B. INCORPORATING UNCERTAINTY INTO THE MOD
MODEL
The dynamic nature of demand and the variable character-
istics of primary DERs pose challenges for the operation
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of electrical distribution systems. The inherent uncertainties
associated with these factors require sophisticated optimiza-
tion approaches, including stochastic programming [51],
[52], [53], chance-constrained optimization [54], and robust
optimization [55], [56]. Stochastic and chance-constrained
approaches often necessitate a thorough understanding of
the probability distribution function for uncertain parameters,
which may not be readily available in real-world scenarios.
Conversely, robust optimization stands out because it does not
require explicit knowledge of probability distribution func-
tions, offering computational manageability and a practical
appeal [57], [58].
To implement robust optimization, it is necessary to create

a new set that contains the expected mean values of the
demand and the available energy factor, along with their
corresponding deviations. The new set of uncertainties (�U )
is represented as follows:

�t
U (ūt , ût )

:=

{
ut ∈ R|�N |

: ukt = ūkt + ûkt
(
θ+

kt − θ−

kt

)
,

θ+

kt + θ−

kt ≤ 1, {∀ k ∈ �N }

}
, (44)

where θ+

kt and θ−

kt correspond to binary variables used to
incorporate the uncertainties into the MOD model; and ū
represents the expected mean values of the demand and the
available energy factor during period t , while ût corresponds
to their corresponding deviations.

The proposed robust model is solved using a two-stage
strategy known as min/max optimization, where the first
stage minimizes a cost function f f (x) and the second stage
maximizes a cost function f s(x, y, u) that incorporates
uncertainties to generate the worst-case scenario. min/max
optimization can be formulated as follows:

min
x
f f (x) + max

u∈�U

(
f s(x, y, u)

)
,

subject to hf (x) = 0,

gf (x) ≤ 0,

hs(x, y, u) = 0,

gs(x, y, u) ≤ 0, (45)

where x is the vector of the decision variable for the first
stage; f f (x), hf (x), and gf (x) denote the objective function,
the set of equality constraints, and the set of inequality
constraints for the first stage, respectively; f s(x, y, u),
hs(x, y, u), and gs(x, y, u) correspond to the objective
function, the set of equality constraints, and the set of
inequality constraints for the second stage, respectively; and
y is the vector of decision variables for the second stage.

The proposed robust optimization for the MOD model can
be easily solved by dividing it into two stages, as outlined
in (45). Initially, the first stage computes the decision
variable x related to MOD scheduling without incorporating
uncertainties. Although the line current flows are determined
at this point, they do not reflect real values and will be
fine-tuned in the next stage, which takes a set of uncertainties
into account. In the second stage, the decision variables y

FIGURE 1. Daily generation, demand, and generation costs applicable to
the IEEE 33-bus grid in the studied scenario (Medellín, Colombia).

and û are computed, and these values are returned to the first
stage, which performs recalculations within the framework
of an iterative procedure until the values of the objective
functions do not change. For more details on this process,
please refer to [59].

IV. DISTRIBUTION NETWORKS UNDER ANALYSIS
Two test systems were used to validate the proposed MOD
model for ESS and RES systems. The first test network
corresponds to an adapted version of the IEEE 33-bus grid for
the daily expected operational profile of an urban distribution
network in Medellín, Colombia. The expected daily demand,
PV generation, and hourly slack generation prices for this
electrical network are depicted in Figure 1.More details about
these curves can be consulted in [26].

The IEEE 33-bus grid is a typical radial distribution
network composed of 32 branches and 33 nodes, operating
with a line-to-ground voltage of 12660 V at the terminals of
bus 1 (i.e., the substation bus). The electrical configuration
of this network is presented in Figure 2, where the ESS and
the RES are also depicted. Note that the ESS correspond to
three batteries located at buses 6, 14, and 31, with nominal
energy storage capacities of 2000 kWh, 1000 kWh, and
1500 kWh, respectively. In addition, the ESS connected
at bus 6 has charging and discharging times of 5 h,
whereas the remaining ESS have 4 h. Furthermore, the PV
sources are situated at nodes 13, 25, and 30, with installed
capacities of approximately 1125 kW, 1320 kW, and 999 kW,
respectively. Finally, the electrical parameters concerning the
peak active and reactive power consumption per node, the
branch impedance, and the maximum thermal currents can
be consulted in [26].

FIGURE 2. Single-line diagram for the first test feeder.
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FIGURE 3. Single-line diagram for the second test feeder.

The second test network was also an adapted version of
the IEEE 85-bus grid, with the same operation profiles as
those used in the first test network (Figure 1). This test system
is composed of 84 branches and 85 nodes, and it operates
at a rated voltage of 11000 V at the substation bus (bus 1).
Furthermore, four RES systems based on PV sources have
been included, each with a rated power of 1.5 MW, located
at nodes 12, 19, 35, and 63. Three battery-based ESS have
been located at buses 8, 34, and 64, with nominal energy
storage capacities of 2000 kWh, 1000 kWh, and 1500 kWh,
respectively. The charging and discharging times of the
batteries are 5 h, 4 h, and 4 h for buses 8, 34, and 64, with
installed capacities of approximately 1125 kW, 1320 kW, and
999 kW. Figure 3 depicts the electrical configuration of the
second test network, where the ESS and the RES are taken
into account.

V. COMPUTATIONAL VALIDATION
All the numerical validations of the proposed MOD approach
were conducted using the MATLAB software (version
2023b). These validations were performed with Yalmip (ver-
sion R20230622), a toolbox for modeling and optimization,
and the Gurobi solver (version 10.0.3) [60], [61] on a PC
with a 13th Gen Intel(R) Core(TM) i7-13650HX 2.60 GHz
processor, 64.0 GB RAM, and a 64-bit version of Microsoft
Windows 11 Home.

A. RESULTS FOR THE IEEE 33-BUS NETWORK
To assess the efficacy of the proposed optimization approach
in the IEEE 33-bus grid when compared to literature reports,
three analyses were conducted. The initial analysis dealt with
a single-objective function for operating ESS with unitary
and variable power factors. Subsequently, a multi-objective
analysis was conducted, also focusing on the unity power
factor. The third analysis incorporated variable power factors
and addressed uncertainties.

1) SINGLE-OBJECTIVE ANALYSIS
The single-objective analysis considered two possible oper-
ating conditions for the RES and the ESS. In the first case,

a comparative study with the solutions reported in [26] was
carried out, which correspond to metaheuristic optimizers
considering a unitary power factor operation. The reported
algorithms were the continuous genetic algorithm (CGA), the
parallel versions of the particle swarm optimizer (PPSO), and
the vortex search algorithm (PVSA). The second simulation
case involved the possibility of operating the RES and the
EES while considering variable power factors. Note that no
uncertainties were included in this simulation.

Table 1 presents this comparative analysis and the unitary
and variable power factor solutions reachedwith the proposed
second-order cone equivalent models (SOCEM), which, for
the sake of simplicity, are called SOCEM1 and SOCEM2.
In Table 1, the base case refers to an operation utilizing
maximum power point tracking for the RES while the ESS
are out of service.

TABLE 1. Comparative deterministic analysis for the RES and the ESS in
the IEEE 33-bus network.

The numerical results in Table 1 reveal that:
i. SOCEM1 outperforms the best result in the literature,
i.e., the PVSA reported by [26]. The daily expected
improvement in the economic objective function value
is about 101.3602 dollars per day of operation when
the ESS are dispatched, and about 2.5005 dollars per
day of operation in contrast with the PVSA’s optimal
solution (in the case of the daily energy losses; these
improvements were 106.7719 and 4.3974kWh/day,
respectively). Note that, even though the difference
between the PVSA and SOCEM1 is minimal, the main
advantage of the proposed optimization approach is that
it always ensures the same numerical results for the same
input data, which is not the case for the metaheuristic
optimizers, given their stochastic nature.

ii. The CGA and the PPSO got stuck in local optima.
However, as previously mentioned, this behavior is
expected in metaheuristic optimization, since the ana-
lyzed problem involves three ESS. This means that, for
a daily period of study, divided into 1 h periods, the
number of variables is 72, which is a high dimension
to be treated with metaheuristics, especially when they
are time-coupled, as observed in Equations (13)–(15).

iii. The addition of variable power factor capabilities to
SOCEM2 shows that, compared to SOCEM1, additional
gains of about 130.7030 dollars per day of operation
and 1106.6832 kWh/day can be reached. These results
confirm that using the power electronic converters
interfacing RES and ESS to inject reactive power
into distribution networks helps with energy losses
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dynamically, as expected, given their local reactive
power compensation properties. In addition, these
reactive power injections also reduce the amount of
energy required from the terminals of the substation to
supply all loads.

To demonstrate the effectiveness of SOCEM2, the exact
formulation of the EMS was implemented in the GAMS
software, using the large-scale interior point optimizer
(IPOPT) [62], and the results were compared against the
second-order cone formulation presented by [47] and the
semi-definite programming approach in [63]. All these
comparisons confirmed that the solutions reported in Table 1
correspond to the global optimum for the single-objective
function analysis, i.e., 6766.99 USD and 1266.72 kW.

2) MULTI-OBJECTIVE ANALYSIS WITH UNITARY POWER
FACTOR
In this simulation, the best metaheuristic optimizer in
Table 1 (PVSA) was selected to construct the Pareto
front via the weighting-based optimization approach. The
weighting factor ω was set between 0 and 1, using steps of
about 0.1. The normalization factors,i.e., COF1 and COF2 ,
were 2, 484.57466 kW and 6, 999.05300 USD, respectively.
Figure 4 presents the comparative Pareto front for the
proposed convex approach and the PVSA.

FIGURE 4. Pareto Front comparison for SOCE model and PVSA algorithm. .

The numerical behavior depicted in Figure 4 allows
observing that:
i. The proposed SOCEM allows for an improved Pareto

front when compared to the PVSA approach, since all
the solutions are near the origin of the coordinates.
However, both optimization methods can be regarded
as adequate. Nevertheless, solution repeatability is only
attributable to the proposed convex approximation. The
PVSA can converge to a different set of solutions
with each execution, given the random nature of
metaheuristics.

ii. The extreme solution obtained when the ω factor is set
as zero is (2543.24, 6897.56) for the SOCEM, while
the PVSA reaches (2596.47, 6897.59), confirming that,
in both cases, the optimal solution for minimizing the

energy OF2 is obtained by the SOCEM and PVSA. The
PVSA improves the numerical solution obtained during
the single-objective function analysis (Table 1), but this
solution is very similar to the global optimum foundwith
the proposed model.

iii. The extreme solution when the ω factor is set as one is
(2373.43, 7017.08) for the SOCEM, while the PVSA
approach reaches (2377.52, 7002.70). As expected,
these results confirm the SOCEM’s ability to ensure the
global optimum for OF1, while the PVSA, as reported
in Table 1, continues to get stuck in local optima.

It is worth mentioning that the variations in the Pareto
front extremes are associated with the multi-modal nature
of the MOD, as there are multiple solutions (combination of
decision variables) that can provide the same global optimum
for one of the objective functions, yielding different results
when the other objective function is evaluated.

If a distribution company is interested in selecting one of
the solutions from the Pareto front, the 30◦ and 60◦ criteria
can be applied by generating the area between these angles
from the origin of the coordinates. The solutions obtained
through this procedure are reported in Table 2.

TABLE 2. Central solutions in the Pareto front using the 30◦ to 60◦

criteria.

Note that, for both solution methods, there is a clear
compromise: improving one objective function may worsen
the other. Nevertheless, regarding OF2, both solutions are
better for the SOCE approach, and only in the case of OF1 is
the first solution of this model better. The best result for
solution 2 is reported by the PVSA. Notwithstanding, with
the proposed approach, a better distribution of solutions in
the Pareto front can be obtained by reducing the ω-factor
steps without compromising the possibility of finding the
global optimum. This does not apply to the PVSA, given its
metaheuristic nature.

3) MULTI-OBJECTIVE ANALYSIS WITH A VARIABLE POWER
FACTOR
Now, in order to validate the MOD in the first test system,
two simulation scenarios are considered:
i. S1: The deterministic MOD, considering a variable

power factor operation for the RES and ESS.
ii. S2: The robust MOD, considering a variable power

factor operation for the RES and ESS while including
uncertainties in solar generation and demand profiles.

Note that these simulations are only presented for the
proposed SOCE approach, as it exhibited better numerical
results than the metaheuristic techniques.

Figure 5 depicts the Pareto front of the MOD model,
wherein ω is varied between 0 and 1 in steps of 0.01.
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It is important to mention that scenario S2 uses the same
normalized coefficients as the deterministic case, i.e.,COF1 =

1, 478.1476 kW and COF2 = 6, 847.943 USD.

FIGURE 5. Pareto Front for scenarios S1 and S2.

Based on Figure 5, it can be concluded that:

i. The incorporation of uncertainty into the MOD model
leads to increased objective function values. This
highlights the significant influence of demand and DER
energy availability. It is crucial to note that robust
optimization aims to find a solution that can withstand
adverse conditions, ultimately producing a conservative
optimal solution. S2 yields higher objective function
values with respect to the deterministic optimization
model.

ii. If ω = 1 (see red circle in Figure 5), OF1 increases by
approximately 14.93$ in S2 when compared to S1. This
increase causes OF1 to go from 1266.72210 kWh/day
to 1455.8437 kWh/day, resulting in additional energy
losses of 189.1216 kWh/day. Meanwhile, OF2 increases
by around 7.85% when comparing the robust scenario
against the deterministic one. This comparison shows
that the daily operating costs increase byUSD 537.9742.

iii. For the case where ω = 0 (see blue circle in
Figure 5), OF2 increases by approximately 7.90%
in the robust scenario (S2) when compared to the
deterministic one (S1). This results in an increase from
USD 6766.98979 to USD 7301.8364 per day (OF2),
leading to additional daily operating costs of USD
534.8466. At the same time, OF1 increases by around
11.13% for S2 with respect to S1. This modification
leads to a daily increase of 164.5178 kWh in the energy
losses (S2).

iv. OF1 exhibits significant variations in the Pareto front for
the deterministic and the robust case (see the blue circles
in Figure 5). These variations are 15.29% and 13.94%
for S1 and S2, respectively.

v. Any solution within the deterministic model and includ-
ing an uncertainty of 5% or less in the demand and/or
available energy of theDERwill fall within the gray box.
This allows the utility to measure its operating costs or

energy losses on a daily basis, thus facilitating decision-
making.

B. RESULTS FOR THE IEEE 85-BUS NETWORK
This section evaluates the performance of the robust SOCEM
in the second proposed test network. A battery model was
used which incorporates the power losses during charging
and discharging. In this vein, the set of constraints presented
from (36) to (38) must be modified as follows:

0 ≤ pkt,inj ≤ pk,injykt , (46)

0 ≤ pkt,abs ≤ pk,abszkt , (47)

SoC+

kt = SoCkt − ϕ

(
ηakpk,abs − −

1
ηok
pk,inj

)
1t , (48)

SoC+

kt = SoCkti − ϕ

(
ηakpk,abs −

1
ηok
pk,inj

)
1t , (49)

real
(
sbkt
)

= pk,inj − pk,abs, (50)

0 ≤ ykt ≤ 1, (51)

0 ≤ zkt ≤ 1, (52)

ykt + zkt ≤ 1, (53)

where pkt,inj and pkt,inj represent the active power injected and
absorbed by the battery system connected at node k during
period t; ykt and zkt are auxiliary variables representing the
charging and discharging states of the battery system at node
k during period t; and ηak = 0.85 and ηik = 0.9 correspond
to the efficiency rate of the battery system at node k during
period t during charging and discharging. For more details on
this model, refer to [64].

In order to validate the MOD in the second test system,
three simulation cases were considered:
i. C1: The deterministic MOD, considering a variable

power factor operation for the RES and ESS.
ii. C2: The robust MOD, considering a variable power

factor operation for the RES and ESS while including
uncertainties in solar generation and demand profiles.

iii. C3: This case is similar to C2, albeit with the addition
of the energy losses of battery systems, as described
in (46)–(53).

Figure 5 illustrates the Pareto front for the second test
system, wherein ω varies between 0 and 1 in steps of 0.01.
It is important tomention thatC2 andC3 are normalized using
the same coefficients ofC1, i.e.,COF1 = 1, 503.8585 kW and
COF2 = 4, 285.6993 USD.
From Figure 6, it is possible to infer that:
i. Similarly to the results shown in Figure 5, the incor-

poration of uncertainty into the MOD model results
in higher objective function values, emphasizing the
impact of demand and DER energy availability. Robust
optimization aims to find a solution that can withstand
adverse conditions, ultimately leading to a conservative
optimal outcome. Furthermore, including the energy
losses of the batteries reduces the efficiency of the test
system. Therefore, the MOD model produces higher
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FIGURE 6. Pareto Front for C1, C2, and C3.

objective function values for C3 than for C2, which is
a logical result.

ii. For ω = 1 (as indicated by the red circle in
Figure 6) in C2, OF1 increases by about 14.46%.
Thus, the energy losses go from 1503.8585 kWh/day
to 1721.3164 kWh/day, i.e., 217.4579 kWh/day when
compared to C1. When the battery energy losses
are included, OF1 increases by approximately 1.0%,
indicating that this aspect does not have a significant
impact on the daily operation of the test system. As for
OF2, C2 and C3 show increases of about 6.30% and
6.44% when compared to C1, which is equivalent to
operating cost increments of USD 431.4204 and USD
441.0075 per day.

iii. For ω = 0 (as indicated by the blue circle in Figure 6),
OF2 increases by approximately 5.88% and 6.84% in
C2 and C3 when compared to the deterministic case.
This results in in a daily operating cost increase of USD
402.6590 and USD 468.3993 per day. At the same time,
OF1 increases by around 14.10% and 14.64% for cases
C2 and C3. This modification leads to daily increases of
212.0440 kWh and 220.1648 kWh in the energy losses
of C2 and C3, respectively.

iv. The inclusion of battery energy losses causes no
significant change in the Pareto front for C2 and
C3. These changes are lower than or equal to 1%
in both objective functions in both cases, implying
no significant effect on the performance of the MOD
model.

v. Any solution in C1 that incorporates an uncertainty of
±5% or less regarding the demand and/or the available
energy of the DER will be contained in the gray box in
Figure 6. This allows the utility company to monitor its
daily operating costs or energy losses, thereby aiding in
decision-making.

Finally, Figure 7 illustrates the minimum, maximum, and
average computation times for C1, C2, and C3. These times
were obtained by running the MOD model 100 times with
ω = 0.5. Note that the deterministic case requires the shortest
simulation time. This can be attributed to the simplicity of

FIGURE 7. Computation time for C1, C2, and C3.

C1 compared to the others, as it involves fewer variables and
does not require solving a min /max problem. Conversely,
the simulation times for C2 and C3 increase by factors of
13.65 and 19.61. This is due to the increased complexity and
computational requirements associated these cases, which
involve uncertainties in demand and PV generation.

VI. CONCLUSION
This research addressed the problem regarding the effective
coordination of ESS and RES in distribution grids by
considering a variable power factor operation through the
dynamic active and reactive power control of the power
electronic converters interfacing all DERs. In addition,
a multi-objective dispatch was considered to simultaneously
minimize the expected energy losses and operating costs (i.e.,
energy purchasing and the operating costs of the RES and
the ESS). The main contribution of this research lies in its
analysis of uncertainties in the daily dispatch of DERs (i.e.,
in daily demand profiles and solar generation availability),
within the framework of a multi-objective model. A SOCEM
was formulated to obtain a robust convex optimization
model. The weighting-based optimization approach was
implemented to elaborate the optimal Pareto front. The main
results are summarized below.

i. A single-objective analysis regarding energy losses and
grid operating costs demonstrated that the proposed
SOCP formulation surpasses the results obtained with
metaheuristic optimization algorithms reported in the
literature (i.e., the continuous genetic algorithm and the
parallel versions of the vortex search algorithm and
the particle swarm optimizer), with the main advantage
that, given the convex nature of the SOCP equivalent,
an optimal solution is ensured for the same set of
input parameters, which is not possible with random
optimizers.

ii. Including variable power factor operation capabilities
to the DERs improved the expected daily energy
losses by about 1106.6832 kWh/day and the expected
daily operating costs by about USD 130.7030 when
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compared to the unitary power factor operation scenario
(for the first test system). These results confirm the
effectiveness of dynamic reactive power compensation
and its application to distribution networks in order to
enhance voltage profiles and reduce energy losses, with
the latter being directly linked to the expected reductions
in energy purchasing costs.

iii The construction of the Pareto front via the weighting-
based optimization approach while considering the
deterministic case and inherent uncertainties demon-
strated that (a) the deterministic operation scenario
provides the lowest admissible objective function values
for the energy losses and the operating costs of the grid;
(b) the addition of uncertainties in renewable generation
and demand provide the highest possible limits for
both objective functions; and (c) the expected final
daily energy losses and grid operating costs will be
contained between the deterministic and robust Pareto
fronts, as a function of the accuracy of the distribution
company’s projection regarding the expected renewable
energy availability and power consumption.

Note that the main limitation of this research corresponds
to the small sizes of the RES and the ESS, as they limit
the potential of coordinating both resources to maximize the
distribution company’s profits. This limitation was evidenced
when the operation of the PV plants was left untouched.
The optimal solution showed that these systems continued to
operate via maximum power point tracking, whichmeans that
the sizes assigned to these RES were not adequately designed
to allow storing surplus energy during solar generation peaks,
whichwould be later used at night when the demand increases
and the resource is not available.

As future work, the following studies could be conducted:
(i) the addition of uncertainties in the expected hourly
price of energy while including residential, commercial, and
industrial demand curves; (ii) the possibility of reallocating
batteries in nodes where additional gains regarding energy
losses and daily operating costs can be obtained; and
(iii) the extension of the proposed MOD model to direct
current distribution networks with monopolar or bipolar
operating configurations.
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