
Received 12 June 2024, accepted 25 June 2024, date of publication 1 July 2024, date of current version 9 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421608

A Parity-Based Dual Modular Redundancy
Approach for the Reliability of Data
Transmission in Nanosatellite’s
Onboard Processing
ALEX C. R. ALVES 1, LUIZ F. Q. SILVEIRA 2, (Member, IEEE),
MÁRCIO E. KREUTZ 3, AND SAMAHERNI M. DIAS 4
1Electrical and Computer Engineering Graduate Program, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
2Department of Computer Engineering and Automation, UFRN, Natal 59078-970, Brazil
3Department of Computer Science and Applied Mathematics, UFRN, Natal 59078-970, Brazil
4Department of Electrical Engineering, UFRN, Natal 59078-970, Brazil

Corresponding author: Alex C. R. Alves (alex.alves@ufrn.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES)-Finance Code 001.

ABSTRACT Nanosatellites’ embedded systems must adapt to power, weight, size, and cost constraints.
Thus, over the years, the use of Commercial-Off-The-Shelf (COTS) System-on-Chip (SoC) has become
common. They have a lower development cost and better performance when compared to components
specifically designed for space, although they are more susceptible to the radiation effects. A point of
attention in these devices is the reliability of data transmitted between hardcore processors and applications
in the reconfigurable logic area. This work proposes a Parity-based Dual Modular Redundancy (PDMR)
approach for use in interconnect interfaces of COTS SoCs. The experiments were conducted through
simulations with Python scripts and hardware implementations in a Xilinx Zynq-7000 SoC. The proposed
technique was compared with the Triple Modular Redundancy (TMR) technique. The simulation results
show that for specific rates, the proposed approach reaches values close to those of the TMR and implies a
smaller number of bits transmitted even when data detected as erroneous are retransmitted. Meanwhile,
hardware implementation results demonstrate a decrease in hardware resource utilization and power
consumption compared to TMR implementation.

INDEX TERMS Nanosatellite, data transmission, fault tolerance, FPGA, DMR, parity.

I. INTRODUCTION
Recent microelectronic innovations allow for smaller space
systems known as pico (0.1–1 kg) and nanosatellite
(1–10 kg), which have significant power, weight, size,
and cost constraints [1]. Nowadays, it is usual to adopt
Commercial-Off-the-Shelf (COTS) electronic components in
the design of onboard processing systems for nanosatellites.
These devices offer a low cost to the project and are years
ahead of parts specially designed for space usage in terms of
performance [2], [3]. However, the harsh space environment

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilaria De Munari .

can be a risk for space missions with COTS components since
they are more susceptible to radiation effects, such as Single
Event Upsets (SEUs) and Single Event Transients (SETs) [4].

SEUs are caused by the impact of heavy ions or protons on
bistable elements, such as flip-flops or other memory cells,
which can generate a change of state (bitflip) [5]. Meanwhile,
SETs occur when charged particles hit the integrated circuit,
causing momentary voltage excursions. Transients in logic
gates can propagate and be captured by storage elements
(flip-flops or latches), becoming an SEU and consequently
affecting the component’s behavior [5], [6].

Given the growing demand for processing capacity in
nanosatellites, COTS Systems-on-Chip (SoCs) that integrate

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 90815

https://orcid.org/0000-0001-5419-0119
https://orcid.org/0000-0002-7146-4916
https://orcid.org/0000-0002-5684-7310
https://orcid.org/0000-0001-9627-250X
https://orcid.org/0000-0002-9872-1695


A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

processing cores and Field-Programmable Arrays (FPGAs)
have been increasingly adopted in missions with small
satellites [7]. COTS SoCs enable hybrid processing, in which
an embedded hardcore processor can perform part of the
processing, and the rest of the computations are performed by
a hardware acceleration in the reconfigurable logic (FPGA).
Since these devices are based on SRAM (Static Random
Access Memory) FPGAs whose configuration memory is
subject to Single Event Upsets (SEUs), several works have
investigated the radiation effects and methods to mitigate
them [8], [9], [10], [11].

In [12], the authors state that interconnection modules
(communication interfaces) affected by SEUs can be a source
of errors in architectures that use hardware acceleration.
Benevenuti and Kastensmidt [13] mention that replacing
interconnection modules with fault-tolerant versions may be
necessary to increase the reliability in a system that includes
a hardware accelerator module with fault tolerance. However,
these works do not discuss methods to mitigate data transmis-
sion errors caused by faults in the interconnection modules.
For instance, in [13], hardware redundancy techniques are
only applied to the hardware acceleration module, not the
communication architecture.

Different redundancy techniques can be applied to mitigate
possible errors caused by radiation. The information redun-
dancy involves adding extra bits to the data so that they can
be used to detect and even correct bitflips. The correction
capability depends on the coding scheme [14]. Those that
allow correction without retransmitting the information are
referred to as Forward Error Correction (FEC) codes.

Several FEC codes are described in the literature [15]. The
complexity of implementing these codes may vary according
to the objective of the application. In [16], the authors
describe the complexity of classical error-correcting codes,
such as Hamming, Reed-Muller, Golay, Reed-Solomon,
Convolutional, and Turbo codes. Most of these codes involve
sequential circuits in the encoder or decoder, which can be
an issue in systems with time constraints. Other codes, such
as Hamming and Reed-Muller, may involve implementing a
matrix generator in the encoder, which can directly impact
logical complexity. The authors state that due to the limited
energy budget of an application, only codes of limited
complexity may be considered. Therefore, selecting the
code to be implemented is crucial for systems with power
consumption constraints.

FEC codes have interesting correction capabilities, but
the number of redundant bits can increase considerably
depending on the code implemented. Therefore, its use
in standard protocols may involve sending the message
and checksum in different clock cycles or using extra
bus lines to include redundant bits [17], [18]. Considering
these characteristics and the complexity of FEC codes,
their implementation can impact the development time
and power consumption, which is at odds with what is
desired for applications with nanosatellite platforms [1],
[19], [20]. In this context, modern FEC codes may have

limited application in embedded systems and on-chip com-
munication, even though the use of Single Error Correction
(SEC) and Single Error Correction Double Error Detection
(SECDED) codes are verified, mainly for protecting memory
components [17], [21]. Another important observation about
FEC codes concerns that retransmission turns out to be more
efficient than correction from an energy viewpoint [22], [23].

Hardware redundancy features a more straightforward
implementation than FEC schemes and has been used in
several applications to mitigate SETs and SEUs [17], [24].
One of the most common hardware redundancy techniques
is Triple Modular Redundancy (TMR), which consists of
three identical hardware components, all with the same
input and performing the same tasks. The outputs of these
components are compared by a voting circuit, which sides the
system output to be the majority result [25], characterizing
the TMR ability of fault masking. So, if one element has
failed, generating an incorrect output, the voter establishes
that the system output will be the same as the output of the
two components that supposedly operate correctly. However,
if two or three elements have failed, the voter agrees with the
majority, and the system output is incorrect [25].

The classical voter logic for individual bits is defined
as [25] and [26]:

v = x · y+ x · z+ y · z, (1)

where x, y, and z are the outputs of the redundant digital
components.

Despite TMR’s widespread usage in radiation effect
mitigation, its disadvantages are related to the increase
in more than 200% of the area and power overhead [9].
According to Siegle et al. [9], another drawback is related to
the impact on the performance of a circuit, especially when
there are many TMR partitions.

A possible methodology to overcome the area overhead
issue of TMR is the approximate TMR (ATMR) [27]. It is
based on replacing TMR modules with approximate logic
circuits, which must perform a logic function that may
differ but must be closely related to the function of the
original circuit [27], [28]. Although using ATMR reduces
the area occupied by redundant modules, according to
Arifeen et al. [29], designing an ATMR is a challenging
task due, among other characteristics, to the extensive search
space and computational complexity. They also state that
ATMR is more vulnerable to errors than TMR. Their work
contains important references for the design and application
of ATMR.

The difficulties inherent to the ATMR design [27], [29]
distract from our objective of proposing a low-complexity
solution for data transmission structures. As communication
interfaces are generally composed of control and data signals,
the use of ATMRmay involve the reduction of circuits whose
logical functions are related to the behavior of these signals.
The reduced circuits must guarantee data transfer and the
correct operation of control signals. The identification of such
circuits adds extra complexity to design development. So,

90816 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

it may become unfeasible when considering the restrictions
imposed by standard protocol specifications. For instance, the
Advanced eXtensible Interface (AXI) protocol specification
of the Advanced Microcontroller Bus Architecture (AMBA)
standard [30] highlights that there must be no combinatorial
paths between input and output paths on master and slave
interfaces. In FPGAs, achieving simplification may be
possible by applying ATMR to the Look-Up Tables (LUTs)
that make up the interconnect interface [28]. However, this
fine-grained implementation is beyond the scope of our work.

An alternative to TMR and the complexity of FEC codes
is the Dual Modular Redundancy (DMR), which is based on
duplicating logic elements. In this case, errors in the system
can be detected by comparing the bits of each redundant
component. Compared to the TMR, the DMR occupies a
smaller area, but it only allows error detection. Consequently,
one can not take the output of one of the elements as
correct. Moreover, it is a straightforward protection approach
compared to FEC codes.

Aiming to expand the DMR to have error mitigation
capability, a parity-based DMR approach was developed to
be applied to communication interfaces (interconnection)
of COTS SoCs that integrate hardcore processors and
reconfigurable logic (FPGA) on the same chip. The main
objective is to increase the reliability of data transmission in
these devices, which are increasingly used in space missions
with nanosatellites. We also seek to contribute with an
alternative to hardware redundancy techniques by providing a
method with fault mitigation values close to TMR in the face
of different error rates, with less hardware resource utilization
and power consumption.

The proposed approach, like TMR, allows fault masking.
Moreover, error indication components enable the detection
of potentially erroneous messages, which can facilitate
retransmission actions. To achieve these characteristics,
we focus on a solution with low implementation complexity
in terms of logic elements.

Tests were carried out through software simulations
and hardware implementations, in which the technique
was applied to the AXI communication interfaces of the
AMBA standard and compared with the TMR in the same
scenarios.

The remainder of the paper is organized as follows:
Section II provides an overview of related works; Section III
presents the proposed approach, describing the formation rule
and the logical expressions; Section IV describes the software
simulations and their results; Section V provides hardware
area and power occupancy, based on implementations for a
Xilinx Zynq-7000 SoC; Section VI contains a comparison
of some properties of the proposed approach, TMR and FEC
codes; Section VII presents the final remarks.

II. RELATED WORKS
The reliability of communicationmodules was investigated in
the work byDe Sio et al. [12]. The authors present a reliability
analysis of the AXI Interconnect IP module implemented

in a Zynq-7000 SoC for connecting the processing system
(ARM) and the reconfigurable logic (FPGA) integrated
into the same chip. For this, faults were injected in the
sections of the FPGA configuration memory occupied by
the module. Furthermore, two hardware accelerators were
developed and implemented in the FPGA along with the
AXI Interconnect. During the testing routine, the processing
system configured the accelerators and stimulated each with
different inputs. The detected failures were observed and
classified as follows: both accelerators stopped working; both
had faulty calculations; only one accelerator continued to
function correctly; the processing system accessed only one
accelerator, but it returned erroneous results. Additionally,
it was observed that the returned values were the same
when both accelerators produced wrong calculations. Given
the results, the authors conclude that the AXI Interconnect
module can be a source of errors in architectures that use
hardware acceleration. In [31], the authors further investigate
the implications of radiation-induced SEUs on the AXI
Interconnect module.

The redundancy of internal buses for low-speed peripherals
has been explored by Lázaro et al. [32]. In their work,
the authors propose a solution composed of an Intellectual
Property (IP) Core called AXILiteRedundant and a redundant
system. IP Core was used to triple the signals from a slave
interface to master interfaces, which connect to external
redundant peripherals. Also, the values frommultiple masters
to the slave were selected by a TMR voter. The IP Core could
also indicate to the processor if all three masters had the same
values, one of them had a different value (which could be
corrected by the voter), or if they all had different values,
signaling an error. The authors describe the modifications
performed to the AXI standard to apply the redundancy
mechanism and the elements that make up the redundant
system. Finally, they conclude that the proposal protects
the interconnection and peripheral IPs, requires few FPGA
resources for implementation, and has negligible power
consumption. Although this work stands out as an example of
the application of TMR in communication interfaces, the lack
of some descriptive elements related to the implementation
and the specific nature of the IP made comparison with our
approach difficult.

Bertozzi et al. [23] explore the detection capability and
energy-reliability tradeoff of different coding schemes for
on-chip communication links. The authors focus on schemes
with Hamming codes, CRC codes, and a simple single-parity
bit code. In this work, the Hamming-based correction codes
allow the correction of single errors, while the CRC and
the parity bit use retransmission as a recovery strategy.
The authors present an interesting result for the subset of
codes considered (CRC and Hamming), concluding that,
from an energy viewpoint, retransmission turns out to be
more efficient than correction. Despite the capability of
CRC codes, their basic implementations only deal with error
detection, and their complexity depends on the choice of the
generator polynomial.

VOLUME 12, 2024 90817



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

FIGURE 1. Data transmission with a parity-based DMR approach.

Mach et al. [17] present a review of existing protection
approaches against transient faults of on-chip bus intercon-
nects. The work focuses on embedded processors used in
applications such as the automotive or space sectors, which
have safety/mission-critical characteristics. The described
protection approaches are information redundancy, temporal,
and spatial (hardware). The authors state that implementing
information redundancy is not straightforward, though it
is viable in high-performance applications. They highlight
parity and Error Detection and Correction (EDAC) codes,
such as SECDED. In addition, regarding temporal redun-
dancy, they point out that it requires accurate analysis of
transient glitch durations and is suitable for low-performance
applications. On the other hand, spatial redundancy (such as
TMR) has a greater impact on area and power consumption
but presents a straightforward implementation. The authors
conclude that the selection of the protection approach
depends on factors such as the processor use case, the
operating environment, and the possibility of performing
modifications to components external to the processor.

Regarding DMR with parity, in [33], a parity method
(based on a cascade) is applied to cover all possible faults
in the routing and LUT content using a totally self-checking
circuit with a parity generator. The structure is duplicated so
that if a fault is detected in an FPGA, the output of the one that
was not affected is enabled. Clark et al. [34] apply DMR to
detect errors at the Register File (RF) write-back stage of the
pipeline, and SEU correction is achieved through parity that
detects RF entry nibbles that are correct in one DMR copy
but not the other. The correct contents are then copied from
the DMR copy with correct parity to the other.

Theseworks illustrate the application of DMR and parity in
the architecture of memory components. During our state-of-
the-art review, we could not find works related to the specific
use of DMR or DMR with parity for data transmission. Our
approach is combinational, and the original data is divided
into groups with associated parity bits. This way, an error in
different groups can be masked/corrected when considering
logical expressions developed from the parity bits, as seen
throughout the work.

III. PROPOSED APPROACH
In the parity-based DMR approach, we assume a data
transmission structure where DMR is applied, such as the
one presented in Fig. 1. We also assume that the transmission
channels are susceptible to radiation effects. The input data is
considered to have Nd bits. Initially, this data passes through
an encoder (Encoder module in Fig. 1), which adds the parity
bits (Np-bit width) to the original message and forwards the
codeword (input data + parity bits yielding an N -bit width
word) to the transmitter that duplicates it and transmits each
one over a digital channel (Ch0 and Ch1). At the receiver,
the data from each channel is checked to determine which
channel can deliver the correct message (set of bits).

Additionally, the parity bits are replaced by error indication
bits (Ne-bit width), which have the same width as the parity
bits (Ne = Np). According to the need and implementation,
the error indication bits (ei) can serve as an auxiliary signal
to take error mitigation actions, such as data retransmission
or message discarding by a processing unit. In short, when
presenting a logical value of 1, the error indication bits
indicate an error in part of the received message, as described
in this section.

Fig. 1, displays the modules of the proposed approach.
Note that bus widths are indicated by Nd , Np, and Ne. Also,
the modules in the receiver will be referenced throughout this
section.

A. WORD STRUCTURE AND PARITY GENERATION
As previously stated, for an input word of Nd bits (hereafter
referred to as information bits), there is an output word with
N bits, where N is a power of 2 greater than Nd . The number
of parity bits the transmitter adds is given by Np = N − Nd ,
where Np must be a power of 2 less than or equal to Nd . Each
parity bit is associated with a certain amount of information
bits. This amount is referred to asM and can be calculated by

M = N/Np − 1. (2)

Thus, one parity bit plus M information bits constitute a
group, and the total of groups equals the value of Np. Fig. 2

90818 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

illustrates an N -bit codeword. The index of the information
bits t ranges from 0 to L, where L = Nd − 1.

FIGURE 2. N-bit codeword with parity bits.

For the proposed approach, an even parity code was
chosen, and it is obtained by

pi = t(Mi) ⊕ t(Mi+1) ⊕ · · · ⊕ t(Mi+M−2) ⊕ t(Mi+M−1), (3)

where index i ranges from 0 to K , for K = Np − 1. This
index defines to which parity and group the set of information
bits belongs. After passing through the channels, the parity
bits are indicated by pppij , where the subscript j determines
the respective channel, assuming 0 or 1. It is worth noting
that parity is also generated at the receiver (Parity module in
Fig. 1), similarly to (3) and referenced by rij , since the parity
bits and information bits may be corrupted after passing
through the channels.

B. CHANNEL SELECTOR, ERROR FLAG, COMPARATOR,
AND OUTPUT
The codeword formation rule allows the original data to
be divided into groups. Based on a logic implementation
in the receiver, the parity bits can be used to generate the
receiver’s output data, which may be formed by information
bits from groups of different channels. For example, suppose
the original data was divided into two groups with one
parity bit each, as shown in Fig. 3. When passing through
the receiver, the first slice (group without parity bit) of the
receiver’s output data can be formed by information bits from
Channel0 (Ch0). In contrast, the second slice can come from
Channel1 (Ch1), as long as the transmitted parity bits and the
ones calculated at the receiver indicate the absence of errors
in these groups.

The selection of the channel (Channel Selector module
in Fig. 1) each slice will be obtained from depends on the
proposed logical expression:

si = (pppi0 ⊕ ri0 ) + (pppi1 · ri0 · ri1 ) + (pppi1 · ri0 · ri1 ). (4)

In (4), pppi0 corresponds to the parity bit of the
i-th group received by the receiver from the Ch0, pppi1 stands
for the i-th parity bit received from the Ch1, ri0 is the i-th
parity bit of the Ch0 computed at the receiver, and ri1 is the
i-th parity bit of the Ch1 computed at the receiver. Observe
that pppi0 and pppi1 are represented by bold letters to indicate that
theymay be corrupted bits after passing through the channels.
Also, si is the channel select bit associated with the i-th group.
The logical value 0 for si means that the information bits
of group i, coming from Ch0, must be part of the output
message, while a logical value 1 means that those coming

from Ch1 must be considered. The truth table for (4) can be
observed in Table 1. It should be noted that Ch0 is used as a
default for the output when pppi0 , pppi1 , ri0 , and ri1 have the same
logical value (referred to as SLV cases). Meanwhile, Ch1 is
the default channel when two parity bits have the same value
and the other two have the same opposite value (e.g., pppi0 = 0,
pppi1 = 0, ri0 = 1, ri1 = 1). When all parity bits are equal, it is
assumed that the information bits of the channels are equal,
and any of the channels can be considered for the receiver’s
output data. In the other case, although two parity bits are
equal and the other two are equal with inverse value, it is not
inferred which channel can deliver the correct bits.

TABLE 1. The truth table for the channel selector and error flag.

Based on the parity bits (pppi0 , pppi1 , ri0 , and ri1 ), a logic was
elaborated to add error detection capacity to the proposed
approach through error indication bits (Error Indicator
module in Fig. 1). During the development of logical
expressions, two scenarios were considered. In the first one
(S1), the error indication bits are obtained considering only
the parity bits. Thus, the error flag was designed to simplify
the logical implementation and evaluate the behavior of the
solution without the need to compare information bits from
both channels. For S1, the error flag (fi) and the error
indication bit (ei) are obtained from

fi = (pppi0 ⊕ ri0 ) ⊙ (pppi1 ⊕ ri1 ), (5)

ei = si · fi, (6)

where the ⊙ operator in (5) represents a logical XNOR
operation.

The last column of Table 1 contains the binary values
for (5). Although the error flag is set for SLV cases (first and
last rows of Table 1), the error indication bit (ei) is based
on an AND operation with fi, which means that these cases
are disregarded for S1 (the operation results in the binary
value 0). The fact that fi is set for SLV cases also allows its
logical expression to be written in terms of XOR and XNOR
operations, which reduces the number of logic gates and gate
inputs. If fi were 0 for these cases, its expression would be
composed of six minterms (table rows in which fi is set), each
with four logical variables. Another advantage of expressing

VOLUME 12, 2024 90819



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

FIGURE 3. PDMR example with 6 information bits and 2 parity bits.

fi as (5) is that this logical expression can be used for both
scenarios (S1 and S2). Since, for S1, we disregard SLV cases
as a source of possible errors, it is assumed that these cases
imply equal and correct information bits on both channels.
The impact of this assumption is verified through simulation
results.

In the second scenario (S2), the SLV cases are taken
into account because, although all parity bits have the same
logical value, it is assumed that information bits from the two
channels associated with these parity bits may have different
values, which indicates an error in one of the channels. In this
scenario, the channel information bits must be compared
using comparator logic, which determines whether they are
the same on both channels. The comparator is part of the
Error Indicator module represented in Fig. 1. Therefore, the
width of the buses in red lines becomes Nd + Np for (S2)
since the information bits must be compared. Furthermore,
the comparison is performed through a bitwise operation
between the information bits of the channels, which may be
corrupted. The comparison bit is found by

ci = ttt (Mi)0 ⊕ ttt (Mi)1 + ttt (Mi+1)0 ⊕ ttt (Mi+1)1 + · · ·

+ ttt (Mi+M−2)0 ⊕ ttt (Mi+M−2)1 + ttt (Mi+M−1)0 ⊕ ttt (Mi+M−1)1 ,

(7)

where subscripts 0 and 1 indicate bits from Ch0 and Ch1,
respectively, and the bold letters represent the information
bits after passing through the channels. It is verified that
the error flag and comparison bits are computed for each
group that makes up the codeword. Finally, for S2, the error
indication bit is obtained from the logical expression

e′i = fi · (si + ci). (8)

It is worth noting that the prime symbol (′) is used to
differentiate (8) from (6).

Given the previous expressions and descriptions, the output
word from the receiver assumes the format shown in Fig. 4.
A logical value of 1 in any error indication bits means an error
in one or more information bits in the slice associated with
that indication bit. That is how an error data can be detected.

FIGURE 4. Receiver’s output word format.

The codeword formation rule presented in this section
was designed to maintain compatibility with the data bus
of already consolidated on-chip communication protocols,
which generally have a width defined by a power of 2 (e.g.,
8, 16, 32, 64). However, another formation rule could be
considered by doing, for example, M ′

= N ′
d/N

′
p and N ′

=

N ′
d + N ′

p, where N
′
d and N ′

p are powers of 2 with N ′
p ≤ N ′

d .

IV. SOFTWARE SIMULATION
A. SIMULATION ENVIRONMENT
The proposed approach was verified by comparing the
techniques of the TMR, PDMR (parity-based DMR without
comparator, S1), and PDMR-C (parity-based DMR with
comparator, S2). Tests were carried out via software using
Python programming language. For this, some scripts were
created with different functionalities, such as:

• Data generation: It generates the data (words) for
transmission. As input arguments, the script receives the
amount of data to be generated and the bit width (Nd ) of
each data. As output, the script creates a CSV file, where
each line represents a single data with Nd information

90820 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

bits, and the number of rows corresponds to the amount
of data (TD);

• Fault generation: The script was designed to generate
fault vectors by receiving the amount of data and the bit
width (in this case, defined by N ) of each data as input
arguments. In addition, the script gets as input the error
rate to be used for the fault vectors. This error rate is
applied bit by bit and given in terms of errors/(bit.day),
representing a typical measurement for SEUs [35], [36].
Therefore, the random event of a bitflip occurring is
simulated, for simplicity, through a uniform distribution
based on the error rate. A random number is generated,
and a bitflip occurs if its value is less than the rate value.
As output, the script generates a CSV file with three
columns, each containing an N -bit fault vector. Each
of the three columns must feed a channel for the TMR
test, while only two must be used for the PDMR and
PDMR-C tests. The number of rows also corresponds to
the amount of data (TD);

• Simulation control and data analysis: It must read the
files generated by the two scripts with the described
functionalities. Among the inputs received by the script
are the bus data width (N ), the number of information
bits (Nd ), and an argument that indicates the group
width, which follows the diagram shown in Fig. 2. Also,
the script generates a CSV output file, which contains
the originally transmitted data, the data after passing
through each channel, and the data received by the
receiver after applying the TMR, PDMR, and PDMR-C
tolerance methods. This file also contains the counting
values of bit errors for data analysis.

In Fig. 5, a simulation diagram is presented. Initially, the
CSV files generated by the data and fault generation scripts
are read, and each row is analyzed. The transmitter takes care
of doubling or tripling the channels and inserting the parity
for the PDMR and PDMR-C cases. In the next step, faults are
injected into the channels through a function that takes the
channel data as an argument and performs an XOR operation
with one of the columns (according to the channel) of the
file that contains fault vectors. In tests with DMR, only two
channels are used, so only columns 0 and 1 of the file are
considered, whereas, for TMR, columns 0, 1, and 2 are used.
At the receiver, these data are treated tomitigate errors so that,
for the TMR, the classical voter logic (1) is used, while for the
PDMR and PDMR-C, the logics described in Section III are
used.

B. RESULTS AND DISCUSSION
During the simulations, two basic configurations were
implemented:

• C1: Nd = 24 and Np = 8 corresponds to 24 information
bits and eight parity bits, referred to as PDMR 24 × 8;

• C2: Nd = 24 and Np = 8 corresponds to 24 information
bits and eight parity bits with comparator (defined
by (7)), referred to as PDMR-C 24 × 8.

FIGURE 5. Simulation diagram.

Note that both configurations yield a 32-bit bus for DMR
tests. In the case of TMR, as no extra bits are added to
the information bits, there are only 24 information bits.
Therefore, for DMR cases, each channel’s 32 bits (parity +

information) are subject to bitflip, while for TMR, only
the information bits (24) of each channel are considered
susceptible. Additionally, the amount of data (TD) was taken
to be 106 messages per day.
Table 2 contains the simulation results for C1 and C2.

These results were obtained considering the average of
100 simulation runs. In other words, a hundred fault vector
files, with a total of TD lines, were generated for each error
rate, and each file was applied to the data set. In this table,
PD represents the percentage of detected errors, while PU and
PE represent the percentages of undetected and total errors,
respectively. Note that the value of PE is related to the total
number ofmessages transmitted TD. At the same time,PD and
PU are percentages associated with the number of erroneous
messages (E = TD × PE ).

TABLE 2. Simulation results.

Considering the results of Table 2, one can notice that
values tend to get closer as rates decrease. Moreover, the
TMR classical logic does not have error detection capability,
and the voting scheme is responsible for mitigating the errors.
The results for C2 suggest that adding a comparator to
the logical design significantly impacts the percentages of
detected errors, while the percentages PE for C1 and C2 are

VOLUME 12, 2024 90821



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

kept close. So, it can be concluded that despite the comparator
increasing the logical elements for hardware synthesis, its
capacity of decreasing PU and increasing PD is advantageous
depending on the application and might be explored in future
works.

In order to evaluate the percentage results, taking into
account the possibility of retransmission of messages
detected with error, the PDMR C1 and C2 implementations
were taken for a more detailed analysis. The percentages
presented in Table 2 were used for retransmission analysis to
obtain the total number of messages with errors accumulated
in each transmission. For this, the equationAE = T×PE+UT
was used, where AE is the total accumulated errors and
represents the total number of erroneous messages in the
current transmission plus the number of undetected incorrect
messages accumulated throughout transmissions; T is the
number of messages transmitted; PE is the percentage of
errors and UT corresponds to the total number of erroneous
messages not detected throughout the transmissions. In the
first transmission, T equals to the total number of messages
transmitted (e.g., T = TD = 106) and UT = 0. After
the first transmission, T = D′, where D′

= E ′
× PD

is the number of erroneous messages detected, obtained from
the total number of messages with errors in the previous
transmission (E ′

= T ′
× PE , where T ′ is the number of

messages transmitted in the previous transmission). In this
case, UT = E ′

× PU + U ′
T , where U

′
T is the value of UT

obtained in the previous transmission. The results of this
evaluation are in Table 3, where the columns contain the
%AE = AE ∗ 100/TD values.

TABLE 3. Retransmission evalution.

By analyzing Table 3, it is clear that for both C1 and
C2, one retransmission is enough so that the accumulated
error percentages are lower than a single transmission of the
TMR-24. A retransmission for the TMR is not considered
once it has no detection capability, so one should have to
retransmit all data. When analyzing numerically, a single
transmission of TMR-24 implies 72 × 106 bits transmitted
per day (3 channels × 24 bits per message per channel ×

106 messages per day). Meanwhile, the PDMR 24 × 8 with
rate 2 × 10−2 yields approximately 67.886 × 106 bits
transmitted per day (2 channels × 32 bits per message per
channel ×(106 messages per day +TR), where TR = PE ×

PD × 106 messages per day is the total of retransmitted
messages). Following the same reasoning, for PDMR-C 24×

8 with a 2 × 10−2 rate, we have approximately 68.910 ×

106 bits transmitted per day, considering the two channels
and the retransmission. The difference between the values is
even more significant as the rates decrease since the PDMR

implementations require fewer bits to be retransmitted for
lower rates. These results demonstrate that TMR implies a
greater occupancy of digital transmission channels than the
proposed approach.

V. HARDWARE IMPLEMENTATION
After software simulations, TMR-24, C1, and C2 configura-
tions were implemented using hardware description language
(HDL) and incorporated into the AMBAAXI communication
interfaces. Thus, we seek to compare the techniques regarding
area and power consumption.

The AMBA standard allows the interconnection of blocks
in systems-on-chip and includes specifications for AXI inter-
faces, which support high-frequency and high-performance
communication [12]. According to [37], the fourth version
of the AXI protocol, AXI4, has three interfaces: AXI4,
AXI4-Lite, and AXI4-Stream. The AXI4 interface can be
used for high-performance memory mapping requirements.
AXI4-Lite is suitable for low throughput memory map-
ping communication. Finally, AXI4-Stream is useful for
high-speed streaming data.

The AXI4 specification defines five independent channels:
Read Address, Read Data, Write Address, Write Data, and
Write Response [30]. It must be noted that each independent
channel comprises a set of information signals and signals
that control the transfer flow (handshake mechanism) [30].

The protection of control and handshake signals can
be performed via parity bits [17], simplifying the logic
implementation but requiring extra bus lines. Another option,
since we consider two redundant communication interfaces in
PDMR, is to allow transmission only when both interfaces’
control signals have equal logical values required to perform
the transfers. This way, a transient event on the control line of
one of the channels does not compromise data transmission.
As the objectives of the hardware implementation were to
validate the proposed approach and compare it with TMR,
for simplicity, we compared the techniques by applying them
only to the data bus of the Read Data channel, which was
considered the data transmission path to the CPU (Central
Processing Unit).

A. HARDWARE PLATFORM AND SYSTEM DESIGNS
The designs were implemented and tested on the Zedboard
development board, composed of the Xilinx Zynq-7000
XC7Z020 SoC. This chip integrates an ARM processing
system (CPU) and reconfigurable logic (FPGA). Further-
more, Vivado 2022.1 software was used for the FPGA
synthesis and implementation process. Although the tests
have been performed on a Zynq platform, as long as the
expressions in section III are implemented in hardware, there
is no restriction on using the proposed approach on other
platforms.

During the development of the hardware designs, the
Vivado tool for creating and packaging custom IP Cores
was used to develop the blocks for the TMR and PDMR
configurations [38]. This tool builds IPs with AXI4 interfaces

90822 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

(Fig. 6) and generates Verilog codes for these interfaces.
Thus, codes can be modified according to the application.
In this paper, only small changes were performed, maintain-
ing the generated interfaces’ operating characteristics.

FIGURE 6. Generated IPs. (a) Encoder. (b) Decoder.

In the designs for this work, two IPs called encoder
and decoder with AXI4-Lite interfaces were generated for
each configuration. The encoder incorporates the function
previously presented for the transmitter, while the decoder
works as the receiver. In the case of PDMR and PDMR-C,
the encoders are the same, and they add the parity bits
given by the logic in (3) to the data read through the master
interface. The resulting codeword is then duplicated andmade
available to the slave interfaces. On the other hand, the TMR
encoder only triplicates the data coming from the master
interface.

The PDMR decoder IP receives data through the master
interfaces, decides the output word based on the expressions
in Section III-B, and keeps the result in a register that the
CPU can read through the slave interface. The decoder for
PDMR-C presents the same behavior but incorporates the
comparator and the logic in (8) instead of (6). The TMR
decoder presents similar behavior, but the output word is
obtained using voters based on (1).

Based on the developed encoders and decoders, different
systems were designed to compare the occupied area
and power consumption for TMR and PDMR hardware
implementations. In Fig. 7, the block design for the most
basic system is presented, in which one can observe a
communication path between the processing system and
peripherals (represented as axi_data_reader). In this case,
with the aid of AXI Interconnect, 24-bit data is transferred
from the CPU to the axi_data_source block, which in turn
sends it to the axi_data_reader block. These AXI GPIO
blocks are part of Xilinx’s IP Repository and were used
to make test development more straightforward and faster.
Subsequently, the reading is carried out using the decoder.
Since AXI4-Lite allows memory mapping communication,
the CPU can access the addresses of the S_AXI interfaces
of the axi_data_source block and S00_AXI of the decoder
block. Code was developed in the C programming language
and incorporated into the Zynq processor for this test. The
encoder and decoder for PDMR were marked in red to
indicate that they are the developed blocks. Meanwhile, the

other blocks, in blue, represent the components that emulate
the data transmission structure in the test, such as the CPU
and peripherals.

In order to verify the functioning of the system in the
face of data faults in the communication channels, the block
design in Fig. 8 was constructed. In this figure, some blocks
were marked in red to indicate that they are the developed
PDMR blocks, while the others, in blue, were used to emulate
the fault injection and the data transmission structure, such
as the CPU and peripherals. The fault_injector_ch0 and
fault_injector_ch1 blocks were used to insert faults in the
data bus of the Read Data channels between the encoder and
decoder blocks. The CPU sent the 32-bit fault vectors to be
inserted into the channels to the blocks fault_vec_data_ch0
(green line) and fault_vec_data_ch1 (blue line). Furthermore,
the 24-bit data to be read through the decoder was also passed
to the axi_gpio_data_source block, which transmitted it to
the axi_gpio_data_reader block (red line). As described for
the system in Fig. 7, the routine for transferring data and
faults and reading data via decoder was carried out using an
embedded C program in the Zynq processor.

An example of the data flow in the system in Fig. 8 is
illustrated in Fig. 9. Initially, the data 0×8a1b76, represented
in hexadecimal, was transferred by the Zynq processing
system to axi_gpio_data_source, which passed it to axi
_gpio_data_reader. The fault vectors 0 × 00100000 and
0 × 00104004 were stored in the blocks fault_vec_data_ch0
and fault_vec_data_ch1 through the CPU. Then, the infor-
mation was read from axi_gpio_data_reader, and parity bits
were added in the encoder block following the codeword
formation rule described in Section III.When passing through
the fault_injector_ch0 and fault_injector_ch1 blocks, the
duplicate codewords were corrupted using a XOR bitwise
operation with the respective fault vectors. Corrupted data
from fault_injector_ch0 and fault_injector_ch1 blocks were
treated in the decoder to mitigate faults. It can be observed
that, at the end of the process, the value read by the CPU was
0 × 208a9b6 and that the two most significant hexadecimal
digits, underlined in Fig. 9, correspond to the error indication
bits 0b00100000. These bits indicate an error in one of the
information bits in group 2, and the hexadecimal 0 × 9, also
underlined, highlights the error in the message.

The last block design implemented is shown in Fig. 10.
In this system, we seek to add fault tolerance to AXI
Interconnect since, as described in [12] and [31], it can
be a source of errors in architectures that use hardware
acceleration. The behavior of this system is similar to that
described in Fig. 7. However, we consider that faults can
occur in the paths between the master and slave interfaces
of the AXI Interconnect and the encoder, as well as between
the master and slave interfaces of the AXI Interconnect and
the decoder.

Systems such as those in Fig. 7 and Fig. 10 were
also developed for TMR tests. The characteristics and
modifications of the communication interfaces generated by
Vivado were kept the same for comparison purposes. The

VOLUME 12, 2024 90823



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

FIGURE 7. System design for emulating data transmission with PDMR implementations (blocks marked in red).

FIGURE 8. Block design for fault injection emulation using the developed PDMR blocks (marked in red).

FIGURE 9. Data flow example for fault injection test.

FIGURE 10. The emulation test environment includes redundancy in the interconnect with PDMR blocks (in red).

differences concern adding an extra master interface to the
TMR decoder IP and another slave interface to its encoder IP.
These IPs replaced the PDMR blocks (marked in red in the

figures), and the axi_interconnect_with_protection (Fig. 10)
was configured with three master interfaces and three slave
interfaces.

90824 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

B. AREA AND POWER CONSUMPTION RESULTS
Table 4 contains the resource utilization and power estimation
results obtained from the Vivado post-implementation. This
table displays the values of Slice LUTs, Slice Registers, and
Power in milliwatts (mW). The columns % correspond to
the reduction relationship between the values of the PDMR
configurations relative to the TMR, obtained by

V% = 100 × (1 − VPDMR/VTMR), (9)

where V% represents the percentage value, VPDMR is the value
for the C1 or C2 configuration, and VTMR is the value for
TMR. Note that the values in the % columns indicate the
percentage of theC1 configuration in relation to the TMR and
the C2 configuration in relation to the TMR. Additionally,
negative values indicate an increase in the utilization of
resources for C1 or C2 relative to the TMR implementation.

TABLE 4. Resource utilization and power estimation.

Table 4 shows that the encoder used for C1 and C2
presents a reduction of 13.86% in Slice LUTs and 13.54% in
Slice Registers compared to TMR. Meanwhile, no reduction
was observed regarding power consumption. Considering the
values for the decoder, there was a decrease of 0.62% for C1
and an increase of 11.73% for C2 in terms of Slice LUTs.
This increase in C2 can be explained by the insertion of the
comparator logic. On the other hand, in both configurations,
there was a reduction of 15.19% in Slices Registers compared
to the TMR. The Power values show that, in C1, there is a
consumption 50% lower than that for the TMR decoder and
that the consumption remained the same for C2.

Given the total values as the sum of the encoder and
decoder numbers, we see 7.97% less Slice LUTs for the
C1 configuration and 2.47% less for C2 when compared to
the total for the TMR. In the case of Slice Registers, both
configurations present a decrease of 14.27% in relation to
the TMR implementation. There was no difference in power
consumption between C2 and the TMR, while C1 had an
estimated power consumption reduction of 25%.

The resource utilization and power consumption results
for the test presented in Fig. 10 can be found in Table 5.
In this system implementation, the AXI Interconnect (named
axi_interconnect_with_protection) was considered part of
the data transmission path. This way, its Slice LUTs, Slice
Registers, and Power values were included in the total sum.
The values in Table 5 show that the percentages of Slice

Registers for the encoder and decoder and their sum remained
the same as in Table 4. However, there was an increase of
9.26% in Slice Registers for the Interconnect for both C1 and
C2 configurations. Taking the total as the sum of the encoder,
decoder, and Interconnect values, there was a decrease of
11.44% in Slice Registers. Concerning Slice LUTs, we see
percentages close to those in Table 4, and we get a more
significant reduction when considering the total values. Also,
estimated power consumption was reduced for both C1 and
C2 configurations, reaching a total value of 20%.

TABLE 5. Resource utilization and power estimation with interconnect.

Facing the results presented in this subsection, we highlight
that the AXI interfaces generated by Vivado are composed of
several signals from the AXI specification whose behaviors
are implemented by the tool, mainly with registers. In other
words, the basic interfaces, without applying a tolerance
method, have more registers than LUTs, which may explain
the more significant impact of the proposed approach on
Slice Registers. Meanwhile, the combinational logics of
PDMR and PDMR-C are more complex than the classical
voter (1), justifying a greater utilization of LUTs, even
though the TMR decoder block has an additional master
interface. However, reaching lower total values for C1 and
C2 configurations was still possible. Considering power
consumption and lower resource utilization for the decoder,
the C1 configuration would be more appropriate, although it
represents a reduction in detection capability. Furthermore,
from Table 5, we conclude that including the proposed
method in conjunction with more elaborate structures, such
as the Interconnect, may yield a more significant reduction in
the use of resources and power consumption.

It is worth noting that the proposed technique was
compared with TMR on basic interfaces to check the
occupied area and power consumption at a more fundamental
application level. However, redundancy techniques generally
involve replicating hardware acceleration components with
more robust tasks, which occupy a considerable part of
the FPGA’s reconfigurable logic. For example, a hardware
accelerator for image compression can be tripled with TMR,
and the voting circuit can vote on the data resulting from
the operations. In the case of PDMR, there would be a need

VOLUME 12, 2024 90825



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

TABLE 6. Characteristics of different methods, adapted from [17].

to duplicate the application, which would already represent
a reduction in the occupied area, and the addition of the
combinational logic presented for the encoder (codeword
formation), which can be embedded in the communication
interface of each redundant element.

Hardware implementations may depend on the technology
and communication protocols chosen for the designs. From
this perspective, as stated by Lázaro et al. [32], other
approaches are specific to other interface definitions, which
makes comparisons difficult. The TMR-based approach
described by [32] differs from this paper, mainly in the
following aspects: the authors performed modifications to the
five AXI channels to implement the redundancy mechanism;
a single module was developed, which would be equivalent
to our decoder implementations. Furthermore, the authors
focus on the minimization of FPGA resources. At the same
time, our hardware implementations were developed to verify
the viability of the proposed approach with respect to TMR,
considering minimal changes to the structure of the interfaces
generated byVivado. Comparison of area occupancy becomes
difficult due to the specific nature and modifications of the
IP, as well as differences in the focus of the approaches.
Therefore, a fair comparison would involve a more detailed
change of our modules’ code to minimize resource utilization
and the integration of the technique to the other AXI
independent channels.

VI. FURTHER COMPARISONS
Despite comparison with FEC codes not being among the
objectives of our work, since we consider the proposed
approach closer to methods that involve fault-masking or
the possibility of retransmission, we leverage the analysis
carried out by Mach et al. [17] to summarize the properties
of PDMR, TMR, and FECs. This summary is presented in
Table 6. Notably, the authors performed the analysis based on
information redundancy like parity and SECDED. As FECs
are part of this type of redundancy, we adapted the table to
designate the characteristics of FECs.

The first property in Table 6 is related to transient events in
multiple bus wires. In the case of FEC schemes, such as SEC
and SECDED, as the position in which an error occurred is
identified through the syndrome, multiple concurrent glitches
may end up undetected by the decoder logic, for example,
when transient faults occur in several wires protected by the
same parity bit. For TMR, the effect is partial because, once
the channel is replicated, the correction does not happen if

the glitches hit the same bus line on two different channels.
So, if a channel suffers multiple glitches, the majority voter
guarantees the correction based on the bits from the other
channels. The logic of PDMR has a similar behavior to
that of TMR in the sense of channel replication. However,
dividing the codeword into groups also means that the
occurrence of glitches in different groups can be masked or
detected.

All techniques can impact the clock frequency, mainly due
to the encoders and decoders added to the channels for PDMR
and FEC. In the case of TMR, the impact comes from the vot-
ing circuit. Moreover, TMR and PDMR have a greater effect
on increasing the area for interconnection (communication
interfaces) when compared to simple FEC codes. However,
PDMR has a reduced impact in relation to TMR, which can
be even smaller if we consider the replication of hardware
acceleration components, as discussed in Section V.

At this point, the manager is considered to be the
component responsible for initiating a data transfer, such as
the processor. Meanwhile, subordinates are the components
that receive or send information to the manager, such as
peripherals. Regarding the execution of changes in the
manager (master) and subordinates (slaves), the information
redundancy (FEC codes) requires that they be carried out
because it is necessary to implement the encoder logic in the
manager and the decoder in the subordinates. Depending on
the width of the input data, FEC codes may require extra bus
lines so that data and redundant bits can be transferred. These
lines must be included in the design of the communication
interfaces. Conversely, TMR requires a partial change in the
manager if the majority voter is used alongside it to vote data
from replicated subordinates. In this case, there is no need to
modify the subordinates. In PDMR, changes to the manager
and subordinates must be executed to include the coding and
decoding logic. However, the inclusion of extra bus lines is
discarded depending on the input data width.

The PDMR encoder and decoder mainly involve the use
of XOR operations to calculate the parity and comparator
bit (Section III), if used, and MUX to select the channel,
which is given by (4). On the other hand, although the
SEC and SECDED encoder is relatively simple (it uses XOR
logical operations), its decoder can be composed of XOR
operations and flip-flops to store results [16], which makes its
implementation more complex. Considering the differences
in complexity, we classify FEC codes as not straightforward
and PDMR and TMR as straightforward. Based on this,

90826 VOLUME 12, 2024



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

we also classify the change in the manager and subordinates
as Partially for PDMR.

Finally, PDMR, like FEC codes, may require multiple
transfers for a transaction. For example, when the processor
(system) can only send a limited number of bits so that, for
a single transaction, several transfers are necessary for data
and redundant bits to be sent. Meanwhile, the transaction can
occur with a single transfer for TMR, as no extra bits are
added to the data.

It is important to note that TMR presents better character-
istics in the comparison of Table 6. However, its high area
and power overhead can be a problem in applications with
design constraints, such as onboard systems in nanosatellites.
As demonstrated, PDMR has lower power consumption
and a smaller area, which can be even smaller if the
detection/comparison logic is disregarded, which can be
interesting in applications where the error rate is very small.
Detectability is also an attractive property of PDMR over
TMR. This property allows possible errors to be indicated in
the groups of the transmitted data. So, retransmission actions
can be carried out by hardware or software implementations.
Moreover, it should be noted that dividing the data into
groups allows implementations in which only groups with an
error indication are retransmitted, the impact of which will
be explored in future work. Regarding FEC codes, PDMR
has an advantage concerning ease of implementation and the
possibility of masking faults on multiple wires, while other
characteristics may be application-dependent.

VII. CONCLUSION
This paper presents a parity-based DMR approach for
application to COTS SoCs to be used for onboard processing
in nanosatellites. The objective of the approach is to
increase the reliability of data transmission between the
hardcore processing unit and the application located in the
reconfigurable logic area (FPGA).

Initially, the experiments on the proposed approach were
carried out through simulations developed in Python scripts.
The results show that the percentage of total errors for
the parity-based DMR approach configurations (PDMR and
PDMR-C) get close to TMR as the SEU rates decrease.
In addition, when considering the possibility of detecting
errors in the proposed approaches, reducing the number of
accumulated errors through retransmissions is possible while
still keeping the total number of transmitted bits lower than
TMR.

After the software simulations, hardware implementations
were carried out with the aid of the Xilinx Zynq-7000 SoC to
compare with the TMRmethod in terms of hardware resource
utilization and power consumption. The tests were based on
applying the proposed method on the Read Data channel
data bus of simple AXI-Lite interfaces. In this context, the
proposed approach showed a reduction in the utilization of
Slice LUTs and Slice Registers when considering the total
values of the implementations. Furthermore, it was possible
to observe a decrease in power consumption.

The decrease in hardware resource utilization values may
have a more significant impact on more complex communi-
cation structures. Therefore, in future work, we will analyze
the integration of the technique in AXI and AXI-Stream
interfaces and redundant hardware acceleration applications
that incorporate communication interfaces. We also plan
to explore the optimization of the described hardware
designs and implementation of the retransmission structure in
software and hardware. Additionally, we will seek to analyze
the correction and detection capability of the proposed
method, considering other configurations of parity bits,
information bits, and codeword formation rules that make
the technique more transparent for communication between
processor and hardware acceleration.

REFERENCES
[1] K. Woellert, P. Ehrenfreund, A. J. Ricco, and H. Hertzfeld, ‘‘Cubesats:

Cost-effective science and technology platforms for emerging and
developing nations,’’ Adv. Space Res., vol. 47, no. 4, pp. 663–684,
Feb. 2011.

[2] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papanikolaou,
D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and G. Furano,
‘‘High-performance embedded computing in space: Evaluation of plat-
forms for vision-based navigation,’’ J. Aerosp. Inf. Syst., vol. 15, no. 4,
pp. 178–192, Apr. 2018.

[3] M. Pignol, ‘‘COTS-based applications in space avionics,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhibition (DATE), Mar. 2010, pp. 1213–1219.

[4] K. A. LaBel, M. M. Gates, A. K. Moran, P. W. Marshall, J. Barth,
E. G. Stassinopoulos, C. M. Seidleck, and C. J. Dale, ‘‘Commercial
microelectronics technologies for applications in the satellite radiation
environment,’’ in IEEE Aerosp. Appl. Conf. Proc., Sep. 1996, pp. 375–390.

[5] R. H. Maurer, M. E. Fraeman, M. N. Martin, and D. R. Roth, ‘‘Harsh
environments: Space radiation,’’ Johns Hopkins APL Tech. Dig., vol. 28,
no. 1, p. 17, Jul. 2008.

[6] C. De Sio, S. Azimi, L. Sterpone, and B. Du, ‘‘Analyzing radiation-induced
transient errors on SRAM-based FPGAs by propagation of broadening
effect,’’ IEEE Access, vol. 7, pp. 140182–140189, 2019.

[7] A. D. George and C. M. Wilson, ‘‘Onboard processing with hybrid and
reconfigurable computing on small satellites,’’ Proc. IEEE, vol. 106, no. 3,
pp. 458–470, Mar. 2018.

[8] F. L. Kastensmidt and R. Reis, ‘‘Fault tolerance in programmable circuits,’’
in Radiation Effects on Embedded Systems. Cham, Switzerland: Springer,
2007, pp. 161–181.

[9] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, ‘‘Mitigation of radiation
effects in SRAM-based FPGAs for space applications,’’ ACM Comput.
Surveys, vol. 47, no. 2, pp. 1–34, Jan. 2015.

[10] S. Kasap, E. Weber Wächter, X. Zhai, S. Ehsan, and K. Mcdonald-
Maier, ‘‘Survey of soft error mitigation techniques applied to LEON3
soft processors on SRAM-based FPGAs,’’ IEEE Access, vol. 8,
pp. 28646–28658, 2020.

[11] M. Wirthlin, ‘‘High-reliability FPGA-based systems: Space, high-energy
physics, and beyond,’’Proc. IEEE, vol. 103, no. 3, pp. 379–389,Mar. 2015.

[12] C. De Sio, S. Azimi, and L. Sterpone, ‘‘On the evaluation of SEU effects
on AXI interconnect within AP-SoCs,’’ in Architecture of Computing
Systems—ARCS. Cham, Switzerland: Springer, 2020, pp. 215–227.

[13] F. Benevenuti and F. L. Kastensmidt, ‘‘Reliability evaluation on interfacing
with AXI and AXI-S on Xilinx Zynq-7000 AP-SoC,’’ in Proc. IEEE 19th
Latin-Amer. Test Symp. (LATS), Mar. 2018, pp. 1–6.

[14] P. Faraj, J. Leibrich, andW. Rosenkranz, ‘‘Coding gain of basic FEC block-
codes in the presence of ASE noise,’’ in Proc. 5th Int. Conf. Transparent
Opt. Netw., 2003, pp. 80–83.

[15] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

[16] C. Desset andA. Fort, ‘‘Selection of channel coding for low-powerwireless
systems,’’ in Proc. 57th IEEE Semiannual Veh. Technol. Conf., Oct. 2003,
pp. 1920–1924.

[17] J. Mach, L. Kohutka, and P. Cicák, ‘‘On-chip bus protection against soft
errors,’’ Electronics, vol. 12, no. 22, p. 4706, Nov. 2023.

VOLUME 12, 2024 90827



A. C. R. Alves et al.: PDMR Approach for the Reliability of Data Transmission

[18] ARM. (2011). CortexTM -R5 Technical Reference Manua.
Accessed: Jun. 2, 2024. [Online]. Available: https://developer.arm.
com/documentation/ddi0460/latest/

[19] W. Shiroma, L. Martin, J. Akagi, J. Akagi, B. Wolfe, B. Fewell, and
A. Ohta, ‘‘CubeSats: A bright future for nanosatellites,’’Open Eng., vol. 1,
no. 1, pp. 9–15, Jan. 2011.

[20] T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi,
‘‘Towards the thousandth CubeSat: A statistical overview,’’ Int. J. Aerosp.
Eng., vol. 2019, pp. 1–13, Jan. 2019.

[21] J. Gracia-Morán, L. J. Saiz-Adalid, D. Gil-Tomás, and P. J. Gil-Vicente,
‘‘Improving error correction codes for multiple-cell upsets in space
applications,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26,
no. 10, pp. 2132–2142, Oct. 2018.

[22] V. Raghunathan, M. B. Srivastava, and R. K. Gupta, ‘‘A survey of
techniques for energy efficient on-chip communication,’’ in Proc. Design
Autom. Conf., Apr. 2003, pp. 900–905.

[23] D. Bertozzi, L. Benini, and G. De Micheli, ‘‘Error control schemes for on-
chip communication links: The energy-reliability tradeoff,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 6, pp. 818–831,
Jun. 2005.

[24] K. S. Morgan, D. L. Mcmurtrey, B. H. Pratt, and M. J. Wirthlin, ‘‘A
comparison of TMR with alternative fault-tolerant design techniques for
FPGAs,’’ IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2065–2072, Dec. 2007.

[25] M. L. Shooman, Reliability of Computer Systems and Networks: Fault
Tolerance,Analysis,and Design. Hoboken, NJ, USA: Wiley, 2002.

[26] P. Balasubramanian, K. Prasad, and N. E. Mastorakis, ‘‘A fault tolerance
improved majority voter for TMR system architectures,’’ WSEAS Trans.
Circuits Syst., vol. 15, pp. 108–122, Oct. 2016.

[27] I. A. Gomes, M. G. Martins, A. I. Reis, and F. L. Kastensmidt, ‘‘Exploring
the use of approximate TMR to mask transient faults in logic with
low area overhead,’’ in Proc. Microelectron. Rel., 2015, vol. 55, no. 9,
pp. 2072–2076.

[28] A. J. Sánchez-Clemente, L. Entrena, and M. García-Valderas, ‘‘Partial
TMR in FPGAs using approximate logic circuits,’’ IEEE Trans. Nucl. Sci.,
vol. 63, no. 4, pp. 2233–2240, Aug. 2016.

[29] T. Arifeen, A. S. Hassan, and J.-A. Lee, ‘‘Approximate triple modular
redundancy: A survey,’’ IEEE Access, vol. 8, pp. 139851–139867, 2020.

[30] ARM. (2013). Amba AXI and Ace Protocol Specification AXI3, AXI4,
and AXI4-lite ACE and ACE-Lite. Accessed: Mar. 19, 2024. [Online].
Available: https://developer.arm.com/documentation/ihi0022/e

[31] C. De Sio, S. Azimi, and L. Sterpone, ‘‘On the analysis of radiation-induced
failures in the AXI interconnect module,’’ Microelectron. Rel., vol. 114,
Nov. 2020, Art. no. 113733.

[32] J. Lázaro, A. Astarloa, A. Zuloaga, J. Á. Araujo, and J. Jiménez, ‘‘AXI
lite redundant on-chip bus interconnect for high reliability systems,’’ IEEE
Trans. Rel., vol. 73, no. 1, pp. 1–6, Oct. 2024.

[33] J. Borecký, M. Kohlík, P. Vít, and H. Kubátová, ‘‘Enhanced duplication
method with TMR-like masking abilities,’’ in Proc. Euromicro Conf. Digit.
Syst. Design (DSD), Aug. 2016, pp. 690–693.

[34] L. T. Clark, D. W. Patterson, N. D. Hindman, K. E. Holbert, S. Maurya,
and S. M. Guertin, ‘‘A dual mode redundant approach for microprocessor
soft error hardness,’’ IEEE Trans. Nucl. Sci., vol. 58, no. 6, pp. 3018–3025,
Dec. 2011.

[35] G. Furano and A. Menicucci, ‘‘Roadmap for on-board processing and
data handling systems in space,’’ in Dependable Multicore Architectures
Nanoscale. Cham, Switzerland: Springer, 2018, pp. 253–281.

[36] C. Argyrides, H. R. Zarandi, and D. K. Pradhan, ‘‘Matrix codes: Multiple
bit upsets tolerant method for SRAM memories,’’ in Proc. 22nd IEEE Int.
Symp. Defect Fault-Tolerance VLSI Syst. (DFT), Sep. 2007, pp. 340–348.

[37] Xilinx. (2017). Vivado Design Suite: AXI Reference Guide. Accessed:
Mar. 19, 2024. [Online]. Available: https://docs.amd.com/v/u/en-
U.S./ug1037-vivado-axi-reference-guide

[38] AMD-Xilinx Inc. (2023). Vivado Design Suite User Guide: Creating and
Packaging Custom IP. Accessed: Mar. 20, 2024. [Online]. Available:
https://docs.amd.com/r/en-US/ug1118-vivado-creating-packaging-
custom-ip/Creating-and-Packaging-Custom-IP

ALEX C. R. ALVES received the B.S. degree in
electrical engineering from the Federal University
of Campina Grande (UFCG), Brazil, in 2016, and
the M.S. degree in mechatronics engineering from
the Federal University of Rio Grande do Norte
(UFRN), Brazil, in 2019, where he is currently pur-
suing the Ph.D. degree in electrical and computer
engineering. Since 2022, he has been a Professor
with the Federal Institute of Education, Science,
and Technology of Ceará (IFCE). His research

interests include embedded systems, onboard processing, and FPGAs.

LUIZ F. Q. SILVEIRA (Member, IEEE) received
the B.S. degree in electrical engineering from
the Federal University of Paraíba (UFPB), Brazil,
in 2000, and the M.Sc. and Ph.D. degrees in
electrical engineering from the Federal University
of Campina Grande (UFCG), Brazil, in 2002 and
2006, respectively. He was a Visiting Professor
with the University of Toronto (UofT), Canada,
from September 2021 to August 2022. He is cur-
rently an Associate Professor with the Department

of Computing Engineering and Automation, Federal University of Rio
Grande do Norte (UFRN), Brazil. His research interests include wireless
communications, information theoretic learning, channel coding, and energy
saving in data processing.

MÁRCIO E. KREUTZ received the B.S. degree
in computer science and the M.Sc. and Ph.D.
degrees in computer science and microelectronics
from the Federal University of Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil, in 1994, 1997,
and 2005, respectively. His thesis was developed
on the topic of networks-on-chip architectural
optimization. He is currently an Associate Pro-
fessor with the Federal University of Rio Grande
do Norte (UFRN), Natal, Brazil. His research

interests include embedded architectures modeling and specification,
embedded software mapping, and communication/processing architectures
optimization.

SAMAHERNI M. DIAS received the M.Sc.
and Ph.D. degrees in electrical engineering from
the Federal University of Rio Grande do Norte
(UFRN), Brazil, in 2007 and 2010, respectively.
He is currently a Professor with the Department
of Electrical Engineering, UFRN. His research
interests include variable structure control and
embedded systems.

90828 VOLUME 12, 2024


