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ABSTRACT Deep neural networks (DNNs) are a type of artificial intelligencemodels that are inspired by the
structure and function of the human brain, designed to process and learn from large amounts of data, making
them particularly well-suited for tasks such as image and speech recognition. However, applications of DNNs
are experiencing emerging growth due to the deployment of specialized accelerators such as the Google’s
Tensor Processing Units (TPUs). In large-scale deployments, the energy efficiency of such accelerators may
become a critical concern. In the voltage overscaling (VOS) technique, the operating voltage of the system
is scaled down beyond the nominal operating voltage, which increases the energy efficiency and lifetime of
digital circuits. The VOS technique is usually performed without changing the frequency resulting in timing
errors. However, some applications such asmultimedia processing, including DNNs, have intrinsic resilience
against errors and noise. In this paper, we exploit the inherent resilience of DNNs to propose a quality-aware
voltage overscaling framework for TPUs, named X-TPU, which offers higher energy efficiency and lifetime
compared to conventional TPUs. The X-TPU framework is composed of two main parts, a modified TPU
architecture that supports a runtime voltage overscaling, and a statistical error modeling-based algorithm to
determine the voltage of neurons such that the output quality is retained above a given user-defined quality
threshold. We synthesized a single-neuron architecture using a 15-nm FinFET technology under various
operating voltage levels. Then, we extracted different statistical error models for a neuron corresponding to
those voltage levels. Using these models and the proposed algorithm, we determined the appropriate voltage
of each neuron (the voltage level of each column of the X-TPU). Results show that running a DNN onX-TPU
can achieve 32% energy saving for only 0.6% accuracy loss.

INDEX TERMS Voltage overscaling, deep neural networks, approximate computing, accuracy, TPU, energy
efficiency, statistical error analysis.

I. INTRODUCTION
Neural networks are complex, flexible, and adjustable com-
putation models that can be trained to solve complex
problems such as speech recognition, computer vision,
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encryption, and security [1]. However, these computational
models require many computing resources having a high
demand for power/energy. Specifically, these requirements
limit the applications on low-end devices such as edge
computers and embedded systems, where there are rigid lim-
itations on the energy budget and computational power [2].
To mitigate these issues, many recent works have proposed
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different energy-efficient hardware accelerators such as Eye-
riss [3] and CREW [4].

The main computation of a neural network model is the
multiply-and-accumulate (MAC) operation done millions of
times in the inference phase. For more efficient performance
of these computations, hardware accelerators designed for
deep neural network (DNN) applications integrate hundreds
or thousands ofMAC units. The tensor processing unit (TPU)
developed by Google is a commercially successful exam-
ple of such accelerators, which is composed of a systolic
array-based architecture that significantly reduces power con-
sumption by lowering memory access count. Google has
deployed these accelerators in its data centers for large-scale
service, where energy efficiency is one of the main concerns,
as well as the thermal design power (TDP) constraints [1].
Also, improving the energy efficiency of these devices is
highly beneficial, and may allow using them on edge devices
and embedded systems for a longer duration.

Approximate computing is a design paradigm that low-
ers the energy consumption and/or area of inherently
error-resilient applications, such as multimedia processing,
machine learning, and data mining [5], in which a reasonable
number of errors is acceptable. Since DNNs have inherent
error resiliency, where the effectiveness of these networks is
often described by their loss or accuracy, they are amenable
to employing the approximate computing for them.

Researchers have developed many different methods to
leverage approximate computing in designs, ranging from the
hardware (like logic simplification [2] and voltage overscal-
ing (VOS) [6]) to the software (like loop perforation [7])
layers. In the VOS technique, the operating voltage of the
system is scaled down without changing the frequency result-
ing in timing errors, where path delays are higher than the
clock period. Since scaling the operating voltage increases
path delays, timing errors occur more often when the distance
between nominal and operating voltage increases [8]. Key
benefits of using VOS technique for approximation compared
to other methods such as LSB truncation, is that this method
requires no hardware redesign and can be configured at run-
time to perform in nominal voltage (i.e., exact operations).
This technique also improves the lifetime of circuits by reduc-
ing voltage effects on aging mechanisms [9]. However, one
of the disadvantages of the VOS method is that it requires
additional circuits such as extra switches and level shifters
(in some situations) to manage the operating condition of the
circuit [9].
As TPU has different dataflow compared to other accel-

erators and heavily relies on data reuse (rather than sending
data to memory and fetch it back), applying VOS technique
on it results in different error behaviors. To show the effect of
employing the VOS on the accuracy and power consumption
of a processing element (PE) of TPU, we simulated a single
PE under different operating voltage levels. The simulation
toolchain of this investigation is discussed in Subsection V-A.
FIGURE 1 (a) shows the internal structure of a PE of the TPU,
composed of a multiplier, an adder, and several registers.

FIGURE 1. (a) Internal structure of a processing element (PE) of TPU,
(b) power consumption decomposition (%) of the components composing
a PE, (c) accuracy and power consumption of a PE for the different
operating voltages.

FIGURE 1 (b) presents the power consumption decompo-
sition of this PE. Finally, FIGURE 1 (c) shows the error
variance and power consumption of a PE for the investigated
voltage levels. Note that for the different investigated voltage
levels, only the operating voltage of the multiplier of the PE
is overscaled. This is due to the large share of the multiplier
on the power consumption of the PE (see FIGURE 1 (b)),
while it offers a predictable behavior of using the VOS on the
overall TPU output quality.

Based on the results, by overscaling the operating voltage
to 0.4 V, where the nominal voltage is 0.8V in the used
15nm FinFET technology, the power consumption of the PE
is reduced about 79% (see pointer ① in FIGURE 1). Thus,
employing the VOS may provide significant power/energy
consumption reduction of TPU. However, employing the
VOS may increase the delay of the circuit, and consequently,
results in some errors due to the timing constraints violation
(e.g., see pointer ② FIGURE 1 (c)). Therefore, to apply the
VOS on TPU under a given threshold of accuracy drop,
a systematic method is required to determine the voltage
levels of the PEs, while the overall accuracy drop is retained
upper than the user-defined quality constraint.

In this work, we propose a VOS-based TPU (X-TPU)
with the ability of dynamic accuracy configuration to provide
various energy and quality of service (QoS) levels. To this
end, first, we present the architecture of X-TPU whose PEs
supports different voltage levels, as well as a modified weight
memory to store the voltage level of PEs corresponding to
the required accuracy level. Next, we assign different voltage
levels to neural network neurons based on their saliency.
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To limit the accuracy drop of the accelerator due to induced
timing errors, we propose a systematic design method that
extracts the error distribution of MAC units under different
operating voltages. Then, this information is used to deter-
mine the operating voltage of each neuron using an Integer
Linear Programming (ILP) method, in a way that the overall
quality of the inference phase remains in a user-defined range.

To summarize, the main contributions of our work are as
follows:

1) Proposing a dynamic quality configurable TPU that
leverages VOS to provide various network accuracy
levels, as well as different energy consumptions.

2) Developing a statistical quality-aware overscaling
framework that leverages an optimization algorithm
to determine each neuron’s operating voltage such the
overall energy consumption of the TPU is minimized,
while the output quality is retained above the user-
defined one.

3) Investigating the aging effects on the lifetime of PEs of
the X-TPU under various voltage levels.

Paper Organization: Section II discusses prior works on
TPUs and approximate Computing. A brief introduction to
DNNs and TPU is noted in Section III, followed by the pro-
posed architecture and framework in Section IV. Section V
presents the simulation setup and final results. Finally, this
paper is concluded in Section VI.

II. RELATED WORKS
This section reviews state-of-the-art works on approximate
computing, and specifically, those works that employed this
computing paradigm for TPUs and machine learning appli-
cations.

A. APPROXIMATE COMPUTING
In recent years, approximate computing has received great
interest for designing energy- efficient digital systems [10],
e.g., leading companies such as Google, Samsung, and IBM
employed this computing paradigm in their experimental
research and commercial products [11]. Different studies
targeting the approximate computing paradigm from the
hardware to software layers have been reviewed in [10].

Hardware-level approximation techniques have been con-
ducted in [12] and [13], primarily targeting DNN applications
to increase energy efficiency and performance. In [14], run-
time configurable approximate hardware challenges such as
error bounding and the required hardware to support the
various quality levels have been discussed, and then, a sys-
tematic design methodology has been proposed to overcome
those challenges for coarse-grained reconfigurable hardware
(CGRAs). An approximate CGRA based on the VOS tech-
nique has been proposed in [9], such that each PE can operate
at different voltage levels. If an application could not leverage
errors, all PEs in CGRA operate in exact operation mode
(i.e., the nominal voltage level). Otherwise, depending on the
tolerable output quality degradation, some PEs can operate on

lower voltages to maximize energy efficiency. To determine
which PEs can operate on what voltage to optimize energy-
accuracy relation, a mapping algorithm based on Integer
Linear Programming (ILP) has been proposed that maps DFG
nodes to certain PE clusters with known operating voltage.
Another approximate reconfigurable architecture for Dadda
multipliers has been proposed in [15] based on the VOS
technique and LSB truncation.

SRAMs show volatile functionality when using aggres-
sive voltage scaling. To mitigate this issue, [16] proposed
a hardware/algorithm co-design methodology that applies
VOS to weight SRAMs using memory adaptive training in
DNN accelerators. In [6], a new architecture called TE-Drop
was proposed for systolic arrays using razor flip-flops. This
architecture is designed to detect timing errors that can be
caused by low operating voltage in a PE. When an error is
detected, the subsequent PE is skipped, and an extra clock
cycle is used to correct the erroneous value of the affected
PE. The authors also proposed an algorithm that adjusts the
voltage under the scaling ratio for each layer of the deep
neural network (DNN) to optimize energy consumption and
accuracy.

The TE-Drop architecture, initially proposed in [6] as a
way to detect and correct timing errors in systolic arrays,
was modified in [17] to prevent computation skipping. This
modification involved the addition of a transition detector
(TD) to each PE. The TD is designed to detect any unexpected
transitions that occur near the end of each clock cycle, and
sends a warning signal to the next PE if such a transition is
detected. Instead of discarding the entire computation of the
subsequent PE, only the corrupted partial product is replaced
with the correct result from the previous PE. This modifica-
tion not only helps to improve the accuracy of the system, but
also allows for more efficient use of resources by avoiding
the need to discard and redo large amounts of computation.

In [12], a method for minimizing the loss of accuracy in
a deep neural network (DNN) model when using a particu-
lar approximate arithmetic unit was proposed. This method
involves the use of a weight replacement function that can
be determined for a pre-trained DNN model and a set of
available approximate arithmetic units. Given an approximate
arithmetic unit as input, the function maps accurate weights
to new approximate values, i.e., the function can take a set of
accurate weights and, using a particular approximate arith-
metic unit, map them to a new set of approximate weights.
In [18], a heuristic algorithm was introduced for optimizing
the performance of systolic arrays in deep neural networks.
This algorithm groups input data sequences of activations
based on their induced delay to the output value, and then con-
figures the PEs in a row of the systolic array to operate at an
optimistic voltage level for each group of inputs. By doing so,
the system is able to operate more efficiently and accurately.
In [19], a low-variance reconfigurable multiplier for systolic
array matrix multiplication unit (LVRM) was proposed that is
capable of operating in three different modes: one exact mode
and two approximate modes.
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The authors also presented a methodology for determin-
ing which operation mode each LVRM should run in based
on a heuristic model of errors, taking into account user-
defined constraints. Thismethodologywas later applied in [2]
and [20].
In [21], VOS has been applied to computing units of the

NVIDIA deep learning accelerator (NVDLA), to increase its
energy efficiency while retaining a user-defined quality con-
straint. In [8], a generic accuracy configurable multiplier was
proposed, which employs VOS at a block level to reduce the
overheads such as control logic and level shifters. A neuron-
level voltage scaling approach for DNNs has been proposed
in [13] based on the error propagation model at both inter-
and intra- layer perspectives. This article assumes that the
error rate of the hardware running a DNN has a linear relation
with the operating voltage. However, we showed it is not
true when applying the VOS technique since the error rate
is heuristic when the hardware operates below the nominal
voltage. Also, per-neuron voltage assignment has been done
through a genetic algorithm. Thus, a clustering algorithm is
used to create optimized voltage islands for neurons to lower
the area and energy.

B. IMPROVING THE EFFICIENCY OF TPU
Google first introduced Tensor Processing Unit (TPU) archi-
tecture. The main idea of this architecture is to compute the
inference phase of a DNN fast and efficiently [1]. Since then,
this architecture has been modified in some ways. As an
example, [4] proposed a modified TPU architecture with a
shared partial product buffer among MACs, which lowers
the number of multiplications by using previously computed
products.

A new algorithm for compressing sparse matrices was
proposed by [22], which utilizes a modified TPU architecture
for efficient performance. Although this algorithm offers ben-
efits such as energy efficiency and performance, it may also
increase fault rates as technology scales. Furthermore, the
widespread use of DNNs and TPUs may pose potential secu-
rity risks andmalware issues. Researchers in [22] showed that
only four units with permanent fault among 64k MAC units
could drop inference accuracy sharply. They have proposed
new techniques called Fault Aware Pruning (FAP) and FAP+,
which rely on pruning. The pruned weights are mapped to
faulty MACs and then modified TPU to bypass a faulty MAC
using a multiplexer. FAP+ also performs a retraining step to
improve the pruned DNN’s accuracy.

To further overcome threats of hardware trojans and fault
injection attacks, [23] presented a toolchain based on the
Interactive Proofs (IP) protocol. The prover in this work itself
can be described as a two-step computation. The first step
is not computationally expensive; thus, it is implemented
sequentially in the modified TPU. The second phase is matrix
multiplication, which can be performed using the available
resources of the baseline TPU (the Matrix Multiplier Unit) to
reduce the area overhead of using this protocol.

Table 1 presents a summary of the key features of the
state-of-the-art VOS-based architectures. Unlike state-of-the-
art works that are not designed for neural networks (such
as [9]) or those optimizing power consumption of the DNNs
in a layer-wise manner (like [6]), in this paper, we aim at
deploying theVOS technique in TPUswhere based on theNN
architecture used, user can determine each neuron’s operating
voltage in order to reduce energy consumption while main-
taining accuracy at an acceptable range without significant
hardware change, retraining or pruning. This also comes with
certain additional challenges, e.g., time complexity of finding
the best solution and extracting error characteristics of the
TPU while running on VOS mode, where we addressed these
challenges for the proposed X-TPU in Section IV. In next
section, we study the preliminaries required to introduce our
proposed X-TPU.

III. PRELIMINARIES
In this section, first, the aging phenomenon and its mecha-
nisms, as well as the impact of VOS on reducing the aging
effects and the delay of circuits are detailed. Then, the DNN
model is discussed. Finally, the structure and functionality of
TPU are presented.

A. AGING MECHANISMS
By shrinking the technology size in the nanoscale era, aging
effects become more important which may affect the sys-
tem reliability. Aging occurs due to different factors, such
as Bias Temperature Instability (BTI), Negative Bias Tem-
perature Instability (NBTI), Hot Carrier Injection (HCI),
Time-Dependent Dielectric Breakdown (TDDB), and Elec-
tromigration (EM) [24]. These mechanisms may change the
characteristics of the transistors, and consequently, impact the
performance and reliability of the circuits. Fortunately, reduc-
ing the supply voltage can mitigate these destructive effects.
Among the aging mechanisms, BTI can directly influence
threshold voltage, where the variation of the threshold voltage
is obtained by [9]

1Vth,BTI ∼= Ae
κ
θ tαEγ

OX f
β (1)

where A, κ, α, β,and γ are technology-dependent constants.
Also, θ, t, and f are temperature, stress time, and duty factor,
respectively. Moreover, EOX is the electric field induced on
the gate oxide defined by [9]

EOX =
VDD − Vth
TINV

(2)

where, TINV is the thickness of the inversion layer. Based
on (1) and (2), aging-caused change in the threshold voltage
(transistor characteristics) is a strong function of the supply
voltage, i.e., lowering the operating voltage (VDD) reduces the
aging effects. In Subsection V-C, (1) is used to evaluate the
aging effect on the threshold voltage changes of the VOS-
based TPU.
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TABLE 1. Comparison of the state-of-the-art accuracy configurable approximate architectures.

B. VOS TECHNIQUE
Voltage overscaling reduces the operating voltage of the cir-
cuits further than the nominal operating voltage determined
by a specific technology scale to achieve higher energy
efficiency, as well as an improved lifetime as discussed in
the previous subsection. However, narrowing the distance
between the operating voltage and threshold voltage increases
the delay in the paths of the circuit, where the circuit delay is
modeled through the alpha power law defined by [9]

TaskDelay ∝
VDD

(VDD − Vth)α
(3)

where α is a technology-dependent constant considered
1.3 for sub-20-nm technologies [9]. Based on (3), using the
VOS technique in circuits designed to operate on nominal
voltage may violate the timing constraints and induce some
timing-related errors in the circuit output. In Section IV,
a systematic method is proposed to determine the voltage
levels of the PEs of the X-TPU, such that the output accuracy
is retained in the range of user-defined quality constraints.

C. DEEP NEURAL NETWORKS
Deep neural networks (DNNs) are computation models that
resemble trees, with a minimum depth of three layers com-
prising the input layer, hidden layers, and output layer.
FIGURE 2 shows structures of two well-known DNNs,
including Fully Connected (FC) and Convolutional Neural
Network (CNN). In CNNs, each Kernel (filter) corresponds
to a neuron in fully connected network. Each node within

these layers is made up of multiply-and-accumulate (MAC)
operations.

Note that the performance of a neural network on a particu-
lar learning task can be influenced by various factors, such as
the architecture of the network, the size of the training data,
the complexity of the task, the choice of activation functions,
and the optimization algorithm used for training. Besides
these, the type of learning task (classification or regression)
may have a significant influence on the performance of the
neural network. In classification tasks, the neural network
is trained to predict discrete labels or categories for input
data. This type of task typically requires the network to
learn complex decision boundaries between different classes.
However, neural networks are well-suited for classification
tasks because they can learn non-linear relationships between
input features and target labels.

In regression tasks, the neural network is trained to predict
continuous values for input data. This type of task typically
requires the network to learn to map input features to output
values. Neural networks can also perform well in regression
tasks because they are capable of learning complex patterns
and relationships in the data. Overall, neural networks can
perform well on both classification and regression tasks, but
the specific performance of a network will depend on the
specific characteristics of the task and how well the network
is designed and trained to handle those characteristics.

Deploying NN models for use in a service entails two
phases: the first phase is the training phase, where the model
parameters are adjusted to fit the application, and the second
phase is the inference phase, where the inputs are propagated
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FIGURE 2. Two studied DNN architectures, a) fully connected (FC) network and b) convolutional neural network (CNN).

through the layers of the model to reach the output layer. The
weights of the model (model’s parameters) are updated dur-
ing the training phase through the backpropagation algorithm.
During the inference phase, the output of the jth neuron in
layer i is calculated by

o(i)
j = g

n(i−1)∑
k=1

W (i)
k,j · o(i−1)

k + b(i)
j

 (4)

where o(i)
j is the output of jth neuron in layer i and w(i)

k,j
corresponds to the weight from neuron j in layer (i− 1) to
neuron k in layer i. Also, g (x) is the activation function of
the layer, where some of the most used activation functions
are sigmoid, softmax, ReLU, and linear.

The quality of DNNs is represented in terms of accuracy
and loss, where the accuracy is only applicable when the
network is a classifier. Also, the most common loss functions
used in DNNs are mean absolute error (MAE), mean-squared
error (MSE), mean relative error distance (MRED), and
cross-entropy (CE), defined by [25]

MAE =

∑n(L)

i=1

∣∣∣ti − o(L)
i

∣∣∣
n(L)

(5)

MSE =

∑n(L)

i=1

(
ti − o(L)

i

)2
n(L)

(6)

MRED =

∑n(L)

i=1

∣∣∣∣ ti−o(L)
i

ti−o
(L)
t

∣∣∣∣
n(L)

(7)

CE = −

n(L)∑
c=1

Cc log
(
o(L)
c

)
(8)

where t and o are the target and output values, respectively.
Also, L is the network’s last layer, and C is the class number
to which that specific output belongs.

D. TENSOR PROCESSING UNIT
During the inference phase, DNNs primarily perform matrix
multiplications, which are a sequence of MAC operations.

FIGURE 3. Architecture of TPU.

However, these matrix multiplications are computationally
intensive and require significant resources in terms of clock
cycles and memory operations. Systolic arrays are an effec-
tive solution to optimize those operations and take advantage
of data reusability, as they have been shown to provide sig-
nificant benefits [1]. The architecture of TPU is shown in
FIGURE 3.

TPU, at its core, is a systolic array of MAC units formed
as a 2D grid that manages the data flow in a way that data is
being fetched frommemory (weight or activation) in multiple
clock cycles. TPUs can be designed to operate in weight sta-
tionery (WS) or output stationery (RS) modes. In WS mode,
weights are prefetched from weight memory into intermedi-
ate weight registers in each PE. Then activation values stream
from left to right. In the systolic array architecture, partial
sums are calculated by each PE and then passed to the next
PE in a cascading manner. This allows for the efficient use of
parallel processing as the calculation of one PE contributes to
the next.

Each PE located in the same column of the array shares
the same input data, and the results obtained from a PE are
passed down to the next PE located in the same column. Thus,
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FIGURE 4. System overview of the proposed X-TPU framework.

when a PE completes its calculations, it passes on the partial
sums obtained to the PE located below it in the same column,
enabling a smooth and seamless flow of data and computation
throughout the array. This cascading effect of computation
helps to speed up the overall processing time and leads to
more efficient use of the system’s resources.

For a TPU with a systolic array with the size of N ×N , the
first results of the multiplication of a vector with n elements
are ready after n clock cycles (2n if the weight prefetch
phase is included), and the complete multiplication result is
calculated after 2n cycles (3n if the weight prefetch phase
is included). Both weights and activations stream into the
systolic array at once with one clock delay in RS mode. The
result of each MAC unit is accumulated in the output register
of that unit. If the multiplicative arrays are larger than the
systolic array, the partial sums are collected in an accumulator
unit, waiting for the remaining results.

IV. THE PROPOSED VOS-BASED APPROXIMATE TPU
(X-TPU)
First, we present a quick overview of our proposed runtime
quality adjustable VOS-based TPU (X-TPU) architecture.
Then, we describe our proposed framework to utilize the
capabilities of X-TPU tominimize energy consumptionwhile
retaining the user-defined accuracy bounds. FIGURE 4 pro-
vides an overview of our proposed methodology, illustrating
the flow from the user inputs to optimized parameters and

the validation output. In this designed system, the inputs
are: user-defined quality constraints, available architecture
parameters (i.e., systolic array size and available voltage
levels), and the application, for instance, a neural network
model that should run on TPU. These inputs are then passed to
the next stages for error analysis and evaluations. Hardware
parameters and characteristics are passed to an architecture
simulator to analyze the impact of voltage overscaling on the
output. After completing this step, which involves extracting
the saliency of neurons from the NN model parameters, the
results are then passed to an optimization procedure.

In this procedure, by selecting the appropriate voltage
level of each neuron, the energy consumption of the TPU
is minimized, while the NN output quality is retained above
the user-defined quality threshold. The output of this opti-
mization step consists of a set of <neuron, voltage> tuples.
These tuples are encoded and added to the model’s weights,
and then, during runtime on the hardware, these encoded
values determine the operating voltage of each neuron.
Finally, the output quality of the NN is assessed. In the fol-
lowing, the proposed X-TPU architecture and the method of
selecting the operating voltage level of neurons are detailed.

A. THE PROPOSED X-TPU ARCHITECTURE
The baseline TPU performs the forward pass (inference oper-
ation) on an 8-bit fixed-point quantized pre-trained DNN
model that has parameters (weights) varying from -128 to
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FIGURE 5. Distribution of weight values in a simple FC neural network
with one hidden layer of 128 neurons and the output layer of 10 neurons
trained on the MNIST dataset.

127. Lower values have less impact on the accuracy of the
model output. For example, zero values can be trimmed off
from the model without losing any information in the calcula-
tions [26]. As an example, FIGURE 5 shows the distribution
of weight values in a simple FC network with a hidden layer
composed of 128 neurons, and an output layer consisting of
10 neurons, trained on the MNIST dataset.

As shown in this figure, a considerable amount of the
weights has zero value (see pointer ③ in FIGURE 5). Con-
sidering that each weight in the model occupies one PE in
the TPU, zero value weights, or the ones with less impact
on the output neurons (i.e., the non-important neurons) may
waste energy. In the case of sparse arrays, this wasted energy
is dominant [27].

X-TPU provides mechanisms to assign lower operating
voltages to such non-important neurons to eliminate this
excess power usage. However, the baseline TPU is not
capable of applying different voltages to different PEs of
the MXU. Therefore, it is required to modify the baseline
architecture to support VOS. Also, the modified architecture
should be flexible to model change (the model which runs on
the TPU).

As mentioned in Section I, in the proposed X-TPU, the
VOS technique is applied to the multipliers of PEs according
to FIGURE 6 (a). Because, as shown in FIGURE 1 (b),
a large share of power consumption of the PE (about 56%)
belongs to the multiplier, as well as applying the VOS only
to the multipliers provides a predictable accuracy drop on
the TPU output quality. In detail, applying the overscaled
voltage to the whole PE can cause the error of one PE to
propagate and accumulate with other PE’s errors, as PEs are
chained together. This chained accumulation may result in an
erratically huge output error, which makes the error modeling
of the X-TPU more difficult. Furthermore, this accumulation
induces a correlation between errors of PEs. Overall, in order
to eliminate these correlations and accumulation of errors, the
VOS technique is only applied to the multiplier of PEs.

Note that each column in the TPU represents a neuron
in a fully connected network or a kernel in a CNN. Thus,
the runtime voltage selection is made possible by appending
selection bits to the MSB bits of the weights stored in the
weight buffer. Also, the number of selection bits depends on
the total number of provided voltage levels ‘vn’. As an exam-
ple, to support four voltage levels, including three overscaled
(approximate) voltage levels and a nominal (exact) one, two
selection bits are added to the weight register. Also, as shown
in see FIGURE 6 (a), by applying the VOS to the multipliers,
each PE includes two regions with different operating volt-
ages: the approximate region with a low operating voltage
(VDD_Low), including the multiplier, and the exact region
with a high operating voltage (VDD_High), composed of the
other components of the PE such as adder and registers. Note
that, for driving the components operating in the VDD_High
(i.e., the adder) by the low voltage components (i.e., the
multiplier), level shifters should be employed at the outputs
of low voltage components. In detail, level shifters match
the operating voltage of outputs of the approximate region
to the exact voltage level. Schematic of the used level shifter
is shown in FIGURE 6 (b) by the LS component, where its
internal circuit is represented in FIGURE 6 (c).

FIGURE 7 shows the architecture of the X-TPU that
includes the components required to provide the VOS-based
runtime adjustable quality, including voltage switch boxes
that are added to each column of the TPU, the bit schema
of the weight memory that is designed to operate with volt-
age switch boxes, and also level shifters. Thus, X-TPU is
designed to be capable of applying different voltages to dif-
ferent columns of the PEs as well as the flexibility of voltage
mapping (reconfigurability) through voltage selection via
voltage selection bits embedded in weight memory.

Finally, to utilize the runtime quality adjustable feature of
the proposed X-TPU architecture, it is necessary to establish
a method for translating user-defined quality degradation
constraints into the voltage levels of neurons, specifically the
voltage levels of columns in the X-TPU array. It should be
noted that this translation process is carried out while min-
imizing energy consumption. Thus, in the next subsection,
we extract a statistical error model for a PE under various
voltage levels, considering the voltage-induced errors.

By utilizing these extracted models and determining the
sensitivity of each neuron to the output quality, we reach a
systematic design method that enables us to determine the
operating voltage of each neuron, ensuring that the network’s
output quality remains within an acceptable range.

B. STATISTICAL ERROR MODELING OF PROCESSING
ELEMENTS
To comprehend the implications of employing the VOS tech-
nique on the X-TPU, it is crucial to evaluate the effect of
different operating voltages applied to each column of the
X-TPU on the magnitude of errors at the DNN’s output.
Applying the VOS exclusively to the multiplier, eliminates
error correlation between PEs. The computations performed
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FIGURE 6. (a) The approximate region of the PE as being applied in simulations, (b) level shifters added to the PE, (c) level shifter circuit diagram.

FIGURE 7. X-TPU architecture and the modified weight memory bit
representation to support voltage selection using the voltage selection
bits.

in each column of the TPU can be represented by:

Oc =

kc∑
i=1

Wc,i · Ai (9)

where Oc is the output of column c. Wc,i and Ai are weight
and activation values of ith PE in column, respectively, and
also, k is the number of PEs in a column. By considering the
operation errors, (9) can be written as:

Oc + ec =

kc∑
i=1

(Wc,i · Ai + ec,i) (10)

where ec,i and ec are error of ith PE in column c and total
error generated in column c, respectively. As mentioned in
Subsection III-B, operating at a voltage lower than the nomi-
nal one may introduce timing errors.

According to the simulation results presented in
Subsection V-B, these errors exhibit a normal distribution
when the VOS is applied only to the multiplier of PE. Given

this assumption and considering that the errors in each PE
are not correlated with the errors in the subsequent PEs
(cov

(
ePEi , ePEi+1

)
= 0), and by using (10), we can formulate

the error generated in each column by:

ec =

k∑
i=1

ei = k · e (11)

where e is a normally distributed random variable corre-
sponding to the output error of each PE. Also, k is a constant.
Thus, the expectation and variance of the errors can be calcu-
lated as:

E(ec) = k · E(e) (12)

Var(ec) = k · Var(e) (13)

In the next subsection, these equations are used to calculate
the error sensitivity (ES) of neurons.

C. ERROR SENSITIVITY OF NEURONS
Each neuron within a network has a varying impact on the
output results, depending on its weight values. Furthermore,
the architecture of the neural network model also affects the
saliency of the neurons [26]. To determine this saliency, first,
the ES of all neurons is computed by injecting noise based
on statistical data derived from equations (12) and (13) into
each neuron of the trained model. Subsequently, the ES of the
output in relation to each neuron can be calculated by:

ES(l)
i =

MEDnet

e(l)i
=
MEDnet

k(l)
i · e

(14)

where ES(l)
i is the error sensitivity of ith neuron in layer l, and

k(l)
i is the number of PEs in neuron i of layer l.
It is worthy to note that the forward pass equation shown

in (4) can also be used to calculate the ES of the neurons
to prevent heavy computations of the (14), i.e., by using (4)
and (10), and for a fully connected model, the error of each
output neuron can be calculated by:

o(L)
i + eoi = f

(
w(L)
i · g(w(L−1)

· · · · · p
(
w(0)

· x + e(0)
)
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+ . . . + e(L−1)) + e(L)
i

)
(15)

eoi = f
(
w(L)
i · g(w(L−1)

· · · · · p
(
e(0)

)
+ . . . + e(L−1)) + e(L)

i

)
(16)

Then, the ES of each neuron can be evaluated by:

ES(l)
ji =

eoi
k(l)
j · e

(17)

where i is the index of the output neuron, and j is the index
of the intended neuron in layer l. The calculated ES can be
effectively utilized to identify the neurons within the NN
model that have lesser impact on the error. Consequently,
these neurons can be selected for operating on overscaled
voltage. The ES can also be used for determining which
neurons can be pruned, as well as identifying any redundant
or unnecessary neurons for a given task.

D. VOLTAGE ASSIGNMENT OF NEURONS
After determining the ES of neurons for the different oper-
ating voltages with the proposed formulas in the previous
subsection, now, the operating voltage of all neurons should
be selected. This involves determining the operating volt-
age of neurons in a manner that minimizes the total energy
consumption while still satisfying the user-defined quality
constraint. However, exhaustively exploring all possible com-
binations of voltages is an NP-Complete problem, making
it infeasible, especially for models with a large number of
neurons [6]. To address this challenge, we propose an integer
linear programming (ILP) based approach, which guarantees
to find the optimum solution, rather than the other optimiza-
tion algorithms like evolutionary algorithms (e.g., genetic
algorithm) that cannot guarantee the optimal solution for the
zero/one problems [28]. With the ILP approach, optimiza-
tion is achieved by defining constraints that consider quality
requirements, along with an objective function. In our case,
the objective is to minimize the energy consumption of the
TPU while ensuring that the loss value remains at the user-
defined level, as follows:
Objective:

Minimize
∑

n∈{neurons}

En (18)

Constraint:

Qo < 1 − QD_UB (19)

where En is the energy consumption of the neuron n. Also,
Qo and QD_UB are the output quality and user-defined out-
put quality degradation upper bound, respectively, which are
numbers between 0 (lowest quality) and 1 (highest quality).

Assuming v different voltage levels are supported by the
X-TPU, to force each neuron to operate in only one voltage
level, the following constraint is declared:

∀n ∈ {neurons} ,
∑

v∈{available voltages}
xn,v = 1 (20)

where xn,v is a binary variable, which is set to 1 when the
neuron n is operating in voltage v. Note that xn,v is a member
of set X , where X is defined as

X =
{
xn,v|n ∈ {neurons} , v ∈ {available voltages}

}
(21)

The energy consumption of a digital circuit is directly
proportional to the square of the operating voltage, denoted as
E ∝ v2DD [29]. Consequently, to minimize energy consump-
tion, it is advantageous to minimize the operating voltage of
the submodules within the circuit. Accordingly, the objective
function can be formulated as the minimization of the sum of
the operating voltages of all neurons, considering that each
module can operate at different voltage levels. Thus, in our
case, the objective function can be expressed as follows:

minimize
∑

n∈{neurons}

∑
v∈{voltages}

xn,v · v (22)

The quality of a neural network can be described by provid-
ing the accuracy for classification purposes, or the loss value
of the network obtained from various loss functions such as
MSE. To this end, (6) can be rewritten as:

MSE =
1
n

∑
i∈{output neurons}

e2i =
1
n

∑ (
yi − ŷi

)2 (23)

where yi and ŷi are predicted and true output for the ith neuron,
respectively. Also, ei is the error for the ith output neuron.
In the case E (ei) = 0, for example when the occurrence and
intensity of error is stochastic with normal-like distribution
and zero bias, MSE is equivalent to the variance of the output
errors:

var (e) =
1

n− 1

∑
(ei − ēi)2

ēi=0
H⇒

1
n

∑
e2i (24)

Note that in our work, since 1,000,000 uniform random
numbers (instead of all possible inputs which were too many)
were used, in eq. (24), we have used (n – 1) instead of n.
In these cases, for calculating the variance, instead of n,
(n – 1) is used in the denominator, which this modification
is called Bessel’s correction [34].

In detail, the equation E (ei) = 0 holds true when the
expected value of the error for the ith output neuron is zero.
This implies that, on average, the predictions made by the
neural network for the ith output neuron are equal to the true
values. This condition is typically satisfied when the neural
network is well-calibrated and has been trained on a suffi-
ciently large and representative dataset.

The error variance of the NN model is calculated by:

Var (net) =

∑n(L)

i=1

(
ó(L)
i − ¯́o

)2
n(L) − 1

(25)

where ó(L)
i and ¯́o are erroneous output and desired output,

respectively. Also, L is the total number layers in the NN
model. Assuming the voltage-induced errors in the model
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(ó(L)
i = o(L)

i + eoi ), (25) can be rewritten as:

Var (enet) =

∑n(L)

i=1 eoi
(
eoi + 2

(
o(L)
i − ō

))
n(L) − 1

(26)

Finally, we use the variance of the output neurons as a
quality metric of the neural network model. Thus, based on
the statistical error model of the X-TPU (see Eq. (17)), the
quality constraint shown in (19) can be formulated as follows:∑

o∈{outputneurons}

∑
v∈{voltages}

∑
n∈{neurons}

var (ESn · en)

· xn,v < MSEUB (27)∑
o∈{outputneurons}

∑
v∈{voltages}

∑
n∈{neurons}

ES2n

· var (en)v · xn,v < MSEUB (28)∑
o∈{outputneurons}

∑
v∈{voltages}

∑
n∈{neurons}

ES2n · kn

· var (e)v · xn,v < MSEUB (29)

where MSEUB is the user-defined MSE increment upper
bound (QD_UB). It is worth noting that in neural network
models which use linear activation functions, ES can be
replaced by the corresponding L2 norm of the neuron’s
weights denoted by ∥W∥2 in (29). By solving the ILP for-
mulations presented in equations (20), (22), and (29), the
voltage level of each neuron within the neural network model
is determined. This is achieved by obtaining the variable xn,v
for each neuron. Subsequently, the set of voltages correspond-
ing to each neuron is embedded into the model’s weights,
as described in Subsection IV-A. These embedded voltage
values then determine the operating voltage of each column
(PE) within the X-TPU. The selection of the operating volt-
age for each column is based on the tolerable quality loss
(QD_UB), allowing for on-the-fly adjustments.

V. RESULT AND DISCUSSION
In this section, first, the simulation setup for evaluating the
proposed framework is discussed. Then, error distributions of
the PEs for the various voltage levels are analyzed, and also,
the X-TPU framework is examined for the MNIST dataset.
Finally, the aging effect on the X-TPU architecture is studied.

A. SIMULATION SETUP
FIGURE 8 shows the developed tool flow and simulation
setup for X-TPU synthesis and accuracy analysis. TheX-TPU
architecture was implemented hierarchically using Verilog
HDL. The HDL codes were compiled and verified using
ModelSim. Also, to characterize the behavior of the X-TPU
architecture under different overscaled operating voltages
(i.e., 0.5V, 0.6V, and 0.7V), different technology libraries
corresponding to those voltages levels are generated based on
the 15-nm FinFET Open Cell Library (OCL) technology [30]
and by using Cadence Liberate [31]. Note that the used 15-nm
FinFET library with the nominal voltage (i.e., 0.8V) is used
for the non-overscaled voltage level (i.e., the exact operating

mode). Furthermore, unified power format (UPF) files were
generated for each approximate voltage level, considering
that each PE has both exact and approximate voltage regions.
These UPF files were utilized in the synthesis process with
the Synopsis Design Compiler (DC) to produce netlists,
power and area reports, as well as standard delay format
(SDF) files for each voltage level.

To investigate the error correlation between PEs and obtain
a reliable estimate of the error distribution when operat-
ing at overscaled voltages, PE columns consisting of 1 to
256 PEs were simulated. For this target, a TCL script was
developed to automate the synthesis process under the dif-
ferent parameters’ variations. The synthesized netlists, along
with the corresponding SDF files, were then subjected to
post-synthesis simulation and static timing analysis using the
ModelSim simulator. Post-synthesis results were collected in
CSV files and analyzed using a custom Python script.

To determine the voltage levels of each neuron, the statis-
tical error model, along with the relevant formulations, and
also DNNmodel parameters, were fed into the Gurobipy ILP
solver to solve equations (20), (22), and (29).
Note that the ILP is an NP-complete problem, where the

required time to find the solution is proportional to the num-
bers of constraints and variables (i.e., number of available
voltages and neurons in equations (20), (22), and (29)). Based
on the simulations, the used ILP solver (i.e., Gurobipy) found
the solutions in less than 54.7 seconds. However, one may use
heuristic approaches to solve the voltage assignment problem
of X-TPU and determine the voltage level of each neuron
within the neural networkmodel, in the cases that the solution
time of the ILP problem becomes too much.

It should be noted that a 128×10 FCDNN network trained
on the MNIST dataset was used in this study. As explained in
Subsection IV-A, the obtained voltage levels for the neurons
were embedded in the weight values stored in the weight
memory. Also, a Python script was developed to generate
the augmented weights (see FIGURE 7), by appending the
proper voltage selection bits based on the obtained voltage
levels, which were then employed in the X-TPU testbench
for the final verification. Note that due to the computational
demands and memory requirements associated with simulat-
ing an entire FC or CNN model in ModelSim, particularly
with SDF annotations, it was not feasible to conduct such
simulations within a reasonable timeframe.

Specifically, timing analysis simulations for the whole NN
model implemented on the TPU hardware is very comput-
ing intensive, e.g., as studied in [6], simulation of a LeNet
model with a single input on a TPU with the array size of
256 × 256 using a 40-core Intel Xeon server machine took
8 hours. To overcome this challenge, the solution of in [6],
was to simulate 32 randomly selected column which is a
Matrix Multiplication (MM) operation in TPU and extract
error probabilities from it and inject timing errors to whole
NN model. Similarly, our focus in the verification process
was on the MM operation. Specifically, the proposed frame-
work was verified using a 16 × 16 MM testbench.
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FIGURE 8. X-TPU simulation flow. The output of this flow is the set of (neuron, voltage) values for all neurons, as well as estimated (expected) accuracy
and loss values.

B. ERROR DISTRIBUTION OF PEs
Error distribution of a single PE under different operating
voltages has been acquired by simulations over one million
random inputs fed into columns of PEs with different sizes.
The distribution variances obtained from this simulation are
listed in Table 2. Also, the variance distribution plots for each
voltage level have been shown in FIGURE 9 (a). Moreover,
the variance values with respect to the number of PEs are
shown in FIGURE 9 (b). These values are used to calcu-
late (24). The simulation results of the considered 16 × 16
MM benchmark have been plotted in FIGURE 10, in which
the primary (secondary) vertical axis shows calculated MSE
(power saving) for the different values of MSED_UB. Specif-
ically, in this figure, the orange dotted line shows the MSE
limit determined by the user, i.e., the simulated MSE below
this line met the user constraint.

As shown in this figure, in most cases, the simulated MSE
is close to or below the use-defined constraint. However,
in some cases (e.g., see pointer ④ in FIGURE 10) theMSEUB
was violated that is due to the intrinsic error of Eq. (23) [25]
[32]. In total, the quality constraint violations are negligi-
ble, which is on average, 0.3% for all the different studied
MSED_UB. Moreover, for the consideredMSEUBs, power con-
sumption of the X-TPU was decreased between 0 and 12%.

FIGURE 11 shows the calculated ES obtained by (14),
for neurons of a 128 × 10 fully connected DNN trained on
the MNIST dataset. As shown in this figure, neurons of the
hidden layer have lower ES (all less than 0.4) compared to
the output layer’s neurons, where the ES of the output layer is
almost 1, i.e., the neurons of the hidden layer have less impact
on output accuracy and can be proper candidates for applying
the VOS. Afterwards, the acquired ES of each neuron, along

TABLE 2. Statistical parameters for the different sets of PEs () inside the
X-TPU, correspond to the various number of PEs in each column of the
different sizes of X-TPU.

with the proposed ILP formulation in (20)∼(29), are fed to
the used ILP solver (GurobiPy) for selecting the operating
voltage levels of neurons of the simulated neural network.
Specifically, by applying our proposed framework on a fully
connected DNN trained on the MNIST dataset using Linear
activation function, for the MSE increment upper bounds
ranging from 1% to 1000%, the assigned voltage levels of
all neurons were shown in FIGURE 12.

In this figure, each row shows the determined operating
voltage levels of all neurons distinguished by their number
in the horizontal axis, e.g., a row shown by the red dotted
box represents the operating voltage levels of all neurons of
the FC DNN for the MSE increase upper bound of 100%.
Now, based on obtained voltage values for a given quality
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FIGURE 9. Statistical analysis results of TPU column. (a) Error Distribution of a single processing element operating on different voltages,
(b) effect of TPU column size on the variance of error in different operating voltage.

FIGURE 10. Simulated MSE values for the different MSE increase upper
bounds, along with the power saving of the X-TPU.

constraint, to verify that the user constraints are met and the
accuracy level is acceptable, a Gaussian noise with mean and
variance determined from the statistical analysis has been
injected into the TensorFlowmodel, and accuracy values have
been calculated for all the constraints.

FIGURE 13 shows the accuracy drop of the NN model
for the different MSE increase upper bounds, along with the
amount of energy saving shown in the secondary axis. Based
on the results, by increasing the MSE to 200% of the nominal
value of the NN model that has been acquired using the test
dataset, the proposed framework achieved 32% lower energy
consumption only for 0.6% accuracy loss when the linear
activation function was used. The same energy saving for the
sigmoid activation function is achievable by choosing a lower
MSE increment upper bound (e.g., 0.1%). Note that for the

TABLE 3. Computation complexity and average processing time of the
different activation functions.

sigmoid activation function, the output of a neuron between
0 and 1, output MSEs are relatively small compared to Linear
or ReLU activation functions.

Note that the activation function may affect the per-
formance of the neural network. Mathematical expression,
computational complexity [33], and the average processing
time of each examined activation function calculated in our
simulations are shown in Table 3, where the computational
cost refers to the required computational resources for each
function. As shown in the last column of this table, the
ReLU is faster than TanH and Sigmoid due to its simple
mathematical expression and efficient computation cost.

FIGURE 14 shows the accuracy and energy saving (sec-
ondary axis) of the LeNet-5 and ResNet-50 networks trained
with the MNIST and CIFAR-10 datasets, respectively, under
the different MSE increment values. For the studied range
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FIGURE 11. Error Sensitivities of all neurons of a 128 × 10 FC network trained on the MNIST dataset.

FIGURE 12. The assigned voltage level of all neurons for a 128 × 10 FC DNN under the different MSE increase upper bounds,
visualized using a heatmap.

FIGURE 13. Accuracy drops and energy saving (secondary axis) of the studied FC network under the different MSE increment values, using a) linear
and b) sigmoid activation functions.

of MSE increment between 1% to 1000%, the LeNet-5
achieved, on average, 22% energy saving and an accu-
racy of 0.76. The minimum energy saving also belongs
to the MSE=1%, where the accuracy of the network is

0.99 and energy saving is 6%. Also, before the accuracy
dropping of the LeNet-5 below 90% (the green dotted line in
FIGURE 14.a), the maximum energy saving is 18% and the
accuracy is 0.92 (see pointer ⑤ in FIGURE 14.a). Moreover,
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FIGURE 14. Network accuracy and energy saving (secondary axis) of the a) LeNet-5, and b) ResNet-50 networks trained with the MNIST and
CIFAR-10 datasets, respectively, under the different MSE increment values.

FIGURE 15. Effect of aging on the (a) threshold voltage, (b) path delay, and (c) error variance of a PE operating on various overscaled voltages, where the
nominal voltage is 0.8V.

the accuracy of this model drops below 0.8 for theMSE incre-
ment of more than 100% (see pointer ⑥ in FIGURE 14.a).
For the ResNet-50, under the same range of MSE incre-

ment, energy saving and accuracy are, on average, 35% and
0.66, respectively. For this network, the minimum energy
saving is 13% for an accuracy of 0.92 (see pointer ⑦ in
FIGURE 14.b). However, the accuracy of this model drops
below 0.8 for the MSE increment of 10% (see pointer ⑧ in
FIGURE 14.b).

C. AGING EFFECT
To investigate the aging effect on X-TPU, (1) has been used
to calculate threshold voltage changes after ten years ofoper-
ation for the different studied overscaled voltages. The results
of this investigation have been plotted in FIGURE 15 (a).
Based on the results, the increment of threshold voltage for
VDD = 0.8 is 23.7% for PMOS (19% for NMOS), as this
value is only 0.21% for VDD = 0.5 for PMOS (0.2% for
NMOS). Also, FIGURE 15 (b) shows the changes in path
delay of transistors due to threshold voltage increase cal-

culated using (3). Increasing path delay leads to increasing
timing errors. However, to prevent these timing errors, the
clock period is increased proportionally [8], [15].

To analyze the effects of aging on the quality metrics of the
X-TPU, we set the clock period of the circuit running at 0.8V
after ten years of operation as the base clock time and sim-
ulated other operating voltages with this clock time. To this
end, we used an in-house SDF modification tool to increase
the amount of path delay of the SDF files of the synthesized
PE according to FIGURE 15 (b). The results of the simulation
have been plotted in FIGURE 15 (c). The clock period of
a circuit is directly influenced by the critical path delay at
the nominal voltage. However, by utilizing a lower VDD,
we canmitigate the aging effect andminimize the incremental
delay of the gates over time (see pointer ⑨ in FIGURE 15)
[8]. In our architecture, employing multiple voltages during
circuit operation reduces overall aging because the circuit
spends less time operating at the exact voltage. Addition-
ally, higher voltages accelerate the rate of aging, resulting in
increased circuit delay. This delay increment, along with the
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subsequent increase in the clock period, reduces the likeli-
hood and severity of timing errors when operating at lower
voltages. FIGURE 15 (c) represents the worst-case scenario
in which we assume that there is a processing element (PE)
in the X-TPU that consistently operates at the exact voltage.
Alternatively, we can consider a uniform probability distribu-
tion of operating voltages. In this case, the delay increase in
a PE would be the average delay increase across all selected
voltages, as depicted in FIGURE 15 (b). By comparing this
to the exact operation mode, we observe that the circuit’s
lifetime increases by 12%.

VI. CONCLUSION
In this paper, we proposed a VOS-based runtime accuracy
adjustable TPU architecture (X-TPU), and a framework to
utilize this architecture to achieve significant energy effi-
ciency while retaining the user-defined quality constraints.
In specific, by knowing the supported voltage levels and
the trained model parameters, the proposed framework can
determine the operating voltage of each TPU column (cor-
responding to a neuron in a NN model) by maintaining the
accuracy drop in an acceptable range. Running a DNN with
linear activation functions, X-TPU can achieve 32% energy
saving by sacrificing only 0.6% accuracy, and with a sigmoid
activation function can save up to 40% energy with at most
0.5% accuracy loss. Also, we showed that using lower oper-
ating voltages on X-TPU can improve its lifetime.
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