
Received 29 May 2024, accepted 23 June 2024, date of publication 1 July 2024, date of current version 9 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421528

Face Swapping for Low-Resolution and
Occluded Images In-the-Wild
JAEHYUN PARK 1, (Graduate Student Member, IEEE),
WONJUN KANG2, (Student Member, IEEE), HYUNG IL KOO 3, (Member, IEEE),
AND NAM IK CHO 1,2, (Senior Member, IEEE)
1Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, South Korea
2Department of Electrical and Computer Engineering, INMC, Seoul National University, Seoul 08826, South Korea
3Department of Electrical and Computer Engineering, Ajou University, Suwon-si 16499, South Korea

Corresponding author: Hyung Il Koo (hikoo@ajou.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded
by Korean Government [Ministry of Science and ICT (MSIT)] under Grant 2021-0-01062; and in part by the BK21 FOUR Program of the
Education and Research Program for Future ICT Pioneers, Seoul National University, in 2024.

ABSTRACT Safeguarding personal identity in various surveillance videos, dashcams, and on-street videos
is crucial. One way to do this is to detect faces and blur them, but a better solution is to replace them with
non-existent ones to maintain the naturalness of the videos. While face swapping methods have already been
used in the media industry with high-quality faces, it is challenging to apply them for identity protection
to faces in-the-wild where faces are often occluded and of low-resolution. Therefore, we propose a new
framework for face swapping specifically designed to work with face images taken in real-world scenarios,
making it useful as a privacy protection method. To tackle the issue of low-resolution images, we introduce a
Cross-Resolution Contrastive Loss (CRCL) technique, which allows our neural network model to be trained
using triplets of varying resolutions. This enables the model to learn and use identity information across
different resolutions, thereby improving its accuracy. We also propose a plug-and-play framework that can
be easily applied to existing face swapping models to handle occlusions. By explicit swapping of facial
features and filling of occluded regions, our framework provides a more seamless blend. To demonstrate
the effectiveness of our method in handling faces in-the-wild, we create an occluded VGGFace2 dataset
consisting of face images augmented with various facial masks and hand occlusions. Through quantitative
and qualitative assessments on this dataset, our proposed method demonstrates robust performance under
low-resolution or occluded scenarios. Significant improvements are made in the quality of swapped faces
while preserving their identity and attributes, highlighting the effectiveness of our framework in advancing
face swapping as a reliable privacy protection measure.

INDEX TERMS Deep learning, de-identification, face swapping, in-the-wild, low-resolution, occlusion,
privacy protection.

I. INTRODUCTION
The objective of face swapping is to transfer the identity
from a source face image onto a target face image while
preserving the target’s attributes, such as background, pose,
and expression. This area has been extensively explored
in computer vision and has applications in the media
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industry [10], [11], [17], [40], [41], [42], where high-quality
images of source and target faces are crucial [10], [17], [18].

Face swapping can also be used as a de-identification
method, which generally refers to anonymizing unli-
censed individuals by removing personal information. This
allows captured videos to be used as publicly avail-
able resources without privacy concerns. Specifically, face
swapping involves replacing unlicensed face images with
artificially generated non-existent identities that contain
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no personal information [35], making it a powerful de-
identification tool.

Face swapping offers several unique advantages compared
to traditional image de-identification methods, such as blur-
ring, pixelation, and masking. Unlike conventional methods
that reduce image quality to remove identity information, face
swapping synthesizes faces that remain within the natural
distribution, preserving both the fidelity and integrity of
the original image. Additionally, when done seamlessly,
the swapped faces are imperceptible to the public and can
accurately retain the target attributes of the original face,
such as pose and expression. These advantages make the
de-identified data more valuable as a publicly available
training dataset.

However, the quality of faces in-the-wild can often be low,
which makes it difficult to use existing face swapping meth-
ods developed for the media industry. Specifically, videos
captured by surveillance cameras or public footage present
two main challenges for face swapping: low-resolution
and occlusions. Surveillance images and public footage
are usually captured from a far distance using low-quality
security cameras. As a result, the images are low-resolution,
and the faces are often just a few pixels wide. Additionally,
these captures are typically made in public settings, which
commonly results in occlusions. This difference is illustrated
in Fig. 1 (a), which are images used for face swapping in
the media industry, having generally high-quality and are
captured in a controlled setting [14], [15]. In contrast, the
images for privacy protection [20], [25] in Fig. 1 (b) present
varying resolution with occlusions. Existing face swapping
methods developed for media applications [10], [11], [17],
[40], [41], [42] are primarily trained with high-quality image
datasets, such as CelebA-HQ [14] and FFHQ [15], and hence
perform poorly on low-quality images. While there have
been attempts to develop face swapping as a de-identification
method [34], [35], [36], [37], [43], they focused on the
architectural modifications for complete identity removal and
less on the inherent challenges associated with low-resolution
and occlusions in practical privacy protection settings.

Unlike the existing methods, we overcome these chal-
lenges by presenting a novel face swapping framework for
privacy protection. First, we introduce a cross-resolution
contrastive loss (CRCL) to enhance the robustness of the
identity embedder in handling a wide range of resolutions.
This loss allows the identity attributes of faces with varying
resolution to share a single identity embedding space,
making the face swapping model compatible with identity
information across a range of resolutions.

Second, to handle facial occlusions, we develop a frame-
work that decouples occlusion handling from the main face
swapping process. Facial occlusions need to be preserved
through the face swapping process. However, they also
interrupt with facial feature extraction. Thus, we employ
an occlusion parser and an inpainting module to explicitly
extract and inpaint the occluded area of the face prior to face
swapping. Once face swapping is performed on the inpainted

FIGURE 1. Examples of a) high-quality images [14], [15] used in media
and b) in-the-wild images [20], [25] of varying resolution with occlusions.

image, it is followed by the refinement module to place
the extracted mask back onto the faces seamlessly. The two
approaches taken to address the challenges are independent
of the face swapping process, and hence can be applied in a
plug-and-play manner to enhance the robustness of existing
face swapping models against low-resolution and occlusions.

In summary, our contributions can be summarized as:
• We have introduced a cross-resolution contrastive loss
(CRCL) to create a shared embedding space for identity
embeddings across different resolutions. This enhances
the robustness of face swapping models against low-
resolution images.

• We have developed an occlusion-handling framework
that specifically deals with facial occlusions through
extraction and swapping. This improves the robustness
of face swapping models against various occlusions.

• We have also introduced an occluded VGGFace2
dataset to assess the proposed method on face images
with synthetic occlusions. Our method has shown to
be effective for privacy protection, remaining robust
against faces in real-world scenarios, and handling
low-resolution and occluded images exceptionally well.

The remaining paper is organized as follows: Section II
discusses various related works on face swapping and
methods for identity extraction. Section III introduces our
method, largely divided into the cross-resolution contrastive
loss and the occlusion handling framework. Section IV details
the training parameters and settings. Section V presents
quantitative and qualitative evaluation results, followed by the
conclusion in Section VI.

II. RELATED WORK
Since the proposed method is based on the face swapping
algorithm, we first review face swapping methods. Then,
we discuss methods to extract identity embeddings, which
play a crucial role in many recent face swapping methods.

A. FACE SWAPPING
Face swapping has received much attention due to its
vast range of potential applications. As a result, numer-
ous deep learning-based methods have been proposed.
Korshunova et al. [2] first attempted to address this task
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FIGURE 2. Architecture of the ID embedder E , which uses ArcFace [12] as
its backbone.

using a simple convolutional network. Nirkin et al. [6]
developed the convolutional neural network approach using
face segmentation guidance. Soon after, the researchers
shifted towards 3D-based methods [4], [6]. By fitting source
and target faces to a 3D template, the authors in [7]
were able to control expression and head poses. However,
these methods showed limitations in manipulating attributes
such as style and illumination, which led to GAN-based
approaches. Amongst the many GAN-based approaches,
RSGAN [3] carried out face swapping in the feature latent
space. FSGAN [8] implemented a two-stage approach to
carry out face swapping and reenactment simultaneously.
Also, an efficient framework for generalized and high-fidelity
swapped results was proposed in [1].

Although Faceshifter [9] attached HEAR-Net to handle
occlusions in the target image, it was limited to small occlu-
sions that covered only a small portion of the face. Instead,
most of the recent work focused on higher-resolution/high-
quality image generation. MegaFS [10] and FSLSD [11]
achieved state-of-the-art results on a set of higher resolution
datasets (CelebA-HQ [14], and FFHQ [15]) by exploiting a
pre-trained StyleGAN2 generator [13] alongwith latent space
manipulation techniques. Disentanglement of features in the
latent space has allowed precise control over specific identity
and target attributes in the image space.

B. IDENTITY EXTRACTION
The face swapping task involves transferring the identity
of the source image to a target face while preserving
the attributes of the target face. Hence the capability
of the identity embedder to extract the identity features
from the source face correctly is crucial. Identity features are
the key traits that distinguish one face from another (e.g., the
color and shape of eyes, nose, and lips). As these features
coincide with features used in face recognition, many of the
early face swapping works adopted the Arcface [12] model
(from face recognition) as their identity embedder. However,
Smoothswap [16] pointed out that identity embedding
space trained on discriminative tasks is not continuous and
proposed a smooth identity embedder with stable gradients
for identity interpolation. BlendFace [26] re-designed the
identity embedder and trained it on blended images to
alleviate the problem of identity-attribute entanglement.

FIGURE 3. Finetuning procedure of our identity embedder E using the
cross-resolution contrastive loss. A shared identity embedding space is
learned across resolution.

Identity in face swapping can also be handled by utilizing
the GAN inversion methods: Identity and attribute features
are fused and controlled in the StyleGAN latent space
W++ [15]. RAFswap [17] used semantic labels to extract
region-wise identity tokens. On the other hand, the authors
in [18] relied on transferring target attributes to the source
face without explicitly extracting identity features from
the source face. Although these methods have shown
high-quality results, conventional identity embedders have
limitations in handling low-resolution images. The identity of
swapped results, especially in low-resolution scenarios, may
not accurately reflect the identity of the source images.

III. PROPOSED METHOD
The face swapping problem is formulated as generating a
swapped face, denoted as xswap, with the identity from xsrc
and the attributes (e.g., background, expression, and pose)
of xtgt . However, face swapping as a privacy protection
measure needs to serve a very different scenario: replacing the
identities of unwanted individuals in low-quality surveillance
videos with identities of high-quality generated or licensed
face images. Due to the quality disparity in the source and
target images, the problem of face swapping for privacy
protection is formulated asymmetrically. It aims to generate
a realistic swapped image xswap given a high-quality source
image xsrc and a low-quality in-the-wild target image xtgt .
Among the factors influencing the target image’s quality,
we specifically address low-resolution and facial occlusions
through our cross-resolution contrastive loss and occlusion
handling framework, respectively.
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A. CROSS-RESOLUTION CONTRASTIVE LOSS
To extract the identity of xsrc, conventional face swapping
models typically employ a pre-trained face-recognition
model Arcface [12] as their identity embedderE . TheArcface
identity embedder uses a ResNet50 [32] backbone, composed
of convolution, identity blocks, and a final FC layer, to project
the input face image xsrc to a 512-dim identity embedding
vector vsrc. The architecture of the Arcface identity embedder
E is shown in Fig. 2.
Unfortunately, for in-the-wild images, the resolution gap

between the high-quality source xsrc and low-quality target
image xtgt results in embeddings from differing resolutions
that are incompatible, leading to artifacts around the facial
regions. A straightforward remedy to this problem would
be to reduce the resolution gap by resizing the source
image to the resolution of the target image. However, the
identity embeddings extracted from the Arcface identity
embedder work poorly for low-resolution images, as it
was primarily trained on discriminative tasks on a single
resolution. Consequently, the identity embedder encounters
difficulties in generalizing across varying resolutions.

To alleviate this problem, we fine-tune the pre-trained
Arcface identity embedder on additional lower-resolution
imageswith a cross-resolution contrastive loss (CRCL). To be
precise, we fine-tune our identity embedder E on 1/2 and
1/4 of the VGGFace2 dataset’s [20] original input image
size (224 × 224) to learn a shared identity embedding space
across 56 × 56, 112 × 112, and 224 × 224 resolutions. The
standard triplet loss function leverages the identity of the
input face by pushing differing identities and pulling identical
identities. In cross-resolution contrastive loss, the triplet loss
is expanded to leverage both identities and resolutions. This
fine-tuning procedure is illustrated in Fig. 3.
Given a pair of images of different identities I1 and I2,

we use I1 as our anchor and positive image and I2 as our neg-
ative image to form an image triplet (o1(x1), o2(x1), o3(x2)),
where oi is a randomly chosen downsampling operator from
setD ∈ {↓×1, ↓×2, ↓×4}. We apply triplet losses across reso-
lution to push and pull according to their identities regardless
of the operator they go through. Hence, the identity embedder
E naturally learns a shared identity embedding space across
multiple resolutions. The cross-resolution contrastive loss
function is given by

L(x1, x2) = max
(
∥va − vp∥ − ∥va − vn∥ + α, 0

)
(1)

where α is a positive constant and (va, vp, vn) is the identity
embedding obtained by E :

(va, vp, vn) = (E(o1(x1)),E(o2(x1)),E(o3(x2))) . (2)

The resulting shared identity embedding space yields
accurate identity embeddings across multiple resolutions,
which is then leveraged by face swapping models to
perform natural face swapping even in low-resolution
scenarios.

B. OCCLUSION HANDLING FRAMEWORK
As attributes of target images, occlusions in the target
face should be retained throughout the face swapping
process. Therefore, we develop a framework to handle
occlusions through explicit steps of extraction, inpainting,
and refinement. The framework is illustrated in Fig. 4 and
the individual modules used are summarized in Table 1.
To elaborate, the occlusion handling framework is broken
down into the following steps.

1) OCCLUSION EXTRACTION
We first extract occlusions in the target face using an
occlusion parser P. Given a target face image xtgt , the
occlusion parser outputs mask m (1: occlusions and 0:
others) corresponding to the occluded region of the target
image. From the output m, we expand it by 10% to ensure
complete coverage of the occlusion in the extracted mask
since unmasked occlusions may interfere heavily with the
following inpainting process. The extracted mask m is used
to extract the occlusion xocctgt in (4) and the occlusion-removed

target image x facetgt in (5).

m = P(xtgt ) (3)

xocctgt = m⊙ xtgt (4)

x facetgt = (1 − m) ⊙ xtgt . (5)

As our occlusion parser, we modify the ResNet101 [32]
backbone with fewer ResBlocks and a binary classification
layer for our mask output. The described architecture is
depicted in Fig 5.

2) OCCLUSION INPAINTING
Then, we use an inpainting module I to inpaint the occlusion
region of the target image. The inpainting module is able
to fill in missing facial landmarks and semantics while
preserving facial symmetry.

x inpaintedtgt = I (x facetgt ). (6)

This step is crucial as the face swapping module requires
complete facial features to produce high-quality swapped
results. Note that the similarity between the inpainted region
and the original face is unimportant as the inpainted region is
later replaced with the extracted occlusion xocctgt .

3) FACE SWAPPING
The inpainted image is then passed into the face swapping
module F along with the extracted identity embedding vector
vsrc in (7) (from the CRCL fine-tuned identity embedder E)
to produce the face swapped result xswap in (8).

vsrc = E(xsrc) (7)

xswap = F(vsrc, x
inpainted
tgt ) (8)

Our occlusion handling framework is composed of the pre
and post-processing step of the face swapping module.
Hence, any existing face swapping methods can be used in
place of our face swapping module F in (8).
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FIGURE 4. Overall structure of the proposed method. We first train the occlusion parser P and the inpainting module I to mask and inpaint the occluded
target face xtgt . We also adopt the CRCL finetuned identity embedder E to extract the source identity embedding vsrc . Then E , P , I are used to train the
face swapping module F and refinement module R.

TABLE 1. Summary of the modules used in the proposed method.

TABLE 2. Summary of the training parameters of the modules used. The modules are trained across two stages.

FIGURE 5. Architecture of our Occlusion Parser P . We use a modified
version of ResNet101 [32].

4) STITCHING AND REFINEMENT
To restore occlusions in the target face, we transfer the
occlusions xocctgt back onto the swapped face. Initially, the
occlusion mask layer is simply overlayed above the swapped
image layer using Gaussian blending in (9). However,
to minimize the disparity between the layers, we post-process
the occluded image xswap+occ with a refinement module R to

TABLE 3. Architecture of Refinement module R.

produce a natural result xrefined in (10).

xswap+occ = xswap ⊙ (1 − m) + xocctgt (9)

xrefined = R(xswap+occ,m) (10)
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The simple U-net architecture for our refinement module
is listed in Table 3.

The occlusion handling framework is summarized in these
four steps: explicit extraction, inpainting, swapping, and
refinement. It can easily be applied to existing face swapping
methods to enhance their robustness to facial occlusions.

IV. TRAINING
As presented in the previous section, the proposed method
consists of 5 neural network modules. In the first stage,
the identity embedder E , occlusion parser P, and inpainting
module I are trained. Then, the trainedmodules are employed
in stage 2 to jointly train the face swapping module F and
refinement module R. Especially for the joint training of F
andR, we propose a new loss function to yield a natural result.
All modules used in this paper are summarized in Table 1, and
each of its training parameters are summarized in Table 2.

A. IDENTITY EMBEDDER
We first fine-tune the pre-trained Arcface identity embed-
der E from [12] on low-resolution images. We use
MS1MV2 [19], a large-scale face recognition dataset consist-
ing of over 100K identities, augmented with low-resolution
images as our dataset. To synthetically generate low-
resolution images, we downsample the images to 112 ×

112 and 56 × 56 images using bicubic interpolation and
upsample them back to the original size. We use an ADAM
optimizer with a learning rate of 0.001, scheduled to halve
every 4 epochs. The identity embedder is trained with a batch
size of 128 on GTX TITAN X GPU for about 4 days.

B. OCCLUSION PARSER AND INPAINTING MODULE
The occlusion parser P and inpainting module I are trained
using VGGFace2 [20], a dataset of 3.31 million face images
of 9,131 different classes. Prior to training, the dataset is
refined by removing images with sizes smaller than 250 ×

250, then aligned and cropped to a size of 224 × 224. 80%
of the dataset is used for training purposes, and the remaining
20% is used for validation.

To facilitate the training of the model on low-quality
images, we further augment the VGGFace2 dataset [20].
First, we make low-resolution images following the method
in Section IV-A. Then, we create and propose two syntheti-
cally occluded VGGFace2 datasets: Masked-VGGFace2 and
Hand-occluded-VGGFace2, featuring VGGFace2 images
overlayedwith synthetic facial masks and hands, respectively.
The Masked-VGGFace2 dataset uses MaskTheFace [25] to
augment VGGFace2 images with synthetic facial masks of
random types and colors. The Hand-occluded-VGGFace2
dataset uses 11k-hands [27] to augment VGGFace2 images
with synthetic hand occlusions of random orientations and
sizes. This multifaceted augmentation strategy contributes to
the robustness and diversity of our dataset.

The objective of the occlusion parser P is to extract a
binary occlusion mask from a target face accurately. To do
this, we adopt a modified ResNet101 [32] model as the

backbone, as depicted in Fig 5. The model is supervised
with a Binary Cross Entropy (BCE) loss and is trained with
a batch size of 16 for 50 epochs on an NVIDIA 2080 TI
GPU for a single day. For our face inpainting module I ,
we adopt LaMa [24], an inpainting network that uses Fast
Fourier Convolutions [39]. It is known for its effectiveness
at inpainting large masks and its ability to generalize well
to images of varying resolution. To train the inpainting
module I , we utilize large random masked regions of the
downsampled VGGFace2 face image. The module is trained
with a batch size of 8 on an RTX 2080 Ti GPU for 3 days,
using an ADAM optimizer with a learning rate of 0.0001.

C. FACE SWAPPING AND REFINEMENT MODULE
Finally, we jointly train F and R using the trained modules
E , P, and I . The goal of the refinement module is to match
the color characteristics and refine the unnatural blending
artifacts occurring at the edges of the transferred occlusion
mask.

To focus on the boundaries of the occlusion, we apply a
perceptual loss [31] on the edges of the occlusion in (11).
This is done by generating an occlusion edge mask medge by
subtracting a down-scaled maskm− from a slightly up-scaled
mask m+. The perceptual loss function is given by

Ledge = ||φ4_2(medge ⊙ xrefined )

− φ4_2(medge ⊙ xswap+occ)||1 (11)

where φ4_2 denotes the feature map after relu4_2 layer of the
VGG19 model [31] pretrained on ImageNet [30]. A pixel-
wise reconstruction loss (12) is also used as a regularization
term so that the refined face xrefined does not change too much
from input face xswap+occ.

Lrecon = ||xrefined − xswap+occ||1 (12)

LR = λreconLrecon + λedgeLedge (13)

We set λrecon = 10−5 and λedge = 10.
This loss is combined with the standard losses (identity,

reconstruction, adversarial, and weak feature matching loss)
of Simswap [1] to form the entire loss function (14).
We follow the settings in Simswap and set λid = 10, λrecon =

10, λGP = 10−5 and λwFM = 10:

L = λidLid + λreconLrecon + Ladv
+ λGPLGP + λwFMLwFM + LR (14)

While occlusions on face images come in various forms,
we specifically focus on facial masks and hand occlusions,
which are the most common types. Nevertheless, the
framework can be extended to handle various occlusions by
training the occlusion parser P on additional occlusions. The
two modules, F and R, are jointly trained with a batch size
of 8 across 4 RTX 2080 Ti GPUs for around 3 days using an
ADAM optimizer with B1 = 0 and B2 = 0.999, similar to
the hyperparameter settings in Simswap [1].
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TABLE 4. Comparison against previous works [1], [9], [29] on VGGFace2 dataset [20]. Our method shows robustness to x1, x2, and x4 downsampled
resolutions over multiple metrics. Red indicate the best score, 1 indicate improvement of Ours over runner-up.

V. EXPERIMENTAL RESULTS
The experimental result is largely comprised of the quan-
titative evaluation and qualitative evaluation results against
multiple previous works [1], [9], [29]. Recent works [10],
[11], [17], [40], [41], [42] that are designed and trained on
a higher resolution (e.g., megapixels) dataset [14], [15] are
excluded as they are not suited for comparison.

For the quantitative evaluation, we first introduce the
five standard metrics used to evaluate face swapping
models. Afterwards, we use these metrics to evaluate the
model’s robustness to resolution on the VGGFace2 test set,
and its robustness to occlusion on the synthetic Masked
andHand-occluded-VGGFace2 dataset. Likewise, qualitative
evaluations on robustness to low-resolution and occlusion
are made. Additional qualitative evaluations on real-world
occlusion are conducted to demonstrate our method’s ability
to generalize to unseen practical occlusions. This is followed
by an ablation study where we examine the individual effects
of each of the proposed modules. Our proposed method is
labeled as Ours in the following evaluations.

A. QUANTITATIVE EVALUATION
Comparisons are made with respect to five widely used
metrics: FID, ID similarity, ID retrieval, Pose error, and
Expression error. The Frechet Inception Distance (FID) [28]
is a measure of the quality of the data and specifically
measures the Wasserstein-2 distance between the distribution
of swapped images and the target face. Hence, it is a measure
of the naturalness of the generated face.

ID similarity and retrieval measures the identity transfer
capability of the model and hence indicates whether the
identity from the source faces xsrc, is accurately reflected
onto the swapped face xswap. ID similarity is measured by
the cosine similarity between the identity embedding of
the swapped and the source face. ID retrieval uses identity
embedding extracted using our CRCL fine-tuned identity
embedder to measure the top-1 matching rate amongst the
source images.

Pose and expression errors represent the attribute preser-
vation capability of the model and are measured by the L2
distance between the pose and expression vectors yielded
by HopeNet [23]. Hence, a low pose and expression error
indicates that the pose and expression of the swapped face
have remained consistent with those of the target face,
resulting in a seamless swapped face.

1) RESULTS ON LOW-RESOLUTIONS
We first evaluate our proposed method on low-resolutions.
As summarized in Table 4, previous works [1], [9], [29] have
difficulty retrieving the correct identity in low-resolutions
(↓×2, ↓×4), underlined by ID Sim. and ID ret. scores
dropping significantly on lower resolutions. The extraction of
incorrect identity can lead to face swapped results that fail to
reflect the identity of the source image. Moreover, it may also
lead to blur artifacts and resolution discrepancies around the
contours of the transferred identity properties and the retained
target attributes. This observation is further supported by a
noticeable decline in the FID score metric, which indicates
that the distribution of the swapped face has deviated from
the distribution of the target face. As target faces consist of
real natural faces, the deviation indicates that previous works
encountered difficulties generating a natural face in lower-
resolution settings.

On the other hand, the proposed method shows robustness
to various resolutions. The ID sim. score remains more con-
sistent, indicating successful learning of the cross-resolution
embedding space. Consequently, this leads to improved ID
ret. and FID scores, indicating that the extracted identity
is accurate and has been successfully transferred even in
low-resolution settings. Note that while the ID sim. scores
are higher for Simswap [1] for ↓×1 and ↓×2 resolutions,
the ID ret. score is low. This translates to a concentrated
distribution of the ID embedding resulting in high ID sim.
scores on average, that is not well differentiated resulting
in a low ID ret. score. In privacy protection, this implies
the better removal of the target identity, which is the
unlicensed identity we aim to remove, and a better reflection
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TABLE 5. Comparison against previous works [1], [9], [29] on Masked-VGGFace2 [20]. We use MaskTheFace [25] to apply synthetic masks of various types,
color and texture on the VGGFace2 dataset. Red indicate the best score, 1 indicate improvement of Ours over runner-up.

TABLE 6. Comparison against previous works [1], [9], [29] on the Hand-occluded-VGGFace2 dataset [20]. We use 11k-hands dataset to add synthetic
hands of random orientation and sizes on the VGGFace2 dataset. Red indicate the best score, 1 indicate improvement of Ours over runner-up.

of the generated artificial identity, which we aim to transfer
over. As remaining unlicensed identity can lead to privacy
protection problems, our framework’s high retrieval rate
underlines its effectiveness as a reliable privacy protection
measure. As for pose and expression scores, we find that they
remain relatively low and competitive with other models.

2) RESULTS ON OCCLUSIONS
We also evaluate the robustness of our model on two types of
occlusions: facial masks and hands. In Table 5, we compare
the results on the Masked-VGGFace2 dataset. As shown,
metric scores deteriorate compared to the original VGGFace2
dataset, indicating the challenges faced with occlusions. The
drop becomes more noticeable in the pose and expression
metrics as these metrics are evaluated in [23] by leveraging
the facial geometry and landmark information of the input
face. As occlusions such as facial masks largely occlude this
information, occlusions heavily interfere with the extraction
of pose and expression, leading to inaccurate preservation of
target face attributes. Even steeper drops are observed on the
Hand-occluded-VGGFace2 dataset as shown in Table 6. This
is explained by the difficulty associated with differentiating
hand occlusions due to their identical color with the face and
their irregular shape.

On the other hand, our method works robustly in both
occluded settings compared to previous works. As indicated
by the low FID scores, the occlusion handling framework
retains the occlusion to produce natural swapped results.
As target face consists of occlusions in this case, the low FID
score not only indicates the natural generation of the swapped
face but also indicates that occlusions are preserved in a
realistic manner. This is important as an unnatural swapped
face harms the fidelity and integrity of the original data,
rendering the method less effective in privacy protection.
Moreover, it shows strong identity preservation capabilities
through high ID sim. and ID ret. scores at the slight expense
of its pose and expression preservation ability. Overall,
upon quantitative evaluation using face swapping benchmark
metrics, our proposed method displays strong performance,
especially in low-resolution and occluded in-the-wild scenar-
ios, in comparison to previous works [1], [9], [29].

B. QUALITATIVE EVALUATION
1) RESULTS ON LOW-RESOLUTIONS
Face swapping results on standard resolution (224×224) are
shown in Fig. 6. In addition to the correct extraction of the
source identity, our model is able to preserve the pose and
expression of the target image accurately. Also, our results on
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FIGURE 6. Face swapping results of our proposed method on the
VGGFace2 test set [20] on low-resolution target images. Our method
successfully retains the downsampled target image fidelity in the
swapped result. (Best viewed zoomed in).

FIGURE 7. Comparison against previous works [1], [9], [29] on the
VGGFace2 test set [20]. Rows (a) and (b) show face swapping performed
at x2 and x4 resolutions. Rows (c) and (d) shown face swapping
performed in occluded scenarios. Unlike previous models, our method
remains faithful to the fidelity and the occlusions of the target face.

↓×2 and ↓×4 downsampled resolutions (112× 112 and 56×

56) demonstrate the method’s robustness to low-resolution.
Even in the presence of resolution discrepancy (between
the source and the target image), our method generates
naturally swapped results that accurately reflect the target
image resolution. On the other hand, previous works [1], [9],
[29] struggle to maintain the fidelity of the target image,
as seen in Fig. 7 (a) and (b). [1] produces excessively
high-resolution swapped results despite the low-resolution
target images. Meanwhile, [9], [29] failed to naturally fuse
attributes extracted from low-resolution target images with
identity embeddings from high-resolution source images.
As a result, unnatural swapped results are generated with
artifacts around the contours of the face.

2) RESULTS ON OCCLUSIONS
We also evaluate our model on occluded settings where faces
are occluded with facial masks or hands using our proposed
occluded VGGFace2 datasets. Through the occlusion han-
dling framework, our model is able to preserve the whole

FIGURE 8. Face swapping results of our proposed method on the
occluded VGGFace2 test set [20]. Our method successfully preserves the
target face occlusions, producing diverse results.

FIGURE 9. Face swapping results of our proposed method for real-world
MFR2 dataset [25]. Our method works robustly for real-world images of
facial masks.

occlusion in the swapped results, as illustrated in Fig. 8.
Moreover, our model is able to perform high-fidelity face
swapping in the remaining unoccluded regions. On the other
hand, previous works perform poorly and thus fail to preserve
the occlusions. The comparison in Fig. 7 (c) and (d) shows
that occlusions are only partially reconstructed, or facial
features are partially visible through the occlusion. This
experiment result emphasizes the difficulty of handling
occlusions using the face swapping model and demonstrates
that an explicit module is better suited for this purpose.

3) RESULTS ON REAL-WORLD OCCLUSIONS
Finally, we evaluate the robustness of our method on real-
world occlusions. For evaluation on real-world facial mask
occlusions, we apply the model to the MFR2 [25] dataset,
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FIGURE 10. Comparison against previous works [1], [9], [29] on
real-world mask-occluded images. Facial mask both interfere with face
swapping and are not preserved.

FIGURE 11. Face swapping results of our proposed method on real-world
hand-occluded images. The method successfully performs face swapping
while preserving challenging hand occlusions.

a dataset of 269 images consisting of real-world images
of public figures wearing facial masks. As seen in Fig. 9,
our model produces natural swapped results even for large
real-world facial masks generally covering half of the target
face. Moreover, in comparison to conventional face swapping
models in Fig. 10, the entirety of the facial mask is well
preserved both in terms of its shape and opacity. On the other
hand, conventional models either fail to completely preserve
the occlusions or perform natural face swapping.

As for hand occlusions, as there are no public datasets for
face images with hand occlusions, we perform face swapping
on our collected real-world dataset and display our results
in Fig. 11. Although the occlusion parser sometimes yields

FIGURE 12. Comparison against previous works [1], [9], [29] on
real-world hand-occluded images. Conventional methods struggle to
either preserve occlusion or successfully perform face swapping.

inaccurate occlusion masks, our method shows satisfactory
swapping performance while preserving hand occlusions
for most cases. This is further underlined when compared
to other face swapping models in Fig. 12, where blur
artifacts around the face contours occur in [1] and [9] and
the hand occlusions are not properly preserved in [1] and
[29]. As real-world datasets more accurately reflect the
nature of in-the-wild images, the evaluation on real-world
datasets again demonstrates the effectiveness of our proposed
method as a privacy protection measure against real-world
occlusions.

C. ABLATION STUDY
To validate the contribution of each module in our method,
we conduct an ablation study on a combined occluded-
VGGFace2 dataset that contains both facial masks and
hand occlusions. As depicted in Table 7, we begin with
Simswap [1] as our base model and progressively add
our proposed modules to examine their effects. We report
the averaged score for ↓×1, ↓×2 and ↓×4 downsampled
images and further conduct ablation experiments with sample
progress images in Fig. 13 and an extensive experiment on the
effect of CRCL in Table 8.
First, in Ablation 1 of Table 7, the addition of the

occlusion parser B alone does not improve the face swapping
performance. In Fig. 13, it is shown that the output of
the occlusion parser B is an incomplete face image x∗

occ.
Naturally, using an incomplete face image as the input to
the face swapping model leads to decreased performance.
However, in combination with the inpainting module P, x∗

occ
is inpainted to a complete face x∗

p with complete facial
features. As shown in Ablation 2, face swapping with a
face image with complete facial features brings dramatic
improvements to most metrics. However, the FID score
remains high as the inpainted region generates unnatural color
and contour artifacts, as shown in xswap+occ.
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FIGURE 13. Face and mask images for each step of the occlusion handling framework. We extract the mask explicitly and transfer the extracted mask
back onto the swapped face.

TABLE 7. Ablation study of the proposed method. We examine the effect of each module on occluded (facial mask + hand) VGGFace2 [20]. We measure
the performance on x1, x2 and x4 downsampled resolutions and report its average.

TABLE 8. Ablation study on the effect of CRCL fine-tuning on VGGFace2
[20]. CRCL indicate the CRCL fine-tuned Arcface [12] identity embedder.
Red indicate the best score.

To address this limitation, the refinement module R
refines the final result xswap+occ to xrefined , removing major
artifacts around the overlayed occlusion. This produces
natural face images, yielding further improvements in the
FID score as shown in Ablation 3. The lower FID score
indicates a swapped face distribution closer to a natural
face distribution, implying stronger similarity and improved
naturalness. Moreover, a better ID retrieval score implies that
the identity of the source face is well transferred even in the
presence of a facial occlusion. This can also be examined
visually in xswap+occ and xrefined of Fig. 13. Without the
refinement module, the blending of the explicit mask are
unnatural with artifacts around the contours of the facial
mask. The refinement module corrects the color and the
lighting around the facial mask to make a natural-looking
result.

Finally, Ablation 4 shows that leveraging a CRCL
fine-tuned identity embedder results in a significant improve-
ment in the ID Sim. and ID ret. scores due to the
accurate identity embeddings extracted from cross-resolution
embedding space. The effect of CRCL fine-tuning on the

identity embedder can further be examined in Table 8.
Compared to the original Arcface [12] identity embedder,
our model’s attribute preservation capability (represented by
Pose and Exp. metric) remains unaffected. On the other
hand, it shows vastly improved identity transfer capability,
especially on low-resolutions. This verifies the accuracy of
the fine-tuned identity embedder across various resolutions,
which translates to the robust performance of the face
swapping model on faces in-the-wild. This extensive ablation
study shows that individual modules improve certain aspects
of face swapping with definite trade-offs. However, when all
the modules are combined into a single framework, it forms
a robust model for in-the-wild images.

VI. CONCLUSION
Wehave proposed a newmethod for swapping faces to protect
privacy, especially for low-resolution and occluded faces
commonly found in real-world videos. Our approach uses
innovative techniques such as CRCL for low-resolution faces
and a robust occlusion-handling framework to provide better
privacy protection while preserving image quality. We also
created the occluded-VGGFace2 dataset to assess our method
on synthetic occlusions, which includes face images overlaid
with synthetic facial masks and hand occlusions. As far as
we know, this is the first work to customize face swapping
techniques to address privacy issues. Through comprehensive
experiments, we have validated our framework’s superiority
in both synthetic and real-world in-the-wild scenarios.
By overcoming the difficulties posed by occlusions and low-
resolution images, our framework successfully preserved
the target image resolution and occlusion, yielding natural
face-swapped results. Specifically, our method achieves
impressive retrieval rates of 92.8%, 92.2%, and 82.3% in
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low-resolution scenarios across normal, masked, and hand-
occluded conditions, respectively. These results represent a
substantial improvement over previous works, highlighting
the effectiveness of our framework in real-world privacy
protection scenarios. Our method not only outperforms
existing solutions by a large margin but also ensures reliable
privacy protection even in adverse conditions, making
it a highly effective tool for safeguarding identities in
various practical applications. By demonstrating such high
performance, our framework sets a new standard for face
swapping techniques in privacy protection, providing a
viable alternative to unlicensed identities through artificially
generated replacements. Furthermore, we expect this work to
pave the way for the safe release of public datasets and to
encourage further research and development in this field.
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