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ABSTRACT Advanced artificial intelligence (AI) and multi-access edge computing (MEC) technologies
facilitate the development of edge intelligence, which enables the intelligence learned from remote cloud to
network edge. To realize automatic decision-making, the accuracy of AI models and training efficiency are
crucial for edge intelligence. However, the data volume collected by each network edge node from various
sensors is limited, which may cause the over-fitting of AI models. To improve the accuracy of AI models
and training efficiency for edge intelligence, intelligence networking-empowered edge computing (INEEC)
is emerging as a promising solution, which enables each network edge node to improve its AI models quickly
and economically with the help of other network edge nodes’ sharing of their learned intelligence. Sharing
intelligence among network edge nodes efficiently is essential for INEEC. Thus in this paper, we study the
intelligence sharing scheme, which aims tomaximize the system energy efficiencywhile ensuring the latency
tolerance via jointly optimizing intelligence requesting strategy, transmission power control and computation
resource allocation. The system energy efficiency is defined as the ratio of model performance to energy
consumption. To solve this complex optimization problem, a hybrid algorithm that integrates GA and PSO
is proposed to make the optimal intelligence sharing decision. Finally, the convergence and superiority of
the proposed scheme in terms of intelligence sharing efficiency are evaluated through extensive simulation
experiments.

INDEX TERMS Intelligence sharing, intelligence networking, edge computing, GA-PSO.

I. INTRODUCTION
Multi-access edge computing (MEC) and artificial intel-
ligence (AI) are two promising technologies to facilitate
the development of smart cities. On the one hand, the
advancement of internet of things (IoT) and mobile Internet
has triggered the evolution of delay-sensitive computation-
intensive mobile applications, such as gesture recognition
and augmented reality (AR) [1]. However, the mobile
terminal devices (e.g., user equipments (UEs)) generally
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approving it for publication was Rajesh Kumar.

have limited computing capacity and energy, making it
difficult to handle all the computation-intensive tasks locally.
Handling these tasks on the cloud can alleviate the pressure
on the mobile terminal devices, but lead to high latency
due to data transmission from the mobile terminal devices
to the remote cloud center. In this case, MEC [2], [3], [4]
as a network paradigm has been proposed to deploy IT
services and computing capabilities at the network edge
(e.g., base stations), which is in close proximity to the
mobile terminal devices. On the other hand, to build modern
smart cities, more sensors and IoT devices are deployed to
sense their environments. The collected massive amounts
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of data can be utilized by AI technology to adapt to the
dynamic environment and make decisions automatically [5],
[6]. Therefore, due to the advantages of MEC and AI, edge
intelligence (EI) which integrates the two technologies, has
undoubtedly attracted both academia and industry [7], [8],
[9]. EI enables the intelligence learned from remote cloud to
network edge, leading to perceive the environment quickly
and train AI models efficiently.

To realize automatic decision-making, the accuracy of
AI models and training efficiency are crucial for edge
intelligence. First, applications in mobile terminal devices
generally generate similar computation tasks, which may
require training the same AI models. Training these AI
models independently at the network edge nodes will
cause a lot of repetitive training and waste their limited
communication, computation and storage resources. Second,
the data volume collected by each network edge node from
various sensors is limited, which may cause the over-fitting
of AI models [10], [11]. The redundant training, limited
collected data volume and limited computing capability of
network edge nodes make it challenging to guarantee the
accuracy of AI models and training efficiency [12].

To solve the above challenges, intelligence network-
ing [13], [14], [15], [16] has been proposed as an emerging
technology. Intelligence is an abstraction of AI models.
With intelligence networking-empowered edge computing
(INEEC), the intelligence learned by each network edge
node can be transmitted and shared with other network edge
nodes, making it easy to acquire intelligence. This way not
only ensures the training efficiency by reducing the number
of redundant training, but also improves the accuracy of
AI models with the help of other network edge nodes’
intelligence.

Intelligence sharing is a key point in INEEC, which
includes an intelligence request procedure, a local intelli-
gence training procedure and an intelligence transmission
procedure. Regarding intelligence sharing in INEEC, the
request decision making of the intelligence request pro-
cedure, the computation resource allocation of the local
intelligence training procedure, as well as the wireless
resource allocation of the intelligence transmission procedure
should be well studied.

Therefore, this paper’s intent is to investigate an intel-
ligence sharing scheme for INEEC via jointly optimizing
intelligence requesting strategy, computation resource allo-
cation and transmission power control. Our objective is
to maximize the system energy efficiency related to the
AI model performance and energy consumption due to
intelligence sharing. Specifically, our main contributions are
listed as follows.

• We present the system model for INEEC and formulate
the intelligence sharing problem as an optimization problem
with constraints, the objective of which is to maximize the
system energy efficiency which is defined as the ratio of
model performance to energy consumption while ensuring
the latency tolerance.

• To solve this problem, considering the advantage of
genetic algorithm (GA) in global search capability and
the advantage of particle swarm optimization (PSO) in
convergence speed, a hybrid algorithm that integrates GA
and PSO is proposed to find the feasible intelligence
sharing solution, including intelligence requesting strategy,
computation resource allocation and transmission power
control mechanisms.

• Finally, in the simulation, the convergence of the
proposed intelligence sharing scheme is studied, and the
performance and superiority of it in terms of intelligence
sharing efficiency are also evaluated by comparing with other
benchmark schemes.

The rest of this paper is organized as follows. The related
works are given in Section II. Section III presents the
system model of INEEC and formulates the intelligence
sharing problem. To solve the problem, a hybrid GA-PSO
algorithm is proposed in Section IV. Section V discusses the
numerical simulation results. Finally, this study is concluded
in Section VI.

II. RELATED WORKS
Edge intelligence enables the intelligence learned from
remote cloud to network edge, leading to perceive the
environment quickly and train AI models efficiently. The
authors in [17], [18], and [19] survey edge intelligence from
different perspectives. In [20], a novel online method is
proposed to minimize the energy consumption in processing
AIoT tasks. The authors in [21] focus on the integration
of AI and edge computing in IoT and present an ICE
computing architecture. Another notable work is [22], which
designs a framework called CEIF to provide containerized EI
inference services and applies a deep Q-learning algorithm
to process the requests of EI inference without overloading
the edge computing devices. Taking into account the model
training and task inference processes, execution latency and
energy consumption are minimized in [23] by optimizing
the task splitting ratio, the bandwidth allocation and the
local CPU frequency. Literature [24] designs a framework
called Edgent to accelerate DNN inference through edge
computing and device-edge cooperation. In [25], the authors
improve the inference accuracy by optimizing the inference
jobs offloading scheme.

The redundant training, limited collected data volume
and limited computing capability of network edge nodes
make it challenging for edge intelligence to guarantee the
accuracy of AI models and training efficiency. To cope with
these challenges, distributed learning [26] which utilizes the
interaction of AI and wireless communications has been
proposed. Federated learning (FL) as a popular distributed
learning technique has been investigated by many efforts.
Literature [27] focuses on data-centric client selection and
presents an approach called DICE to improve the accuracy
of FL. In [28], the authors consider the client selection and
resource allocation optimization to achieve the purpose of
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energy minimization. Another notable work is [29], which
focuses on the time consumption minimization problem in
FL over NOMA networks and proposes an AoU-based client
selection scheme. In [30], REINFORCE algorithm is applied
to enhance the training efficiency in FL by optimizing client
selection and bandwidth allocation. The authors in [31]
optimize client selection and bandwidth allocation from a
long-term perspective. Literature [32] designs a framework
called AUCTION to automatically optimize client selection
by applying reinforcement learning. In [33], the hierarchical
FL is considered and an online policy called COCS is
presented to select clients. The authors in [34] aim to
minimize convergence time of FL by optimizing client
selection.

Intelligence networking is another approach to cope with
the challenges of edge intelligence. Literature [13] first
proposes the concept of intelligence networking. In [14],
intelligence networking is applied to support the ubiquitous
deployments of wireless virtual reality (VR). The authors
in [35] design a novel collective DRL algorithm to opti-
mize training iteration selection, intelligence requesting and
spectrum resource allocation. In [36], quantum collective
learning and many-to-many matching game are applied
to optimize the vehicles selection and spectrum resource
allocation respectively. The authors in [16] and [37] propose
a NFT-based green intelligence networking architecture to
support connected and automated vehicles (CAVs) in smart
cities. Another notable work is [38], which focuses on the
model trading between CAVs inWeb3. Driven by intelligence
networking, different from these works, in this article,
we consider the intelligence sharing problem and aim to
maximize the system energy efficiency which is related to
both model performance and energy consumption.

III. SYSTEM DESCRIPTION
In this section, we first present the assumptions and
definitions of the INEEC system model. Based on the system
model, the intelligence sharing problem is formulated as an
optimization problem, which jointly optimizes intelligence
requesting strategy, transmission power control and compu-
tation resource allocation.

A. SYSTEM MODEL
As shown in Figure 1, we consider an INEEC system
comprising a set of edge nodes, which connect with each
other in wireless manner. Due to the heterogeneous nature of
edge nodes, their intelligence sharing willingness is different.
The heterogeneities among edge nodes generally include
data heterogeneity and resource heterogeneity [30]. Data
heterogeneitymeans that the quantity and quality of data sam-
ples collected by edge nodes are different, which influences
the performance of AI models [39]. Resource heterogeneity
means that the storage, communication (e.g., transmission
power and bandwidth) and computation resources (e.g., CPU
capacity and performance) of edge nodes are different,

FIGURE 1. System model of intelligence sharing in INEEC.

which influences the training efficiency. In general, when
an edge node with sufficient storage, communication and
computation resources collects abundant and high-quality
data samples, the performance of AI models and the training
efficiency can be guaranteed. In this case, the edge node has
the ability to share its trained intelligence. On the contrary,
when an edge node with very limited resources collects small
and poor data samples, the training of AI models may be
relatively inefficient. In this case, the edge node tends to
request for other edge nodes’ AI models to improve its own
AI model.

Considering the heterogeneous nature and different intelli-
gence sharing willingness of edge nodes, we assume that each
edge node can be either an intelligence requester or an intelli-
gence provider. The intelligence providers share their trained
intelligence to the intelligence requesters. Suppose there are
M intelligence requesters and N intelligence providers, the
set of which are denoted asM = {1, 2, · · · ,m, · · · ,M} and
N = {1, 2, · · · , n, · · · ,N } respectively.

In INEEC, the intelligence providers may share false, irrel-
evant or useless AI models. Taking into account the potential
selfish and malicious behaviours of intelligence providers,
trust model [40], [41], [42] is introduced to quantify the
reputation of intelligence providers and prevent the unreliable
and dishonest intelligence sharing operations. The trust value
of intelligence requester m to intelligence provider n is
denoted as Rtrustm→n, which ranges from 0 to 1.When requesting
AI models, the intelligence requesters should consider the
trust values of the intelligence providers. The intelligence
requesters tend to request AI models from the intelligence
providers with high trust values. In general, the higher
the trust value of an intelligence provider, the higher the
probability that an intelligence requester will request AI
model from the intelligence provider.

Intelligence sharing in INEEC consists of an intelligence
request procedure, a local intelligence training procedure,
an intelligence transmission procedure and an intelligence
aggregation procedure. In the intelligence request procedure,
according to the intelligence providers’ status information,
such as the trust value, the quantity and quality of their

90942 VOLUME 12, 2024



J. Xie et al.: Energy-Efficient Intelligence Sharing Scheme in INEEC

collected data, as well as wireless channel conditions, the
intelligence requesters send requests to the intelligence
providers. In the local intelligence training procedure, each
intelligence provider allocates computation resources to train
local AI model iteratively using its own collected data
samples. In the intelligence transmission procedure, each
intelligence provider transmits its trained AI model weights
to the intelligence requesters over wireless links. In the
intelligence aggregation procedure, after receiving AI model
weights from corresponding intelligence providers, each
intelligence requester performs weighted aggregation based
on the received intelligence.

For intelligence providers, the local intelligence training
and transmission both consume energy. Taking into account
the green communication, energy harvesting (EH) [43], [44],
[45] has been proposed to reduce the energy consumption
of traditional power grid. In this paper, we consider the
EH-based INEEC system. Specifically, in addition to be
powered by the traditional power grid, each intelligence
provider is equipped with EH devices, which can convert
renewable resources (e.g., solar and wind) to electrical
energy. A rechargeable battery is used by each intelligence
provider to store the renewable electrical energy. Let b =

[b1, b2, · · · , bn, · · · , bN ] denote the energy level of recharge-
able batteries, where bn is the energy level of intelligence
provider n’s rechargeable battery, which satisfies bn ≤ bmax

n .
bmax
n is the maximum capacity of intelligence provider n’s
rechargeable battery. The intelligence providers can use the
renewable green energy for the local intelligence training and
transmission, thereby reducing the energy consumption of
traditional power grid. To extend the lifetime of rechargeable
batteries and avoid the battery exhausted, we assume that
when the energy level of rechargeable batteries is lower
than a threshold value bth (i.e., bn < bth), the intelligence
providers will be powered by the traditional power grid and
the rechargeable batteries can not be used until they are
charged enough renewable green energy [46], [47].

1) INTELLIGENCE REQUEST PROCEDURE MODEL
In the intelligence request procedure, according to the
intelligence providers’ status information, such as the trust
value, the quantity and quality of their collected data,
as well as wireless channel conditions, the intelligence
requesters send requests to the intelligence providers.
In this paper, we consider the random requesting strategy,
also known as probabilistic requesting strategy, where the
intelligence requesters send requests to the intelligence
providers randomly under certain probability distributions.
Let P = [P1,P2, · · · ,Pm, · · · ,PM ] denote the random
requesting strategy, where Pm is the requesting proba-
bility distribution of intelligence requester m. Pm =[
Pm,1,Pm,2, · · · ,Pm,n, · · · ,Pm,N

]
, where Pm,n is the prob-

ability that intelligence requester m sends request to intel-
ligence provider n, which satisfies 0 ≤ Pm,n ≤ 1. Larger
Pm,n means that intelligence requester m is more likely to

request AI models from intelligence provider n, and vice
versa. Therefore, the random requesting strategy P ∈ RM×N

has to be determined.

2) LOCAL INTELLIGENCE TRAINING PROCEDURE MODEL
In the local intelligence training procedure, each intelligence
provider allocates computation resources to train local AI
model iteratively using its own collected data samples. Let
Dn = {Xi,Yi}

Dn
i=1 denote the training data samples of

intelligence provider n, where Xi is the input feature vector of
ith data sample, Yi is the corresponding output, Dn represents
the number of data samples. Suppose that intelligence
provider n trains its local model τn times iteratively. The
latency of intelligence provider n for the local intelligence
training can be calculated by

t trainn =
τnζDn
Fn

(1)

where Fn is the computation resources (i.e., CPU cycle
frequency) allocated by intelligence provider n to train its
local model, ζ represents the number of CPU cycles needed to
process one data sample. Therefore, the energy consumption
of intelligence provider n for the local intelligence training
can be expressed as

E trainn = pcompn t trainn = enτnζDnF2
n (2)

where pcompn is the computing power consumption of
intelligence provider n to train its local model. Similar to [48]
and [49], we model pcompn as pcompn = enF3

n , where en is the
effective capacitance parameter related to the CPU chip of
intelligence provider n.

3) INTELLIGENCE TRANSMISSION PROCEDURE MODEL
In the intelligence transmission procedure, each intelligence
provider transmits its trained AI model weights to the
intelligence requesters over wireless links. Suppose that
the bandwidth capacity of intelligence provider n is Wn,
which is equally allocated to all intelligence requesters. The
transmission rate from intelligence provider n to intelligence
requester m can be expressed as

Rn,m =
Wn

M
log2

(
1 +

pnh2n,m
σ 2

)
(3)

where pn is the transmission power of intelligence provider
n, hn,m is the channel gain between intelligence provider n
and intelligence requester m, σ 2 is the noise power. Thus,
the latency of intelligence provider n for transmitting its
trained AI model weights to intelligence requester m can be
calculated by

tcommn,m =
sn
Rn,m

(4)

where sn represents intelligence provider n’s local model size.
We assume that the sizes of all intelligence providers’ local
models are same [50], i.e., s = sn, ∀n ∈ N . Given the
transmission latency, the energy consumption of intelligence
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provider n for transmitting its trained AI model weights to
intelligence requester m can be represented as

Ecommn,m = pntcommn,m =
pnsn
Rn,m

(5)

Hence, the total transmission energy consumption of
intelligence provider n can be calculated by

Ecommn =

∑
m∈M

Pm,nEcommn,m =

∑
m∈M

Pm,npnsn
Rn,m

(6)

Note that both traditional power grid and rechargeable
batteries can supply energy for the intelligence providers to
train and transmit AI models. Because rechargeable batteries
store the renewable green energy, in this paper we just focus
on the energy consumed from the traditional power grid.
Thus, the total energy consumption of intelligence provider
n can be expressed as

En = E trainn + Ecommn − max
{
bn − bth, 0

}
(7)

Given the energy consumption of all intelligence providers,
the average energy consumption per intelligence provider can
be calculated by

E =

∑
n∈N En
N

(8)

In addition to energy consumption, the total latency for
intelligence provider n to train and transmit AI models can
be expressed as

tn = t trainn + max
{
tcommn,m , ∀m ∈ M

}
(9)

4) INTELLIGENCE AGGREGATION PROCEDURE MODEL
In the intelligence aggregation procedure, after receiving AI
model weights from corresponding intelligence providers,
each intelligence requester performs weighted aggregation
based on the received intelligence. Suppose that ωn is
intelligence provider n’s local model weights. Then the
aggregated model weights of intelligence requester m can be
calculated by

ωm =

∑
n∈N

εn

ε̂m
Pm,ndm,nRtrustm→nωn (10)

where ε̂m =
∑
n∈N

Pm,ndm,nRtrustm→nεn, dm,n is the data

correlation between intelligence provider n and intelligence
requester m, εn is the accuracy of intelligence provider n’s
local model. According to [51] and [52], εn can be calculated
by

εn = 1 − exp
(
−ϖ lcFn

(
QnDnτnα

)ν) (11)

where ϖ lc and ν are weight factors, Qn is the quality level
of intelligence provider n’s training data samples Dn, α is a
constant related to the marginal revenue of iterations. Then
similar to [53], the performance of intelligence requester m’s
aggregated model is expressed as

ϕm = 1 − exp
(
−ϖ agfmε̃m

)
(12)

where ϖ ag is a weight factor, fm is the available computation
resources of intelligence requester m. ε̃m is the average
accuracy of the received models, which can be calculated by

ε̃m =

∑
n∈N Pm,ndm,nRtrustm→nεn∑
n∈N Pm,ndm,nRtrustm→n

(13)

Given themodel performance of all intelligence requesters,
the average model performance per intelligence requester can
be calculated by

ϕ =

∑
m∈M ϕm

M
(14)

B. PROBLEM FORMULATION
Based on the system model, taking into account the green
communication, in this paper, we aim to reduce the intel-
ligence sharing energy consumption while guaranteeing the
aggregated model performance of all intelligence requesters.
Thus we introduce energy efficiency as a criterion to evaluate
the utility of intelligence sharing, which is defined as the
ratio of the average model performance to the average energy
consumption and can be expressed as

U = 4ϕ
/
E (15)

where a positive coefficient 4 is applied to amplify the effect
of ϕ. Then we formulate the intelligence sharing optimization
problem as follows:

max
P,p,F

U (16)

s.t. Pm,n ∈ [0, 1] , ∀m ∈ M, n ∈ N (16a)

pn ∈
(
0, pmax

n
]
, ∀n ∈ N (16b)

Fn ∈
(
0,Fmax

n
]
, ∀n ∈ N (16c)

max {tn, ∀n ∈ N } ⩽ tmax (16d)

where (16) is the optimization objective that is to max-
imize the energy efficiency of the INEEC system by
jointly optimizing intelligence requesting strategy denoted
as P ∈ RM×N , transmission power control denoted as
p = [p1, p2, · · · , pn, · · · , pN ] and computation resource
allocation denoted as F = [F1,F2, · · · ,Fn, · · · ,FN ]. Con-
straint (16a) indicates the feasible solution region of variable
P. Constraint (16b) indicates that each intelligence provider’s
transmission power cannot exceed its maximum allowable
transmission power pmax

n . Constraint (16c) indicates that
the computation resources allocated by each intelligence
provider cannot exceed its maximum available computation
resources Fmax

n . Constraint (16d) ensures the intelligence
sharing latency, which cannot exceed the maximum latency
tolerance tmax.

IV. PROPOSED ALGORITHM
As mentioned in Section III, in the problem (16), the intel-
ligence requesting strategy, transmission power control and
computation resource allocation need to be optimized simul-
taneously. To solve such a large-scale problem, we adopt
meta-heuristic algorithms. GA [54], [55] and PSO [56], [57]
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are two widely used meta-heuristic algorithms. But both
of them have strengths and weaknesses. The strength of
GA is its ability to search global optimal solution. The
weakness of GA is its poor convergence speed especially
when the solution space is large. The strength of PSO is
easy implement and fast convergence speed. The weakness
of PSO is premature convergence, which means that it is easy
for PSO to fall into a local optimal solution. In order to use
strengths of the two algorithms and simultaneously overcome
their weaknesses, we combine GA and PSO, and propose a
hierarchical GA-PSO based intelligence sharing algorithm.
In this section, we first introduce GA and PSO, then the
hierarchical GA-PSO based intelligence sharing algorithm is
presented.

A. GA
As a popular random searching meta-heuristic algorithm,
GA mimics biological evolutionary process and is widely
used to find the optimal or near optimal solutions for
complex optimization problems. By adopting the principle of
survival of the fittest, GA initially generates a set of feasible
solutions randomly, and then performs genetic operations
(i.e., selection, crossover and mutation) iteratively to search
better solutions until the algorithm converges. The crossover
and mutation operations can greatly improve population
diversity and make GA powerful in global search capability.
In the following, the details of GA is described.

Algorithm 1 GA
Initialization:
Initialize the number of individuals in a population, which
is denoted as I .
Initialize the maximum number of generations G1.
Set the generation counter g1 = 0.
for g1 = 0, 1, 2, · · · ,G1 do
if g1 = 0 then

Initialize the I individuals as the positions of I
particles after G2 generations using Algorithm 2.

end if
Evaluate the I individuals by calculating the fitness
values of them.
Find the best individual Bg1best at this generation.
if g1 = 0 then

Set the historical best individual Bbest = B0best .
else
if The fitness value of Bg1best is higher than the fitness
value of Bbest then
Update the historical best individual Bbest = Bg1best .

end if
end if
Perform the selection operation.
Perform the crossover operation.
Perform the mutation operation.
Set g1 = g1 + 1.

end for

FIGURE 2. The chromosome of an individual.

1) CHROMOSOME ENCODING
In this paper, we consider real coded GA. In GA, a population
consists of several individuals, each of which is defined
by a chromosome and represents a feasible solution of the
optimization problem (16). Thus as shown in Figure 2, the
chromosome of an individual is composed of intelligence
requesting strategy P, transmission power control p and
computation resource allocation F . The chromosome struc-
ture of individual i at generation g is expressed as (17),
where Pg,im,n represents the probability that intelligence
requester m sends request to intelligence provider n in
the individual i at generation g, pg,in and Fg,in respectively
represent the transmission power of intelligence provider n
and its allocated computation resources in the individual i at
generation g. 

Pg,i1,1 · · · Pg,i1,n · · · Pg,i1,N
... · · ·

...
...

...

Pg,iM ,1 · · · Pg,iM ,n · · · Pg,iM ,N

pg,i1 · · · pg,in · · · pg,iN
Fg,i1 · · · Fg,in · · · Fg,iN

 (17)

2) FITNESS FUNCTION
Fitness function ismainly applied to judge the performance of
an individual and guide the GA to search better solutions in a
right direction. Considering the objective of the optimization
problem (16) and its constraint (16d), we define the fitness
function as

Fitness = 4ϕ
/
E − β

(
max

{
max {tn, ∀n ∈ N } − tmax, 0

})
(18)

where β is the penalty factor.

3) POPULATION INITIALIZATION
In GA, the individuals of the initial population (i.e., the
0th generation) are generated randomly. To make the gener-
ated individuals satisfy constraints (16a)-(16c), the genes of
initial population’s each individual (e.g., the ith individual)
are generated based on the following rules.

P0,im,n = rand (1)
p0,in = rand

(
pmax
n
)

F0,i
n = rand

(
Fmax
n

) (19)

where rand (x) is a generator function, which outputs a
random number between 0 and x (i.e., the interval [0, x]).
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FIGURE 3. An example of the crossover operation.

4) SELECTION OPERATION
The selection operation is done according to the chromo-
somes’ fitness values. In this paper, the tournament method is
applied to select several good chromosomes which are kept
in the population of the next generation. Compared with the
way that only selects the best chromosome, the tournament
method maintains the population diversity and is good for the
population evolution.

5) CROSSOVER OPERATION
The crossover operation is done by randomly selecting two
chromosomes (i.e., parents) and exchanging their corre-
sponding gene segments in each row with the crossover
probability pcross. Then two new chromosomes (i.e., off-
springs) can be obtained. In this paper, we conduct the stan-
dard two-point crossover operation to generate offsprings.
An example of the crossover operation for the transmission
power control variables is shown in Figure 3. First, two
parents (e.g., the ith chromosome and the jth chromosome)
and two crossover points are randomly selected. Next, the
corresponding gene segments of the ith chromosome and
the jth chromosome between the two crossover points are
exchanged, which produces two offsprings (i.e., offspring
1 and offspring 2).

6) MUTATION OPERATION
The mutation operation is done by randomly selecting a
chromosome (i.e., parent) and mutating its gene values
with the mutation probability pmutat . Then a new chro-
mosome (i.e., offspring) can be obtained. Considering the
constraints (16a)-(16c), the gene values of the selected
chromosome must be mutated within a specific range. The
mutation principles are expressed as (20).

Pg+1,i
m,n =

{
(1 − a1)P

g,i
m,n + a1, a2 > 0.5

(1 − a1)P
g,i
m,n, a2 ⩽ 0.5

pg+1,i
n =

{
(1 − a1) p

g,i
n + a1pmax

n , a2 > 0.5
(1 − a1) p

g,i
n , a2 ⩽ 0.5

Fg+1,i
n =

{
(1 − a1)F

g,i
n + a1Fmax

n , a2 > 0.5
(1 − a1)F

g,i
n , a2 ⩽ 0.5

(20)

where a1 and a2 are two random numbers in the interval
[0, 1], which make sure that the variables are within the

feasible range. The higher the value of a1, the higher the
mutation magnitude. Furthermore, a2 is applied to control the
searching direction. Specifically, when a2 > 0.5, the variable
mutates towards its correspondingmaximum value, andwhen
a2 ⩽ 0.5, the variable mutates towards its corresponding
minimum value.

B. PSO
As another meta-heuristic algorithm, PSO mimics the social
behavior of bird migration process. In PSO, a swarm (i.e., a
population in GA) consists of several particles, each of which
has two features, position and velocity. The position of a
particle represents a feasible solution of the optimization
problem (16), which is also expressed as (17). The velocity
of a particle represents how its solution is evolved. Similar
to GA, the PSO starts by generating a random initial position
and a random initial velocity for each particle in the swarm.
Then the position and velocity of each particle are updated
iteratively. Let ξk,l denote the element of a matrix in the
kth row and lth column. The element ξk,l’s values of particle
i’s position and velocity at generation g are denoted as Zg,iξk,l

and V g,i
ξk,l

respectively. Zg,iξk,l
is updated by

Zg+1,i
ξk,l

= Zg,iξk,l
+ V g+1,i

ξk,l
(21)

V g,i
ξk,l

is updated by

V g+1,i
ξk,l

= θV g,i
ξk,l

+ r1c1
(
pbestξk,l − Zg,iξk,l

)
+ r2c2

(
gbestξk,l − Zg,iξk,l

)
(22)

where θ is an inertia weight, r1 and r2 are random factors
in the interval [0, 1], c1 and c2 are learning coefficients that
control the learning ability of particles. pbest represents the
local best position found by a single particle, and gbest
represents the global best position found by all particles in
the swarm.

C. THE HIERARCHICAL GA-PSO BASED INTELLIGENCE
SHARING ALGORITHM
Based on the above description, the GA and PSO algorithms
are shown in Algorithm 1 and Algorithm 2 respectively. In
order to improve the convergence speed and enhance the
global search capability, we combine GA and PSO, and
propose a hierarchical GA-PSO based intelligence sharing
algorithm, which is shown in Algorithm 3. GA is applied
to perform the coarse-grained search, while PSO is applied
to perform the fine-grained search. Specifically, Algorithm 3
starts by generating the individuals of the initial population
according to (19), and then conducts GA (i.e., Algorithm 1)
and PSO (i.e., Algorithm 2) iteratively until convergence.
The number of individuals in GA is equal to the number
of particles in PSO. When conducting Algorithm 1, the
individuals of GA is initialized by the solutions obtained by
Algorithm 2. When conducting Algorithm 2, the particles of
PSO is initialized by the solutions obtained by Algorithm 1.
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Algorithm 2 PSO
Initialization:
Initialize the number of particles in a swarm, which is
denoted as I .
Initialize the maximum number of generations G2.
Set the generation counter g2 = 0.
for g2 = 0, 1, 2, · · · ,G2 do
if g2 = 0 then

Initialize the positions of I particles as the I
individuals after G1 generations using Algorithm 1.

Initialize the velocities of I particles.
end if
Evaluate the I particles by calculating the fitness values
of them.
for i = 1, 2, · · · , I do
if g2 = 0 then

Set the local best position of ith particle
pbest i = Z0,i.

else
ifThe fitness value of Zg2,i is higher than the fitness
value of pbest i then
Update the local best position of ith particle
pbest i = Zg2,i.

end if
end if

end for
Update the global best position gbest according to pbest
of all particles.
Update the positions of I particles according to (21).
Update the velocities of I particles according to (22).
Set g2 = g2 + 1.

end for

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, we use a Python-based simulator to eval-
uate our proposed hierarchical GA-PSO based intelligence
sharing algorithm which is called ‘‘GAPSO-ISA’’. For
comparison, the other three benchmark algorithms are
considered, i.e., GA based intelligence sharing algorithm
which is called ‘‘GA-ISA’’, PSO based intelligence sharing
algorithm which is called ‘‘PSO-ISA’’, and random intel-
ligence sharing algorithm which is called ‘‘Random-ISA’’.
‘‘GA-ISA’’ and ‘‘PSO-ISA’’ tackle the problem (16) by
adopting GA (i.e., Algorithm 1) and PSO (i.e., Algorithm 2)
respectively. In ‘‘Random-ISA’’, the intelligence request-
ing strategy, transmission power control and computation
resource allocation decisions are made randomly. In the
simulation, the INEEC system consists of 10 intelligence
requesters and 10 intelligence providers. The other important
parameters are set as Table 1. In the following, based on the
parameter settings, the simulation results are presented.

Figure 4 shows the impacts of three parameters (i.e., the
population size I , the crossover probability pcross and
the mutation probability pmutat ) on the convergence of

Algorithm 3 The Hierarchical GA-PSO Based Intelligence
Sharing Algorithm
Initialization:
Initialize the number of individuals in a population, which
is denoted as I .
Initialize the maximum number of iterations G.
Set the iteration counter g = 0.
for g = 0, 1, 2, · · · ,G do
if g = 0 then
Generate the I individuals of the initial population
according to (19).

end if
Perform the coarse-grained search by conducting
Algorithm 1.
Perform the fine-grained search by conducting
Algorithm 2.
Set g = g+ 1.

end for

TABLE 1. Simulation parameters.

‘‘GAPSO-ISA’’. As shown in Figure 4(a), ‘‘GAPSO-ISA’’
converges faster with I increasing. This is because the
larger the value of I , the higher the population diversity,
resulting that less iteration is needed to converge. As shown
in Figure 4(b) and 4(c), the convergence performance of
‘‘GAPSO-ISA’’ with a larger pcross and pmutat is not always
better than that with a smaller pcross and pmutat . The reason is
that the intention of crossover and mutation operations is to
improve population diversity but they are done in a random
manner. Thus, a larger pcross and pmutat cannot guarantee that
a better offspring is always obtained with a larger probability.
As a result, a proper value of pcross and pmutat is important.
Therefore, we set I = 20, pcross = 0.4 and pmutat = 0.08 for
‘‘GAPSO-ISA’’ in the following simulations.

Then the convergence performance of ‘‘GAPSO-ISA’’,
‘‘GA-ISA’’ and ‘‘PSO-ISA’’ is compared. As illustrated in
Figure 5, the fitness values of ‘‘GAPSO-ISA’’ and ‘‘GA-ISA’’
gradually increase as the iteration number increases. After
about 350 and 500 iterations, the fitness value of ‘‘GAPSO-
ISA’’ and ‘‘GA-ISA’’ converges to an approximately stable
value respectively, while the fitness values of ‘‘PSO-ISA’’
are all around a local optimum. ‘‘PSO-ISA’’ has the fastest
convergence speed, while ‘‘GA-ISA’’ has the slowest con-
vergence speed. Meanwhile, the converged fitness value of
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FIGURE 4. Convergence of ‘‘GAPSO-ISA’’ with different parameters.

‘‘GAPSO-ISA’’ is largest, while the converged fitness value
of ‘‘PSO-ISA’’ is smallest. This is because the advantage of
PSO is fast convergence speed, the advantage of GA is global
search capability, both of which are combined in ‘‘GAPSO-
ISA’’. Thus, the convergence performance of ‘‘GAPSO-ISA’’
is better than ‘‘GA-ISA’’ and ‘‘PSO-ISA’’.

Figure 6 illustrates the fitness values of ‘‘GAPSO-ISA’’,
‘‘GA-ISA’’ and ‘‘PSO-ISA’’ versus the data quantity Dn
from 200 to 400. We observe that the fitness values decrease
with Dn increasing. This is because the change of Dn affects

FIGURE 5. Convergence performance of three algorithms.

FIGURE 6. Fitness value versus data quantity.

both the average model performance ϕ and the average
energy consumption E . Obviously, as the value of Dn
increases, the accuracy of an intelligence provider’s trained
model becomes higher. Meanwhile, the intelligence provider
needs to consume more energy to process its data samples.
According to Eq. (11), the accuracy of an intelligence
provider’s trained model increases slower gradually when
Dn increases, resulting that the increase of ϕ is not capable
of covering the increase of E . Thus, the energy efficiency
decreases, which leads to the decrease of fitness values.

In Figure 7, we illustrate the relationship between the
fitness value and the data quality Qn which varies from 0.1 to
0.9. As shown in the figure, the fitness values of ‘‘GAPSO-
ISA’’, ‘‘GA-ISA’’ and ‘‘PSO-ISA’’ increase with the value of
Qn increasing. The reason is that according to Eq. (11), the
accuracy of an intelligence provider’s trained model directly
depends on its Qn. The higher the value of Qn, the higher the
accuracy of the intelligence provider’s trained model. When
Qn is high, each intelligence provider can train a better model,
leading to the increase of average model performance ϕ. As a
result, the fitness value is improved.
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FIGURE 7. Fitness value versus data quality.

FIGURE 8. Fitness value versus the number of training iterations.

In Figure 8, we show the influence of the number of
training iterations τn on the fitness values of ‘‘GAPSO-ISA’’,
‘‘GA-ISA’’, ‘‘PSO-ISA’’ and ‘‘Random-ISA’’. τn varies
from 4 to 12. We observe that with the increase of τn, the
fitness values decline. This can be explained that higher τn
can help an intelligence provider to train a model with higher
accuracy. Meanwhile, the model training process consumes
more energy. As the value of τn increases, the increasing
speed of the energy consumption is larger than the increasing
speed of the model accuracy, which leads to the decrease in
energy efficiency. In this case, the fitness values decrease.

Figure 9 illustrates the fitness values of ‘‘GAPSO-ISA’’,
‘‘GA-ISA’’ and ‘‘PSO-ISA’’ versus the trust valueRtrustm→n from
0.1 to 0.9. As indicated in the figure, when the value of Rtrustm→n
increases, the fitness values increase. This is because the
performance of an intelligence requester’s aggregated model
increases with Rtrustm→n increasing. Thus, the average model
performance ϕ is increased, which leads to the increase of
fitness values.

In Figure 10, we show the impact of the maximum latency
tolerance tmax on the fitness values of ‘‘GAPSO-ISA’’, ‘‘GA-
ISA’’, ‘‘PSO-ISA’’ and ‘‘Random-ISA’’. As observed from

FIGURE 9. Fitness value versus trust value.

FIGURE 10. Fitness value versus the maximum latency tolerance.

the figure, the fitness values increase with tmax increasing.
This is because when tmax is larger, decreasing the average
energy consumption E can also satisfy the constraint (16d).
As a result, the system tends to improve the energy efficiency
by decreasing the average energy consumption E , resulting
in the increase of fitness values.

VI. CONCLUSION
In this paper, we have investigated the energy-efficient
intelligence sharing scheme in INEEC system, which con-
siders intelligence requesting strategy, transmission power
control and computation resource allocation. The system
model is first presented, and the intelligence sharing problem
is formulated as a nonlinear optimization problem, the
objective of which is to maximize the system energy
efficiency while satisfying the latency tolerance. To tackle
the optimization problem, a hybrid GA-PSO algorithm is
designed to balance the coarse-grained search and the fine-
grained search. Finally, compared with other benchmark
algorithms, the convergence and superiorities of the designed
algorithm in terms of intelligence sharing efficiency are
validated through extensive simulation.

VOLUME 12, 2024 90949



J. Xie et al.: Energy-Efficient Intelligence Sharing Scheme in INEEC

REFERENCES
[1] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, ‘‘Cloud-

based augmentation for mobile devices: Motivation, taxonomies, and open
challenges,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,
1st Quart., 2014.

[2] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
‘‘Survey on multi-access edge computing for Internet of Things real-
ization,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991,
4th Quart., 2018.

[3] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
‘‘On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[4] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, ‘‘A survey on multi-
access edge computing applied to video streaming: Some research issues
and challenges,’’ IEEECommun. Surveys Tuts., vol. 23, no. 2, pp. 871–903,
2nd Quart., 2021.

[5] Y. Zuo, J. Guo, N. Gao, Y. Zhu, S. Jin, and X. Li, ‘‘A survey of blockchain
and artificial intelligence for 6G wireless communications,’’ IEEE
Commun. Surveys Tuts., vol. 25, no. 4, pp. 2494–2528, 4th Quart., 2023.

[6] E. Baccour, N. Mhaisen, A. A. Abdellatif, A. Erbad, A. Mohamed,
M. Hamdi, and M. Guizani, ‘‘Pervasive AI for IoT applications: A survey
on resource-efficient distributed artificial intelligence,’’ IEEE Commun.
Surveys Tuts., vol. 24, no. 4, pp. 2366–2418, 4th Quart., 2022.

[7] X. Wang, X. Ren, C. Qiu, Z. Xiong, H. Yao, and V. C. M. Leung,
‘‘Integrating edge intelligence and blockchain:What, why, and how,’’ IEEE
Commun. Surveys Tuts., vol. 24, no. 4, pp. 2193–2229, 4th Quart., 2022.

[8] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,’’ Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[9] T. Gong, L. Zhu, F. R. Yu, and T. Tang, ‘‘Edge intelligence in intelligent
transportation systems: A survey,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 24, no. 9, pp. 8919–8944, Sep. 2023.

[10] M. I. Jordan and T. M. Mitchell, ‘‘Machine learning: Trends, perspectives,
and prospects,’’ Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015.

[11] R. Xie, Q. Tang, S. Qiao, H. Zhu, F. R. Yu, and T. Huang, ‘‘When serverless
computing meets edge computing: Architecture, challenges, and open
issues,’’ IEEE Wireless Commun., vol. 28, no. 5, pp. 126–133, Oct. 2021.

[12] S. Liao, J. Wu, J. Li, A. K. Bashir, S. Mumtaz, A. Jolfaei, and
N. Kvedaraite, ‘‘Cognitive popularity based AI service sharing for
software-defined information-centric networks,’’ IEEE Trans. Netw. Sci.
Eng., vol. 7, no. 4, pp. 2126–2136, Oct. 2020.

[13] F. R. Yu, ‘‘From information networking to intelligence networking:
Motivations, scenarios, and challenges,’’ IEEE Netw., vol. 35, no. 6,
pp. 209–216, Nov. 2021.

[14] P. Lin, Q. Song, F. R. Yu, D. Wang, A. Jamalipour, and L. Guo, ‘‘Wireless
virtual reality in beyond 5G systems with the Internet of Intelligence,’’
IEEE Wireless Commun., vol. 28, no. 2, pp. 70–77, Apr. 2021.

[15] Q. Tang, F. R. Yu, R. Xie, A. Boukerche, T. Huang, and Y. Liu, ‘‘Internet
of Intelligence: A survey on the enabling technologies, applications, and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1394–1434,
3rd Quart., 2022.

[16] Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, ‘‘NFT-based intelli-
gence networking for connected and autonomous vehicles: A quantum
reinforcement learning approach,’’ IEEENetw., vol. 36, no. 6, pp. 116–124,
Nov. 2022.

[17] J. Zhang and K. B. Letaief, ‘‘Mobile edge intelligence and computing
for the Internet of vehicles,’’ Proc. IEEE, vol. 108, no. 2, pp. 246–261,
Feb. 2020.

[18] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
‘‘Edge intelligence: The confluence of edge computing and artificial
intelligence,’’ IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[19] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and P. Hui,
‘‘Edge intelligence: Empowering intelligence to the edge of network,’’
Proc. IEEE, vol. 109, no. 11, pp. 1778–1837, Nov. 2021.

[20] S. Zhu, K. Ota, and M. Dong, ‘‘Energy-efficient artificial intelligence
of things with intelligent edge,’’ IEEE Internet Things J., vol. 9, no. 10,
pp. 7525–7532, May 2022.

[21] C. Gong, F. Lin, X. Gong, and Y. Lu, ‘‘Intelligent cooperative edge
computing in Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 10,
pp. 9372–9382, Oct. 2020.

[22] L. Nkenyereye, K.-J. Baeg, and W.-Y. Chung, ‘‘Deep reinforcement
learning for containerized edge intelligence inference request processing
in IoT edge computing,’’ IEEE Trans. Services Comput., vol. 16, no. 6,
pp. 4328–4344, Dec. 2023.

[23] X. Li, S. Bi, and H. Wang, ‘‘Optimizing resource allocation for joint AI
model training and task inference in edge intelligence systems,’’ IEEE
Wireless Commun. Lett., vol. 10, no. 3, pp. 532–536, Mar. 2021.

[24] E. Li, L. Zeng, Z. Zhou, and X. Chen, ‘‘Edge AI: On-demand accelerating
deep neural network inference via edge computing,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[25] A. Fresa and J. P. Champati, ‘‘Offloading algorithms for maximizing
inference accuracy on edge device in an edge intelligence system,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 7, pp. 2025–2039, Jul. 2023.

[26] X. Liu, J. Yu, Y. Liu, Y. Gao, T. Mahmoodi, S. Lambotharan, and
D. H. Tsang, ‘‘Distributed intelligence in wireless networks,’’ IEEE Open
J. Commun. Soc., vol. 4, pp. 1001–1039, 2023.

[27] R. Saha, S. Misra, A. Chakraborty, C. Chatterjee, and P. K. Deb,
‘‘Data-centric client selection for federated learning over distributed edge
networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 675–686,
Feb. 2023.

[28] M. H. Mahmoud, A. Albaseer, M. Abdallah, and N. Al-Dhahir, ‘‘Federated
learning resource optimization and client selection for total energy
minimization under outage, latency, and bandwidth constraints with partial
or no CSI,’’ IEEE Open J. Commun. Soc., vol. 4, pp. 936–953, 2023.

[29] B. Wu, F. Fang, and X. Wang, ‘‘Joint age-based client selection and
resource allocation for communication-efficient federated learning over
NOMA networks,’’ IEEE Trans. Commun., vol. 72, no. 1, pp. 179–192,
Jan. 2024.

[30] W. Mao, X. Lu, Y. Jiang, and H. Zheng, ‘‘Joint client selection and
bandwidth allocation of wireless federated learning by deep reinforcement
learning,’’ IEEE Trans. Services Comput., vol. 17, no. 1, pp. 336–348,
Feb. 2024.

[31] J. Xu and H. Wang, ‘‘Client selection and bandwidth allocation in wireless
federated learning networks: A long-term perspective,’’ IEEE Trans.
Wireless Commun., vol. 20, no. 2, pp. 1188–1200, Feb. 2021.

[32] Y. Deng, F. Lyu, J. Ren, H. Wu, Y. Zhou, Y. Zhang, and X. Shen,
‘‘AUCTION: Automated and quality-aware client selection framework for
efficient federated learning,’’ IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 8, pp. 1996–2009, Aug. 2022.

[33] Z. Qu, R. Duan, L. Chen, J. Xu, Z. Lu, and Y. Liu, ‘‘Context-aware online
client selection for hierarchical federated learning,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 12, pp. 4353–4367, Dec. 2022.

[34] J. Lee, H. Ko, S. Seo, and S. Pack, ‘‘Data distribution-aware online client
selection algorithm for federated learning in heterogeneous networks,’’
IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 1127–1136, Jan. 2023.

[35] Q. Tang, R. Xie, F. R. Yu, T. Chen, R. Zhang, T. Huang, and Y. Liu,
‘‘Collective deep reinforcement learning for intelligence sharing in the
Internet of Intelligence-empowered edge computing,’’ IEEE Trans. Mobile
Comput., vol. 22, no. 11, pp. 6327–634, Nov. 2023.

[36] Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, ‘‘Quantum collective
learning and many-to-many matching game in the metaverse for connected
and autonomous vehicles,’’ IEEE Trans. Veh. Technol., vol. 71, no. 11,
pp. 12128–12139, Nov. 2022.

[37] Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, ‘‘Green intelligence
networking for connected and autonomous vehicles in smart cities,’’
IEEE Trans. Green Commun. Netw., vol. 6, no. 3, pp. 1591–1603,
Sep. 2022.

[38] Y. Ren, R. Xie, F. R. Yu, R. Zhang, Y. Wang, Y. He, and T. Huang,
‘‘Connected and autonomous vehicles in Web3: An intelligence-based
reinforcement learning approach,’’ IEEE Trans. Intell. Transp. Syst., early
access, Jan. 31, 2024, doi: 10.1109/TITS.2024.3355179.

[39] Z. Zhou, S. Yang, L. Pu, and S. Yu, ‘‘CEFL: Online admission control,
data scheduling, and accuracy tuning for cost-efficient federated learning
across edge nodes,’’ IEEE Internet Things J., vol. 7, no. 10, pp. 9341–9356,
Oct. 2020.

[40] G. Han, J. Jiang, L. Shu, and M. Guizani, ‘‘An attack-resistant trust model
based on multidimensional trust metrics in underwater acoustic sensor
network,’’ IEEE Trans. Mobile Comput., vol. 14, no. 12, pp. 2447–2459,
Dec. 2015.

[41] J. Feng, F. Richard Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, ‘‘Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,’’ IEEE
Internet Things J., vol. 7, no. 7, pp. 6214–6228, Jul. 2020.

90950 VOLUME 12, 2024

http://dx.doi.org/10.1109/TITS.2024.3355179


J. Xie et al.: Energy-Efficient Intelligence Sharing Scheme in INEEC

[42] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, ‘‘Toward
secure blockchain-enabled Internet of Vehicles: Optimizing consensus
management using reputation and contract theory,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 3, pp. 2906–2920, Mar. 2019.

[43] K. Suto, H. Nishiyama, and N. Kato, ‘‘Postdisaster user location
maneuvering method for improving the QoE guaranteed service time in
energy harvesting small cell networks,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 10, pp. 9410–9420, Oct. 2017.

[44] Y. Wei, F. R. Yu, M. Song, and Z. Han, ‘‘User scheduling and
resource allocation in HetNets with hybrid energy supply: An actor-
critic reinforcement learning approach,’’ IEEE Trans. Wireless Commun.,
vol. 17, no. 1, pp. 680–692, Jan. 2018.

[45] H. H. Yang, J. Lee, and T. Q. S. Quek, ‘‘Heterogeneous cellular network
with energy harvesting-based D2D communication,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 2, pp. 1406–1419, Feb. 2016.

[46] Z. Zhang, F. R. Yu, F. Fu, Q. Yan, and Z. Wang, ‘‘Joint offloading
and resource allocation in mobile edge computing systems: An actor-
critic approach,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.

[47] Q. Tang, R. Xie, F. R. Yu, T. Huang, and Y. Liu, ‘‘Decentralized
computation offloading in IoT fog computing system with energy
harvesting: A dec-POMDP approach,’’ IEEE Internet Things J., vol. 7,
no. 6, pp. 4898–4911, Jun. 2020.

[48] J. Du, W. Liu, G. Lu, J. Jiang, D. Zhai, F. R. Yu, and Z. Ding,
‘‘When mobile-edge computing (MEC) meets nonorthogonal multiple
access (NOMA) for the Internet of Things (IoT): System design and
optimization,’’ IEEE Internet Things J., vol. 8, no. 10, pp. 7849–7862,
May 2021.

[49] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,’’ IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, Sep. 2017.

[50] M. Chen, H. V. Poor,W. Saad, and S. Cui, ‘‘Convergence time optimization
for federated learning over wireless networks,’’ IEEE Trans. Wireless
Commun., vol. 20, no. 4, pp. 2457–2471, Apr. 2021.

[51] W. Y. B. Lim, Z. Xiong, C. Miao, D. Niyato, Q. Yang, C. Leung,
and H. V. Poor, ‘‘Hierarchical incentive mechanism design for federated
machine learning in mobile networks,’’ IEEE Internet Things J., vol. 7,
no. 10, pp. 9575–9588, Oct. 2020.

[52] M. Xu, J. Peng, B. B. Gupta, J. Kang, Z. Xiong, Z. Li, and
A. A. A. El-Latif, ‘‘Multiagent federated reinforcement learning for secure
incentivemechanism in intelligent cyber–physical systems,’’ IEEE Internet
Things J., vol. 9, no. 22, pp. 22095–22108, Nov. 2022.

[53] S. R. Pandey, N. H. Tran, M. Bennis, Y. K. Tun, A. Manzoor,
and C. S. Hong, ‘‘A crowdsourcing framework for on-device federated
learning,’’ IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3241–3256,
May 2020.

[54] H. Jalota and M. Thakur, ‘‘Genetic algorithm designed for solving linear
or nonlinear mixed-integer constrained optimization problems,’’ in Proc.
Int. Adv. Soft Comput., Intell. Syst. Appl. Singapore: Springer, 2018,
pp. 277–290.

[55] E. S. H. Hou, N. Ansari, and H. Ren, ‘‘A genetic algorithm for
multiprocessor scheduling,’’ IEEE Trans. Parallel Distrib. Syst., vol. 5,
no. 2, pp. 113–120, Feb. 1994.

[56] L. Yiqing, Y. Xigang, and L. Yongjian, ‘‘An improved PSO algorithm
for solving non-convex NLP/MINLP problems with equality constraints,’’
Comput. Chem. Eng., vol. 31, no. 3, pp. 153–162, Jan. 2007.

[57] D. Wang, D. Tan, and L. Liu, ‘‘Particle swarm optimization algorithm: An
overview,’’ Soft Comput., vol. 22, no. 2, pp. 387–408, Jan. 2018.

[58] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
‘‘Federated learning over wireless networks: Optimization model design
and analysis,’’ in Proc. IEEE INFOCOM, Paris, France, Apr. 2019,
pp. 1387–1395.

[59] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, ‘‘An efficient
computation offloadingmanagement scheme in the densely deployed small
cell networks with mobile edge computing,’’ IEEE/ACM Trans. Netw.,
vol. 26, no. 6, pp. 2651–2664, Dec. 2018.

[60] J. Xie, ‘‘Deep Q-learning aided energy-efficient caching and transmission
for adaptive bitrate video streaming over dynamic cellular networks,’’
IEEE Access, vol. 12, pp. 24232–24242, 2024.

JUNFENG XIE (Member, IEEE) received the B.S.
degree in communication engineering from the
University of Science and Technology Beijing,
in 2013, and the Ph.D. degree from the School
of Information and Communication Engineering,
Beijing University of Posts and Telecommunica-
tions, in 2019. From September 2017 to September
2018, he visited Carleton University, Ottawa,
ON, Canada, as a Visiting Ph.D. Student. He is
currently an Assistant Professor with the North

University of China. His research interests include machine learning, content
delivery networks, resource management, and wireless networks.

QINGMIN JIA received the B.S. degree in com-
munication engineering from Qingdao University
of Technology, in 2014, and the Ph.D. degree in
information and communication engineering from
Beijing University of Posts and Telecommunica-
tions, in 2019. From July 2019 to May 2020,
hewaswith ChinaMobile HangzhouResearch and
Development Center. He is currently a Researcher
with the Future Network Research Center, Purple
Mountain Laboratories. His current research inter-

ests include edge intelligence, computing and network convergence, and the
Industrial Internet of Things.

FENGLIANG LU received the B.S. degree in com-
munication engineering from the North University
of China, in 2023, where he is currently pursuing
the M.S. degree with the School of Information
and Communication Engineering. His research
interests include machine learning, information
processing and reconstruction, resource manage-
ment, and wireless networks.

VOLUME 12, 2024 90951


