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ABSTRACT Recent developments in cloud technology enable one to dynamically deploy heterogeneous
resources as and when needed. This dynamic nature of the incoming workload causes fluctuations in
the cloud environment, which is currently addressed using traditional reactive scaling techniques. Simple
reactive approaches affect elastic system performance either by over-provisioning resources which signif-
icantly increases the cost, or by under-provisioning, which leads to starvation. Hence automated resource
provisioning becomes an effective method to deal with such workload fluctuations. The aforementioned
problems can also be resolved by using intelligent resource provisioning techniques by dynamically
assigning required resources while adapting to the environment. In this paper, a reinforcement learning-based
proactive resource allocation framework (RLPRAF) is proposed. This framework simultaneously learns the
environment and distributes the resources. The proposed work presents a paradigm for the optimal allocation
of resources by merging the notions of automatic computation, linear regression, and reinforcement learning.
When tested with real-time workloads, the proposed RLPRAF method surpasses previous auto-scaling
algorithms considering CPU usage, response time, and throughput. Finally, a set of tests demonstrate that the
suggested strategy lowers overall expense by 30% and SLA violation by 77.7%. Furthermore, it converges
at an optimum timing and demonstrates that it is feasible for a wide range of real-world service-based cloud
applications.

INDEX TERMS Resource allocation, resource provisioning, autonomic computing systems, machine
learning, reinforcement learning, virtual machines.

I. INTRODUCTION
Cloud computing is the edge of distributed computing and
the platform of the future for hosting service-based and
scientific-based cloud applications. Cloud applications use
various on-demand services hosted by providers to carry out a
range of functions. Major providers such as Microsoft Azure
and Amazon EC2 use multi-layer auto-scaling to ensure
effective resource allocation to address this and fit in with
a subscription-based pricing model.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ayaz Ahmad .

Cloud computing, with its pricing structure, offer tremen-
dous processing capabilities and flexible resource allocation.
To enable on-demand processing and storage for high-
performance, highly available applications, many cloud
data centres feature a large number of computing nodes.
It becomes difficult to predict the exact resources required
when service requests fluctuate quickly, which can result in
problems like resource over- or under-provisioning. Over-
provisioning of resources leads to resource wastage while
under-provisioning with fewer resources leads to revenue loss
and SLA violation. Therefore, focusing on dynamic resource
provisioning is essential for effective resource prediction in
order to overcome these obstacles.
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To ensure that Service Level Agreements (SLA) are met
without incurring extra expenses or causing service delays,
an efficient elasticity mechanism must precisely predict
the resources needed based on the present workload. This
indicates that to maximize resource predictions and guarantee
SLA compliance, research gaps in dynamic resource provi-
sion must be addressed. In order to prevent resource over-
or under-provisioning, it is essential to make well-informed
decisions when compiling services. An effective and expand-
able infrastructure is crucial for using cloud computing
service-based apps. Proactive resource allocation should be
a part of this architecture, guaranteeing that resources are
allotted ahead of time to avoid data loss. This proactive
strategy enhances customer satisfaction, efficiency, and
scalability, providing a dependable and smooth experience for
cloud-based and service-based applications.

Thus, a dynamic resource provisioning system is needed
to provide cloud customers with a collection of various
tools available in the field of computing that can be
utilized to effectively manage job processes and organize
data storage [1]. One of the motivations of this paper
is to study the problem of resource provisioning using
dynamic algorithms in a cloud-computing environment.
When a consumer requests resources in the cloud, Effective
allocation is essential for cloud users to guarantee that their
performance requirements are constantly satisfied [2]. There
is an imbalance in the back-end burden caused by traditional
server architectures’ inability to adaptively assign computer
resources for changing data requests. Processing problems
and the possibility of data loss result from this imbalance.
Therefore, a robust, scalable processing and storage infras-
tructure, that ensures a proactive and autonomous virtual
resource allocation mechanism is needed.

Resource provisioning, which is a crucial aspect of
resource management, is essential in determining the nec-
essary infrastructure resources (capacity) needed to support
a set of applications. This plays a vital role in ensuring
that there are sufficient resources available to run the
applications [3]. Two crucial processes make up the cloud
provisioning process: First, VM Provisioning, which entails
launching one or more virtual machines (VMs) on virtual
servers in either a private or public cloud computing platform,
several mapping requirements, such as memory and storage
to the primary cloud, are consideredwhen selecting a physical
server for web hosting virtual machines in a cloud. The
second is application service provisioning, which involves
scheduling and mapping incoming requests to the services
hosted in virtual machines (VMs) within a VM cluster.

In this proposed work, we mainly concentrate on the
second one, given a set of virtual machines in a decentralized
and load-balanced manner; incoming requests are distributed
across various services [4]. With differing dynamic require-
ments of cloud services from the user’s side, improving the
availability of services to cloud users and mapping incoming
requests to the services hosted in virtual machines within a
cluster of VMs is a critical task for cloud providers. Hence,

resource provisioning becomes a continual issue faced while
working with cloud-based technologies, which impedes the
use of cloud-based services offered by the cloud provider [5].
The goal of resource allocation strategies is cost reduction;
dynamic allocation techniques enhance resource utilization
while lowering virtual machine usage [3], [6].

The motivation of current research is to maximize the
profitability and efficiency of cloud services, which raises
concerns regarding cost, provisioning, resource selection, and
computational efficiency. Therefore, efficient resource provi-
sioning algorithms that satisfy performance requirements and
benefit providers and customers alike are needed to answer
these problems. Regression or prediction models based on
time series analysis can be used to cloud resource utilization
data to forecast future requirements. The selection process for
models, including possible combinations, is still governed by
accuracy evaluation in research.

In this work, we present a hybrid resource provisioning
strategy for cloud applications that combines the ideas
of reinforcement learning (Q-RL) with autonomous com-
puting. The suggested work aims at minimizing both
the under-provisioning and over-provisioning of resources
for cloud users and, in turn, reducing the total cost of
provisioning the resources for a given period. Our method
provides the best possible resource provisioning framework,
reducing SLA violations and enhancing response times by
anticipating and dynamically adjusting computing resources
according to the kind of application. This work focuses
on the dynamic resource allocation strategy and, in partic-
ular, a reinforcement cloud resource provisioning method.
This proposed work stems from issues with uncertainty
regarding both demand and pricing that can be a factor
in cloud computing environments. The model considers
virtual machine load, request arrival rates, and rejection
percentages for dynamic resource provisioning and fol-
lows IBM’s suggested MAPE-K loop, which effectively
scales resources to optimize performance while avoiding
over- or under-provisioning. This approach, which is rather
unique in the literature, combines proactive and reactive
elements [7].
Here, emphasis is put on Actor-Critic techniques based

on off-policy reinforcement learning that use the Experience
Replay (ER) method to minimize the bias and variation and
maximize the sample efficiency. Likewise, the evaluation
results are used to calculate the surplus shared resources of
the providers and the suggested approach will be used to
offer its ideal value to cloud service providers [2]. Demand
uncertainty emerges from the cloud consumer side for a
required resource to be provisioned and, in turn, to make an
optimal decision during runtime. In addition, cloud provider
price uncertainty is considered tomodify the balance between
on-demand and oversubscribed prices. Numerous studies
and simulations have been conducted, and the findings
imply that the proposed work can lower total costs even in
uncertainty. This paper’s mathematical formulation, which
can be combined as presented in the subsequent sections,
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is where it makes its substantial contribution. The research
contributions of the proposed work are:

• A framework (RLPRAF) for proactive resource provi-
sioning using the MAPE-K loop has been proposed,
which integrates reinforcement learning with autonomic
computing and is based on fine-grained elastic resource
supply under changing workloads. It offers resource
provisioning that is both reactive and proactive for
different cloud applications.

• Proposed a forecasting system for the dynamic workload
changes that aid in resource scheduling by forecasting
resource needs and scaling out delays.

• Proposed resource provisioning mechanisms for the
cloud application services of the IaaS provider for each
MAPE-K loop phase. It guarantees both autonomic and
proactive resource provisioning for cloud applications.

• Analyzed the proposed model for different VM load
conditions, and the results of response time (average)
and a number of violations of the service level agreement
have been presented to facilitate informed decision-
making. The proposed model uses reinforcement learn-
ing, also known as Q-learning, which generates deci-
sions by replicating the decision-making process and
outlining the possibilities that have the most significant
cumulative rewards in resource provisioning.

• Analyzed the performance of the proposed system using
real-time web server traces from ClarkNet and Google.

This work also presents the results from the experiment on
different traces taken to show that the reinforcement learning
technique, compared to the existing methods, help resources
to have better response times, fewer SLA violations, fewer
hours of virtual machine utilization, and lower costs. The
suggested framework is classified as a service-based cloud
application among resource provisioning techniques because
it allows the server to efficiently use all the resources given,
even under changing workload conditions.

The rest of the document is structured as follows: A
discussion of related research, as well as an overview of
the methods and techniques employed for provisioning,
is presented in Sections II and III, while Sections IV and V
describe the proposed solution and present the simulation and
experimental results obtained for a range of real-time traces.
The paper is concluded in Section VI.

II. RELATED WORK
This section describes the summary of the existing research
on resource provisioning and presents in two categorizes - one
based on autonomic computing and other on reinforcement
learning.

A. RESOURCE PROVISIONING BASED ON AUTONOMIC
COMPUTING
According to IBM, autonomic computing systems are
autonomous and capable of producing optimized system
performance with limited work for system administrators.
The MAPE-K (IBM) paradigm has been suggested by

Huebscher et al. to manage autonomic computing with
a variety of self-management, self-configuration, self-
optimization, self-healing, and self-protecting properties [5],
[8]. The performance of the resource management system,
which is based on services, can be enhanced by predicting
future resource needs in a way that satisfies the QoS standards
specified in the SLA [9].

Using a service-level agreement, the dynamic resource
provisioning and monitoring system (DRPM), as suggested
in [7] and [10], maintains the resources and meets the QoS
requirements of the customers. A hybrid resource provision-
ing approach is proposed by Etemadi et al. [11], mainly
for SaaS applications, that lowers costs, time factors, and
SLA breaches. To reduce latency and virtualization overhead,
Wang et al. [12] propose an autonomous virtual application
provisioning system for big data centres. In [13], an auto-
scaling method for cloud workload prediction combines the
auto-regressive moving average (ARMA) and linear regres-
sion models to anticipate resource workloads at a reasonable
cost. A framework for e-healthcare apps was created by
Bhardwaj and Sharma [14], which improved resource usage,
decreased response times, and minimized rejected requests.
For parallel scientific programmes, an extension in [15]
offered an elastic controller with fuzzy logic that resulted
in better resource usage and quicker completion times.
Zhong et al. [16] provides a thorough comparison of these
models that covers measurements, approaches, and policy
types. Shakarami et al. [17] presented a survey for data
replication scheme among different existing cloud computing
solutions in the form of a classification approach.

Our study uses real-world workload logs from ClarkNet
and Google Traces from the literature to find the models that
could estimate cloud resource usage. The effectiveness of
machine learning algorithms has also been evaluated.

B. RESOURCE PROVISIONING BASED ON
REINFORCEMENT LEARNING
This section presents the survey on reinforcement learning-
based resource provisioning techniques. As per
Siar et al., [18], an agent uses Q-learning that com-
bines Reinforcement learning and fuzzy intelligence tech-
niques for efficiency maximization in scheduling tasks.
A new cooperative Q-learning approach is presented in
this work to encourage collaboration between multiple
agents to improve efficiency in a specified environment.
Moazeni et al. [19] proposed a dynamic resource allocation
strategy using an adaptive multi-objective teaching-learning
based optimization (AMO-TLBO) algorithm that helps to
minimize cost and maximize utilization using well-balanced
load across virtual machine. Fan et al. [20] proposed an
efficient and highly secure blockchain assisted authentication
scheme using a combined off-chain and on-chain approach.

Q-learning has also been used by Xu et al. [21]
to design systems for vertical scaling. To manage the
directed acyclic graph (DAG) structures’ graph-based job
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scheduling issue and shorten the overall DAG execution time,
Orhean et al. [10] employed state-action-reward-state-action
(SARSA), which is a model-free reinforcement learning
algorithm that shares similarities with Q-learning. Our
proposal in this paper focuses on implementing the MAPE-K
loop using Q-learning for optimal decision-making.

Literature also finds the use of deep reinforcement learning
(DRL) for resource provisioning in cloud applications [5].
In the DRL framework developed by Bao et al. [22] for batch
processing, an artificial neural network (ANN) model has
been trained using the actor-critic RL technique.

Ghobaei-Arani et al. [23], utilizing the MAPE-K loop,
provide a hybrid resource provisioning approach with a
focus on the planner phase for forecasting future requests.
The results demonstrate that the suggested technique lowers
cost, time elements, and SLA violations. This approach,
however, is limited by the assumption that the requests
are for SaaS cloud apps [24], while our proposed model
focuses on the interaction between SaaS, PaaS, and IaaS
layers. Bhardwaj and Sharma [25] develop an elastic resource
provisioning framework for autonomic computing phases
in e-health applications. The monitor and analyzer stages
focus on using a queuing load prediction model. Results
demonstrate improved resource use with quick response and
completion times. When forecasting the resources used in
the future, fuzzy logic aids decision-making, thus resulting
in optimal resource use and rapid completion [10], [24].
The incorporation of Markov Decision Process (MDP),

Q-learning, and edge-cloud technologies in the frame-
work of microservice coordination is further extended by
Wang et al. [26] where the sequential decision system
that underlies the process of microservice coordination is
assumed and formulated as an MDP design. To analyze the
function invocation patterns and decide on the best function
container scaling in advance, Agarwal et al. [27] provide
a Q-learning agent that models system states using metrics
such as available function containers, CPU utilization per
container, and success/failure rates [23]. The work concludes
that the model-free RL algorithms do not require prior
knowledge of the input function because of their nature.
However, these solutions only consider specific workloads,
and hence performance cannot be assured under varying
workloads, while our work focuses on prior knowledge for
effective decision-making of virtual machine utilization using
Q-learning in the planner phase of the MAPE-K loop.

The actor-critic approach is used by Qiu et al. [28] to
scale the essential microservices identified by Support Vector
Machine (SVM). This horizontal scaling approach alleviates
SLA violations by analyzing three essential aspects: the
SLO maintenance ratio, workload variations, and request
composition. Ghobaei-Arani et al. [23] chose the Q-learning
method where the learning agent repeatedly observes the
current state of a controlled system (workload, VM count,
and performance SLA), performs a task, and then changes
to a new state. To avoid a prolonged period of exploitation
and exploration, the authors introduce a convergence speedup

phase to accelerate learning at regular intervals. Dezhabad
and Sharifian [29] propose the GARLAS approach, which
combines genetic algorithm, reinforcement learning, and
queuing theory to determine the ideal number of active
firewalls based on incoming traffic intensity at any given
time. The integration of RL and genetic algorithms enables
the system to learn and adapt to changes in workload and net-
work conditions, making it a robust and scalable solution for
firewall management in dynamic and unpredictable environ-
ments; however, the system focuses on parameter response
time alone, while our model focuses on different parameters
like average response time and average load at IaaS level.
Horovitz and Arian [30] present a Q-learning technique for
horizontal scaling that includes initialization steps, smooth-
ing, and action monotonicity. For continuous actions in spec-
ified states, the method uses an action space methodology.

In their study, Wei et al. [31] propose a resource allocation
method for SaaS providers operating in a dynamic and
stochastic cloud environment. The method is based on the
Q-learning adjustment algorithm (QAA) and aims to assist
providers in making optimal resource allocation decisions
[32]. This work aims to cut down rental costs as much as
possible while offering enough processing capacity to meet
client requests [31].
The model-free method-based works ([29]; [30]) not only

need the space to reserve the action R(s, a), it also needs
the effort and information to update it. When multiple
characteristics or dimensions are used, it can lead to a
combinatorial explosion of states, making them challenging
to manage effectively. Furthermore, the number of states
can increase exponentially, depending on the potential values
of the specified variables, especially when scaling the
system. This perspective reveals that one of the primary
limitations of RL is the dimensionality problem, also
known as the state space dimension problem. Hence several
solutions have been looked into to mitigate its effects. The
combination of RL and function approximation, a supervised
learning generalization is one among them. One example
is the non-linear approximation of R(s, a), as demon-
strated by deep neural network theories (Cheng et al. [40],
Tong et al. [41]). However, the field of cloud auto-scaling
has not yet seen widespread adoption of RL with function
approximation [42].
Table 1 summarizes the above-mentioned models based on

the objective parameters, the optimization goal, the benefits,
and the shortcomings of the methods under investigation.
Based on their research objectives, the researcher can choose
the best strategy.

III. BACKGROUND
This section provides an introduction and contextual infor-
mation necessary for implementing the proposed system.

A. AUTONOMIC COMPUTING ARCHITECTURE
The autonomous processing system is the IBM-introduced
element for autonomous computing. This system is controlled
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TABLE 1. Autonomic provisioning - a comparative survey.

by the human body’s autonomic nervous system, which
knows the essential interfaces and functional components for
the control MAPE-K loop’s analysis phase and its manage-
ment component. It is critical to provide constant feedback on
the system’s events to persuade users to operate service-based
cloud applications [7]. The autonomous processing system
is presented in Figure 1 with managed elements, cloud
applications, resources, and an autonomous manager with a
control MAPE-K loop. Interfaces, sensors, or actuators make
up the managed element [43].

The autonomic engine stores the sensor’s data from the
environment (also known as managed elements). Based on
the autonomic manager’s information, the actuator scales
the resources up or down. The Monitor, Analyzer, Planner,
and Executor with the Knowledge engine, or MAPE-K
loop, is a critical component of autonomic processing.
Here, the managed element and MAPE-K loop stand in
for the various software and hardware resources, such as
cloud services, operating systems, CPUs, cloud applications,
storage, virtual machines, etc. During the monitoring phase,

the information acquired by the sensors about response time,
CPU consumption, and memory is checked and saved in the
knowledge base for later processing [11]. The analysis phase
analyses the data gathered and makes resource predictions
for future use. During the planning phase, the resources are
scaled up to determine the most effective allocation, which
is then implemented during the MAPE-K loop’s execution
phase.

B. PROACTIVE PROVISIONING OF VIRTUAL RESOURCES
This section describes the proactive resource allocation
mechanism. These mechanisms are divided into two cate-
gories: elastic infrastructure and elastic support, which are
dealt in this work The task type formed from data nodes is
the input parameter. The virtual resource needs for task T are
determined by the task type. For instance, the cloud would
allot more virtual CPU resources to the work if it is classified
as CPU-intensive and deadline-critical. However, if the task
is classified as I/O-intensive and mission-critical, the server’s
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FIGURE 1. MAPE-K loop - architecture.

job is to just allocate task T to virtual I/O devices to fulfil its
requirements.

C. USE OF REINFORCEMENT LEARNING
Reinforcement learning is a branch of artificial intelligence
in which an agent keeps track of the condition of its
surroundings and takes suitable optimal action through a
trial and error method to determine the best solution to
maximize the reward in a critical situation under dynamic
circumstances. The agent finds the ideal system state at any
given time based on historical data. Agents receive rewards
based on their actions. The agent always wants to locate the
biggest possible prize [44].

1) MARKOV DECISION PROCESS
A discrete-time stochastic process called a finite Markov
Decision Process termedMDP, which has a finite set of states
(st ), a finite number of rewards (rt ), and a finite number of
actions (at ), can be used to formalize anRL problem.Only the
finite MDP is taken into account in RL. Finding an optimal
policy that can maximize the long-term expected reward is
the main objective of the MDP. There are numerous methods
for solvingMDP, including policy iteration, Q-learning, value
iteration, linear programming, etc. The issue that an agent
is trying to resolve is the series of states (s1, s2, s3,. . . , sn).
The agent acts and transfers it from one state to another.
Each action must be performed at a specific time interval to
maximize the reward.

2) MARKOV PROCESS
The Markov, a random probability distribution process,
specifies the possible states in the process. Markov prop-
erties are defined as a present state’s reliance on a
past state St (overutilized, underutilized, or no operation)

FIGURE 2. Interaction of a reinforcement learning agent with its
surroundings.

as given in Eq. 1.

P[st+1|st ] = P[st+1|s1, s2, . . . .., sn]. (1)

The proposed planner phase of the autonomic MAPE-K
loop, implements the RL-based agent, which takes action
dynamically for the resources to be provisioned depending
on the current status of the system’s performance. Q-learning,
a popular Bellman equation-based model-free reinforcement
learning algorithm, has been used to scale microservices.
The action-value function is implemented using Q-learning,
which evaluates the reward of acting as a specific condition.
Q-learning has the added advantage of being able to give
the anticipated reward without using the environment’s
model.

The primary objective of Q-learning is to develop a policy
that can instruct an agent on the behaviors to be performed
to maximize reward-specific conditions. It is an off-policy
RL that considers the optimal course of action in the given
situation [23]. As a result, the algorithm’s (Q-learning) state-
action combination is as follows: Q : S ∗ A → R, where Q is
initialized to this value dynamically.

Each time a new state is attained by an agent (st+1), which
may be influenced by both the previous state st and the
chosen action at , the Q-value table is updated sequentially.
In Q-learning, the agent’s objective is to maximize Q value.
The agent chooses an action at A for a system at time t with
state st as shown in Figure 2. The state changes from st to
st+1 upon the application of action at to the environment,
and the environment returns an immediate reward rt+1 [23].
Bellman’s equation can be used to update the Q-function each
time, which results in the application of an active environment
as determined by Eq. 2.

Qnw(st , at )︸ ︷︷ ︸
New Q-Value

= Q(st , at ) +α∣∣∣
New Q-Value

[ rt︸︷︷︸
Reward

+γ∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(st+1, a)−Q(st , at )]

(2)
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FIGURE 3. A framework for autonomous resource provisioning built on Mape-K control
loop.

where α is the learning rate (0 < α ≤ 1) and rt is the
reward obtained while migrating from the state st to the state
st+1. Here Qnw(st , at ) is the consequence of three factors:
first, (1)-α)Q(st , at ) is the current value, second, α rt is the
reward rt = r(st , at ) to obtain if action at is taken when in
state st (weighted by learning rate), third, the highest reward
that may be earned from the state st+1 is αγ maxa Q(st+1, a),
weighted by learning rate and discount factor. Here γ is the
discount factor, which represents the influence of potential
future benefits on our choice of action at this timestep and
how our decision-making will change if we adopt a particular
course of action. Section IV discusses the Bellman equation’s
application in detail.

IV. PROPOSED WORK
The proposed reinforcement learning approach (RLPRAF)
described in this section, utilizes the MAPE-K loop and runs
periodically for each cloud service offered by SaaS providers.
This section includes an extensive analysis of the proposed
MAPE-K algorithms for resource provisioning systems and
discusses the problem formulation in detail.

A. RESOURCE PROVISIONING FRAMEWORK
Figure 3 depicts the proposed resource provisioning frame-
work with the three main cloud layers: SaaS, PaaS, and
IaaS. This is how the model operates: To use cloud services,
a client must first submit requests to the admission control
(i.e., the SaaS provider, which operates to increase profit)
which subsequently forwards the request to the PaaS layer
and store it in database. Second, the MAPE-K phase, which
combines the reinforcement learning approach with linear

regression modelling, acts as the brain for the provisioner’s
autonomous and effective decision-making and receives the
request in the PaaS layer. Lastly, IaaS offers a huge quantity
of VMs, enabling the expansion of numerous cloud services
on a single VM. Through the MAPE-K loop, the PaaS layer
maintains the resources for the cloud services offered by the
SaaS layer.

The MAPE-K loop of the proposed solution is described in
the subsections that follow.

1) MONITOR
Resource and user monitoring are the two parts that make up
the monitoring phase. The task of resource monitoring entails
gathering data on CPU utilization, typical VM load, and
memory usage, whereas the task of user monitoring entails
gathering data on workload requests made by each user,
such as request arrival percentage, type, length, and dropped
requests. These gathered data are kept in the repository for
later use [7].

2) ANALYZER
The collected data during the monitor phase is processed
during the analyzer phase. To guarantee the requested QoS
level, the data gathered in the preceding phase is examined to
see if any action is necessary.

3) PLANNER
To achieve an acceptable SLA with reduced cost, the planner
phase decides on the number of distributed VMs needed
among the total available services. The decision-maker for
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FIGURE 4. Sequence diagram for resource provisioning framework.

TABLE 2. Description of the notations.

the proposed approach uses reinforcement learning to allot
the necessary VMs. This decision is made possible due to the
presence of the analyzer phase.

4) EXECUTOR
A load balancer and VM manager are the components of the
executor phase. The load balancer receives requests from the
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FIGURE 5. Sequence diagram for resource provisioning agent.

user to the accessible VMs in accordance with the shortest
job first load-balancing policy. The VMManager implements
the choices made during the planning process (such as scaling
operation, scale-out operation, or no-operation).

The sequence diagram explaining the workflow of the
provisioning framework is presented in Figures 4 and 5.

B. PROBLEM FORMULATION
The sudden rise in user emergency service demands result
in sharp and erratic surges of resource requests, which have
a significant impact on resource allocation strategies for the
applications. As an illustration of a use case, consider virtual
machines that host online applications like e-commerce
platforms, which are frequently N-tier and feature web
servers that carry out business logic [45]. The number of
incoming requests and the resources available to the VM

determines the end-user response time. The rate at which
requests arrive at the web server will typically vary, and it
may experience a rise during peak hours. This will further
increase the server’s use of resources and put more strain
on the physical node, which could impair the web server’s
response time.

Hence, necessary and quick decisions must be made in a
cloud environment so that the response time and the SLA
violations are minimal. The usage of Reinforcement learning
allows for viable decision-making on the type and amount
of VMs to be used (scaling), and resources ought to be
allocated at any given moment (scheduling). We intend to
create a method that reduces SLA violations by recognizing
overloaded virtual machines and implementing a migration
strategy to choose new target nodes for the VMs. Hence
the primary goal of this paper is to provide resources for
applications related to cloud-based services.
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The proposed framework for service-based cloud appli-
cations in line with the notations presented in Table 2
is described in detail. This section also explains the
performance measures needed to test the proposed method-
ology. Let Z denote the number of users (User =

Usr1,Usr2,Usr3, . . . ,UsrZ ), let Drz be the zth user’s r th
request and let each user Z have RZ requests (ReqZ =

Req1Z ,Req2Z ,Req3Z , . . . ,ReqRZZ ) produced for each type of
service delivered by the SaaS provider. The maximum time a
user must wait for the requested service (the SLA’s response
time requirement for User t) to respond is denoted by the
variable Dlrz . Let S represent the total number of cloud
services the SaaS provider offer, and let Si stand for the cloud
service with IDi, (S = S1, S2, S3, . . . , SS ). Additionally,
define VMi(t) as total virtual machines utilized by cloud
services Si at t and Loadi(t) representing the load (number of
requests) for each Si at interval t . Assume V as the set of VMs
denoted as VM1,VM2,VM3, . . . ,VMx that IaaS provides to
SaaS at specific intervals to execute different cloud services.
Here, the load of a virtual machine can be determined as
shown in Eq. 3.

LD[VMi, 1(t)] =

∑CurrentCS
i=1 (CPEsi ∗ CLi)

PEs ∗MIPS
(3)

where CL denotes the number of tasks running as a
user request, CPEs mean the number of processors the
program uses, and CurrentCS indicates the total demand
from the concurrently running VMs on the client side. PEs
stand for the number of VM processing elements, and the
computational capacity of every processing unit is denoted
by MIPS (Million Instructions Per Second) [7]. The overall
load on the supply of VMs running at that specific period,
as shown in Eq. 4, determines the average load on virtual
machines in the cloud at a given time interval t [9].

LDaverage =

∑ActiveVM
i=1 LD(VMi)

Activevirtualmachines(VMi)
(4)

where ActiveVM is the total number of running virtual
machines at a time interval 1t , and LD(VM ) denotes a full
load of virtualmachines at1t . Response time is the computed
period between the moment at which a request is made and
the time at which the cloud client or user responds initially.
Eq. 5 calculates the response time of a specific request
generated by the user.

ResT = FNT − PAT − ART (5)

where FNT denotes the user request’s first response, PAT is
the time the VM ran the request, and ART is the user request’s
arrival time in the cloud. The capacity of the overall system
is determined using Eq. 6.

Capi = PEnumi × PEmipsi + VMbwi (6)

wherePEnumi denote the total number of processing elements,
PEmipsi indicate the total number of processors in VMi
processing one million instructions per second, and VMbwi
denote the VMi communication bandwidth. The average

response time is calculated by dividing the overall response
time (ResT rz ) by the number of users or clients for each
interval (User(1t)), as presented in Eq. 7.

ResTaverage =

∑User(1t)
i=0 ResT rz
User(1t)

(7)

Virtual machine initialization generally includes a delay
factor known as Bootupdelay. Therefore, the delay is the
time that elapses between the task’s deadline and the actual
response time for user requests Reqrz , as shown by Eq. 8.

TmDelayrz =

{
FT rz − DLrz if FT rz > DLrz
0 if Otherwise

(8)

Here, TimeDelayrz denotes the time delay in the transaction.
When the SLA’s established terms and conditions, such as
the service level objectives, aren’t met by a SaaS provider,
an SLA violation occurs (i.e. SLAV (Reqrz )) If the delay
duration exceeds zero, an SLA violation occurs; otherwise,
no action is taken, as described in Eq. 9.

SLAV (Reqrz ) =

{
YES if TmDelayrz > 0
NO Otherwise

(9)

The total Cost of virtual machines is calculated by the formula
as follows in (/hour):

Costrz = Costmemory + Coststorage + CostVMhour (10)

Here Costrz denotes the Cost of virtual machines for
rth request for zth user, Costmemory denotes the memory
cost,Coststorage denotes the storage cost,and Costvmhour
denotes the virtual machine hour cost per time interval.

C. TIME COMPLEXITY OF THE PROPOSED ALGORITHM
Time complexity of an algorithm indicate the total steps
required to solve a particular problem which is proportional
to the length of the input. The arrival of user request play a
major role in our proposed algorithm. The notations used in
the time complexity analysis is listed in Table 3. It describes
all the operations performed for each incoming request in a
time interval 1t as given in Eq. 11.

T (n)

= 1t.Treq.[Tadc + 3Tsendr + Tmape + 2Tprocess + Tpropagate]

(11)

where Tmape is the time required to run the mape() algorithm
and is expressed by Eq. 12.

Tmape = Tmr + Tas+ Tpg+ Ten (12)

The required time for execution of analysis and planner
phases is represented by Eq. 13 and Eq. 14.

Ta = Tla (13)

Tp = Tp1 + Tp2 + Tp3 (14)
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TABLE 3. Notations for time complexity.

By combining equations Eqs.(12 to 14) in Eq.11, we get:

T (n)

= 1t.Treq.[Tadc + 3Tsend + Tmr + Tas + Tpg+ Ten

+ 2Tprocess] (15)

Time required for serving user workload requests at a time
interval 1t can be expressed as follows:

Treq = n (16)

Here, all the values considered for analysis denote the
maximum consuming time and is given as:

T (n) = 1t.n.[10.Tmax] (17)

Taking 1t as a constant, and Tmax as the maximum required
time for an operation, the time complexity of proposed
algorithm with a linear running time is given as follows:

T (n) = (n) (18)

D. PROPOSED ALGORITHM FOR RESOURCE
PROVISIONING
This section presents autonomic resource provisioning strate-
gies for different cloud services, with flowcharts presented

FIGURE 6. Flowchart for autonomic resource provisioning.

in Figures 6 through 12. These algorithms are executed
within each MAPE-K loop at regular intervals. The proposed
MAPE-K algorithms continue to execute until all open
requests in the cloud system are completed by time t . Real-
time SaaS companies maintain a pre-defined list of cloud
service providers to fulfill the constantly evolving needs of
their customers [7], [24].
The suggested algorithm is responsible for the adminis-

tration of all virtual machines allotted to the cloud service
Si. In the monitoring phase, the algorithm initializes the
required VMs from an accessible resource pool, which
may cause a minor pause, known as boot-up latency.
To improve VM allocation, the MAPE-K loop proposed in
this research employs the reinforcement learning approach
and a linear regression model during the analysis phase. The
algorithm optimizes VM allocation by considering multiple
limitations, such as load, response time, makespan, and job
rejection rate on the VM. This approach aims to improve
the performance and efficiency of the cloud service by
allocating resources more effectively and reducing latency in
the system. The proposed technique is expected to enhance
the quality of service and user experience for cloud-based
applications [7], [24].
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TABLE 4. Decision table for the proposed MDP - Q(State/Action).

FIGURE 7. Flowchart for monitoring phase (Si).

1) MONITORING PHASE
The gathering of metrics during the monitoring phase is
performed in various modules as presented in Figure 7.
Within the user monitoring module, every SaaS service
offered by the provider Si maintains a log of the number of
virtual machines assigned by the IaaS provider for operating
the service at specified intervals which is denoted by Numi(t)
for every 1t . This information is collected through the
user monitoring module, and helps to analyze the resource
utilization patterns of the cloud services and optimize their
performance and cost-effectiveness. The data on the number
of VMs allocated to each service can also be used for capacity
planning, load balancing, and resource allocation in the cloud
environment [7]. It also keeps track of the total requests sent
to the cloud service Si during the 1t th interval, indicated by
Wi(t). The module for resource monitoring gathers a load of
virtual machines Loadi(t), assigned to each cloud service (Si)
every 1t th interval. The knowledge base stores the gathered
data for the upcoming processing.

2) ANALYSIS PHASE
This phase of the MAPE-K loop is extremely important
because it determines how the resources will be used in the
future based on the average virtual machine load VMLoadi
and request arrival rate λi. The model based on linear
regression (LRM), as shown in Eq. 19, is used to forecast the

FIGURE 8. Flowchart for analysis phase (Si).

resource use at the next interval of time (t + 1).

Zt+1 = a+ b ∗ Pt (19)

where t stands for the sample observation’s index and Zt+1
denotes the workload at that particular moment (t + 1).
The time when the sample was taken is represented by the
variable Tt . Eqs. 20 and 21 provide the computation of the
y-intercept and slope, denoted as q and r [7]. The number of
observed samples is represented by n in this case.

q =
(
∑
Z )(

∑
T 2)(

∑
T )(

∑
TZ )

n(
∑
T 2) − (

∑
T )2

(20)

r =
n(

∑
TZ ) − (

∑
T )(

∑
Z )

n(
∑
T 2) − (

∑
T )2

(21)
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FIGURE 9. Flowchart for reinforcement learning (Si ).

3) PLANNING PHASE
An RL-based approach has been proposed to decide the most
appropriate line of action for selecting the size and placement
of virtual machines. Typically, an MDP can be used to model
RL-based techniques. An MDP can often be represented
by the number of finite states and their transitions [23].
To model the system, we characterize the system states
as an MDP, as seen in Figure 11; Its three states are
normal utilization, underutilization, and overutilization [23].
These states demonstrate compliance with the performance
criteria for resource supply, that the resource provisioning is
excessive, and that the resource provisioning is insufficient.

FIGURE 10. Flowchart for Planning Phase (Si ).

FIGURE 11. Flowchart for proposed Markov decision process with three
states.

Table 4 shows the proposed MDP’s decision table for
choosing one of the actions (such as scaling operation, scale-
out operation, or no-operation) based on the current system
state. Here, to determine the action-state pairings that result
in higher rewards in the resource provisioning system, each
pair can be modeled as a function of the likelihood Reward =

Q(s, a); the reward is referred to as a Q-value [23].
As described our research presents an RL algorithm termed

Q-learning to identify the action-state pairings in the resource
provisioning system that produce larger rewards. Q-learning
is a straightforward RL algorithm that looks for the optimum
course of action given the present state. Three simple steps
make up the algorithm’s operation, as presented below: (1)An
action is started by the agent in a state, which is followed by
a reward. (2) The agent has three options for the following
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FIGURE 12. Flowchart for execution phase (Si).

action: (a) take a random action; (b) update the Q-values;
or (c) use the Q-table to choose the action with the highest
value (i.e., Q[State, Action]). (3) Depending on the Q-value,
the agent employs a reference table called a Q[State, Action]
(Table 4) to decide the optimal course of action based
on the values of actionCofficientVM and λPredicted defined
in the flowchart presented in Figure 10 [46]. The system
status can be deduced from the predicted workload and the
average response time [47]. The system is underutilized if the
predicted workload and the average response times are below
the lower threshold. The system is considered overutilized if
the predicted workload or average response time utilization
exceeds the upper limit. Otherwise, regular utilization of
the system is considered. Using the reinforcement learning
technique suggested in the planning phase, it is possible to
choose the best options for the prediction provided by a
VM utilizing the inputs from the prior stages. The projected
workload and the typical response time are used to make
predictions for VM scale-up, scale-down, or no operation
using this proposed reinforcement learning model [9].

Table 4 is created based on the description given below:

1) Create the Q table from zero: The Q table is started
with zeros in every cell. The activity is described in the

FIGURE 13. Workload patterns - ClarkNet.

FIGURE 14. Workload patterns - Google cluster.

columns, while the rows list the states. The dimensions
of the rewards table and the Q-table are identical, yet
they serve quite different purposes.

2) Update the cloud service’s predicted workload and the
average response time: The present state (i.e., st ) is
determined based on calculating the action coefficient
at the time t . Based on the state, an action (fromTable 4)
is selected and implemented in the environment. After
taking action, the RL agent receives feedback from
the environment indicating the value of the (state,
action) pair, denoted as r(st , at ), which may result in a
transition to the next state, represented by st+1. In this
proposed MDP, the transition matrix is defined as the
reward function (R(s, a)), as shown in Table 4 [23].

3) Determine the immediate reward: By acting on the
current state for the initialized parameters, determine
the instant reward. It is preferable if the virtual
machines are idle rather than busy.

4) Updation of Q table: The Q-table is modified based on
the estimated reward received from taking action. The
updated values in the Q-table that reflect the reward
received for an action are referred to as Q-values [44].
It consists of a mixture of state and action. This
describes a specific state-action combination’s quality.
The higher Q-values are a requirement for better prizes.
Finally, the best course of action for cloud service Si in
the next time interval is calculated by searching the next
state in the updated Q-value as Table 4 [23] can be seen.

5) Ordering of jobs: According to the current scheduling
policies, the tasks can be completed in any sequence,
with the shortest assignment being completed first.
Each task is assigned a processor, and each task is
executed on allocated virtual machines.
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TABLE 5. Parameters of virtual machine and parameters for cloudlets.

FIGURE 15. Virtual machine usage hour for ClarkNet dataset.

FIGURE 16. Virtual machine usage hour for Google dataset.

TABLE 6. Settings for cloudlet service.

The detailing of the above calculations is depicted in the
flowcharts presented in Figures 9 and 10.

4) EXECUTION PHASE
The decision to switch the virtual machine on or off is made
during the execution stage. Virtual machine management
(VMM), as defined in Figure 12, produces a new VM for
each cloud service Si, if necessary, for effective resource
provisioning and releases the inactive VM if it is not used
or has low CPU use. VM load balancer thereby aids in
scheduling tasks for a cloud service. Si applies the best-fit
strategy [7].

V. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION OF THE PROPOSED APPROACH
A framework for modelling and simulating cloud computing
services, Cloudsim simulator, was used to develop the
suggested strategy. [48].

We assume that an IaaS provider offers various virtual
machines. Table 5 lists the configuration information of the
VM used in this work with its cost and capacity.

Table 6 presents the cloudlet specification utilized in this
simulation study. Our suggested approach has been tested
using service-based applications to see how it performs
compared to existing results.

The real-time workload traces generated by ClarkNet [49]
and Google [50] were used to test the proposed method
for several specified performance metrics stated in earlier
sections. The trace encompasses information about every job
that was submitted, scheduling decisions made, and resource
utilization data for the jobs that were executed in those
clusters. The patterns of the genuine load variations over
time recorded from well-known websites of the identified
workloads are represented in Figures 13 and 14.
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FIGURE 17. Average response time for ClarkNet dataset.

FIGURE 18. Result of the proposed model of Average response time for Google dataset.

FIGURE 19. Average rejection percentage for ClarkNet dataset.

The ClarkNet traces and Google traces are trustworthy
to be employed in a real cloud platform as they showcase
a dynamic behavior that is relevant to the study. One-
minute-long intervals are taken into account while calculating
the workload. Leaving aside the 1-minute boot-up delay,
the proposed reinforcement learning model based on the
MAPE-K loop has been compared in terms of QoS param-
eters, namely processing time, average time for response,
and rejection ratio [7]. Table 6 defines ‘‘Edition’’ as the
version of the cloud service that is made available to users
(standard, professional, and enterprise, for example). ‘‘No
of User’’ refer to the highest quantity of users that are

permitted to utilise the cloud service, limited by the type
of cloud service edition. Higher editions with more users
(like professional) are better suited for virtual machines
with greater capabilities (like ‘‘Extra large’’). Additionally,
1-min intervals are used to calculate the time intervals.
Consequently, there are 288 time intervals in a day. The time
simulation used in this lasts for 1 hours. Furthermore, we con-
sider time-shared scheduling to be the standard scheduling
policy.

Figures 15 and 16 represent the comparison of the virtual
machine (hours) for the proposed approach and fuzzy-based
MAPE-K approach for ClarkNet and Google cluster traces
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FIGURE 20. Average rejection percentage for Google dataset.

FIGURE 21. Average number of VMs for Claknet dataset.

FIGURE 22. Average number of VMs for Google dataset.

at continuous time intervals t [51]. The virtual machine
(avg) hours for both approaches have been listed in Table 7.
Results indicate that the proposed approach outperforms the
comparative approach concerning task response time. The
response time of the task waiting in the queue gets reduced
due to the early finishing time of the task by the VM.

Response time is a significant component in virtual
machine provisioning since it lowers the provisioning
expense. Figures 17 and 18 compare the traces concerning
the response time (avg), which is also listed in Table 7. The
waiting time of task during execution generally influences
response time. According to [7], utilizing reinforcement

learning as the decision-making mechanism leads to superior
outcomes compared to the current implementations on fuzzy
logic and Bayes.

SLA violations, another critical parameter for resource
provisioning [7], can occur due to excessive resource
utilization. It impedes the timely provision of cloud services
in response to fresh inbound requests. Figures 19 and 20
compare the percentage of rejection of workload traces at
each1t interval. For ease of comparison, Table 7 presents the
average percentage of SLA violations. This demonstrates that
adjusting the rejection ratio will not resolve the SLA violation
problem [25].

96002 VOLUME 12, 2024



R. Panwar, M. Supriya: RLPRAF for Resource Provisioning in Cloud Environment

FIGURE 23. ClarkNet workload (Total Cost).

FIGURE 24. Google workload (Total Cost).

FIGURE 25. Workload patterns: smooth.

Figures 21 and 22 showcase the VMs assigned to both
traces, with the consolidated list shown in Table 7. It could
be observed that the proposed approach distributes the right
amount of VMs at each period (i.e.) allocates about 80 VMs
to deal with the incoming demand. As mentioned above,
After the 36th interval, the suggested approach ensures the
stability of the system, leading to reduced SLA violations and
improved response time and job finish times. The number of
VMs (avg) allocated throughout the test process is displayed
in Table 8 which indicates that, despite utilizing more virtual
machines, the proposed approach proves to be more efficient
and effective in terms of virtual machine hours and total

cost [25]. Thus the proposed technique reduces the SLA
violations by 7.4% and increases the allocated VMs by 32%.
Figures 23 and 24 present the total cost of allocating VMs for
both approaches. As can be seen from Table 7, the suggested
strategy uses an average of more virtual machines than the
other approaches, supporting the idea that, in comparison to
the other approaches, it produces the lowest average virtual
machine hours even with the use of additional VMs. The
suggested approach uses linear regression in the analysis
phase and reinforcement learning as the decision-maker in
the planning phase to accomplish these cost savings. Hence,
the average use is lower in comparison, as shown in Table 7.
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FIGURE 26. CPU utilization for smooth dataset.

FIGURE 27. Average rejection percentage for smooth dataset.

FIGURE 28. Average No of VMs for smooth dataset.

The following are the observations from the results: It can
be seen that the proposed strategy uses virtual machines more
efficiently than the fuzzy-based approach when comparing
the average virtual machine hour listed in Table 7. This is
because the jobs in the queue respond more quickly due to the
implementation of the RL approach. The proposed approach
reduces taskwaiting times because of the changemade during
the planning phase. The proposed strategy has a faster finish
time than the existing approach thus showing a nominal
improvement in the average time. The average rejection

percentage is the third factor compared (to SLA violations).
Again, it is clear that the suggestion of a probability-based
decision maker [7] at the planning phase decreases SLA
violations since it prevents unnecessary delays caused by
numerous requests for cloud services, resulting in better
service. Even though the difference is small, it will be
more evident if it is tested on continuous data requests in
real time. The suggested approach uses a minimum amount
of VMs due to the observed decrease in SLA violations
and improved response and finishing times. As a result of
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FIGURE 29. Total cost of VMs for smooth dataset.

TABLE 7. An analysis of the differences in the workloads between
ClarkNet and Google traces.

TABLE 8. An analysis of the differences in the workloads between
Smooth traces.

the use of probabilistic reasoning, the suggested solution
provides the required number of VMs at each interval. The
chart shows that, in comparison to the fuzzy technique, the
typical number of virtual machines required for execution
was roughly reduced to 50%.

The proposed model’s calculation cost was optimized
by reducing the above-mentioned parameters. This demon-
strates that the MAPE-K loop’s use of reinforcement
learning and linear regression beats fuzzy-based and
Bayesian learning approaches in decision-making. Unlike
the probabilistic approach, which captures partial knowledge
and allows for learning and performance under uncer-
tain future conditions, fuzzy logic captures partial truth
in the data [7].

TABLE 9. Comparison of accuracy metrics.

The dataset used for the proposed approach is Smooth
workload (smooth variation of workload) which is obtained
by normal distribution to model the incoming request arrival
rate [37]. We evaluated the performance of the proposed
approach under Smooth workload in Table 8 CPU utilizations
of the two techniques for the Smooth workload at each
interval are displayed in Figure 26 indicating that the
proposed results outperforms other MAPE-RL approaches.
The results show that theMAPE-RLwastesmore resources in
workload for the majority of intervals, whereas the suggested
technique can utilize resources more optimally. There are
times when the CPU utilization is higher than 100%. This
is because the SaaS Provider is unable to handle all of the
incoming requests for cloud services at that particular time,
which results in under-provisioning (also known as over-
utilization), which is an SLA violation. In terms of Utilization
(40.69% vs. 60.04%), Percentage of SLA Violation (0.37%
vs. 0.90%), Number of VMs (9.43% vs. 3.42%), and Cost
(0.167% vs. 0.600%), the suggested solution performs better
than MAPE-RL. These findings imply that the suggested
approach performs better across a range of parameters,
demonstrating its efficacy in workload management with
smoother traces.
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Figures 26 to 29 presents the result obtained on
executing the proposed model on the Smooth dataset.
In conclusion, the suggested strategy performs better for
both real-time traces at all time intervals than other
existing approaches. The suggested solution combines
autonomic computing, reinforcement learning, and linear
regression models, whereas the existing system is an
elasticity-based resource provisioning architecture that incor-
porates fuzzy-based autonomic computing and linear regres-
sion models. The proposed (RLPRAF) solution employs an
action-state strategy, whereas the current system employs
fuzzy logic to enhance decision-making in uncertain sce-
narios. The suggested methodology addresses the undesired
conditions of resource over and under-provisioningwhile out-
performing the current method regarding response time [7].
The suggested regression model was tested for its Mean

absolute error (MSE), Root Mean Squared Error (RMSE),
and R-Squared (R2) or Coefficient of determination metrics,
with the findings provided in Table 9. Lower accuracy mea-
sures, except R2, indicate higher regression model accuracy.
When compared to the previous technique, the findings show
that the suggestedmodel has higher accuracy in terms ofMSE
and RMSE, as well as being more fit. However, the proposed
model fails in terms of R2. According to the literature,
RMSE is the preferred method for comparing the accuracy
of regression models and is commonly employed for this
purpose. The reason for this is because RMSE measures how
well a regression model can predict the absolute value of
a response variable, but R-squared measures how well the
predictor variables can explain the variation in the response
variable. Because the objective of this work is prediction,
we can disregard the R-squared error.

VI. CONCLUSION
This study proposes RLPRAF, a reinforcement learning-
based proactive resource allocation framework that outper-
forms the existing fuzzy and Bayesian learning models,
indicating that the suggested model holds great promise
for forecasting cloud resource demands for cloud service
providers. The method’s effectiveness is evaluated by exam-
ining various parameters on the Google and ClarkNet traces.
Based on reinforcement learning in the planning phase, this
research presents an optimal dynamic solution to the problem
of allocating resources effectively. To be more effective
in conditions of dynamic workload, a solution has been
presented as an algorithm to run at regular intervals. The
suggested approach has been found to hold higher resource
usage, shorter response times, and hardly any SLA violations.
According to the findings, cloud service providers can use
this model to distribute VM resources in advance based
on workload estimations. In addition, the proposed model
achieves optimal results when compared to the existing
MAPERL approach. In the future, the blend of fuzzy logic
and optimization methods could be experimented to yield
better results.
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