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ABSTRACT The relationship between commercial vehicle travel patterns and urban functional areas
reveals potential connections between urban form and human geographic flows, which provides critical
information for optimizing urban transportation systems. Benefiting from the large-scale trajectory datasets,
it would be possible to investigate deeper research by modeling the implied urban travel patterns. This study
designs a framework to reveal the collective movement patterns of commercial vehicle trajectories inside the
urban environment, focusing on their spatiotemporal variations within functional areas. Stopping behaviors
of trajectories were identified to construct spatiotemporal origin-destination (OD) matrices, representing
time-varying human geographic flows. The singular value decomposition (SVD) method was employed to
quantify spatio-temporal OD matrice to obtain time and space travel features. Travel patterns’ dynamics
and spatial interactions within functional areas were then analyzed. The experimental results obtained with
real-life datasets fromChangsha, China, uncovered three typical travel patterns depicting commercial vehicle
activities in urban environment shifts from work-related locations on weekdays to leisure destinations
on weekends, with central areas experiencing more short and medium-range trips. The findings provide
scientific references for optimizing spatio-temporal travel patterns and functional distribution to meet the
demands of urban development and traffic management strategies.

INDEX TERMS Urban functional area interaction, vehicle travel patterns, spatio-temporal data analysis,
singular value decomposition (SVD).

I. INTRODUCTION
Understanding urban travel demand is crucial for transporta-
tion planning and management in cities [1], [2]. Rapid urban-
ization in China has led to increasing city sizes, populations,
and daily travel volumes, causing frequent traffic conges-
tion [3], [4], [5]. Cities are complex entities comprising
space, function, and human activities [6], [7]. The daily travel
patterns of residents are vital for optimizing urban spatial
structure [8], enhancing planning and management [9], and
improving overall city service quality [10]. The amelioration
of urban service quality serves as a catalyst for the
deployment of autonomous driving technology, which in turn
augments the efficacy of traffic management systems [11],
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[12]. Embedded within this technology are sophisticated
learning algorithms designed to discern and analyze travel
patterns [13], [14]. These algorithms are capable of adapting
to the commuting behaviors of the populace, thereby enabling
a strategic enhancement in routing protocols and decision-
making processes, which ultimately elevates the caliber of
urban services. Thus, analyzing these patterns is key to
effective trafficmanagement and fostering high-quality urban
development.

Investigating the travel patterns of urban vehicles and
exploring the spatial interactions among individuals, cities,
and functions, as well as optimizing urban spatial struc-
tures [15], [16], has long been of interest to urban researchers
and planners. When people move within cities, both func-
tional interactions and spatial interactions undergo changes.
Understanding the reasons behind urban spatial structures

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

91447

https://orcid.org/0009-0001-4853-2503
https://orcid.org/0000-0003-4487-7528
https://orcid.org/0000-0003-3455-7934
https://orcid.org/0009-0006-1847-1072
https://orcid.org/0000-0002-6371-9181
https://orcid.org/0000-0001-8218-7195


J. Qin et al.: Spatio-Temporal Perspective on Commercial Vehicle Travel Patterns

through functional interactions allows us to analyze the
interdependence between spatial and functional dynamics,
revealing the mutual relationship between urban structures
and functions. However, previous research has predominantly
focused on static analysis of spatial interactions [17], [18],
overlooking the dynamic variations in functional dynamics
of urban travel.

With the advancement of positioning technology, acquiring
real-time mobility data has become increasingly convenient.
Commercial vehicle trajectory data offers advantages such as
diverse vehicle types, large sample sizes, extensive spatial
and temporal coverage, and high dimensionality, making
it crucial for studying urban travel patterns and structural
characteristics. This data provides detailed descriptions of
vehicle movements in space [19], [20], [21], and reveals the
travel patterns of vehicles. Simultaneously, the trajectory data
generated by a multitude of human activities encapsulates the
functional aspects of urban land, allowing for the extraction
of the dynamic functionalities of urban spaces. This, in turn,
enables the revelation of the dynamic characteristics of the
interaction between urban space and functionality.

The large amount of operational vehicle trajectory data
enables us to uncover the travel patterns of vehicles and
reveal the dynamic changes in urban functional areas [22],
[23]. However, dealing with such a large amount of data
presents significant challenges in discovering the underlying
spatiotemporal patterns. Traditional origin-destination (OD)
matrices, manually collected and updated [24], [25], suffer
from low dimensionality, high cost, and slow updates.
Previously used for trip number analysis, time series models
and variation factors fail to capture the intrinsic structure
of travel demand and the daily variation of all OD pairs.
The spatiotemporal ODmatrix provides a detailed framework
for studying continuous trips, with higher accuracy and
dimensionality [26], [27].

Nevertheless, the richness of information in the matrix can
potentially obscure the inherent spatiotemporal patterns [28],
[29], [30]. As a solution, dimensionality reduction techniques
have emerged, including matrix decomposition based on
Principal Component Analysis, feature decomposition, and
non-negative matrix factorization [31], [32], [33]. These
methods extract significant features for OD clustering and
spatial distribution analysis [34]. However, spatiotemporal
OD matrices are typically of arbitrary shape with com-
plex data structures. Singular Value Decomposition (SVD)
excels in extracting the intrinsic properties of data through
eigenvalues and is commonly used for micro-level pattern
analysis [35], [36], [37], [38]. SVD has garnered widespread
attention in traffic pattern analysis and forecasting [34], [39],
[40]. Despite its potential, the direct application of SVD in
OD data mining and extraction is limited.

The spatio-temporal OD matrix constructed based on
running vehicle trajectory data contains travel information
in both time and space dimensions. Based on this, after
SVD decomposition, the travel pattern can be further

explained from both time and space. The time aspect involves
identifying active time periods for vehicles, duration of
activity, and temporal variations. By analyzing time charac-
teristics, different travel patterns can be delineated. On the
other hand, the spatial aspect pertains to the distribution
characteristics of travel trajectories, spatial range, and the
dynamic changes in functional areas. In this paper, addressing
the abovementioned challenges, we utilize GPS trajectory
and POI data to derive OD pairs enriched with semantic
information. We construct a spatio-temporal OD matrix
model and apply SVD to discern residents’ travel patterns.
Our study further conducts cluster analysis on semantically
enhanced OD flows, aiming to elucidate the spatio-temporal
dynamics of urban functional areas. By clustering OD flows
with similar semantic attributes, we identify distinct travel
patterns, facilitating the exploration of temporal and spatial
shifts in urban functional areas. This research is geared
towards analyzing and understanding the travel patterns
of commercial vehicles within the city and their interplay
with functional areas, providing a theoretical foundation for
optimizing spatial structures and public resource allocation in
urban settings.

The remainder of this paper is structured as follows:
Section II presents the study area and data. Section III outlines
the research methodology. Section IV delves into analyzing
the results of SVD and discussing the spatio-temporal
patterns of commercial vehicle distribution. Finally, Sec-
tion V concludes the paper and suggests avenues for future
research.

II. STUDY AREA AND MATERIALS
A. STUDY AREA
Changsha, the political, economic, cultural, and transporta-
tion hub of Hunan Province and a key city along the middle
Yangtze River, serves as our study area. It encompasses
Furong, Tianxin, Yuelu, Kaifu, Yuhua, and Wangcheng
Districts, along with Changsha County, Liuyang City, and
Ningxiang City. Spanning 11,816 square kilometers with
a population density of approximately 643.23 people per
square kilometer, Changsha extends from N27◦51′-N28◦40′

latitude and E111◦53′-E114◦15′ longitude (refer to Figure 1).
The city’s predominantly tertiary economy contributes about
57.2% to its GDP, with the service and transportation
industries accounting for 27.1% and 3.3%, respectively. As of
2021, Changsha housed 165,658 commercial vehicles. The
city’s rapid urbanization emphasizes optimizing its spatial
structure, especially given the traffic congestion. Notably,
Changsha’s road network facilitates north-south traffic but
lacks adequate east-west connections, impacting regional
development. This study aims to understand Changsha’s
travel demands and characteristics to support informed
decision-making and congestion alleviation. Moreover, the
insights gained here could benefit other emerging first-tier
cities in China’s midlands, which are also predominantly
reliant on the tertiary sector.
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FIGURE 1. Study area.

TABLE 1. The original commercial vehicle GPS records in changsha.

B. DATA
The CV data used in this case study was provided by Data
management platform under the Ministry of Transport and
contains trip records from December 26, 2014, to January
9, 2015. The dataset includes GPS records of commercial
vehicles like taxis, buses, and trucks. It necessitates extracting
and removing duplicate and incomplete entries (missing
latitude or longitude). Focusing on Changsha, we conducted a
topological overlay operation to isolate the city’s commercial
vehicle trajectories. This process yielded over 100,000 daily
records for Changsha’s commercial vehicles. As illustrated
in Table 1, each record comprises the vehicle ID (ID), GPS
sampling time (Time), latitude (Lng) and longitude (Lat)
coordinates, and city name (Name).

In the commercial vehicles, buses, taxis, and trucks play
a major role. They are categorized based on the vehicle’s
travel time, OD duration, and license plate number. For buses,
three conditions need to be met: 1) The license plate number
starts with ‘‘Xiang A’’; 2) The journey takes place between
6:00 and 24:00; 3) The average duration of each OD trip of
a bus is within 10 minutes. Typically, the distance between
two adjacent bus stops in a city is not greater than 1 km, and
even in traffic congestion, the travel time does not exceed
10 minutes. Taxis are identified as vehicles with license plate
numbers starting with ‘‘Xiang A’’ and an average OD trip
duration within 45 minutes. Trucks are characterized by an
average OD trip duration exceeding 45 minutes.

TABLE 2. POI types and detailed descriptions.

Additionally, the study requires POI data inside Changsha,
sourced from Baidu Map’s open platform. This data is essen-
tial for identifying the city’s various functional areas. Each
POI entry includes the name, location coordinates, address,
ID, and business hours. To align with Changsha’s functional
area characteristics and residents’ stay behavior, we catego-
rized the POI data into ten types: accommodations, finances,
entertainment, transport facilities, education, living services,
commercial residences, shopping malls, restaurants, and
governmental and corporate organizations (refer to Table 2).

III. METHODOLOGY
We propose a flowchart (see Figure 2) for analyzing and
identifying travel patterns from commercial vehicle trajectory
data. The flowchart consists of two main phases: Spatio-
temporal OD matrix construction and Urban travel pattern
identification. In the Spatio-temporal ODmatrix construction
phase, POI data is incorporated to obtain the functional
area attributes of blocks. This information is then used to
determine the semantic attributes of the origin and destination
of each OD trip, leading to the construction of the final
matrix. To identify travel patterns, the study utilizes SVD
to decompose the spatio-temporal OD matrix. Through this
decomposition, the temporal, spatial, and functional area
interactions of commercial vehicle travel patterns within the
city are explored.

A. SPATIO-TEMPORAL OD MATRIX CONSTRUCTION
This phase begins with processing GPS trajectory data of
commercial vehicles to generate OD pairs. The stopping
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FIGURE 2. Analysis flowcharts.

points from this data are extracted using a time-distance-
speed threshold method. The next step involves integrating
POI data, which assigns functional area attributes to each
OD pair. This integration results in a high-dimensional
spatio-temporal OD matrix, encapsulating temporal and
spatial elements. The time dimension is segmented into
one-hour intervals based on the distribution characteristics of
commercial vehicles, leading to 24 time slices for each day.

B. URBAN TRAVEL PATTERN IDENTIFICATION
This phase employs SVD to decompose the spatio-temporal
OD matrix and unearth the underlying travel patterns of
commercial vehicles. The temporal vectors from the SVD
decomposition are analyzed to discern distinct travel patterns.
Conversely, the spatial vectors are scrutinized to pinpoint
urban hotspot areas, indicating regions with significant
commercial vehicle activity. Moreover, the study clusters the
OD flows according to the enhanced semantic attributes of
the commercial vehicle travels. This clustering effectively
captures the spatio-temporal dynamics in urban functional
areas, providing insights into the varying utilizations of
different areas by commercial vehicles over time.

C. STOPPING POINTS EXTRACTION
In this study, a stopping point is taken as the starting point,
which can also be understood as the end point of the previous
OD trip; the latter stopping point is taken as the end point,
which is also the starting point of the next OD trip to construct
the OD trip. Therefore, we first need to extract the stopping
points from the commercial vehicle trajectory points. First,
according to the trajectory time threshold, distance threshold,
and speed threshold, the set of candidate stopping points
of the trajectory is filtered. After that, the distance between

adjacent clusters is calculated and compared with the distance
threshold, and the clusters that meet the threshold range are
merged. Finally, the first point in each cluster is selected
as the stopping point to get the final cluster of stop
points.

The traditional stopping point identification method
mostly uses the empirical speed value or stopping time
to determine whether the vehicle is stopping. Researchers
typically determine the identification method for stay points
based on different research purposes [41], [42]. However,
the GPS data used in this paper includes the data of
the whole of Changsha city, which involves a wide range
and a large period. Commercial vehicles may have traffic
jams, traffic accidents, temporary driver breaks, and other
events during the driving process. The uncertainty and
diversity of these special events lead to the impossibility of
using empirical speed value or stopping time to determine
whether a vehicle is stopped or not. Therefore, this paper
innovatively proposes an identification method based on
time-distance-speed thresholds to determine the stopping
points. A segment of commercial vehicle trajectory Traj =

{p1, p2, . . . , pi}, trajectory point Pi = {Ti, lon i, lat i},
where i={0,1,2, . . . , n} and T0 < T1 <, . . . , < Tn.
After the stop extraction, we get the set of candidate stops
C = {c1, c2, . . . , cn} , cn = (Tn, lonn, latn,Disn,Vn). The
distance and speed is calculated as follows:

Disij = r × 2 arcsin√
sin(1lat/2)2 + cos (lati) × cos

(
latj

)
× sin(1 lng /2)2

(1)

Vij =
Dis

(
Pi,Pj

)
Tj − Ti

(2)
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where r is the radius of the Earth 6378.137 km, 1lat is the
difference in latitude between the two points, and 1lng is the
difference in longitude between the two points. Dis(Pi,Pj is
the distance between the trajectory points Pi and Pj, Tj − Ti
is the time between the two points.

First, calculate the speed of the trajectory points. Trajectory
points with speed greater than 100 km/h are considered as
error points and are eliminated [43]. Second, in past studies,
the threshold value for determining stopping is usually set
below 1 m/s. Use the distance formula to calculate the
distance between the two points, if the distance between the
two points is less than 100m; then filter by time threshold, the
time distance between trajectory point Pi and Pj is more than
120 s are extracted to form candidate stop sequences. Next,
extracting environmental trajectory features, an SVM-based
classifier is employed to further discriminate against actual
stops [44], thus reducing the error rate of recognition of stops
in the trajectory. Then, consecutive candidate stop sequences
that are close in space are likely to represent the same
stopping behavior. In this paper, a constraint is introduced
to merge consecutive time and adjacent spatial stop sub-OD
travel flows. If the distance between two stop sub-OD travel
flows is less than 100 m, the two stop sequences are merged.
Finally, the first trajectory point from each candidate stop
sequence is extracted as the stopping point.

D. PATTERN RECOGNITION BASED ON
SPATIO-TEMPORAL OD MATRIX
The space-time OD matrix is a high-dimensional matrix
containing both time and space. It can represent the move-
ment of people geographically within a certain time. Decom-
posing the spatio-temporal OD matrix, the spatio-temporal
characteristics of human activities can be obtained. The
spatial information of the spatio-temporal OD matrix in
previous studies is generally at city scale and the temporal
information is at the daily scale. In this study, a more fine-
grained spatio-temporal OD matrix will be constructed. For
this, the study area must be divided into suitable grids for
being rasterized to construct the OD matrix. The research
on the impact of spatial grid division on the layout analysis
of urban functional areas confirmed that 500 m × 500 m
grid can effectively identify single functional areas [45].
Therefore, we use a 500 m × 500 m fishing net to divide
the study area and divide Changsha city into 48578 grids.
It makes the number of streets within each grid smaller
and the OD travel flows of commercial vehicles evenly
distributed. At the same time, the POI distribution within
each grid can be evaluated, and the functional areas are
more carefully classified. If the grid division is too large,
individual functional areas will be difficult to identify; if it
is too small, the fragmentation of functional areas increases
and reduces the clustering effect. Figure 3 shows the grid
division results and shows the distribution of the restaurants
in the grid with the example of the restaurant category. The
OD pairs are topologically overlaid with the functional areas

TABLE 3. A sample of spatio-temporal OD matrix.

to get the semantic information of the OD pairs in order
to construct the spatio-temporal OD matrix. Table 3 shows
a sample spatio-temporal OD matrix. The columns of the
matrix represent the space, such as, the first column is the
OD between the restaurant class and the shopping class. The
rows of the matrix represent the time, for example, the first
row is the time slice ordinal number of the first hour.

The spatio-temporal OD matrix constructed in this paper
is a one-day unit, composed of one-hour time slices. SVD
has better performance in fine-grained feature extraction than
other matrix decomposition methods. The SVD decompo-
sition of the obtained spatio-temporal OD matrix can be
decomposed into a superposition of n matrices of rank 1 as
follows:

X = U6V T
=

r∑
i=1

siuivTi

U = (u1, u2, . . . , ur ) ,V = (v1, v2, . . . , vr )

S = diag {s1, s2, . . . sr } (s1 ≥ s2, . . . sr ) (3)

whereX is them× nmatrix with rank r ,U is the n× r matrix,
ui is the i-th column of U , and UT is the transposition matrix
of U set matrix. V is an m× r matrix, vi is the i-th column of
V , V T is the transpose matrix of V . U and V satisfy UTU =

E and V TV = E , ui and vi are unit vectors, E is a unit matrix.
S is a diagonal matrix, the i-th diagonal element is si, which
is the decomposed singular value, and the singular value si
denotes the importance of uivTi in X . The larger the si, the
more significant the travel pattern represented.

E. OD TRAVEL FLOW CLUSTERING
OD flow clustering is the clustering of complete trajectory
flows, taking into account the temporal relationships and
continuity of all points. In contrast to traditional point
clustering methods, the objective of clustering OD flows is to
classify the complete flow into different clusters to recognize
different flow patterns. When the functions of the OD grid
of an OD flow are specified, the OD travel flows is given
semantic meaning. The OD travel flows are then clustered to
specify the spatial and functional interactions in Changsha.
We merge OD travel flows with the following constraints
based on spatial and semantic information [30]:

1) The origin grids of the OD travel flows must be
spatially adjacent, as do the destination grids of the OD
travel flows. In Figure 4(b), a grid is spatially adjacent
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FIGURE 3. The result of Changsha grid division: (a) The overall distribution of Restaurants in the grid; (b) Detailed distribution.

FIGURE 4. OD travel flow clustering.

to eight surrounding grids, and spatially neighboring
O/D points can be brought together by clustering;

2) Clustering flows with similar semantics can enhance
our perception of the changing characteristics of
functional areas, as well as to understand the interaction
characteristics of functional areas. The origin grids of
the OD travel flows have the same function, as do the
destination grids of the OD travel flows.

OD travel flows will be clustered into one group if they
meet constraints. Figure 4 shows the clustering of OD flows.
Figure 4(a) shows all OD travel flows whose starting and
ending points are mapped to the grid in Figure 4(b), where
the colors represent the functions of the grids. The grids
corresponding to O2, O3 and O4 are spatially adjacent and
have the same function, and the regions corresponding to
D1 and D2 are also spatially adjacent and have the same
function, so OD travel flows T2, T3 and T4 are grouped into
C1. However, O1 has different functions than O2 and O3;
therefore, trajectory T1 is not clustered into the same group,
although it has the same destination as T5 and T6.

IV. RESULTS AND DISCUSSION
According to the general characteristics of people’s travel,
we could roughly divide travel time scales into three

situations: weekend, holiday and workday. To represent
these situations, we randomly chose three days to rep-
resent these situations, December 27, 2014 (Weekend),
January 1, 2015 (Holiday) and January 8, 2015 (Workday)
respectively. The spatio-temporal OD matrices for each
time scales were decomposed to identify the travel demand
and spatio-temporal patterns in Changsha. The singular
value represents the importance of each demand mode in
the commercial vehicle transportation spatiotemporal OD
matrix. A larger singular value indicates that the demand
mode represents more raw information of the spatiotemporal
OD matrix. Based on Figure 5, the maximum singular
value is much larger than the other singular values, and the
singular value decreases rapidly. By considering the top three
singular values, it is possible to represent 80% of the original
information of the spatiotemporal OD matrix and identify
three representative travel demands.

Based on the three columns of time unit vectors of com-
mercial vehicle travel modes, the study identified three travel
patterns. Among the three situations (weekend, holiday, and
workday), the fluctuation of the workday pattern roughly
follows the working hours. The fluctuation of the weekend
and holiday patterns does not resemble the workday pattern,
with the holiday pattern showing greater fluctuations than the
weekend pattern. This indicates that there is a higher number
of commercial vehicle trips during holidays compared to
weekends. According to Figure 6, the positive and negative
values of the time unit vector values correspond to the
direction of fluctuation of the travel pattern in the time
dimension, and the absolute magnitude corresponds to the
degree of fluctuation. As shown in Figure 6(a-c), the first
pattern has a long peak duration, lasting from 8:00 to 16:00.
This pattern represents the commercial vehicles driving in the
daytime, regarded as the daytime pattern. Figure 6(d-f) shows
the time unit vectors in the second mode, all of them have
a clear peak in the morning, called it morning peak pattern.
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FIGURE 5. Singular value normalization diagram in three situations.

The third travel pattern has peaks at midday and evening in
Figure 6(g-i), and is inferred to be the evening peak pattern.

The travel patterns of buses, taxis, and trucks during
workdays, weekends, and holidays have been further refined.
Overall, the travel patterns of these three types of vehicles
are broadly similar. However, due to differences in the
nature of work and working hours for each type of vehicle,
their travel patterns also exhibit distinct characteristics,
as detailed in V. Buses exhibit the highest travel demand
on weekdays, typically between 7:00 and 18:00. Taxis
supplement bus services on weekdays, with occasional
demand fluctuations during the day, peaking between 20:00

FIGURE 6. The distribution of normalized singular values:(a),(b) and
(c) represent the first column of workday, weekend and holiday
respectively; (d),(e) and (f) represent the second column of workday,
weekend and holiday respectively; (g),(h) and (i) represent the third
column of workday, weekend and holiday respectively.

FIGURE 7. The distribution of normalized singular values of
taxis:(a),(b) and (c) represent the travel patterns of workdays; (d),(e) and
(f) represent the travel patterns of weekends; (g),(h) and (i) represent the
travel patterns of holidays.

and 2:00, coinciding with the return-to-home rest periods
for some overtime workers or leisure individuals. As for
trucks, their travel demand displays significant fluctuations
with no clear regular. Taking taxis as an example, Figure 7
illustrates the time unit vectors for workdays, weekends, and
holidays. As shown in the Figure 7(a-c), on workdays, taxis
demand is concentrated between 19:00 and early 2:00, as well
as during peak commuting hours. while on weekends and
holidays(Figure 7(d-i)), the peak demand for taxis extends
throughout the day and from 1:00 to 4:00 in the early
morning. This indicates that taxis assist people with travel
on workdays, and there is a higher demand for taxi services
during holidays and weekends.

The three columns of time unit vectors correspond to three
columns of spatial unit vectors, and their spatial dimensions
also have three travel patterns, which correspond to the
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original point data (Figure 8) and the destination point data
(Figure 9). People travel for different purposes at different
times of the day, and there are differences in the spatial
locations they go to, leading to differences in the hotspot areas
for each travel mode. People usually focus on commuting,
with increased areas to corporate institutions such as Wuyi
Square, Meixi Lake International Culture and Art Center,
Hunan Steel Market, Hunan Radio and Television Station,
Provincial People’s Government, and Xiangya Hospital.
Irrespective of the travel mode, the trips of commercial
vehicles are predominantly concentrated in the central area
of Changsha. The areas with higher concentration include the
Wuyi business district, Meixi Lake business district, BBK
Star City Tiandi, Gaoqiao Market, and other business and
financial centers, along with major transportation hubs such
as Changsha’s four major bus stations, railway station, and
Changsha South Station.

Furthermore, the different patterns of commercial vehicles
we analyzed can contribute to the intelligent transportation
system. On the one hand, traffic planning and traffic control
can be managed, according to specific patterns, and then
improve the capacity coordination of the transportation
system. For example, during the morning peak hours of
commuting, there is an increase in commercial vehicles in
hotspot areas such as Wuyi Square, Lugu Park, and Hunan
Radio and Television Station. During peak hours, prioritize
traffic flow in key areas by optimizing traffic signals and
expanding lanes to improve the efficiency and capacity of
the transportation system, thereby alleviating congestion.
On the other hand, it can contribute to the operation of
commercial vehicles in terms of picking up and dropping
off guests, thereby increasing turnover. Putting in more
public transportation in areas where travel is concentrated
not only meets people’s travel demand but also reduces urban
problems such as traffic congestion and supports green travel.
In rural areas, it is necessary to put in public transportation
such as buses and other commercial vehicles, such as cabs,
can also be arranged.

A. FUNCTIONAL INTERACTIONS
We analyze the spatial-temporal functional interactions in the
urban environment through Sankey diagrams, as described
in Figures 10 - 12. The flow of each functional area
in the Sankey diagram represented the magnitude of the
spatial vector values, with larger values representing more
pronounced spatial fluctuations. We use the term ‘outflux’
to denote the movement of commercial vehicles away from
a particular area, and ‘influx’ to denote the movement of
vehicles towards a particular area.

The Sankey diagram (Figure 10(a)) predominantly high-
lights the high outflux and influx from the restaurant areas
duringworkday daytime, implying a considerable demand for
dining out during midday hours. A part of the commercial
vehicles flowed from the restaurant areas to the finance
areas, implying that people would return to work after dining
and confirming that most people chose to dine out during

working hours. Additionally, the spatial fluctuations in areas
with transportation facilities and educational institutionswere
also more notable, potentially due to people’s daytime travel
and daily commutes. As shown in Figure 10(b), during
the morning peak on workdays, the commercial residential
areas have the highest outflux and the restaurant areas
have the highest influx, with trips dominated by dining and
commuting. A larger portion of the commercial vehicles
departing from the commercial residential areas went to the
government and corporate organization areas, while the rest
went to areas such as restaurant areas and living service
areas. Figure 10(c) shows the workday evening peak travel
pattern, the highest travel volume is for shopping, followed by
outflux from government and corporate organization areas,
and higher influx from the finance areas, government and
corporate organization areas and living service areas.

Different from workdays, people usually choose to engage
in recreational activities on weekends. Figure 11(a) shows
that the increase in demand for commercial vehicle trips on
weekends is caused by people’s dining activities, shopping
and recreational activities, and learning activities. The largest
number of trips is accounted for by interactions within the
restaurant areas during the daytime on weekends, and a
portion of the commercial vehicles departing from restaurant
areas flow to the shopping mall areas and the education
areas. The outflux from the education areas are greatest
during the weekend morning peak hours, with a rich
variety of destinations (Figure 11(b)). The most internal
interaction is mainly with the education areas, with the
most significant spatial fluctuations, which indicates that
going to the education areas is the main reason for the
increased travel demand. The outflux from the government
and corporate organization areas are the next largest, going
to the education areas, the shopping mall areas, and the
entertainment areas, respectively. As shown in Figure 11(c),
commercial vehicles significantly flow from the shopping
mall areas and restaurant areas to the transport facility areas
and the accommodation areas, respectively. It suggesting that
many out-of-town visitors head to the station or return to their
hotels to rest after their recreational activities.

The morning peak pattern during New Year’s Day has
significant interactions of various functional areas and
people’s trips show diverse characteristics. In Figure 12(a),
the functional area interaction of the daytime pattern on New
Year’s Day was similar to weekends, with the highest outflux
and influx in the restaurant areas and the rest going to the
shopping mall areas and the finance areas, respectively. The
interaction between the shopping mall areas and the finance
areas is also more obvious. In Figure 12(b), the interaction
between the accommodation areas and the restaurant areas
is the highest, with the largest spatial fluctuations and a
significant increase in travel demand. This may be a result
of visitors staying in hotels on holidays and dining out
in the morning to start the day’s activities. As shown in
Figure 12(c), in the evening peak pattern, the government
and corporate organization areas have the highest spatial
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FIGURE 8. Spatial patterns of origins.

FIGURE 9. Spatial patterns of destinations.

fluctuation, flowing to a variety of functional areas such
as transport facility areas, accommodation areas, and living
service areas.

In summary, the analysis of commercial vehicle move-
ments during workdays, weekends, and holidays reveals
distinct patterns in terms of dining, commuting, shopping,
accommodation, and education activities. During the daytime
on workdays, people’s activities are dominated by dining
and commuting. Therefore, restaurant areas, finance areas
and government and corporate organisation areas have
highly active. In the weekend patterns, the fluctuations

in commercial vehicle movements associated with dining
out and education are more prominent during the day and
shopping and accommodation activities are significant in the
evening. As for the holiday pattern, similar to the weekend,
the areas of high spatial fluctuation in commercial vehicle
movements are dining, shopping, and lodging, but the areas
of holiday commercial vehicle activity are more complex.
These findings could be crucial for urban planners and
businesses, especially those in the restaurants and shopping
malls, to better understand and cater behaviors during
weekends and holidays. To accommodate the increased
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FIGURE 10. Different travel patterns on workday.

FIGURE 11. Different travel patterns on weekend.

FIGURE 12. Different travel patterns on holiday.

demand during these peak periods, urban planners should
focus on optimizing the city’s transportation system by
providing convenient public transportation and sufficient
parking facilities, facilitating easier access to shopping malls
and entertainment areas.

B. SPATIAL INTERACTIONS AT DIFFERENT TIMES
We reveal the spatial interactions of functional areas by
clustering OD travel flows, and the clustering algorithm
is described in Section III-E. Then the OD travel flows
with significant functional area changes were selected and
classified by travel distance into short trips within 5 km,
medium trips within 15 km and long trips over 15 km.

On workdays, the main purposes of commercial vehicle
trips are dining, schooling and commuting. In terms of spatial

distribution, development is higher in the south and east of the
city, where vehicle activity is concentrated. In Figure 13(a),
during the day, short-distance commercial vehicle trips form
three distinct clusters in the city, one to the south and
east of the main city and two others in the city centers of
Liuyang and Ningxiang. The main purposes of the trips are
dining out and commuting. Medium-distance commercial
vehicle trips are concentrated in the main city of Changsha,
spreading from the center to the edges. Active restaurant
areas are found in the center of Changsha, education areas
are distributed in the suburbs, and transport facility areas
are concentrated in the north and south ends of the main
urban area and on the edge of Ningxiang. Long-distance
commercial vehicle trips effectively connect the east and west
parts of Changsha. The transport facility along Ningxiang
are more active than in Liuyang and more closely connected
to Changsha. In the morning, Figure 13(b) shows that
short-distance commercial vehicle trips are concentrated in
the southern part of the city, with the southern Tianxin
District being the core area of the Chang-Zhu-Tan Integration
City. Trips in the south are mainly concentrated in the
finance areas. Mid-distance travel maintains a similar spatial
pattern to that of daytime hours, with weak connections to
the cities of Ningxiang and Liuyang. The western part of
the city becomes active in the government and corporate
organization areas and commercial residential areas, making
effective connections with the eastern of the city. Long-
distance commercial vehicle trips are similar to daytime, but
with less travel demand. In Figure 13(c), in the evening,
short-distance commercial vehicle trips form a circular trip
structure along the periphery of the main city, and travel
demand gradually increases in the west. Commercial vehicles
in the western part of the city are mainly concentrated in the
vicinity of University City and Meixi Lake in Yuelu District,
interacting between the restaurant areas, education areas
and commercial residential area. Medium-distance vehicles
tend to travel north-south, with east-west trips connected at
the Yinpenling Bridge, Sanchaji Bridge, and Monkey Stone
Bridge. Long-distance vehicle trips increase in the north,
occurring mainly in government and corporate organization
areas and commercial residential area.

On weekends, long-distance travel patterns are similar,
with short- and medium-distance trips varying with time.
In Figure 14(a), during the daytime, short-distance trips are
largely distributed in the southern and eastern portions of
the main urban area of Changsha, with small concentrations
in the north and Liuyang. Trips in the south and west are
concentrated between restaurant areas and transport facility
areas, while trips in the north and Liuyang city center are
dominated by shopping mall areas and transport facility
areas, respectively. Mid-distance trips are similar to weekday
mornings, but travel demand decreases in the restaurant areas
and increases in the shopping mall areas. The two districts
with large spatial fluctuations in the restaurant areas are Yuelu
and Furong districts. Long-distance trips are dominated by
the interaction of the Long Town Center with Ningxiang and
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FIGURE 13. Spatial interactions between regions on workday: (a) daytime hour; (b) morning rush hour; (c) evening rush hour. The color of the nodes
denotes the function.

Liuyang. As shown in Figure 14(b), short-distance trips are
distributed in the south and north of Changsha, dominated
by activities in the education areas and the government
and corporate organization areas in the morning. Medium-
distance trips in the education areas and government and
corporate organization areas are still distributed in the north
and south of Changsha, and trips in the shopping mall areas
increase in the east and west. In the evening, short-distance
trips are primarily basically distributed in Tianxin, Yuhua and
Furong districts, with functional area interactions dominated
by restaurant areas, living service areas and shopping mall
areas(In Figure 14(c)). Medium-distance trips exhibit a travel
pattern radiating from theWuyi business district of Changsha
to the surrounding area, and commercial vehicles mainly
move between the living services area and shopping mall
areas.

During on holidays, when the number of foreign tourists
increases, the functional areas that are most frequently active
are the accommodation areas and are located along the major
stations of the city. In Figure 15(a), during the daytime,
short trips are mainly distributed in the eastern part of the
Xiangjiang River, as well as in the eastern and southern parts
of the main city. The travel demand is mainly concentrated
in shopping mall areas, restaurant areas and government and
corporate organization areas. Medium-distance trips cover
the north and south ends of the city and connect with Liuyang

andNingxiang. Fluctuations in the restaurant area are evident,
mainly around the Wuyi shopping district, Changsha Univer-
sity City and Datuo. Long-distance commercial vehicle trips
have similarities to weekend and workday travel patterns.
On holiday mornings, Figure 15(b) shows short-distance trips
form an arc-shaped structure in the eastern part of the main
city, connecting Changsha Station-Changsha South Station-
Dongjing Station, implying increased travel demand near
these stations. In addition, travel demand near Changsha
Huanghua Airport increases significantly. Commercial vehi-
cle trips are concentrated between accommodation areas.
Mid-distance trips spread from south to north and from east
to west, showing three distinct sub-clusters. Trips to the
south and east are concentrated between lodging areas, trips
to the west are concentrated between entertainment areas,
and trips to the north are dominated by government and
corporate organization areas. In Figure 15(c), on holiday
evenings, short-distance travel patterns are similar to those
on weekends and are concentrated in the Yuelu, Tianxin and
Furong districts, as well as in the northern part of the Kaifu
district. Medium-distance trips are concentrated between the
restaurant areas and the government and organization areas
and are concentrated in the central part of the city. Long-
distance trips connect the city east-west, but the functional
area changes continue to be concentrated in the main part of
the city.
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FIGURE 14. Spatial interactions between regions on weekend: (a) daytime hour; (b) morning rush hour; (c) evening rush hour. The color of the
nodes denotes the function.

FIGURE 15. Spatial interactions between regions on holiday: (a) daytime hour; (b) morning rush hour; (c) evening rush hour. The color of the
nodes denotes the function.
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Overall, The three different distances of the workday
pattern indicate that the spatial interaction in Changsha city
is more clustered than in other regions, as well as, with
the increase of the distance of the travel flow, there is
more spatial interaction in the east-west direction. As for
the weekend pattern, whatever the distance and time scale,
all of them illustrate a significant feature of multicentricity.
In addition, the travel flow increase in the shopping mall
which is assembled with dining and shopping. The holiday
pattern is roughly similar to the weekend pattern, but the
spatial interaction is more frequent among these regions.
Furthermore, the medium-distance and the long-distance
are even more obvious in the east-west direction. Together
these results provide important insights into people’s travel
behavior which is analyzed by the spatial interaction among
the different functional areas. Understanding the purpose and
mode of it helps us to better improve the operation system
of commercial vehicles, provide better services to users,
and then assist in the rational allocation of transportation
resources.

V. CONCLUSION
Human activity in cities has a pattern of change, and
exploring travel patterns is useful for understanding the
spatial interactions of cities. Human activities in cities also
result in dynamic changes in urban land functions and spatial
interactions. Therefore, it is necessary to take into account the
changes in urban land functions and their interactions when
studying spatial dynamics. Our study leveraged commercial
vehicle trajectory and POI data to construct a spatio-temporal
OD matrix, employing SVD to analyze urban travel patterns
in Changsha City. The OD flows for each travel mode are
clustered and analyzed to uncover the spatial and functional
interactions among urban functional areas in Changsha City.

Regarding the analysis of travel modes, We discerned
three primary traffic patterns: daytime, morning peak,
and evening peak. Notably, the prolonged morning peak,
persisting until 9:00 on weekdays and extending to 11:00
on weekends, indicates substantial traffic congestion in
Changsha, underscoring the pressing need to optimize
the urban transport network for efficient peak demand
management. Our comparative analysis of trajectory data
from taxis, buses, and trucks revealed distinct travel patterns.
Buses show the highest demand on weekdays, from 7:00 to
18:00. Taxis supplement bus services, with demand peaking
between 20:00 and 2:00, aligning with the commute of
night workers and late-night individuals returning home.
Conversely, truck demand fluctuates significantly, influenced
more by time-of-day factors. Spatially, commercial vehicle
activity in Changsha is concentrated in the central urban
areas, such as the Wuyi, Meixi Lake, and Datuo Business
Districts, major transit hubs, and educational institutions.
This distribution suggests an east-west development disparity
across the Xiangjiang River, with the eastern bank beingmore
advanced. To promote balanced urban growth, we recom-
mend developing the cultural tourism sector on the west bank,

FIGURE 16. The distribution of normalized singular values of
buses:(a),(b) and (c) represent the travel patterns of workdays; (d),(e) and
(f) represent the travel patterns of weekends; (g),(h) and (i) represent the
travel patterns of holidays.

FIGURE 17. The distribution of normalized singular values of
trucks:(a),(b) and (c) represent the travel patterns of workdays; (d),(e) and
(f) represent the travel patterns of weekends; (g),(h) and (i) represent the
travel patterns of holidays.

capitalizing on attractions like the Yuelu Mountain Scenic
Area.

By examining spatial variations in travel patterns,
we enhance the semantic understanding of OD flows for
commercial vehicles, allowing for a deeper exploration of
the interplay between spatial distribution and functionality.
On workdays, commercial vehicle movements are primarily
driven by dining, education, and commuting needs, with
a notable increase in visits to shopping centers in the
evenings. Restaurants are predominantly centralized in the
urban core, while educational institutions are situated more
on the periphery. During weekends, significant spatial shifts
are observed in educational areas during the morning peak.
Concurrently, there is heightened demand for travel to
restaurants and shopping malls throughout the day and
evening, with a noticeable expansion from east to west.
On holidays, pronounced interactions are noted between
accommodation and dining zones, especially in proximity

VOLUME 12, 2024 91459



J. Qin et al.: Spatio-Temporal Perspective on Commercial Vehicle Travel Patterns

to major transit hubs such as Changsha Railway Station,
Changsha South Railway Station, and Huanghua Airport.
This trend indicates a preference among tourists for lodging
in areas with convenient citywide accessibility.

Our study’s categorization of functional areas was based
on POIs, revealing a data gap in Changsha’s suburbs.
Future research should incorporate additional data like road
networks, population density, or remote sensing to classify
these areas better. Furthermore, constructing the OD matrix
with varied dimensions such as time, distance, or duration
could provide more nuanced insights.

APPENDIX
See Figures 16 and 17.
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