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ABSTRACT Nowadays, cyber-physical systems (CPSs) have gained remarkable attention in electrical and
control engineering. However, their vulnerability to attacks poses challenges for control. This report explores
the adaptive dynamic surface control approach for CPSs against both injection and deception attacks on
states and the control signal with unknown direction, suggesting using Nussbaum functions. Given the
comprehensive nature of nonlinear time-delay CPSs, this research focuses on designing an adaptive resilient
controller for such systems. To address the challenges of time-delay CPSs without restrictive assumptions,
specific even functions are applied to resolve signal zeroing in the controller’s denominator due to time-
varying delays. Utilizing these functions in dynamic surface control, presents challenges that are addressed
in this study. The proposed method ensures the boundedness of all closed-loop signals and two simulation
examples are given to show how well it works.

INDEX TERMS Cyber-physical systems, injection and deception attacks, adaptive dynamic surface control,
time-delay systems.

I. INTRODUCTION
Cyber-physical systems (CPSs) consist of two main compo-
nents: physical elements such as sensors and actuators, and
communication networks that are responsible for facilitating
interactions between these physical elements, ensuring that
communication aligns with controller-specified commands.
CPSs are commonly found in various industries, including
smart power grids, power plants, petrochemical industries,
refineries, etc. Researchers worldwide are now focusing
on projects involving CPSs because of their vital role and
importance in human life.

These systems face numerous security threats which are
caused by their network and cyber communications, making
them susceptible to cyber-attacks. These attacks have the
potential to disrupt the physical system. Thus, ensuring the
security of communication networks and the robustness of
the control system in CPSs is vital. Given the significance

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

of CPSs, research on issues like attacks and defensive
measures is crucial. Despite progress in system modeling,
attack modeling, energy control, security, and controller
design approaches, the study of CPSs and defense strategies
against potential attacks is still in its early stages and research
on their performance continues. CPSs face various attack
types categorized into three groups: Denial of Service (DoS)
attacks, injection and deception attacks, and replay attacks.
Each is important in its own right and today, they have
garnered special attention from the research community.

As previously mentioned, the investigation of CPSs
remains a contentious and remarkable subject for researchers,
given both their importance and susceptibility to attacks.
In [1], [2], [3], [4], [5], and [6], a comprehensive examination
of CPSs, including security gaps and available solutions to
address and decrease these vulnerabilities, as well as strate-
gies to counteract attacks, has been undertaken. In [7], [8],
and [9], investigations and research have delved into control
solutions for CPSs under DoS attacks, wherein attackers
hinder the transmission of control signals or sensor-measured
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signals by sending interfering signals or causing prolonged
delays, resulting in system damage. Notably, [10], [11]
have addressed replay attacks and explored suitable control
approaches to defend against these attacks.

A prevalent category of attacks, central to this research,
is injection and deception attacks. Injection attacks target
sensor output signals, while deception attacks focus on con-
trol input signals, altering correct data during transmission
and potentially causing system faults or even breakdowns.
Therefore, one effective solution to compensate for changes
caused by attacks in these systems is the use of the adaptive
control approach. In [12], [13], and [14], adaptive control
has been investigated for linear CPSs under deception
attacks, injection attacks, and both injection and deception
attacks, respectively. Given that some systems are inherently
nonlinear and susceptible to malicious attacks, studying
nonlinear CPSs under such threats has become a crucial
area of investigation. In [15], an adaptive backstepping
approach is used for nonlinear CPSs with unknown functions
under injection attacks. Actually, [16], [17] investigated using
the adaptive backstepping method for nonlinear CPSs with
known nonlinear functions and uncertain parameters, under
injection and deception attacks. Moreover, [18] explores
using the adaptive dynamic surface control method in
nonlinear CPSs under random injection attacks which can
stabilize the system.

Given the inherent delays in some industrial systems,
recent research has focused on developing defense strategies
against attacks targeting these CPSs. In [19], a study
explored adaptive dynamic surface control for nonlinear
CPSs with time-varying state delays and unknown functions,
considering injection and deception attacks in which the
direction of attacks is known. Similarly, [20] examined an
adaptive controller for nonlinear CPSs with time-varying
delays in its states against injection attacks and actuator
failures which controller ensures system stability.

The objective of this study is to design an adaptive
and resilient controller for uncertain nonlinear CPSs with
time-varying delays in states, influenced by injection and
deception attacks with unknown direction. The main contri-
butions of the article are summarized as follows:

1. In this research, we consider both injection attacks on
states and deception attacks on the control signal for
nonlinear time-delay CPSs with unknown functions.
Given the delay and uncertainties of the nonlinear
CPSs, addressing both these attacks complicates con-
troller design. This article presents solutions to these
challenges. To handle the issue of unknown signs of
the multiplied signals in the states and control signal,
special Nussbaum functions [21] are utilized.

2. The dynamics of the system investigated in this
research are in the form of strict feedback but slightly
more comprehensive. To the best of our knowledge,
previous studies on this subject, such as [15], [16],
[17], [18], [19], [20], [22], [23], and [24], have not

considered virtual coefficients and input coefficient for
their systems. In this research, we consider bounded
time-varying virtual coefficients in the states. This
reduces the restriction on the dynamics of CPSs.
Furthermore, uncertain disturbances are considered in
the dynamics of the CPSs, so their bounds should
be estimated. Our focus is also to design a robust
controller for the system.

3. Considering uncertain time-varying delays in states
poses challenges in control design, especially with
signals in the controller’s denominator. This can be
addressed by introducing assumptions limiting system
dynamics or applying relevant lemmas that could make
the system sensitive. In this investigation, we utilize
specific even functions in controller design for the
first time in time-delay CPSs, resolving signal zeroing
without additional assumptions.

4. The presence of the even functions mentioned in
the previous item, in the design process, categorized
stability proof into several cases. In the dynamic
surface method, dealing with one more variable than
the backstepping method, we face challenges in prov-
ing stability which we aim to resolve. Our approach
involves using two positive semi-definite functions
instead of a general positive definite function, ensuring
the stability of the closed-loop system. Additionally,
due to the step-by-step nature of this method, some
uncertain parameters are related to subsequent steps
and they can not be estimated easily in subsequent steps
due to the existence of the even functions. We address
this challenge by adding and subtracting these terms
in the subsequent steps, allowing for the estimation of
their uncertain parameters.

II. PROBLEM FORMULATION AND PRELIMINARIES
The dynamic model of CPSs represented in this essay is in the
form of strict feedback with time-varying virtual coefficients
given as{

˙̃xi = gi(t)x̃i+1 + fi( ¯̃xi) + hi( ¯̃xτ̄i ) + di(t) , i = 1, . . . , n− 1
˙̃xn = gn(t)ũ+ fn( ¯̃xn) + hn( ¯̃xτ̄n ) + dn(t)

(1)

where ¯̃xi =
[
x̃1, . . . , x̃i

]T for i = 1, . . . , n, and ¯̃xn ∈ Rn and
ũ are the system states and input signal, respectively. The
vector ¯̃xτ̄i = [x̃1(t − τ1(t)), . . . , x̃i(t − τi(t))]T represents the
delayed states of the system. Here, τ̄i = [τ1(t), . . . , τi(t)]T

denotes the unknown time-varying delay vector correspond-
ing to system states. The virtual coefficients gi(t) are also
unknown, time-varying, and bounded, with the condition
gi(t) ̸= 0 for i = 1, . . . , n, and ∀t ∈ R+. Additionally, di(t)
represents the uncertain time-varying disturbance, fi( ¯̃xi),
i = 1, . . . , n are unknown continuous functions of system
states, and hi( ¯̃xτ̄i ), i = 1, . . . , n represent unknown continu-
ous functions of the delayed states of the system.
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FIGURE 1. Schematic of closed-loop system, under cyber-attacks.

In this paper, we consider attacks conducted by attackers,
to be injection and deception. These attacks impact both the
signals transmitted from the sensors and the control signal
directed to the actuator. The effects of attacks pose significant
challenges to the control of the system which inherently has
high uncertainty and time-varying virtual coefficients. So,
the injection and deception attack on states and control input
signal are modeled as

{
xi = x̃i + (wi(t)) x̃i
ũ = b(t)u+ v(t)

(2)

where wi(t) ∈ R represents an unknown and time-varying
injected signal designed by attackers with an unknown
sign, v(t) ∈ R is an unknown attack parameter, b(t) ∈ R is
an unknown attack multiplicative signal with an unknown
sign and u is the control signal designed by the controller.
According to the attacks, the true state signals x̃i are
not accessible to the control designer. Consequently, the
controller signal must be designed by using false state signals
xi. The schematic of the closed-loop system and the procedure
for controlling the nonlinear time-delay CPSs under injection
and deception attacks are shown in Fig. 1.

If we assume 1 + wi(t) = λi(t), the attacks on the
system states can be expressed as xi = λi(t)x̃i and
xi(t − τi(t)) = λi(t − τi(t))x̃i(t − τi(t)). Therefore, the
dynamic equations describing the system during and after an
attack are

ẋi = λ̇i(t)λ
−1
i (t)xi + λi(t)gi(t)λ

−1
i+1(t)xi+1

+λi(t)fi
(
λ−1
i (t)xi

)
+ λi(t)hi

(
λ−1
i (t − τi)xτ̄i

)
+λi(t)di(t) , i = 1, . . . , n− 1

ẋn = λ̇n(t)λ−1
n (t)xn + λn(t)gn(t)b(t)u+ λn(t)gn(t)v(t)

+λn(t)fn
(
λ−1
n (t)xn

)
+ λn(t)hn

(
λ−1
n (t − τn)xτ̄n

)
+λn(t)dn(t)

(3)

where λ−1
i (t)xi is a vector defined as

[
λ−1
1 (t)x1, . . . ,λ

−1
i (t)xi

]T
,

and λ−1
i (t − τi)xτ̄i is another vector can be defined as

[
λ−1
1 (t − τ1)x1(t − τ1), . . . , λ

−1
i (t − τi)xi(t − τi)

]T
. Now let{

µi(t) = λi(t)gi(t)λ
−1
i+1(t) , i = 1, . . . , n− 1

µn(t) = λn(t)gn(t)b(t) , µn+1(t) = λn(t)gn(t)v(t)

(4)

Therefore, the dynamic equations (3) could be rewritten as

ẋi = λ̇i(t)λ
−1
i (t)xi + µi(t)xi+1 + λi(t)fi

(
λ−1
i (t)xi

)
+λi(t)hi

(
λ−1
i (t − τi)xτ̄i

)
+ λi(t)di(t)

ẋn = λ̇n(t)λ−1
n (t)xn + µn(t)u+ µn+1 + λn(t)fn

(
λ−1
n (t)xn

)
+λn(t)hn

(
λ−1
n (t − τn)xτ̄n

)
+ λn(t)dn(t).

(5)

Assumption 1: The attacks are assumed to satisfy b(t) ̸= 0
and λi(t) ̸= 0 for all i = 1, . . . , n at all times, implying
wi(t) ̸= −1 for i = 1, . . . , n. Additionally, the signals λ̇i(t),
λi(t), b(t), and v(t) are bounded, but their bounds are
unknown.
Remark 1: In many practical applications, attackers have

restricted ability to manipulate the measurements of sensors
and actuators due to the constraints of physical instruments.
Consequently, assuming that the signals sent by attackers
are bounded is reasonable [16]. On the other hand, although
the assumption that b(t) ̸= 0 and λi(t) ̸= 0, i = 1, . . . , n,
is a limitation, it is required to be able to implement the
control signal to the system and make this approach feasible.
Furthermore, it is a common assumption in this field [15],
[16], [17], [18], [19], [20].
Assumption 2: The disturbance signals di(t), i = 1, . . . .n,

are time-varying and bounded with unknown boundaries and
the indeterminate delay of states τi(t), i = 1, 2, . . . , n is a
differentiable function given by

0 ≤ τi(t) ≤ τ̃i, τ̇i(t) ≤ κi ≤ 1, for 1 ≤ i ≤ n. (6)

Here, κi and τ̃i are unknown parameters.
Remark 2: To address uncertain time-varying delays,

we can impose assumptions on state functions involving
delays [25], [26] or on the delays themselves [27], [28]. Since
some CPSs may not meet the conditions for the functions,
this essay focuses on restrictions on delays. By adopting this
assumption, the Lipschitz condition is not required for the
nonlinear functions of system dynamics.
Lemma 1 ( [16]): Let γ (x, y) ∈ R be a continuous

function, then there exist two continuous functions α(x) >
0 and β(y) > 0 such that:

|γ (x, y)| ≤ α(x)β(y). (7)

Lemma 2 ( [19]): For the unknown function hi(x̄τ̄i ) where
x̄τ̄i = [x1(t − τ1(t)), . . . , xi(t − τi(t))]T , there exist unknown
continuous functions 4i,l ≥ 0 such that

|hi(x̄τ̄i )| ≤

i∑
l=1

4i,l(xl(t − τl(t))). (8)
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Definition 1: A continuous function N is called Nuss-
baum if the relations

lim
s→∞

sup
1
s

∫ s

0
N (χ ) dχ = +∞

lim
s→∞

inf
1
s

∫ s

0
N (χ ) dχ = −∞

(9)

hold for it [21].
Definition 2 ( [15]): The function N (s) : R → R is a

specific form of the continuous Nussbaum function, denoted
as N (s) ∈ N . It satisfies certain conditions, expressed as

lim
k→∞

inf
k −

∫ k
0 N

−(s) ds∫ k
0 N

+(s) ds
= 0

lim
k→∞

inf
k +

∫ k
0 N

+(s) ds

−
∫ k
0 N

−(s) ds
= 0

(10)

Here, N−(s) and N+(s) represent the negative and positive
components of the function N (s) respectively, defined as
N+(s) = max{0,N (s)} and N−(s) = min{0,N (s)}.

Nussbaum’s gain method has been utilized in various stud-
ies to address uncertainties in virtual coefficients and input
coefficient. Ordinary Nussbaum functions may not effec-
tively compensate for the unknown multiple time-varying
virtual coefficients and input coefficient, as detailed in [15]
and [21]. Therefore, to handle unknown time-varying coeffi-
cients µi(t) for i = 1, . . . , n, the special Nussbaum functions
introduced in Definition 2 are used.
Lemma 3 ( [29]): Consider the smooth and continuous

functions V (t) and χi(t), i = 1, . . . , n, in the interval [0, tf ],
where ∀t ∈ [0, tf ],V (t) ≥ 0, and N (χi) is the Nussbaum
function. If the condition

V (t) ≤ c0 + e−c1t
n∑
i=1

∫ t

0
Ai(t)N (χi)χ̇iec1τdτ

+ e−c1t
n∑
i=1

∫ t

0
χ̇iec1τdτ (11)

is established, where Ai(t) is an unknown, bounded, and
nonzero parameter, c1 is a positive constant, and c0 is a
constant value, it can be concluded that the signals V (t), χi(t),
and

∫ t
0 gi(t)N (χi)χ̇idτ are all bounded.

Lemma 4 ( [27]): Let the even function, qi(si) : R → R
be defined as

qi(si) =



1, |si| ≥ δai + δbi

Cqi

∫ si

δai

[(δai + δbi − σ )(σ − δai )]
(n−i)dσ,

δai < si < δai + δbi

Cqi

∫
−δai

si
[−(δai + δbi + σ )(σ + δai )]

(n−i)dσ,

−(δai + δbi ) < si < −δai

0, |si| ≤ δai

(12)

where δai , δbi > 0 are constant parameters that should be
designed and Cqi =

(2(n−i)+1)!
δ
2(n−i)+1
bi

[(n−i)!]2
, thus qi(si) is (n− i)th

differentiable and is limited between 0 and 1.

III. CONTROLLER DESIGN
In this section, the main focus is on designing a proper
controller for the nonlinear time-delay CPSs under injection
and deception attacks. The Adaptive Dynamic Surface
Control method will be utilized to derive the final control
law, which involves some steps. To design the controller,
we perform a variable change as follows{

s1 = x1
si = xi − zi, Xi = zi − αi−1, 2 ≤ i ≤ n

(13)

Here, si represents the error surface, zi is the state variable
obtained by passing the virtual controller αi−1 through a filter
and Xi is the error of the mentioned filter output. This filter is
represented as

ζiżi + zi = αi−1 , zi(0) = αi−1(0) (14)

where, ζi is the time constant of the filter. By using this
and (13), the equation żi =

−Xi
ζi

can be easily obtained.
step 1: First, by considering (13), the dynamics of the first

error surface according to the system (5) is

ṡ1 = λ̇1(t)λ
−1
1 (t)x1 + µ1(t)x2 + λ1(t)f1

(
λ−1
1 (t)x1

)
+ λ1(t)h1

(
λ−1
1 (t − τ1)xτ̄1

)
+ λ1(t)d1(t). (15)

Now, the non-negative function of the first subsystem is
supposed to be Vs1 =

1
2 s

2
1. Its derivative with respect to time

is V̇s1 = s1ṡ1 which can be written as

V̇s1 = s1
(
λ̇1(t)λ

−1
1 (t)x1 + µ1(t)x2 + λ1(t)f1

(
λ−1
1 (t)x1

)
+ λ1(t)h1

(
λ−1
1 (t − τ1)xτ̄1

)
+ λ1(t)d1(t)

)
. (16)

By considering (13), let’s substitute x2 = s2 + X2 + α1 and,
by using the inequality ab ≤ εa2b2+

1
4ε , where ε is a positive

fixed value, (16) can be rewritten as

V̇s1 ≤ ε1s21x
2
1

(
λ̇1(t)λ

−1
1 (t)

)2
+ µ1(t)s1 (s2 + X2 + α1)

+ ε1s21λ
2
1(t)f

2
1

(
λ−1
1 (t)x1

)
+ ε1s21λ

2
1(t)d

2
1 (t)

+ s1λ1(t)h1
(
λ−1
1 (t − τ1)xτ̄1

)
+

3
4ε1

. (17)

Now, considering assumption 1 and equation (4), the
signals µi(t), µn(t), and µn+1(t) are bounded. To simplify
the design of the controller, we introduce certain variables asϑi = sup

(
λ̇i(t)λ

−1
i (t)

)2
, 1 ≤ i ≤ n− 1

ϑn = sup
(
λ̇n(t)λ−1

n (t)
)2 (18)

In addition, by applying Lemma 1, we are able to establish
λ2i (t)f

2
i

(
λ−1
i (t)xi

)
≤ λ2i (t)ω̄

2
i (λ

−1
i (t))ψ2

i (x̄i). Since ω̄2
i
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is a non-negative continuous function and λ−1
i (t) is a

vector with bounded elements, there exists a constant ρi
such that λ2i (t)ω̄

2
i (λ

−1
i (t)) ≤ ρi. Furthermore, we define

ϕi(x̄i) = ψ2
i (x̄i). To approximate the unknown functions

ϕi(x̄i), i = 1, . . . , n, we utilize Radial Basis Function (RBF)
artificial neural networks, expressed as

ϕi(x̄i) = ϱTi φi(x̄i) + ϵi (19)

where φi(x̄i) represents vectors of Gaussian functions, ϱi
denotes network weights and unknown coefficients vec-
tors, and ϵi stands for the approximation error. Previous
research [30] indicates that with a sufficient and suitable
selection of the number of Gaussian functions in φi, the error
is bounded as ∥ϵi(x)∥ ≤ ϵMi . Utilizing this expression and the
inequality ab ≤

a2
2 +

b2
2 and by using (18), equation (17) can

be reformulated as

V̇s1 ≤ ε1s21x
2
1ϑ1 +

1
2
s21 +

1
2
µ2
1(t)s

2
2 +

1
2
s21 +

1
2
µ2
1(t)X

2
2

+ µ1(t)s1α1 + ε1s21ρ1ϱ
T
1φ1(x̄1) + ε1s21d̄1

+ s1λ1(t)h1
(
λ−1
1 (t − τ1)xτ̄1

)
+

3
4ε1

(20)

where d̄1 = sup
(
(λ1(t)d1(t))2 + ρ1ϵM1

)
.

Now, leveraging Lemma 1, we consider the inequality∣∣∣h1 (
λ−1
1 (t − τ1)xτ̄1

)∣∣∣ ≤ ϖ1

(
λ−1
1 (t − τ1)

)
91

(
x̄τ̄1

)
where

λ−1
1 (t − τ1) =

[
λ−1
1 (t − τ1)

]T
and x̄τ̄1 = [x1(t − τ1)]T . By

using this inequality and Young’s inequality, (20) can be
expressed as

V̇s1 ≤ ε1s21x
2
1ϑ1 + s21 +

1
2
µ2
1(t)s

2
2 +

1
2
µ2
1(t)X

2
2 + µ1(t)s1α1

+ ε1s21ρ1ϱ
T
1φ1(x̄1) +

1
2
s21λ

2
1(t)ϖ

2
1

(
λ−1
1 (t − τ1)

)
eβ1 τ̃1

+
1
2
e−β1 τ̃192

1 (x̄τ̄1 ) + ε1s21d̄1 +
3
4ε1

. (21)

where β1 is a positive constant. Since the function9 depends
on state delays which are unknown, it should be removed
from (21). Hence, a positive semi-definite function

VU1 =
1

2(1 − κ1)

∫ t

t−τ1(t)
eβ1(ξ−t)92

1 (x̄1(ξ )) dξ (22)

is introduced. By differentiating this function with respect to
time (t), the inequality

V̇U1 =
1

2(1 − κ1)
92

1 (x̄1(t)) − β1VU1

−
1 − τ̇1

2(1 − κ1)
e−β1τ1(t)92

1 (x̄τ̄1 )

≤
1

2(1 − κ1)
92

1 (x̄1(t)) −
1
2
e−β1 τ̃192

1 (x̄τ̄1 ) − β1VU1

(23)

is derived. By adding this equation to (21), we obtain the
inequality

V̇s1 + V̇U1 ≤ ε1s21x
2
1ϑ1 + s21 +

1
2
µ2
1(t)s

2
2 +

1
2
µ2
1(t)X

2
2

+ µ1(t)s1α1 + ε1s21ρ1ϱ
T
1φ1(x̄1) + ε1s21d̄1

+
1

2(1 − κ1)
92

1 (x̄1(t)) − β1VU1 +
3
4ε1

+
1
2
s21λ

2
1(t)ϖ

2
1

(
λ−1
1 (t − τ1)

)
eβ1 τ̃1 . (24)

The functionϖ 2
1

(
λ−1
1 (t − τ1)

)
is positive and continuous

in which λ−1
1 (t − τ1) contains bounded elements and λ21(t)

is a bounded signal. Therefore, there exists a constant
positive value ϖ̄1 such that λ21(t)ϖ

2
1

(
λ−1
1 (t − τ1)

)
≤ ϖ̄1.

Additionally, 92
1 (x̄1(t)) is an indeterminate function that

should be approximated by RBF neural networks as

92
1 (x̄1(t)) = ςT1 υ1(x̄1) + ϵ̄1 , (25)

where υ1 is a vector of Gaussian functions, ς1 is a vector of
network weights and an unknown vector of coefficients, and
ϵ̄1 is the approximation error of its estimation. As mentioned
earlier, for an appropriate number of Gaussian functions in
υ1, the approximation error ϵ̄1 is bounded. Thus, there exists
a positive constant ϵ̄M1 such that |ϵ̄1| ≤ ϵ̄M1 . Now, (24) can
be rewritten as follows

V̇s1 + V̇U1 ≤ ε1s21x
2
1ϑ1 + s21 +

1
2
µ2
1(t)s

2
2 +

1
2
µ2
1(t)X

2
2

+ µ1(t)s1α1 + ε1s21ρ1ϱ
T
1φ1(x̄1)

+
1
2
s21e

β1 τ̃1ϖ̄1 +
1

2(1 − κ1)

(
ςT1 υ(x̄1)

)
+

1
2(1 − κ1)

ϵ̄M1 + ε1s21d̄1 − β1VU1 +
3
4ε1

.

(26)

The parameters vector and function vector for the first
subsystem are defined as

θ1 =

[
ϑ1, ρ1ϱ

T
1 ,

1
2e
β1 τ̃1ϖ̄1,

1
2(1−κ1)

ςT1 ,
1

2(1−κ1)
ϵ̄M1 , d̄1

]T
(27)

ϒ1 =

[
ε1s1x21 , ε1s1φ

T
1 (x̄1), s1,

1
s1
υT1 (x̄1),

1
s1
, ε1s1

]T

.

(28)

By this definition, (26) consequently takes the form

V̇s1 + V̇U1 ≤ s21 +
1
2
µ2
1(t)s

2
2 +

1
2
µ2
1(t)X

2
2 + µ1(t)s1α1

+ (θT1 ϒ1)s1 − β1VU1 +
3
4ε1

. (29)

Now, the general positive semi-definite function for the
first subsystem is given by

V1 = Vs1 + VU1 +
θ̃T1 0

−1
1 θ̃1

2
. (30)
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Note that θ̃1 = θ̂1 − θ1 and 01 = 0T1 > 0 is a
matrix to be designed. Also, θ̂1 is the estimated value of the
first subsystem’s parameters. Since θ1 elements are fixed,
the derivative of θ̃1 equals the derivative of the estimated
parameters. By differentiating V1, the inequality

V̇1 ≤ s21 +
1
2
µ2
1(t)s

2
2 +

1
2
µ2
1(t)X

2
2 + µ1(t)s1α1

+ (θT1 ϒ1)s1 + θ̃T1 0
−1
1

˙̃
θ1 − β1VU1 +

3
4ε1

(31)

is achieved.
Now, the virtual controller α1 is designed based on (31),

which depends on the vector ϒ1 for estimating unknown
parameters. However, in (28), elements of the function vector
ϒ1 contain s1 in their denominator, posing a challenge at
s1 = 0. To overcome this, α1 is designed by incorporating
the function q1(s1) as defined in Lemma 4. α1 is designed as{

α1 = N (χ1)q1(s1)[k1s1 + θ̂T1 ϒ1],
χ̇1 = q1(s1)[k1s21 + θ̂T1 ϒ1s1],

(32)

where k1 should be designed to satisfy the condition k1 > 1.
Also, the adaptive law or parameter estimation for the first
subsystem is designed as

˙̃
θ1 =

˙̂
θ1 = q1(s1)01

(
ϒ1s1 − σ1θ̂1

)
(33)

where the constant σ1 > 0 and matrix 01 are design
parameters.
Remark 3: In (12), qi(si), i = 1, . . . , n, shows a decreasing

trend for δai < |si| < δai + δbi and since |si| < δai , qi(si)
becomes zero. For the first subsystem, this results in q1(s1)
decreasing to zero before the signal s1 tends to zero, which
resolves the problem at s1 = 0. This solution extends to
subsequent subsystem designs.
step i (i = 2, . . . , n− 1): By considering (13), the dynamics
of the i-th error surface is ṡi = ẋi − żi, which according to the
system (5), can be rewritten as

ṡi = λ̇i(t)λ
−1
i (t)xi + µi(t)xi+1 + λi(t)fi

(
λ−1
i (t)xi

)
+ λi(t)hi

(
λ−1
i (t − τi)xτ̄i

)
+ λi(t)di(t) − żi. (34)

The non-negative function Vsi =
1
2 s

2
i is considered for

the i-th subsystem. Its derivative with respect to time, after
replacing xi+1 = si+1 + Xi+1 + αi and using the inequality
ab ≤ εa2b2 +

1
4ε , is

V̇si = siṡi ≤ εis2i x
2
i

(
λ̇i(t)λ

−1
i (t)

)2
+ εis2i λ

2
i (t)f

2
i

(
λ−1
i (t)xi

)
+ µi(t)si (si+1 + Xi+1 + αi)+ εis2i λ

2
i (t)d

2
i (t)

+ siλi(t)hi
(
λ−1
i (t − τi)xτ̄i

)
− siżi +

3
4εi
.

(35)

Subsequently, the function fi is estimated utilizing RBF
neural networks, similar to the first step as outlined in (19).

Therefore, after using equation (18), we add and subtract the
term 1

2µ
2
i−1(t)s

2
i to (35) and it transforms to

V̇si ≤ εis2i x
2
i ϑi +

1
2
s2i +

1
2
µ2
i (t)s

2
i+1 +

1
2
s2i +

1
2
µ2
i (t)X

2
i+1

+ µi(t)siαi + εis2i ρiϱ
T
i φi(x̄i) + εis2i d̄i −

1
2
µ2
i−1(t)s

2
i

+ siλi(t)hi
(
λ−1
i (t − τi)xτ̄i

)
− siżi +

3
4εi

(36)

where d̄i = sup
(
(λi(t)di(t))2 +

1
2εi

(µi−1(t))2 + ρiϵMi

)
.

Remark 4: As evident in (36), the term 1
2µ

2
i (t)s

2
i+1 is not

removable, and the parameter µ2
i (t) cannot be estimated

within this subsystem due to the appearance of the signal
si+1. This parameter must be estimated in the subsequent step
where si+1 is available. Also, for the (i − 1)-th subsystem,
the term 1

2µ
2
i−1(t)s

2
i appears which its parameter can be

estimated in the i-th subsystem. Additionally, due to the
use of specific even functions in adaptive laws and virtual
controllers, and the challenges in stability analysis, adding
subsystems together is not a proper solution. However, adding
and subtracting these terms to the subsequent subsystems is
an efficient approach.

Now, considering the function hi
(
λ−1
i (t − τi)xτ̄i

)
, it

depends on the states x1 to xi and the delays τ1 to τi.
Thus, by applying Lemma 2 and subsequently Lemma 1, the
inequality

|hi
(
λ−1
i (t − τi)xτ̄i

)
| ≤

i∑
l=1

4i,l

(
λ−1
l (t − τl(t))xl(t − τl(t))

)
≤

i∑
l=1

ϖi,l

(
λ−1
l (t − τl)

)
9i,l

(
xτl

)
(37)

is achieved, where xτl = xl(t − τl(t)). Now, using this
inequality and Young’s inequality, (36) can be written as

V̇si ≤ εis2i x
2
i ϑi + s2i +

1
2
µ2
i (t)s

2
i+1 +

1
2
µ2
i (t)X

2
i+1

+ µi(t)siαi + εis2i ρiϱ
T
i φi(x̄i) +

1
2

i∑
l=1

e−βi τ̃l92
i,l

(
xτl

)
+

1
2
s2i λ

2
i (t)

i∑
l=1

ϖ 2
i,l

(
λ−1
l (t − τl)

)
eβi τ̃l + εis2i d̄i

−
1
2
µ2
i−1(t)s

2
i − siżi +

3
4εi

(38)

where βi is a positive constant. Since the function9 depends
on unknown delays, it should be removed from (38). Hence,
a positive semi-definite function

VUi =

i∑
l=1

1
2(1 − κl)

∫ t

t−τl (t)
eβi(ξ−t)92

i,l(xl(ξ )) dξ (39)
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is introduced. By differentiating this function with respect to
time, the inequality

V̇Ui ≤

i∑
l=1

1
2(1 − κl)

92
i,l(xl(t))

−
1
2

i∑
l=1

e−βi τ̃l92
i,l(xτl ) − βiVUi (40)

emerges. By adding (40) to (38), we obtain the inequality

V̇si + V̇Ui ≤ εis2i x
2
i ϑi + s2i +

1
2
µ2
i (t)s

2
i+1 +

1
2
µ2
i (t)X

2
i+1

+ εis2i ρiϱ
T
i φi(x̄i) +

i∑
l=1

1
2(1 − κl)

92
i,l(xl(t))

+
1
2
s2i λ

2
i (t)

i∑
l=1

ϖ 2
i,l

(
λ−1
l (t − τl)

)
eβi τ̃l − βiVUi

+ µi(t)siαi + εis2i d̄i −
1
2
µ2
i−1(t)s

2
i − siżi +

3
4εi
.

(41)

As ϖ 2
i,l is a positive continuous function and λ−1

l (t −

τl) is bounded, there exists a positive constant value ϖ̄i,l

such that λ2i (t)ϖ
2
i,l

(
λ−1
l (t − τl)

)
≤ ϖ̄i,l . Furthermore, the

function92
i,l (xl(t)) is an indeterminate function and it should

be approximated by RBF neural networks as

92
i,l(xl(t)) = ςTi,lυi,l(xl) + ϵ̄i,l , (42)

where υi,l is a vector of Gaussian functions, ςi,l is a vector
of network weights and unknown coefficients, and ϵ̄i,l is
the approximation error. As mentioned earlier, For a proper
number of Gaussian functions, we have a positive constant
ϵ̄Mi,l such that |ϵ̄i,l | ≤ ϵ̄Mi,l . Now, (41) can be rewritten as

V̇si + V̇Ui ≤ εis2i x
2
i ϑi + s2i +

1
2
µ2
i (t)s

2
i+1 +

1
2
µ2
i (t)X

2
i+1

+ µi(t)siαi + εis2i ρiϱ
T
i φi(x̄i) +

1
2
s2i

i∑
l=1

ϖ̄ 2
i,le

βi τ̃l

+

i∑
l=1

1
2(1 − κl)

(
ςTi,lυi,l(xl) + ϵ̄i,l

)
− siżi

+ εis2i d̄i −
1
2
µ2
i−1(t)s

2
i − βiVUi +

3
4εi
. (43)

The parameters vector and function vector for the i-th
subsystem are defined as

θi=

[
ϑi, ρiϱ

T
i ,

1
2
eβi τ̃1ϖ̄i,1,. . . ,

1
2
eβi τ̃iϖ̄i,i,

1
2(1 − κ1)

ςTi,1,. . . ,

1
2(1 − κi)

ςTi,i,
1

2(1 − κ1)
ϵ̄Mi,1 , . . . ,

1
2(1 − κi)

ϵ̄Mi,i , d̄i

]T

(44)

ϒi =

[
εisix2i , εisiφ

T
i (x̄i), si, . . . , si,

1
si
υTi,1(x1), . . .

,
1
si
υTi,i(xi),

1
si
, . . . ,

1
si
, εisi

]T

.

(45)

Therefore, equation (43) becomes

V̇si + V̇Ui ≤ s2i +
1
2
µ2
i (t)s

2
i+1 +

1
2
µ2
i (t)X

2
i+1 + µi(t)siαi

+ (θTi ϒi)si −
1
2
µ2
i−1(t)s

2
i − siżi − βiVUi +

3
4εi
.

(46)

Now, the general positive semi-definite function for the i-th
subsystem would be

Vi = Vsi + VUi +
θ̃Ti 0

−1
i θ̃i

2
, (47)

where θ̃i = θ̂i − θi and 0i = 0Ti > 0 is a matrix that needs to
be designed. Additionally, θ̂i represents the estimated value
of the parameters for the i-th subsystem. By differentiating
Vi, the inequality

V̇i ≤ s2i +
1
2
µ2
i (t)s

2
i+1 +

1
2
µ2
i (t)X

2
i+1 + µi(t)siαi + (θTi ϒi)si

+ θ̃Ti 0
−1
i

˙̃
θi −

1
2
µ2
i−1(t)s

2
i − siżi − βiVUi +

3
4εi

(48)

is obtained.
By using Lemma 4 as in the previous steps, the virtual

controller αi would be designed as{
αi = N (χi)qi(si)[kisi + θ̂Ti ϒi − żi],
χ̇i = qi(si)[kis2i + θ̂Ti ϒisi − siżi],

(49)

where ki should be designed to satisfy the condition ki >
1. The adaptive law or parameter estimation for the i-th
subsystem is designed as

˙̃
θi =

˙̂
θi = qi(si)0i

(
ϒisi − σiθ̂i

)
(50)

where the constant σi > 0 and matrix 0i are design
parameters.

step n: For the final step, by considering (13), the dynamics
of the n-th error surface is ṡn = ẋn − żn which according to
the system (5), can be rewritten as

ṡn = λ̇n(t)λ−1
n (t)xn + µn(t)u+ µn+1(t) + λn(t)fn

(
λ−1
n (t)xn

)
+ λn(t)hn

(
λ−1
n (t − τn)xτ̄n

)
+ λn(t)dn(t) − żn. (51)

The non-negative function Vsn =
1
2 s

2
n is considered for the

n-th subsystem. Its derivative with respect to time is V̇sn =

snṡn and as in the previous step it can be rewritten as

V̇sn ≤ εns2nx
2
n

(
λ̇n(t)λ−1

n (t)
)2

+ µn(t)snu

+εns2nλ
2
n(t)fn

(
λ−1
n (t)xn

)2
+ snλn(t)hn

(
λ−1
n (t − τn)xτ̄n

)
+ εns2n (λn(t)dn(t) + µn+1(t))2 − snżn +

3
4εn

. (52)
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Additionally, given the uncertainty of the fn, it can be
estimated using RBF neural networks. By using (18) and
adding and subtracting the term 1

2µ
2
n−1(t)s

2
n to (52), It can

be restated as

V̇sn ≤ εns2nx
2
nϑn + µn(t)snu+ εns2nρnϱ

T
nφn(x̄n)

+ snλn(t)hn
(
λ−1
n (t − τn)xτ̄n

)
− snżn

+ εns2nd̄n −
1
2
µ2
n−1(t)s

2
n +

3
4εn

(53)

and d̄n = sup ((λn(t)dn(t)
+µn+1(t))2 +

1
2εn

(µn−1(t))2 + ρnϵMn

)
.

Now, by applying (37) for the n-th subsystem (where i =

n), and using Young’s inequality, (53) can be written as

V̇sn ≤ εns2nx
2
nϑn + µn(t)snu+ ϑns2nρnε

T
nφn(x̄n) −

1
2
µ2
n−1(t)s

2
n

+
1
2
s2nλ

2
n(t)

n∑
l=1

ϖ 2
n,l

(
λ−1
l (t − τl)

)
eβn τ̃l + εns2nd̄n

+
1
2

n∑
l=1

e−βn τ̃l92
n,l

(
xτl

)
− snżn +

3
4εn

, (54)

where βn is a positive constant. Subsequently, a positive semi-
definite function

VUn =

n∑
l=1

1
2(1 − κl)

∫ t

t−τl (t)
eβn(ξ−t)92

n,l(xl(ξ )) dξ (55)

is introduced.

Upon differentiating this function with respect to time and
adding it to V̇sn same as in previous steps, the inequality

V̇sn + V̇Un ≤ εns2nx
2
nϑn + µn(t)snu+ εns2nρnϱ

T
nφn(x̄n)

+
1
2
s2nλ

2
n(t)

n∑
l=1

ϖ 2
n,l

(
λ−1
l (t − τl)

)
eβn τ̃l

+

n∑
l=1

1
2(1 − κl)

92
n,l(xl(t)) + εns2nd̄n

−
1
2
µ2
n−1(t)s

2
n − snżn − βnVUn +

3
4εn

. (56)

is obtained. There exists a positive constant ϖ̄n,l such that
λ2n(t)ϖ

2
n,l

(
λ−1
l (t − τl)

)
≤ ϖ̄n,l (as proven in the i-th step

for i-th subsystem). Additionally, 92
n,l (xl(t)) is an unknown

function. By using RBF neural networks and (42) for the n-th
subsystem (where i = n), in which ϵ̄Mn,l is an upper bound of
the approximation error, (56) can be expressed as

V̇sn + V̇Un ≤ εns2nx
2
nϑn + µn(t)snu+ εns2nρnϱ

T
nφn(x̄n)

+

n∑
l=1

1
2(1 − κl)

(
ςTn,lυn,l(xl) + ϵ̄n,l

)
+

1
2
s2n

n∑
l=1

ϖ̄ 2
n,le

βn τ̃l −
1
2
µ2
n−1(t)s

2
n

+ εns2nd̄n − snżn − βnVUn +
3
4εn

. (57)

The parameters vector and function vector for the n-th
subsystem are defined as

θn=

[
ϑn, ρnϱ

T
n ,

1
2
eβn τ̃1ϖ̄n,1, . . . ,

1
2
eβn τ̃nϖ̄n,n,

1
2(1 − κ1)

ςTn,1

, . . . ,
1

2(1 − κn)
ςTn,n,

1
2(1 − κ1)

ϵ̄Mn,1 , . . .

,
1

2(1 − κn)
ϵ̄Mn,n , d̄n

]T

(58)

ϒn =

[
εnsnx2n , εnsnφ

T
n (x̄n), sn, . . . , sn,

1
sn
υTn,1(x1), . . .

,
1
sn
υTn,n(xn),

1
sn
, . . . ,

1
sn
, εnsn

]T

. (59)

Therefore, (57) can be rewritten as

V̇sn + V̇Un ≤ µn(t)snu+ (θTn ϒn)sn −
1
2
µ2
n−1(t)s

2
n

− snżn − βnVUn +
3
4εn

. (60)

Now, the general positive semi-definite function for the n-th
subsystem would be

Vn = Vsn + VUn +
θ̃Tn 0

−1
n θ̃n

2
, (61)

where θ̃n = θ̂n − θn and 0n = 0Tn > 0 is a matrix
to be designed. Additionally, θ̂n represents the estimated
parameters for the n-th subsystem. By differentiating Vn, the
inequality

V̇n ≤ µn(t)snu+ (θTn ϒn)sn + θ̃Tn 0
−1
n

˙̃
θn −

1
2
µ2
n−1(t)s

2
n

− snżn − βnVUn +
3
4εn

. (62)

is obtained.

Eventually, the control signal u is designed as{
u = N (χn)qn(sn)[knsn + θ̂Tn ϒn − żn],
χ̇n = qn(sn)[kns2n + θ̂Tn ϒnsn − snżn],

(63)

where kn should be designed to satisfy the condition kn > 0.
Additionally, the adaptive law or parameter estimation for the
n-th subsystem is designed as

˙̃
θn =

˙̂
θn = qn(sn)0n

(
ϒnsn − σnθ̂n

)
, (64)

where the constant σn > 0 and matrix 0n are design
parameters.

Now, to better understand, the flowchart in Fig. 2 shows
that many theoretical complexities are not involved in the
practical process of the controller design. Based on this
flowchart, the uncertain parameters of the system, including
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FIGURE 2. The flowchart of the controller design process.

uncertainties in the system itself and those caused by attacks,
are estimated using adaptive laws at each step. Consequently,
the virtual controllers are designed using these estimated
parameters. Finally, the main controller of the system is
designed utilizing the virtual controllers and estimated
parameters and is applied to the system under attack.
Theorem 1: Consider the system described by (1), which

is susceptible to both injection and deception attacks (2).
The structure of the controller (63) and the adaptive laws for
parameters (33), (50), and (64), in addition to ensuring the
boundedness of signals in the closed-loop system, guarantee
that over an extended period and in a steady state, the error
surface signal vector s(t) = [s1, . . . , sn]T converges to

3s = {s | ∥s∥ ≤ �},

� = max


√
2(
D
C

+ B),

√√√√ n∑
i=1

(δai + δbi )2

 (65)

where D denotes the upper bound of

n∑
i=1

(
1
2
σi∥θi∥

2
+

3
4(εi)

)
+

n−1∑
i=1

(
1
2
µ2
i (t)X

2
i+1

)
,

and C is given by C = min
{
C̄1, C̄2, . . . , C̄n

}
, where C̄i =

min
(

σi

λmax(0
−1
i )
, 2k̄i, βi

)
, i = 1, . . . , n. Here, k̄i = ki − 1 for

i = 1, . . . , n− 1, and k̄n = kn. The variable B is defined as
an upper bound of

e−Ct
n∑
i=1

∫ t

0
µi(t)N (χi)χ̇ieCτ dτ + e−Ct

n∑
i=1

∫ t

0
χ̇ieCτ dτ.

Proof: To prove the proposed theorem, two positive
semi-definite functions are considered: V (t) =

∑n
i=1 Vi

and VX =
∑n

i=2
1
2X

2
i , where the function VX undergoes

differentiation yielding V̇X =
∑n

i=2 XiẊi =
∑n

i=2 Xi(żi −

α̇i−1). By defining a continuous function Di(.) ≜ −α̇i−1,
it can be expressed as

V̇X =

n∑
i=2

XiẊi =

n∑
i=2

−X2
i

ζi
+ XiDi. (66)

To prove the boundedness of the functions Di(·), the compact
set 5 is defined as

5 =

{
(si,Xi, θ̂i) |

n∑
i=1

1
2
s2i +

n∑
i=2

1
2
X2
i +

n∑
i=1

1
2
θ̂Ti θ̂i ≤ P

}
whereP is a positive constant. Given that all types of variables
of the functionDi are in this set, according to the Heine-Borel
theorem [31], the continuous Di is bounded on this compact
set and there exists a positive constant Mi such that |Di(·)| ≤

Mi. For every δi ≥ 0, the inequality

|XiDi(·)| ≤
X2
i D

2
i

4δi
+ δi ≤

X2
i M

2
i

4δi
+ δi

holds. Therefore, K∗
i should be designed in such a way that

the condition K∗
i =

1
ζi

−
M2
i

4δi
≥ 0 is maintained. In this case,

(66) takes the form

V̇X ≤ −K∗VX + δ (67)

where, K∗
= min

{
K∗

2 , . . . ,K
∗
n
}
and δ =

∑n
i=2 δi. Now,

both sides of (67) are multiplied by eK
∗t . By solving this

differential inequality, the relation

VX ≤ e−K
∗t (VX (0) − δ) + δ, (68)

is obtained, which implies that VX and signals Xi, i =

1, . . . , n are bounded. By properly designing ζi, i = 1, . . . , n,
they can be made as small as desired.
Remark 5: Due to the utilization of the function qi(si) in

the design process, the stability proof is divided into three
regions. When qi(si) ̸= 1, considering only one positive
function V =

∑n
i=1 Vi + VX allows us to establish the

boundedness of si, but we cannot prove the boundedness
of Xi. Additionally, according to equation (48), due to the
existence of µ2

i as a coefficient of X2
i+1, which is produced

by attackers, the time constant of the filter (ζi+1), cannot be
appropriately designed. Therefore, employing two positive
semi-definite functions instead of a single general positive
definite function is a suitable solution to address this issue.

Now, the proof of V (t) is conducted by considering
four distinct cases. Firstly, we explore cases where all si
satisfy |si| ≥ δai + δbi or δai ≤ |si| ≤ δai + δbi or |si| ≤ δai .
The boundedness of V (t) is examined in each of these cases.
Subsequently, we explore a case where the values of si differ
and are in different ranges.
First case: In this case, where |si| ≥ δai + δbi and qi(si) =

1 for i = 1, . . . , n, the time derivative of V (t) can be
expressed as

V̇ (t) ≤

n∑
i=1

s2i +

n−1∑
i=1

µ2
i (t)X

2
i+1 +

n∑
i=1

µi(t)N (χi)χ̇i

+

n∑
i=1

(θTi ϒi)si +
n∑
i=1

θ̃Ti 0
−1
i

˙̃
θi −

n∑
i=2

siżi

−

n∑
i=1

βiVUi +
n∑
i=1

3
4εi
. (69)
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By adding and subtracting χ̇i and carefully designing ki,
while applying the adaptive laws (33), (50), and (64), the
inequality (69) transforms into

V̇ (t) ≤ −

n∑
i=1

k̄is2i +

n∑
i=1

(µi(t)N (χi) + 1) χ̇i −
n∑
i=1

σiθ̃
T
i θ̂i

−

n∑
i=1

βiVUi +
n−1∑
i=1

µ2
i (t)X

2
i+1 +

n∑
i=1

3
4εi
. (70)

Using−
∑n

i=1 σiθ̃
T
i θ̂i ≤

∑n
i=1

1
2σi∥θi∥

2
−

∑n
i=1

1
2σi∥θ̃i∥

2,
we have

V̇ (t) ≤ −CV (t) +

n∑
i=1

(µi(t)N (χi) + 1) χ̇i + D (71)

whereC andD have been already defined in Theorem 1. If we
multiply both sides by eCt and integrate it, the inequality

V (t) ≤ e−Ct
n∑
i=1

∫ t

0
µi(t)N (χi)χ̇ieCτdτ

+ e−Ct
n∑
i=1

∫ t

0
χ̇ieCτdτ + (V (0) −

D
C
)e−Ct +

D
C
.

(72)

is obtained. Now, by applying lemma 3, the boundedness
of V (t) and χi(t) can easily obtained. By substituting B,
as defined in Theorem 1, we have V (t) ≤ B + (V (0) −
D
C )e

−Ct
+

D
C . In the steady state, the limit of V (t) is

lim
t→∞

V (t) ≤ B +
D
C , implying that the limit of s(t) is

lim
t→∞

∥s(t)∥ ≤

√
2

(D
C + B

)
.

Second case: In this case, all si are confined within the
range δai ≤ |si| ≤ δai + δbi for i = 1, . . . , n. The value of si
is bounded within this region and due to the boundedness
of Xi, the signals xi, and the functions Vsi and VUi are
also bounded. To establish the stability of the positive
semi-definite functions Vi, i = 1, . . . , n, it is essential

to verify the boundedness of the functions Vθi =
θ̃Ti 0

−1
i θ̃i
2 .

By differentiating it and applying the adaptive laws (50), its
derivative is expressed as

V̇θi = θ̃Ti 0
−1
i

˙̃
θi = θ̃Ti qi(si)(ϒisi − σiθ̂i). (73)

Utilizing the inequalities
qi(si)θ̃Ti ϒisi ≤

1
2c′i

qi(si)∥θ̃i∥2 +
c′i
2
qi(si)ϒT

i ϒis
2
i , c

′
i > 0

−σiθ̃
T
i θ̂i ≤ −

1
2
σi∥θ̃i∥

2
+

1
2
σi∥θi∥

2
,

equation (73) transforms into

V̇θi ≤ −
1
2
qi(si)(σi −

1
c′i
)∥θ̃i∥2

+
1
2
qi(si)(σi∥θi∥2 + c′iϒ

T
i ϒis

2
i ). (74)

In this region, the vector ϒi consists of functions that are all
smooth and bounded. Therefore, with a suitable choice of c′i
such that σ ∗

i = σi −
1
c′i
> 0, the inequality

V̇θi ≤ −C∗
θi
Vθi + ρθi (75)

is obtained, where the parameters C∗
θi

= qi(si)
σ ∗
i

λmax(0
−1
i )

and

ρθi =
1
2qi(si)

(
σi∥θi∥

2
+ c′iϒ

T
i ϒis

2
i

)
. Similar to (67) and (68),

the boundedness of the function Vθi and θ̂i for i = 1, . . . , n,
and ultimately Vi, i = 1, . . . , n, is established and all signals
of the closed-loop system will be bounded within this region.
Additionally, considering δai ≤ |si| ≤ δai + δbi , i = 1, . . . , n,

we have ∥s∥ ≤

√∑n
i=1(δai + δbi )2.

Third case: In this case, all si are limited to the interval
|si| ≤ δai for i = 1, . . . , n. As a result, the signals si are
all bounded in this region. Due to the boundedness of Xi,
the signal xi and the functions Vsi and VUi are also bounded.
Also, since qi(si) = 0, ˙̂

θi, and αi−1 for i = 1, . . . , n are equal
to zero, this means that θ̂i remains in a limited range and is

bounded. Therefore, the functions Vθi =
θ̃Ti 0

−1
i θ̃i
2 and Vi are

bounded for i = 1, . . . , n.
Fourth case: In this case, the signals si are in different

regions: some are in the region |si| ≥ δai + δbi , some in
δai ≤ |si| ≤ δai + δbi or |si| ≤ δai . For instance, if |si| ≥

δai + δbi and |si+1| ≤ δai+1 or δai+1 ≤ |si+1| ≤ δai+1 + δbi+1 ,
we conclude that all signals in the (i + 1)-th subsystem are
bounded, similar to the proof in the second and third case.
To prove the boundedness of the signals in the i-th subsystem,
if we replace (49) and (50) in (48) we realize that its stability
depends on si+1 which is bounded. This implies that the
signals in the i-th subsystem are also bounded. Additionally,
the n-th subsystem is bounded when |sn| ≥ δan + δbn and
doesn’t depend on other subsystems.

In summary, the proof covers all possible scenarios,
demonstrating that all signals of the closed-loop system are
bounded, and the signal s(t) = [s1, . . . , sn]T converges over
time to the region �.

IV. SIMULATION AND EXAMPLES
In this section, we simulate two examples to demonstrate the
effectiveness and performance of the proposed method and
controller. We present the results to evaluate the method’s
capabilities.

Example 1. Consider the system{
˙̃x1 = g1(t)x̃2 + f1( ¯̃x1) + h1( ¯̃xτ̄1 ) + d1(t)
˙̃x2 = g2(t)ũ+ f2( ¯̃x2) + h2( ¯̃xτ̄2 ) + d2(t)

(76)

where g1(t) = 1 + 0.5 sin(t), g2(t) = −3 + cos2(t), d1(t) =

0.05 + 0.02 cos(t), and d2(t) = 0.05 are unknown. Addi-
tionally, f1( ¯̃x1) = (−2 + 0.2 cos(t))x̃21e

x̃1 + sin(t)x̃1 cos(x̃1),
h1( ¯̃xτ̄1 ) = (2 + sin2(t))x̃21 (t − τ1(t)), f2( ¯̃x2) = (1.5 +

0.5 tanh(t))x̃1x̃2 + (2 + cos2(t))x̃2 cos(x̃1), h2( ¯̃xτ̄2 ) = x̃22 (t −

τ2(t)) sin(x̃1(t − τ1(1))) where τ1(t) = 1.2 + 0.3 cos2(t) and
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FIGURE 3. The true system states in Example 1 under the first scenario
attack which are not accessible.

τ2(t) = 0.8 + 0.2 sin(t). Functions f1, f2, h1, and h2 are all
unknown.

The controller design parameters are also as follows:
δa1 = δb1 = 0.1, δa2 = δb2 = 0.1, ϵ1 = ϵ2 = 0.1, k1 = 2,
k2 = 3, σ1 = σ2 = 0.001, ζ2 = 0.01, and 01 and 02
are diagonal matrices with diagonal elements of 1. The
initial states of the system are considered as x1(0) = −0.1
and x2(0) = −0.2 and the Nussbaum function is used as
N (χ ) = cosh(αχ ) sin(χ/β) where α = 0.4 and β = 0.3.
In this example, considering that the functions f1, f2, h1, and
h2 are unknown, RBF neural networks have been used to
estimate them.
Remark 6: In the process of designing the controller,

functions fi are not directly estimated, because their variable
is the product of λi which is introduced by attackers and
false states. Consequently, we focus on estimating functions
ϕi that solely depend on the false states. Therefore, we can
consider fi similar to example 1 in which some bounded
time-varying parameters exist. These parameters along with
other time-varying attack parameters, λi, can be isolated
using Lemma 1.

To assess the proposedmethod, we explore its effectiveness
in two distinct attack scenarios.

Scenario 1: In this scenario, we assume that the system
experiences continuous attacks from the outset. The attack
parameters are defined as w1(t) = −5 + sin2(t), w2(t) =

3 + tan−1(t), b(t) = 3 + 2 sin(t) cos(t), and also v(t) = 8.
The results of this attack scenario are illustrated in Fig. 3 and
Fig. 4.

Scenario 2: For this scenario, we assume that attacks occur
at t = 20. The attack parameters for this scenario are
specified as w1(t) = 7 + sin(t) cos(t), w2(t) = −6 −

cos2(0.2t), b(t) = −4− sin2(t), and v(t) = 5+3 tanh(t). The
corresponding results for this attack scenario can be observed
in Fig. 5 and Fig. 6.

Fig. 3 illustrates the system’s true states in the first sce-
nario. Although the system’s dynamics are complicated, the
signals show an approximately favorable transient behavior
with acceptable speed and overshoot. Fig. 4 displays the input
signal in this scenario as applied to the system. Due to the
impact of attacks and inherent complexities of the system,
the signal exhibits a large fluctuation range in its transient

FIGURE 4. The system input in Example 1, which has been affected by
deception attacks under the first scenario.

FIGURE 5. The true system states in Example 1 under the second scenario
attack which are not accessible.

FIGURE 6. The system input in Example 1, which has been affected by
deception attacks under the second scenario.

FIGURE 7. The true system states in Example 2 under the first scenario
attack which are not accessible.

behavior. In Fig. 5, the system’s true states in the second
scenario are shown. Initially, they quickly converge to the
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FIGURE 8. The system input in Example 2, which has been affected by
deception attacks under the first scenario.

FIGURE 9. The true system states in Example 2 under the second scenario
attack which are not accessible.

origin with a transient behavior. At t = 20, they exhibit
another favorable transient behavior due to the attacks and
subsequently, there’s another convergence to a neighborhood
around the origin. Fig. 6 shows the input signal in the second
scenario. Initially, it is equal to the designed control signal
before the attack. After the attacks, the signal stabilizes again
with a transient response.

Example 2. In this example, we simulate a nonlinear
time-delay practical system, By considering the 2nd order
chemical reactor system described as

˙̃x1 = −(C1 +
1
R1

)x̃1 −
1
R1
x̃1(t − τ1(t)) +

1 − F2
B1

x̃2

˙̃x2 = −C2x̃2 −
1
R2
x̃22 −

2E2
R2

x̃2 +
F1
B2
x̃1(t − τ1(t))

+
F2
B2
x̃2(t − τ2(t)) +

Fr
B2
ũ

(77)

where, C1 = C2 = 0.5, R1 = R2 = 2, B1 = B2 = 0.5,
F1 = F2 = 0.5, E2 =

7
3 , and Fr = 0.5, following the

considerations in [19]. The time delays are introduced as
τ1(t) = 0.5(2.5 + sin(t)) and τ2(t) = 0.5(3 + 0.4 cos(2t))
which are also unknown. Notably, the initial states of the
system are given by x1(0) = −0.1 and x2(0) = −0.5.
The controller is designed with specific parameters: ε1 =

ε2 = 0.1, k1 = 2, k2 = 2, σ1 = σ2 = 0.001, δa1 = δb1 = 0.1,
δa2 = δb2 = 0.1, ζ2 = 0.01, and 01, 02 are diagonal matrices
with diagonal elements set to 0.1. Moreover, the Nussbaum
function used in this context is N (χ ) = cosh(αχ ) sin(χ/β)

FIGURE 10. The system input in Example 2, which has been affected by
deception attacks under the second scenario.

where α = 0.3 and β = 1. For the estimation of unknown
functions of the system, RBF neural networks have been
employed.

To evaluate the proposed method, we examine its efficacy
in two different attack scenarios.

Scenario 1: In this scenario, we assume that the system
experiences continuous attacks from the beginning. The
attack parameters are defined as w1(t) = −5 − sin(t) +

2 tanh(t), w2(t) = 3 + 2 sin(t) cos(t), b(t) = 4 + cos(t), and
also v(t) = 10 sin(t) cos(t). The results of this attack scenario
are illustrated in Fig. 7 and Fig. 8.

Scenario 2: For this particular scenario, we consider
that attacks occur at t = 30. The attack parame-
ters for this scenario are specified as w1(t) = 4 + sin(t),
w2(t) = −3 − 0.2 cos(t), b(t) = −3, and v(t) = 4 +

sin(t) cos(t). The corresponding results for this attack sce-
nario can be observed in Fig. 9 and Fig. 10.

Fig. 7 shows the system’s true states under the first
scenario attack, exhibiting a favorable transient behavior
with acceptable speed and overshoot. In Fig. 8, the input
signal applied to the system under the first attack scenario is
displayed. Due to the impact of unknown delays in the states
and the attack parameters including more than one frequency,
the transient response shows large variations. Notably, the
range of these fluctuations is due to the impact of deception
attacks on the system. In Fig. 9, the true system’s states
with the second scenario attack converge approximately to
the origin within a settling time of less than 3 seconds from
the system’s start. At t = 30, they exhibit another transient
behavior, converging to a neighborhood around the origin
with favorable variations. Fig. 10 depicts the input signal
under the second scenario attack, applied to the system.
Before the attack, it equals the control signal sent from the
controller. During the attack, the signal changes but stabilizes
with a favorable transient state.

V. CONCLUSION
In this paper, the design of a controller for uncertain nonlinear
time-delay CPSs under injection and deception attacks was
investigated. We applied a series of even functions to address
the issue of zeroing signals in the controller’s denominator
without imposing any additional conditions or restrictions
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on the system. The utilization of these functions posed
some challenges in the dynamic surface method. Therefore,
we addressed these challenges in our study and successfully
resolved them. We demonstrated that the designed controller
guarantees the boundedness of the system’s closed-loop
signals. Finally, to assess the effectiveness of the proposed
method, we presented two simulation examples and evaluated
their outcomes. Possible future works include considering
time delays in attack modeling for nonlinear time-delay
CPSs.
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