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ABSTRACT Effective content recommendation in new media relies heavily on algorithmic approaches
to enhance user engagement and satisfaction. This abstract explores the current landscape of content
recommendation systems in new media platforms, focusing on how algorithms are leveraged to deliver
personalized and relevant content to users. The success of these systems hinges on their ability to analyze
vast amounts of user data, such as browsing history, preferences, and social interactions, to predict content
that aligns with individual interests. Key algorithmic techniques include collaborative filtering, content-
based filtering, and hybrid methods, each serving distinct purposes in enhancing recommendation accuracy.
The abstract examines the challenges and opportunities in algorithmic content recommendation, including
issues of privacy, algorithm bias, and the need for continuous algorithm refinement. Effective algorithms
not only increase user engagement but also drive business objectives such as increased user retention and
monetization through targeted advertising. Ultimately, the abstract concludes by highlighting the importance
of ongoing research and development in algorithmic approaches to keep pace with the evolving demands and
complexities of new media content recommendation systems.

INDEX TERMS Content recommendation systems, algorithmic approaches, new media platforms,
personalization, user engagement.

I. INTRODUCTION
In today’s digital age, the sheer volume of content available
on new media platforms is staggering. Users are inundated
with a vast array of choices, from articles and videos
to music and products. This abundance of content, while
beneficial in theory, can overwhelm users, making it
challenging to find relevant and engaging material. This
is where content recommendation systems come into play.
The primary purpose of these systems is to filter through
the vast sea of available content and present users with
personalized recommendations that align with their pref-
erences and interests [1]. The significance of effective
content recommendation cannot be overstated, as it directly
impacts user satisfaction, engagement, and retention. Content
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recommendation systems have become indispensable in the
modern digital landscape. Their importance is multifaceted,
affecting both users and service providers. For users, these
systems simplify the process of discovering new content,
enhancing their overall experience by providing relevant
and engaging material without requiring extensive searches.
For service providers, effective recommendation systems can
lead to increased user engagement, higher retention rates,
and ultimately, greater revenue. One of the primary benefits
of content recommendation is personalization. By analyzing
user behavior, preferences, and interactions, recommendation
systems can tailor content to individual users [2], [3], [4], [5].
This personalized approach not only enhances the user
experience but also fosters a sense of loyalty and satisfaction.
Users are more likely to return to platforms that consistently
provide them with content that matches their interests.
Content recommendation systems help in managing the
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information overload that users face. In an era where content
is constantly being produced and updated, it is impractical
for users to manually sift through all available options.
Recommendation systems streamline this process, ensuring
that users are exposed to the most relevant and high-quality
content. At the heart of effective content recommendation
systems are sophisticated algorithmic approaches. These
algorithms leverage various techniques to analyze user
data and predict their preferences. The most commonly
used algorithms include collaborative filtering, content-based
filtering, and hybrid methods. Collaborative filtering is based
on the idea that users who have shown similar behavior
in the past will have similar preferences in the future.
This approach can be divided into user-user and item-
item collaborative filtering [6], [7]. User-user collaborative
filtering identifies users with similar tastes and recommends
items that these users have liked. Item-item collaborative
filtering, on the other hand, recommends items that are
similar to those the user has shown interest in. Content-based
filtering focuses on the attributes of the items themselves.
By analyzing the features of the content, such as genre,
keywords, or descriptions, this approach recommends items
that are similar to those the user has previously liked. This
method is particularly effective in scenarios where user
data is sparse or when the goal is to introduce users to
new content that aligns with their established preferences.
Hybrid methods combine elements of both collaborative
and content-based filtering to leverage the strengths of each
approach. By integrating multiple techniques, hybrid systems
can provide more accurate and diverse recommendations,
addressing some of the limitations inherent in using a single
method.

Content recommendation and streaming media caching
have been key areas of research in multimedia systems.
Alt et al. [8] discuss the implementation and benefits of
SProxy, a segment-based caching proxy designed to enhance
internet streaming. Their approach addresses challenges such
as UDP traffic blocking and coordination issues between
caching discrete segments and streaming continuous media.
By leveraging existing internet infrastructure and employing
prefetching techniques, SProxy significantly reduces startup
latency and network traffic, ensuring high-quality streaming
delivery in various network conditions. In a different domain,
Ante and Fiedler [9] introduce ELBERT, an efficient and
lightweight BERT model for fast and accurate financial
sentiment analysis (FSA). They utilize a confidence-window-
based early exit mechanism to enhance processing throughput
without compromising accuracy, showcasing advancements
in natural language processing (NLP) for quantitative invest-
ment applications. Arias-Oliva et al. [10] propose a deep
learning framework for full-waveform inversion (FWI) in
geophysics, integrating the Wasserstein distance and learned
gradient regularization. Their method improves inversion
results for high-contrast geological structures, demonstrating
the synergy of deep learning techniques with physical
constraints. Additionally, Audretsch et al. [11] presents

structured-audio techniques grounded in information theory
and Kolmogorov complexity theory. The MPEG-4 struc-
tured audio standard exemplifies how algorithmic coding
theory can provide higher compression ratios and unify
various audio coding techniques. These studies underscore
the diverse applications and advancements in algorithmic
approaches across multimedia and signal processing disci-
plines, highlighting their impact on enhancing performance
and efficiency in multimedia systems and applications.

This article aims to contribute to the ongoing discourse
on content recommendation systems by addressing several
key areas. First, it will provide a comprehensive overview
of the current state of content recommendation, highlight-
ing the strengths and weaknesses of existing algorithmic
approaches [12]. This will include an in-depth examina-
tion of collaborative filtering, content-based filtering, and
hybrid methods, along with their respective advantages and
challenges. Next, the article will identify and formulate
the primary problems faced by current recommendation
systems, such as the cold start problem, scalability issues, and
the need for diversity and serendipity in recommendations.
By clearly defining these challenges, the article sets the
stage for proposing viable solutions. A significant portion
of the article will be dedicated to introducing advanced
methodologies that leverage Deep Neural Networks (DNNs)
and Stochastic Gradient Descent (SGD) to enhance the
effectiveness of content recommendation systems. These
modern techniques hold promise for overcoming many
of the limitations of traditional approaches by offering
improved accuracy, scalability, and personalization. Finally,
the article will present empirical results demonstrating the
effectiveness of the proposed methodologies. By comparing
the performance of traditional algorithms with the newly
introduced DNN and SGD-based approaches, the article
will provide concrete evidence of the benefits and potential
of these advanced techniques. The results section will
not only showcase the improvements in recommendation
accuracy and user satisfaction but also discuss the practical
implications for implementation in real-world systems [13],
[14], [15]. This article aims to bridge the gap between
current content recommendation practices and emerging
algorithmic advancements. By offering a detailed analysis
of existing methods, identifying current challenges, and
proposing innovative solutions, the article seeks to contribute
valuable insights to the field of content recommendation,
ultimately enhancing user experience and engagement on
new media platforms.

II. BACKGROUND
Content recommendation systems have become a cornerstone
of modern digital platforms, profoundly influencing how
users interact with media. These systems guide users through
a vast ocean of content, ensuring that they find what interests
them the most. Understanding the evolution of these systems
and the technological advancements that have shaped them
provides critical context for appreciating their current state
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and future potential. The concept of content recommendation
can be traced back to the early days of the internet. In the
1990s, as the World Wide Web began to grow, the need
for systems that could help users navigate and discover
relevant information became apparent. Early search engines
and directories were among the first attempts to organize
web content, but they relied heavily on manual categorization
and keyword matching, which were often insufficient for
personalized recommendations [16]. The introduction of
collaborative filtering in the mid-1990s marked a significant
milestone in the development of recommendation systems.
Collaborative filtering algorithms, which make recommen-
dations based on the preferences of similar users, were
first popularized by the GroupLens project at the University
of Minnesota. This method leveraged user data to identify
patterns and predict preferences, laying the foundation for
modern recommendation engines. Amazon’s introduction of
item-item collaborative filtering in the late 1990s further
advanced the field. By recommending products based on the
similarities between items rather than users, Amazon’s algo-
rithm could provide more accurate suggestions, especially
for users with sparse data. This approach demonstrated the
commercial potential of recommendation systems, leading to
widespread adoption in e-commerce and beyond. In the early
2000s, content-based filtering emerged as another important
technique. Unlike collaborative filtering, which relies on
user behavior, content-based filtering uses the attributes
of the items themselves to make recommendations. This
method became particularly useful for recommending items
in niche categories or for new users with limited interaction
history. The advent of hybrid recommendation systems in the
mid-2000s represented a significant evolution. By combining
collaborative filtering and content-based methods, hybrid
systems could mitigate the limitations of each approach
and provide more robust recommendations. Netflix’s rec-
ommendation algorithm, which won the Netflix Prize in
2009, is a prime example of a successful hybrid system.
It demonstrated how integrating multiple techniques could
enhance accuracy and user satisfaction. Several technological
advancements have played a crucial role in shaping the
development and effectiveness of content recommendation
systems [17]. Among these, the advent of big data and
machine learning stand out as the most transformative. The
explosion of digital content and user interactions over the
past two decades has generated vast amounts of data. This
big data revolution has been crucial for the advancement of
recommendation systems. The availability of large datasets
allows for more precise and comprehensive analysis of user
behavior and content attributes. Companies like Google,
Facebook, and Amazon leverage big data to refine their
recommendation algorithms continuously. The processing
and storage capabilities required to handle big data have
also evolved. Distributed computing frameworks like Hadoop
and Spark have made it possible to process massive datasets
efficiently. These technologies enable real-time analysis and
recommendation, ensuring that users receive up-to-date and

relevant suggestions. Machine learning, particularly deep
learning, has significantly advanced the field of content
recommendation. Traditional recommendation algorithms,
while effective, had limitations in handling complex user
behaviors and high-dimensional data. Machine learning
algorithms can model these complexities more effectively,
leading to improved recommendation accuracy. Deep Neural
Networks (DNNs), a subset of machine learning, have been
especially impactful. DNNs can learn intricate patterns and
representations from data, making them ideal for under-
standing user preferences and predicting future behavior.
Models such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) have been adapted for
recommendation tasks, enhancing the ability to recommend
multimedia content like images and videos. Stochastic
Gradient Descent (SGD) is another critical advancement
in machine learning that has influenced recommendation
systems. SGD is an optimization algorithm used to train
machine learning models, including neural networks. Its
ability to handle large datasets and converge quickly on
optimal solutions makes it well-suited for recommendation
tasks. By using SGD, models can be trained more efficiently,
improving the scalability and responsiveness of recommen-
dation systems. In addition to big data and machine learning,
several other technological advancements have contributed to
the evolution of content recommendation systems. Natural
Language Processing (NLP) has improved the ability to
recommend text-based content by understanding the semantic
meaning of user queries and content descriptions. Graph
theory has enabled the development of recommendation
systems that can model complex relationships between
users and items, enhancing the depth and accuracy of
recommendations. The rise of cloud computing has also
played a significant role [18]. Cloud platforms provide the
computational power and scalability necessary for modern
recommendation systems, allowing companies to deploy
sophisticated algorithms without the need for extensive on-
premises infrastructure. The historical context and techno-
logical advancements outlined above illustrate the dynamic
evolution of content recommendation systems. From the
early days of collaborative and content-based filtering to the
integration of big data and machine learning, these systems
have continuously evolved to meet the growing demands of
users and platforms. Understanding this evolution provides
valuable insights into the current state of recommendation
systems and highlights the potential for future advancements.
As technology continues to advance, the ability of recom-
mendation systems to deliver personalized, relevant content
will only improve, further enhancing user experience and
engagement in new media platforms.

III. PROBLEM FORMULATION
Content recommendation systems are integral to enhancing
user experience on digital platforms. However, despite
their sophistication, these systems face several significant
challenges that hinder their effectiveness. This section
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discusses the present problems in content recommendation,
including the cold start problem, scalability issues, the need
for diversity and serendipity, and the problem of algorithmic
bias. The cold start problem is a fundamental challenge in
recommendation systems. It arises when there is insufficient
data to make accurate recommendations, which typically
occurs in two scenarios: new users and new items. When
a user first joins a platform, the system lacks historical
data on their preferences and behavior. Without this data,
the recommendation system struggles to make personalized
suggestions. The common workaround is to use generic
recommendations based on popular or trending items, but
this approach often falls short of delivering the personalized
experience users expect. To mitigate the cold start problem
for new users, platforms often employ techniques such as,
Asking users to provide their preferences explicitly through
surveys or preference selection during the sign-up process.
Using demographic information and initial interactions to
make early predictions. Combining collaborative filtering
and content-based methods to leverage whatever minimal
data is available. Similarly, new items face the cold start
problem because there are no user interaction histories to
inform recommendations [19]. This issue is particularly
challenging for platforms that frequently introduce new
content, such as e-commerce sites and streaming services.
To address this, platforms can Use content-based filtering
by analyzing the features of the new items to find sim-
ilarities with existing items. Leverage metadata such as
categories, tags, and descriptions to associate new items
with known user preferences. Utilize data from related
domains (e.g., user preferences in music can inform movie
recommendations). Scalability is another critical issue for
recommendation systems, especially as platforms grow in
user base and content volume. As the amount of data
increases, so does the computational complexity of gener-
ating real-time recommendations. This growth can lead to
slower response times and reduced recommendation quality
if not managed properly. Traditional collaborative filtering
techniques, particularly user-user methods, struggle with
scalability due to their computational requirements. For
instance, calculating similarities between all users becomes
impractical as the number of users grows into the millions.
Handling large datasets efficiently requires robust data infras-
tructure. Storing and processing user interactions, content
attributes, and recommendation results demand significant
resources. Technologies such as distributed computing and
parallel processing are often employed to manage these
challenges. To enhance scalability, recommendation systems
can Implement algorithms designed for scalability, such
as matrix factorization techniques and approximate nearest
neighbors. Deploy distributed computing frameworks like
Apache Spark to process large datasets in parallel. Instead
of recalculating recommendations from scratch, update the
model incrementally as new data arrives. While accu-
racy is crucial for recommendation systems, diversity and
serendipity are equally important to keep users engaged.

Recommendations that are too similar to past preferences
can lead to a monotonous user experience, causing ‘‘filter
bubbles’’ where users are exposed to a narrow range of
content. Diversity in recommendations ensures that users
are presented with a wide array of content, preventing
boredom and increasing the likelihood of discovering new
interests. However, achieving diversity while maintaining
relevance is challenging. To enhance diversity, systems can
Implement algorithms that balance relevance with diversity,
such as the maximal marginal relevance (MMR) method.
Source content from various categories and genres to broaden
the recommendation base. Occasionally introduce random
recommendations to expose users to different content types.
Serendipity refers to the element of surprise in recom-
mendations, providing users with unexpected yet enjoyable
content. This can enhance user satisfaction and encourage
continued engagement. To incorporate serendipity, systems
canUse strategies like epsilon-greedy algorithms that balance
exploring new items and exploiting known preferences.
Incorporate contextual information such as time of day,
location, and current trends to introduce relevant surprises.
Algorithmic bias in recommendation systems can lead to
unfair and unbalanced content exposure, negatively affecting
user experience. Bias can stem from various sources,
including biased training data, algorithm design, and user
behavior. If the data used to train recommendation models
is biased, the recommendations will reflect those biases.
For example, if certain content is underrepresented in the
training data, it will be less likely to be recommended. User
interactions that favor popular content can reinforce existing
trends, marginalizing niche content. Certain algorithms may
inherently favor specific types of content or users, leading
to skewed recommendations. To reduce algorithmic bias,
platforms can Ensure that the training data is representative
of the entire content and user spectrum. Develop algorithms
that explicitly account for and correct biases during the
recommendation process. Conduct regular audits of recom-
mendation outputs to identify and address potential biases.

A. OBJECTIVE FUNCTION
The objective function and constraints presented in this
mathematical formulation play a crucial role in addressing
the challenges outlined in the problem formulation section
of content recommendation systems [20]. The two-layer
objective function is designed to minimize prediction error
while simultaneously maximizing diversity and serendipity
in recommendations. The first layer focuses on reducing the
discrepancy between predicted and actual user-item ratings,
incorporating a regularization term to prevent overfitting
and improve generalization. This addresses the cold start
problem by making accurate predictions, even with limited
data for new users and items. The second layer emphasizes
the importance of diversity and serendipity by promoting
recommendations that introduce users to new and unexpected
content, enhancing user engagement and satisfaction.

90564 VOLUME 12, 2024



Y. Chen, J. Huang: Effective Content Recommendation in New Media

1) LAYER 1: MINIMIZE PREDICTION ERROR
LetU be the set of users, I be the set of items,Rui be the rating
given by user u to item i, and R̂ui be the predicted rating.

min
∑
u∈U

∑
i∈I

(
1
2
(Rui − R̂ui)2 + λ

∥∥∥∇R̂ui∥∥∥2) (1)

Rui is the Actual rating given by user u to item i. R̂ui is the
Predicted rating for user u to item i. λ is the Regularization
parameter to control overfitting. ∇R̂ui is the Gradient of the
predicted rating, helping to smooth predictions.

2) LAYER 2: MAXIMIZE DIVERSITY AND SERENDIPITY
Let D(i, j) be a diversity metric between items i and j, and
S(u, i) be a serendipity metric for user u and item i.

max

∑
u∈U

∑
i∈I

∑
j∈I ,j̸=i

(
D(i, j) · R̂ui · log(1 + R̂uj)

)

+

∑
u∈U

∑
i∈I

S(u, i) · R̂2ui

)
(2)

D(i, j) is the Diversity metric between items i and j. S(u, i)
is the Serendipity metric for user u and item i. log(1+ R̂uj) is
the Logarithmic term to amplify the effect of predicted ratings
for diversity.

B. CONSTRAINTS
The constraints further refine these objectives by ensuring
non-negative ratings, setting upper bounds, and incorporating
specific requirements for new users and items, scalability,
bias mitigation, and fairness. Together, these elements form
a comprehensive approach to optimizing content recommen-
dation systems, ultimately improving user experience and
system performance in new media platforms.

1. Non-Negativity Constraint for Ratings:

R̂ui ≥ 0, ∀u ∈ U ,∀i ∈ I (3)

Ensures that predicted ratings are non-negative.
2. Upper Bound for Ratings:

R̂ui ≤ Rmax, ∀u ∈ U ,∀i ∈ I (4)

Rmax is the Maximum allowable rating, ensuring predic-
tions do not exceed this value.

3. Cold Start for New Users:

R̂ui ≥ α +
β

1 + e−γ (Age(u)−δ)
, ∀u ∈ Unew,∀i ∈ I (5)

α, β, γ , δ are the Parameters controlling the initial rating
for new users based on their age on the platform.

4. Cold Start for New Items:

R̂ui ≥ η ·

(
1 − e−θ ·Popularity(i)

)
, ∀u ∈ U ,∀i ∈ Inew (6)

η, θ are the Parameters controlling the initial rating for new
items based on their popularity.

5. Diversity Constraint:

∑
j∈I ,j̸=i

D(i, j) · R̂ui ≥ ζ ·

(∑
k∈I

R̂uk

)κ
,

∀u ∈ U ,∀i ∈ I (7)

ζ , κ are the Parameters ensuring a minimum level of
diversity in recommendations.

6. Serendipity Constraint:

∑
i∈I

S(u, i) · R̂ui ≥ λ · log

1 +

∑
j∈I

R̂uj

 , ∀u ∈ U (8)

λ is the Parameter ensuring a minimum level of serendipity
in recommendations.

7. Scalability Constraint:∑
i∈I

(
R̂ui

1 + exp(−µ · (u− ν))

)
≤ σ, ∀u ∈ U (9)

µ, ν, σ are the Parameters ensuring the system can handle
a large number of users and items efficiently.

8. Fairness in Recommendations:∑
u∈U

R̂ui ≥ τ ·

(
1 − e−υ·Relevance(i)

)
, ∀i ∈ I (10)

τ , υ are the Parameters ensuring fair exposure of all items
based on their relevance.

9. Bias Mitigation:

∑
u∈U

∑
i∈I

B(u, i) · R̂ui ≤ φ ·

∑
v∈U

∑
j∈I

R̂vj

 ,
∀u ∈ U ,∀i ∈ I (11)

B(u, i), φ are the Bias term and parameter to mitigate
algorithmic bias.

10. User-Item Interaction:∑
u∈U

∑
i∈I

(
R̂ui

(1 + Rui)2

)
≥ χ (12)

χ is the Parameter ensuring a minimum level of user-item
interaction.

11. Preference Consistency:

R̂ui ≥ ψ ·
P(u, i)

1 + |Age(u) − Age(i)|
, ∀u ∈ U ,∀i ∈ I (13)

ψ is the Parameter ensuring consistency with user
preferences considering user and item age.

12. Content Exposure:∑
i∈I

R̂ui ≥ ω ·

(
1 + log(

∑
k∈I

R̂uk )

)
, ∀u ∈ U (14)

ω is the Parameter ensuring a minimum level of content
exposure for users.
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13. Popularity Bias:∑
u∈U

R̂ui
√
1 + Popularity(i)

≤ π, ∀i ∈ Ipopular (15)

π is the Parameter ensuring recommendations do not
excessively favor popular items.

14. User Engagement:

∑
u∈U

E(u) · R̂ui ≥ ρ ·

∑
v∈U

∑
j∈I

R̂vj

 , ∀i ∈ I (16)

E(u), ρ are the Engagement metric and parameter ensuring
a minimum level of user engagement.

15. Quality of Recommendations:

∑
u∈U

∑
i∈I

 Q(i) · R̂ui

1 +

∣∣∣Rui − R̂ui
∣∣∣
 ≥ θ (17)

Q(i), θ are the Quality metric and parameter ensuring
high-quality recommendations.

Addressing the cold start problem, scalability, diversity and
serendipity, and algorithmic bias are critical to enhancing the
effectiveness of content recommendation systems. The pre-
sented mathematical formulation, with its two-layer objective
function and 15 complex constraints, offers a structured
approach to optimizing recommendations, improving user
experience, ensuring fair content exposure, and maintaining
user engagement in the dynamic digital landscape.

IV. METHODOLOGY
A. DEEP NEURAL NETWORKS (DNNS)
The architecture of Deep Neural Networks (DNNs) used for
content recommendation is typically composed of several
interconnected layers, including an input layer, multiple
hidden layers, and an output layer [21]. The input layer
receives data about user interactions, such as clicks, views,
ratings, and content features (e.g., text, images, metadata).
Each hidden layer consists of numerous neurons that apply
a non-linear transformation to the inputs received from
the previous layer. For a content recommendation system,
a common architecture is the Multi-Layer Perceptron (MLP).
The MLP processes both user and item embeddings through
several dense (fully connected) layers. Embeddings are
low-dimensional representations learned for users and items,
capturing their latent features. These embeddings are often
initialized using techniques such asWord2Vec for textual data
or image feature extraction for visual data.

1. Input Layer Transformation

x(0) = Eu ⊕ Ei (18)

where Eu and Ei are the embeddings for user and item
respectively, and ⊕ denotes concatenation.
2. Hidden Layer Transformation

h(l) = σ (W(l)h(l−1)
+ b(l)) (19)

whereW(l) and b(l) are the weight matrix and bias vector for
layer l, h(l−1) is the output of the previous layer, and σ is the
activation function (e.g., ReLU).

3. Dropout Regularization

h(l)dropout = D(l)
⊙ h(l) (20)

where D(l) is a dropout mask with elements randomly set to
0 or 1, and ⊙ denotes element-wise multiplication.

4. Output Layer

ŷ = σ (W(L)h(L−1)
+ b(L)) (21)

where W(L) and b(L) are the weight matrix and bias vector
for the final layer L, and ŷ is the predicted interaction score
or probability.

5. Loss Function for Training

L(ŷ, y) = −
1
N

N∑
i=1

[
yi log(ŷi) + (1 − yi) log(1 − ŷi)

]
(22)

for binary cross-entropy loss, where y is the true interaction
label and ŷ is the predicted probability.

B. STOCHASTIC GRADIENT DESCENT (SGD)
Stochastic Gradient Descent (SGD) is a widely used opti-
mization algorithm in training neural networks [22]. Unlike
traditional gradient descent, which computes gradients on the
entire dataset, SGD updates the model parameters using only
a subset of data (amini-batch) in each iteration. This approach
significantly speeds up the training process and allows the
model to handle large datasets.

1. Loss Gradient Computation

∇θL =
∂L
∂θ

(23)

where L is the loss function and θ represents the model
parameters (weights and biases).

2. Parameter Update Rule

θ (t+1)
= θ (t) − η∇θL (24)

where θ (t) is the parameter value at iteration t , η is the learning
rate, and ∇θL is the gradient of the loss with respect to θ .

3. Mini-Batch Gradient Calculation

∇θLmini-batch =
1
m

m∑
i=1

∂Li
∂θ

(25)

where m is the mini-batch size and Li is the loss for the i-th
data point in the mini-batch.

4. Learning Rate Decay

η(t) =
η0

1 + λt
(26)

where η0 is the initial learning rate, λ is the decay rate, and t
is the iteration number.

5. Momentum Update

v(t+1)
= βv(t) + (1 − β)∇θL (27)

θ (t+1)
= θ (t) − ηv(t+1) (28)
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where v is the velocity (momentum term), β is the momentum
coefficient, and η is the learning rate.

The process involves the following steps:
1) Initialize Parameters: Randomly initialize the weights

and biases of the network.
2) Mini-Batch Sampling: Randomly sample a mini-batch

of data points from the training dataset.
3) Compute Gradients: Perform a forward pass to cal-

culate the loss and a backward pass to compute the
gradients of the loss with respect to each parameter.

4) Update Parameters: Adjust the parameters using the
gradients and a predefined learning rate:

θ = θ − η∇L(θ ) (29)

where θ represents the parameters, η is the learning
rate, and∇L(θ ) is the gradient of the loss function [23].

5) Repeat: Iterate over multiple epochs until convergence.

V. RESULTS
This section presents the results of experiments conducted
to evaluate the effectiveness of the proposed methods
in addressing the challenges of content recommendation
systems. We describe the experimental setup, the perfor-
mance metrics used, analyze the results obtained using Deep
Neural Networks (DNNs) and Stochastic Gradient Descent
(SGD), and compare them with traditional methods. Finally,
we discuss the implications of these results for improving
content recommendation in new media platforms [24].
To evaluate the proposedmethods, we conducted experiments
using a real-world dataset consisting of user interactions
with items in a content recommendation system. The dataset
includes information such as user-item interactions, item
features, and user profiles. We split the dataset into training,
validation, and test sets, ensuring that each set represents a
balanced distribution of users and items.

Table 1 presents a comparison of Root Mean Squared
Error (RMSE) across different recommendation methods at
various values of K. RMSE is a crucial metric that measures
the average squared difference between predicted and
actual ratings, with lower values indicating better prediction
accuracy. In this table, DNNs with SGD consistently achieve
lower RMSE compared to traditional methods such as Matrix
Factorization (MF) and Collaborative Filtering (CF). For
instance, at K = 50, DNNs with SGD achieve an RMSE of
1.05, while MF and CF show higher values of 1.30 and 1.25,
respectively. This indicates that DNNs with SGD are better
at capturing complex user-item interactions and non-linear

TABLE 1. Performance Metrics Comparison (RMSE).

patterns, resulting in more accurate predictions. The superior
performance of DNNs with SGD underscores their effective-
ness in improving recommendation quality, thereby enhanc-
ing user satisfaction and engagement in newmedia platforms.

Table 2 compares the Precision at K (P@K) of various
recommendation methods across different values of K. P@K
measures the proportion of recommended items in the top-K
list that are relevant to the user. DNNs with SGD consistently
outperform traditional methods like MF and CF in precision.
For instance, at K = 20, DNNs with SGD achieve a
precision of 0.60, whereas MF and CF achieve 0.50 and 0.55,
respectively. This indicates that DNNs with SGD provide
more relevant recommendations to users, especially in higher
positions of the recommendation list. The higher precision of
DNNs with SGD reflects their ability to accurately predict
user preferences and deliver personalized content, which is
crucial for enhancing user engagement and satisfaction in
content recommendation systems.

TABLE 2. Precision at K (P@K).

Table 3 illustrates the Recall at K (R@K) for differ-
ent recommendation methods across various values of K.
R@K measures the proportion of relevant items that are
successfully recommended in the top-K list. DNNs with SGD
demonstrate superior recall compared to traditional methods
such as MF and CF. For example, at K = 10, DNNs with
SGD achieve a recall of 0.42, while MF and CF achieve
0.38 and 0.40, respectively. This shows that DNNs with SGD
are more effective in retrieving relevant items for users across
different recommendation lists. The higher recall of DNNs
with SGD indicates their ability to cover a larger proportion
of relevant items in the recommendation process, contributing
to improved user satisfaction and engagement. Figure 1 illus-
trates the comparison of Root Mean Squared Error (RMSE)
across different recommendation methods at various values
of K. RMSE is a critical metric that measures the average
squared difference between predicted and actual ratings, with
lower values indicating better prediction accuracy. This figure
clearly shows that DNNs with SGD consistently achieve
lower RMSE compared to traditional methods such as Matrix

TABLE 3. Recall at K (R@K).
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FIGURE 1. Performance Metrics Comparison (RMSE).

Factorization (MF) and Collaborative Filtering (CF). For
instance, at K = 50, DNNs with SGD achieve an RMSE of
1.05, while MF and CF show higher values of 1.30 and 1.25,
respectively. This visually represents that DNNs with SGD
are better at capturing complex user-item interactions and
non-linear patterns, resulting in more accurate predictions.
The superior performance of DNNs with SGD, as shown
in this figure, underscores their effectiveness in improving
recommendation quality, thereby enhancing user satisfaction
and engagement in new media platforms.

Table 4 presents the Mean Absolute Error (MAE) for
different recommendation methods at various values of K.
MAE measures the average absolute difference between
predicted and actual ratings, with lower values indicating
better prediction accuracy. DNNs with SGD consistently
achieve lower MAE compared to traditional methods like
MF and CF. For instance, at K = 20, DNNs with SGD
achieve an MAE of 0.78, while MF and CF achieve 0.92 and
0.85, respectively. This demonstrates that DNNs with SGD
make more accurate predictions and reduce errors in the
recommendation lists. The lower MAE of DNNs with SGD
indicates their ability to better capture user preferences and
improve the overall quality of recommendations, which is
critical for enhancing user experience in content recommen-
dation systems. Figure 2 illustrates the Recall at K (R@K)
for different recommendation methods across various values
of K. R@Kmeasures the proportion of relevant items that are
successfully recommended in the top-K list. DNNs with SGD
demonstrate superior recall compared to traditional methods
such asMF and CF. For example, at K= 10, DNNs with SGD
achieve a recall of 0.42, while MF and CF achieve 0.38 and
0.40, respectively. This figure visually depicts that DNNs

TABLE 4. Mean Absolute Error (MAE).

FIGURE 2. Recall at K (R@K).

with SGD are more effective in retrieving relevant items for
users across different recommendation lists. The higher recall
of DNNs with SGD indicates their ability to cover a larger
proportion of relevant items in the recommendation process,
contributing to improved user satisfaction and engagement.

Table 5 compares the Diversity Metrics of different
recommendation methods at various values of K. Diversity
metrics measure the variety of recommendations to ensure
diverse content exposure to users. DNNs with SGD achieve
higher diversity compared to traditional methods such as
MF and CF. For example, at K = 10, DNNs with SGD
achieve a diversity metric of 0.32, while MF and CF achieve
0.25 and 0.28, respectively. This indicates that DNNs with
SGD provide a wider range of content recommendations to
users, helping to prevent filter bubbles and enhancing user
exploration of new content. The higher diversity of DNNs
with SGD reflects their ability to offer varied and engaging
content suggestions, thereby improving user satisfaction and
retention in content recommendation systems.

TABLE 5. Diversity Metrics.

Table 6 illustrates the Serendipity Metrics for different
recommendation methods at various values of K. Serendipity
metrics measure the novelty of recommendations to ensure
unexpected and enjoyable content suggestions. DNNs with
SGD demonstrate higher serendipity compared to traditional

TABLE 6. Serendipity Metrics.
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methods like MF and CF. For instance, at K = 20,
DNNs with SGD achieve a serendipity metric of 0.35,
while MF and CF achieve 0.28 and 0.32, respectively.
This shows that DNNs with SGD are more effective in
introducing users to new and surprising content, enhancing
user engagement and satisfaction. The higher serendipity of
DNNs with SGD indicates their ability to deliver diverse and
unexpected recommendations, which can positively impact
user experience and increase user interaction in content
recommendation systems.

Figure 3 presents the Mean Absolute Error (MAE) for
different recommendation methods at various values of K.
MAE measures the average absolute difference between
predicted and actual ratings, with lower values indicating
better prediction accuracy. DNNs with SGD consistently
achieve lower MAE compared to traditional methods like
MF and CF. For instance, at K = 20, DNNs with SGD
achieve an MAE of 0.78, while MF and CF achieve
0.92 and 0.85, respectively. This figure visually demonstrates
that DNNs with SGD make more accurate predictions
and reduce errors in the recommendation lists. The lower
MAE of DNNs with SGD indicates their ability to better
capture user preferences and improve the overall quality
of recommendations, which is critical for enhancing user
experience in content recommendation systems.

FIGURE 3. Mean Absolute Error (MAE).

Table 7 presents the Scalability Metrics for different
recommendation methods at various values of K. Scalability
metrics measure the efficiency and performance of recom-
mendation methods with increasing data size and user base.
DNNs with SGD demonstrate better scalability compared
to traditional methods such as MF and CF. For example,
at K = 50, DNNs with SGD achieve a scalability metric

TABLE 7. Scalability Metrics.

of 0.45, whileMF and CF achieve 0.40 and 0.50, respectively.
This indicates that DNNs with SGD can handle large-scale
datasets and provide real-time recommendations more effi-
ciently. The better scalability of DNNs with SGD reflects
their capability to support rapid growth in data volume and
user base, ensuring robust performance and user satisfaction
in content recommendation systems.

The results underscore the effectiveness of DNNs with
SGD in improving content recommendation in new media
platforms [25]. These methods not only enhance prediction
accuracy but also promote diversity, serendipity, and fairness
in recommendations. By leveraging these advancements, con-
tent recommendation systems can better meet the evolving
needs of users and content providers in the digital age.

VI. CONCLUSION
This discussion has explored the methodologies involving
Deep Neural Networks (DNNs) and Stochastic Gradient
Descent (SGD) for content recommendation in new media.
DNNs were presented as effective architectures for cap-
turing complex user-item interactions, utilizing multi-layer
perceptrons to process user and item embeddings through
dense layers, and incorporating regularization techniques
such as dropout and batch normalization to improve model
generalization. SGD, as an optimization algorithm, was
highlighted for its ability to efficiently train these models
on large datasets, using mini-batch gradient descent to
update model parameters iteratively. Moving forward, future
research should focus on enhancing model interpretability,
leveraging advancements in natural language processing
and computer vision for richer content representations, and
integrating more robust reinforcement learning techniques to
optimize long-term engagement and recommendation strate-
gies. Additionally, exploring hybrid models that combine
collaborative filtering and content-based approaches could
provide more accurate and diverse recommendations, further
enhancing user satisfaction and engagement in evolving new
media landscapes.
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