
Received 11 June 2024, accepted 24 June 2024, date of publication 1 July 2024, date of current version 9 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421582

LowPaxos: State Machine Replication for Low
Resource Settings
ALEX MWOTIL 1, THOMAS ANDERSON 2, BENJAMIN KANAGWA 1, THEANO STAVRINOS 2,
AND ENGINEER BAINOMUGISHA 1
1College of Computing & Information Sciences, Makerere University, Kampala, Uganda
2Paul G. Allen School of Computer Science, University of Washington, Seattle, WA 98195, USA

Corresponding author: Alex Mwotil (alex.mwotil@mak.ac.ug)

ABSTRACT State Machine Replication (SMR) is a popular framework for building highly available fault-
tolerant systems, and widely uses distributed consensus as an implementation approach. Consensus protocols
usually require a leader replica to coordinate the actions of other members in ensuring that the sequential
command log to retrieve and update the state of the system is consistent despite failures. These protocols
often assume homogeneity of the deployment environment and resource capabilities of all replicas each with
an equal chance of leadership. However, challenged environments are mostly heterogeneous and the choice
of a good leader can offer better performance. This paper introduces LowPaxos as a distributed consensus
protocol for challenged environments. LowPaxos uses the computing and network capabilities of the replicas,
and operational environment to designate the best leader, and adapt accordingly to changes characteristic
of these settings. LowPaxos is evaluated against both leader-based (MultiPaxos) and leaderless (EPaxos)
protocols and demonstrates performance gains of upto 5X and 2X respectively in a heterogeneous challenged
setting.

INDEX TERMS State, replication, resource-constrained, challenged, low resource, consensus, distributed.

I. INTRODUCTION
State Machine Replication (SMR) is a popular framework
for constructing fault-tolerant and highly available distributed
systems. Given that the system components (clients and
replicas) often reside in disparate domains, they are suscep-
tible to various failures, including network communication
breakdowns, as well as hardware and software outages [6].
Distributed consensus has emerged as one of the main
approaches for implementation of SMR and has attracted vast
research interest for nearly four decades [1]. In the context of
SMR, replicas interact to maintain a synchronized command
log of client requests that modify or retrieve the system’s
state. These commands are executed in a deterministic and
sequential order on every replica, ensuring a coherent system
state despite failure. Typically, the ordering of the log is
coordinated by one of the replicas designated as a command
leader, that contacts a quorum of replicas as per the semantics

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani .

of the protocol. These leader-based protocols are prevalent in
most production systems due to their simplified design and
ease for recovery under failure [14]. A number of services
adopt the the SMR model including Apache Zookeeper [4],
Chubby [3], Redis [5] and etcd [2] to attain consensus
and offer a coordination function for a diverse range of
applications.

Leader-based protocols often assume homogeneity of the
deployment environment and resource capabilities of replicas
assigned to the leader role. Replicas have an equal chance of
assuming leadership, either through an election process or by
being the first point of contact with clients. This is generally
acceptable if each replica is able to perform and sustain the
leader function while meeting an application’s Service Level
Objectives (SLOs). However, heterogeneous environments
such as those in the developing world usually have non-
uniformity in processing and network capabilities. Leaders
have to communicate with a majority of replicas for consen-
sus, and hence their position and distance to other replicas in
the distributed system can significantly impact performance,

91272

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4683-1531
https://orcid.org/0009-0004-2951-0343
https://orcid.org/0000-0002-9056-3696
https://orcid.org/0009-0002-3107-0450
https://orcid.org/0000-0002-3304-4144
https://orcid.org/0000-0001-5924-5457

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

particularly for latency-sensitive applications. Additionally,
the leader serves as a traffic concentration and reference
point, and factors like its availability and processing power
are important considerations. Ideally, leaders should be at
the apex of the performance pyramid, more reliable/available
and have the least latency communicating with a quorum of
replicas required for consensus. The leader-based protocols
with homogeneous assumptions will perform at the speed of
the leader replica in a heterogeneous setting, which may be
the slowest in the system.

Leaderless or multi-leader protocols, such as Egalitarian
Paxos (EPaxos) [7], are primarily designed for heterogeneous
Wide Area Networks (WANs) to enhance throughput by
reducing commit latencies for non-interfering requests or
commands. This is achieved because the command leader
advancing a client request needs to contact only a minor
quorum of replicas for commits using a fast-path mechanism.
However, the performance of a leaderless protocol degrades
to that of a leader-based protocol when conflicting commands
predominate. In such cases, the command leader must contact
a majority of other replicas in a typical two-phase (slow-
path) cycle to reach a decision. In addition, each leader must
maintain a dependency tree of commands, which can grow
exponentially in high-load environments, thus requiring more
computing resources on each replica. It is assumed that each
replica can lead the state machine’s operations, but in some
deployments, certain replicas may be too slow to effectively
fulfill any command leadership role.

Challenged environments or low resource settings make
this problem worse. These environments often have resource
limitations in terms of processing and network capabil-
ities. Network failures are more common, and network
performance can be erratic. Replicas may exhibit varied
and degraded periodic performance. A leader may be a
good choice at one point in time, and not some time later.
To better understand this environment, a 5-node distributed
cluster is set up in various cities in Africa. The nodes run
Paxos, a leader-centric distributed consensus algorithm, for
approximately 24 hours and a client configured to issue
requests over this duration. Figure 1 shows the 99th percentile
latency plots for Paxos. While the optimal (minimum)
latency is typically 72ms over this duration, there are periods
of significantly higher latency. The nature of challenged
environments dictates that conditions can shift unexpectedly.
These conditions usually necessitate leader role changes as
long-term replica leadership can affect performance. The
inability of Paxos to detect and adapt to these changes can
further drain application performance. It is important to
consider and adapt to the dynamic properties of a challenged
environment in the design of SMR protocols for these
settings.

This research introduces LowPaxos, a ‘strong leader’
adaptation of the Paxos consensus protocol designed for
challenged environments. The protocol uses the performance
attributes of the replicas to determine the best leader and
continuously evaluate and adapt to the dynamic conditions

FIGURE 1. The 99th percentile latency plots of Paxos for a approximately
a 24-hour duration. The optimal (minimum) latency is typically 72ms over
this duration but there are periods where this is significantly higher.
Challenged environments exhibit dynamic behavior especially in the
network properties and the inability of Paxos to detect and factor these
in leadership can degrade application performance with some results
indicating higher latencies of upto 8500ms over some request-response
cycles.

of these environments. LowPaxos represents the relative
strength of a replica using a profile - a value computed based
on its performance attributes such as link capacity, network
latency and packet loss against other replicas and their
weights as assigned by a system operator. Other attributes
include the replica’s probability of availability and speed
(processing power) based on response time and available
resources. The election of a strong leader closely follows
the quorum consensus logic. A candidate replica contacts a
majority of other replicas with profile information asserting
its suitability for the leadership role. Other replicas will
vote if the profile of the candidate is superior to the local
replica profile. If successful, the replica leadership lease
is maintained within the system consensus operations and
additional election logic. For example, a group of rebel
replicas are primed for leadership and will monitor the
performance of the leader. Other replicas designated as
witnesses also receive heartbeats from the leader. If the
performance drops below a defined threshold, a new election
round is initiated. In the best case, no election is required if
the current leader is still strong. In summary, LowPaxos aims
to:
• Establish a strong leader for the replica system based on
a profile-driven election.

• Adapt the operation of the replica system to dynamic
changes of challenged environments.

• Improve the overall performance of the system by
increasing the throughput and minimizing latencies for
operations in an heterogeneous setup.

LowPaxos strives to attain performance gains, including
throughput and latency, compared to both leader-based (up
to 5X improvement for MultiPaxos) and leaderless (up to
2X improvement for EPaxos) protocols in a heterogeneous
challenged setting. The remaining sections of this paper are

VOLUME 12, 2024 91273

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

organized as follows: Section II provides a background for the
study, Section III contains related work, Section IV describes
the LowPaxos protocol, Section V presents the evaluation of
LowPaxos in comparison to other protocols and Section VI
concludes the paper. The terms ‘replica’, ‘node’, ‘server’ and
‘component’ shall be used interchangeably.

II. BACKGROUND TO THE STUDY
Fault-tolerance is an important design characteristic of
production systems today. This is because large scale systems
are inherently vulnerable to faults, that range from software
bugs to communication and hardware malfunctions. The
components of such systems are often distributed across
various geographical locations, thereby expanding the fault
domain. Even within the same locale, the components are
not immune to failure. Consensus protocols play a key
role in ensuring both high availability and correct operation
of distributed systems especially in the face of failures.
This allows for development of complex applications built
on top of consensus, using the Replicated State Machine
(RSM) abstraction. At the application level, RSM operates
without concern about failures of supporting components.
The following subsections provide an overview of consensus
algorithms and highlight adaptation issues for challenged
environments.

A. CONSENSUS ALGORITHMS
Consensus algorithms involve a group of nodes or processes
coordinating to agree on a sequence of actions and the final
state of a system, even in the face of potential failures such
as delayed, reordered, or lost network messages, as well as
node failures. Given an ordered sequence of operations or
commands, the nodes communicate to propose, agree, and
commit to a specific value or decision, while upholding the
safety and liveness properties of the protocol. One or more of
the nodes in the systemwill act as the leader and is taskedwith
advancing commands towards agreement and subsequent
execution. As these protocols have evolved, there has been
a shift in design focus towards optimizing performance,
aiming for low latency and high throughput, and adapting
to the context, whether it’s a data center, a local area or
wide area network. Consensus protocols find applications
in various domains, including distributed databases and file
systems. RSM builds on consensus protocols to ensure that
distributed processes, or replicas, maintain an identical state.
This synchronization enables client operations to read from
and update a consistent state. Leslie Lamport’s Paxos is one of
the most renowned consensus protocols owing to his seminal
work in this field [36].

Paxos designates proposer, acceptor, and learner roles
to replicas to service client requests. It also defines two
phases: Phase 1 (Prepare) and phase 2 (Accept). The client
sends a request (command to retrieve or update the system
state) to one of the replicas. The recipient replica will act
as proposer (leader) for this request and will send proposal
messages for each request (or request batch) to the rest of the

FIGURE 2. Normal operation of the Paxos protocol on a three-node
system. The leader replica is in charge of moving the request through the
different stages until a response is provided to the client. For each
message sent to the replica members and corresponding responses, the
leader requires a majority in order to maintain both correctness liveness
and safety.

replica members (acceptors) as shown in Figure 2. Unique
identifiers are assigned to messages for liveness and conflict
resolution. The success of the leader request will depend on
the number of acceptors that concur with the proposal. The
leader requires responses from a majority of the acceptors
(including itself) before it can propose a value or request
a commit of an operation. This is the prepare phase of the
protocol. As with the proposal request, the leader needs a
majority of responses from the acceptors for the proposed
value (commit message) in order to provide a response to the
client. This is the accept phase of Paxos. Other replicas that
may not have been part of the decision will eventually learn
in subsequent operations. Paxos guarantees of liveness and
safety of a RSM are formally verified.

For each client request, Paxos requires completion of
the two phases (and hence 2 Round Trip Times (RTTs)).
The prepare phase of Paxos is typically being used for
election of a leader for a given request. Optimizations of
the Paxos protocol such as MultiPaxos introduce a stable or
distinguished leader that can propose multiple values without
the need for a rerun of the prepare phase. The leader can be
elected in advance or on receipt of an initial client request.
As with other replicas, the leader may fail, and if so, a new
one should take over the role while ensuring that consistency
is not compromised. When the old leader rejoins the system,
the state of the system could have advanced and will need
to learn other previous operations through state transfer from
updated replicas. If stable storage is used, only a portion of
the state is requested by the replica. In an heterogeneous
setting, the choice of the leader is important as its speed and
latency to reach other replicas can affect the performance of
the system. In Figure 2, the leader and Replica 1 are more
strongly connected compared to the leader and Replica 2. The
network latency between the leader and Replica 1 is lower
than that between the leader and Replica 2, since Replica
1 receives and responds to the message first. It is also possible
that the performance of the system (throughput) is higher with
Replica 1 as the leader. Hence, the decision on which replica
should be the leader is important.

For most consensus protocols, resource considerations are
often only partially addressed or, in some instances, entirely
overlooked. This might be acceptable in environments where

91274 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

operators exert more control over infrastructure and nodes
exhibit a high degree of homogeneity. However, the growing
trend towards edge-driven and microservice applications
introduces some form of heterogeneity to distributed system
setups. In these settings, determining which replica should
assume the role of leader is a critical decision. Are there
specific resource-related factors that need to be considered
when choosing a leader? Moreover, how should the system
react when resource parameters experience variability?
Additional insights are provided in Section II-B with a
reference environment of a low resource setting.

B. LOW RESOURCE SETTING
Low resource computing environments (challenged or
resource-constrained) are faced with technological and
resource challenges [18] in data and compute (resource qual-
ity and quantity) and network (network partitions, capacity
and cost limitations) that complicate the design of high
performance and available distributed applications. Public
cloud computing providers such as Amazon, Google and
Microsoft have no infrastructure in most resource constrained
environments [19], [20] due to setup costs, demand, market
dynamics and other contextual challenges. Consequently,
there is high reliance on low resource data centers that
are unreliable due to power and network outages, run old
hardware and have limited processing power. Even with
better resources, network communication between locations
is inconsistent. In other cases, performance is sacrificed for
availability by entirely relying on distant dense resource
pools of the public cloud. More specifically, these properties
(R) include available compute resources (CPU (C), Memory
(M) and Disk (D)), network (throughput (T), packet loss
(J) and latency (L)) and the network reachability (A) of a
node. Collectively, these properties can affect the design and
operation of distributed systems that serve clients or users in
these settings.

In addition, the operational environment of a low resource
setting is dynamic. The network properties are variable, and
in the extreme case the network is unavailable and hence the
reliant nodes. A profile is the resource strength of a node to
lead a group of other replicas, with a higher value over others
denoting its superiority. It is a sum of the weighted properties
of a node’s resources and network communication metrics.
A node performs a series of network measurements against
other node members and records the throughput, packet loss
and latency values. The nodes additionally probe each other
to determine the availability/reachability status. Each of these
attributes is weighted as per its importance to the operation of
the system. The profile of a node against another is computed
as shown in Equation 1. For a 5-node cluster located in
different cities in Africa, a series of network, computing
resource and availability measurements are performed and
profile computations recorded. Figure 3 shows the profiles
of the other 4 locations relative to the Dar-es-Salaam node
plotted over a 24-hour period. For example, the performance

FIGURE 3. The profile evolution of locations JHB, KLA, LSK and TRO with
respect to DAR over a 24-hour period. The profile is computed according
to Equation 1 with a higher value indicating superiority. The performance
of TRO is worse compared to the other three locations. For some
locations, the profile is rather uniform but for most it is usually variable.
The leader may vary over time in a leader-based SMR protocol for these
environments.

FIGURE 4. Related Work - Distributed consensus algorithms can broadly
be categorized into leader or leaderless (multi-leader) variants and
usually are designed for specific network environments.

of TRO is much worse in comparison to KLA, JHB and
LSK. The heterogeneity of challenged environments due
to hardware, data center and network attributes leads to
the profile variations shown and validates the need for
property-based election of a strong leader, and its subsequent
configuration of its desirable replicas for quorum.

Weighted profiles have been used for leader election
before under different contexts and for different use cases:
ring networks [21], Software Defined Networks (SDNs)
[22], Swarms [23], [24], Asynchronous communication
networks [25], Wireless sensor networks [26], [27], Internet
of Things (IoTs) [28], [29], Security [31] and personal
distributed environments [30]. LowPaxos uses weighted
profiles to determine the initial distinguished leader replica,
and continually assess its performance and capability to
sustain this function. The leader replica is changed when its
performance degrades below a defined threshold.

III. RELATED WORK
Egalitarian Paxos (EPaxos) [7] is a leaderless protocol
that uses command interference properties to determine the
execution path of a command in the wide area replication
systems. It defines two paths: slow and fast. The slow path

VOLUME 12, 2024 91275

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

takes the typical Paxos Propose-Prepare-Commit-Accept
phases for conflicting commands. The fast path improves
performance by requiring only (f + (f + 1)/2) of the replicas
to agree on the command slot. EPaxos delivers optimal
commit latencies in a WAN in some cases, and can exhibit
worse behavior than centralized approaches if: (i) there is a
high percentage of command conflicts and (ii) the command
requests are sent from diverse locations. MultiPaxos can
outperform EPaxos in latency under high conflict rates [8].
In LowPaxos, a better centralized leader can provide even
better performance especially for diverse and conflicting
requests.

MultiPaxos (MPaxos) [9] and LowPaxos rely on an elected
leader to coordinate actions. More specifically, Paxos and
its derivatives such as Viewstamped Replication (VR) [37],
[38] take the blind leader approach to progress the RSM.
Clients send command requests to any of the replicas from
which proposals for command slot leadership are advanced.
The replica contacted could be at the tail of the latency chain
amongst the participants. In addition, the progress of the RSM
is dependent on 2 Round Trip Times (RTTs) between the
command leader proposer and a majority of the members.
This can potentially affect the performance of the system
and in the worst case, the RSM operates at the speed of
the slowest replica. In as much as both rely on the single
leader, it is imperative to make strategic decisions on this
position. In addition, LowPaxos considers the capabilities
of the replicas and designates responsibilities accordingly.
Raft [10] decomposes the consensus problem into leader
election, log replication and safety for better understandabil-
ity. It additionally provides for cluster reconfiguration and
log compaction. LowPaxos is partly an optimization of Raft
with capability assignment of roles to the replica members
as dictated by the strong leader. LowPaxos introduces a a
new form of leader election based on the conditions of the
operating environment.

In Mencius [11], the WAN replicas are partitioned to
lead specific instances of the replicated log for improved
overall performance of the system. The assumption is that
all the replicas have ability to lead and advance requests
for their collocated clients. It is also expected that the local
replicas continue operating normally for the most times. The
local availability of the system is tagged to the operational
status of the local replica. In a low resource setting, there is
additional complexity in managing state and conflicts given
the resource disparities of the replicas. The load-balancing
features of Mencius are partly vested in the role designation
function of LowPaxos. The assumption is that the rebels
perform equally important consensus decisions of the RSM
as potential leaders. To further provide for shared load, one
approach is to shard the leader role. This is most appropriate
for much wider area networks with better and more disparate
resource footprints, and is planned for future work. The
operations can be classified as per their requirements, for
example introduce different leaders for CPU and network
intensive operations.

In CoPilot [12], replicas exhibit heterogeneous behavior
in which slowdowns are possible due to changes in the
network and host-related issues. It is a multi-leader (pilot and
copilot) variation of EPaxos [7] and MultiPaxos (MPaxos)
[9]. The complexity of maintaining additional dependency
state between the pilot and copilot could potentially affect
the performance of the RSM. In addition, the evaluation of
CoPilot does not consider a WAN environment where clients
could be collocated with the slowest replica. LowPaxos
builds on the CoPilot heterogenous behavior of replicas to
determine the faster long-term leader and subsequent roles of
the remainder replicas relative to the leader resource strength.
In most cases, the slow replicas are at the tail end of the
ordered configuration.

Other RSM protocols such as NoPaxos [16] and Spec-
Paxos [15] require considerable control over the participants
or the underlying communication channel, and provide sig-
nificant performance improvement in the data center. Flexible
and variable quorum-based protocols such as FPaxos [13],
EdgePQR [17] and WPaxos [14] have also been advanced -
these are classical Paxos algorithms with quorum relaxations
at the different phases of Paxos. The implementations require
multiple replicas at the WAN (zone) sites that form the major
quorum part of consensus for client requests originating from
the same location. LowPaxos considers environments with
limited edge resources to run multiple replicas of the system.
In addition, there is little control over the environment and
communication is mostly over the asynchronous Internet.

IV. LOWPAXOS
LowPaxos is a derivative of Paxos that specially draws
inspiration from the Viewstamped Replication (VR) [37],
[38] variant of MultiPaxos. Monitoring, leader election,
reconfiguration and recovery are integral elements of the
protocol as shown in Figure 5. This section provides a
description of LowPaxos and its consistency quarantees in
challenged environments.

A. PROFILES
The profile is a cumulative property of the weighted attributes
of a pair of nodes in the system and the network environment.
For a set of nodes (n) in different locations of a low resource
setting, the profile for a pair of nodes (i & j) is computed as
shown in Equation 1.

Pi,j =
i,j=n∑
i,j=1

WR.Ri,j, Pi,j = 100 ∀(i = j) (1)

R ∈ (Compute,Network,Availability) (2)

0 ≤ W ≤ 1, 0 ≤ Pi,j ≤ 100 (3)

For Compute between a pair of nodes;

Ri,j =
∑ Ri.WR∑

(Ri,Rj)
,R ∈ (C,M ,D) (4)

For the Network, the ideal throughput should be maximal
while latency and packet loss should be minimal. For all

91276 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

FIGURE 5. LowPaxos is composed of the monitoring, leader election,
configurator and the distributed consensus algorithm. Monitoring
provides the profile information required for elections and role
distribution by the configurator.

network measurements recorded, the maximum throughput
(Tmax, minimum latency (Lmin) and minimum packet loss
percentage (Jmin) are recorded. The network profile between
a pair of nodes i and j is then computed as follows
(Equation 5):

Ni,j =
∑

WR.(
Ri,j
Rmax

∨
Rmin
Ri,j

),R ∈ (T ,L, J) (5)

On availability, each node keeps track of uptime values for
each member. For a number of values k, the mean availability
value is computed as shown in Equation 6. The availability,
A, of a node indicates its uptime probability with respect to
another member.

Ai,j =
(
∑n=k

n=1 An)
k

, 0 ≤ An ≤ 100 (6)

Equations 4, 5 and 6 provide computing resource, network
resource and availability profiles of a given node against
another in the distributed system. These profiles may be
aggregated by percentiles.

Table 1 outlines the symbols used and their short
descriptions.

The compute resource consumption of a node and network
measurements to other nodes is pushed to a Monitor replica.
The assumption is that this replica is highly available
to all nodes. The profile computations are managed by
the monitor and retrieved by a node when required. For
improved performance, profiles may be cached for a defined
period of time before being marked as stale. In this case,
a node will request for new profile information from the
monitor.

TABLE 1. Description of symbols used.

B. DESIGN AND IMPLEMENTATION
A LowPaxos replica has a unique identifier in the system
and maintains internal state for both leader election and
consensus operations of the state machine. Each replica has
a ballot(x, y), a tuple that contains the leader term (x) and
the next operation slot (y) numbers. The leader term is
predominantly used for election-related functions. The slot
number is used to propose the ordering of a client request.
A new term signifies a successful election cycle or leader
assertion. In leader assertion, a replica affirms its strong case
to maintain its leadership role in case it has been incorrectly
marked as offline or with a degraded profile. The ballot is
incremented to indicate a new leader term or client request
that needs to ordered in the log. A ballot is fresh if a replica
can confirm that the term is known and the slot number is the
next expected. The ballot ensures that replicas are acting on
fresh information and hence guarantee progress of the state
machine. Replicas maintain additional state including leader
and vote information of the last election, local replica status
and the role played at a given point in time.

The replica is initialized as a member and must transition
to one of the operational roles: leader, rebel, or witness
in order to process requests. After a successful election,
the new leader sorts the remaining replicas based on their
profiles with respect to it and assigns roles. These roles
are part of a configuration sent to the members. The
leader role involves overseeing all consensus operations and
providing responses to clients. A rebel replica is poised
to assume leadership if the leader’s profile degrades or if
the leader becomes unreachable. Rebels generally maintain
synchronization with the leader regarding state information,
and are usually more advanced in commit and execution
actions. Witnesses actively participate in elections and
log operation ordering but do not execute operations on
the state machine. LowPaxos defines five distinct modes
for a replica’s operation: INITIALIZATION, ELECTION,

VOLUME 12, 2024 91277

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

CONFIGURATION,RECOVERY, andNORMAL. The default
mode for a replica is INITIALIZATION. Replicas engaged
in leader voting processes switch to the ELECTION mode.
When a replica detects that its leader information is outdated,
as indicated by the ballot in one of the received requests,
it transitions to CONFIGURATION and requests updated
information from the new leader that contacted it. The new
information typically necessitates the replica to additionally
request for new state from the leader, and hence will first
transition to RECOVERY. The ultimate and fully operational
mode for a replica is NORMAL, where it can process
requests.

A configuration (Config(ballot, n, f, Reps)) in LowPaxos
contains the ballot, the number of replicas (n), allowable
faults (f) and replicas information (Reps). The ballot is used
to guarantee the freshness of the configuration message. The
Reps (id, role) is a vector of replicas with their identities
and the roles as ordered by the leader. A replica utilizes
this role information to discern its capabilities in the context
of the consensus operations within the system. The replica-
specific information is also used to calculate the required
quorum size for consensus. At the inception of the protocol,
each replica is provided with an initial configuration denoted
as Config 0. When a new leader is elected, it generates a
configuration Config n that it shares with the rest of the
replicas. Furthermore, a leader can create a new configuration
if it is erroneously marked as offline or incorrectly deemed
as having a lower profile compared to the rebels. A replica
may also explicitly request a new configuration if there are
higher terms than known in new messages received. The
configuration may introduce role transitions, for example a
witness replica promoted to a rebel. In this case, the witness
replica will have to execute all previous operations while
optionally requesting for an updated state from the current
leader.

Consensus protocols leverage timeouts for various pur-
poses, including elections, request processing, and failure
detection. In the context of elections, LowPaxos employs
timeouts to initiate the default or initial election process
within the replica system. Additional timeouts are utilized
to ensure that an election eventually results in a new leader.
The leader, once elected, operates with a term lease timer to
periodically provide liveness updates to the other replicas.
Conversely, a rebel or witness employs a heartbeat timeout,
within which it anticipates communication from the leader.
A rebel maintains an additional poll timer to proactively
verify the availability status of the leader replica. If no
response is received within the heartbeat or poll timeouts,
a replica will flag the leader offline. As part of its liveness
and assertive assurance to the remaining replicas, the leader
includes profile information. The profile information is used
to periodically assess the performance of the leader and its
continued leadership role. The timeouts associated with the
leader status are reset upon receiving any message from
the leader. The remaining timeouts are primarily used for
processing of client requests.

Each client request has a unique request identifier assigned
by the client. Upon receiving a request, the leader assigns
an operation number. Each replica maintains a log vector
indexed by the operation number, which can begin at any
arbitrary value. This log comprises entries corresponding to
requests received by the replica, either directly from clients or
as proposed by the leader. Each entry is uniquely identified
by the slot number and includes the request, along with
an optional response. The status of an entry can be one of
the following: Request (the initial status upon client request
receipt), Propose (indicating the request has been logged,
and the leader is proposing it to other replicas), Proposed
(signifying that one or more replicas have acknowledged the
leader’s proposal), Committed (a quorum of promises has
been received at the leader and the replica has received the
commit message from the leader), or Executed (the request
has been executed on the state machine). When the request is
executed, the result is logged, and a response provided to the
client.

The replicas in LowPaxos communicate via message
passing over User Datagram Protocol (UDP). A message
includes metadata (wrapper) that specifies its type, for
example, whether it is a commit or a vote request message.
Depending on the type, additional information is included
as per the semantics of the message. This message is
then serialized and sent over the transport channel. The
transport channel provides for point-to-point and broadcast
messages. For internal replica communication (such as
timeout triggers),Multiple Producer Single Consumer (mpsc)
is exclusively used to transmit messages. For message
processing, LowPaxos defines two message channel types:
Network (UDP) and TX (mpsc). When a network message
is received on the local buffer, the replica mpsc transmitter
sends the message to the mpsc receiver. For network
messages, the receiver retrieves the wrapper and message
contents and forwards to the handler for further processing.
Messages invoke handler operations at the receiver and are of
election, consensus or liveness types.

Algorithm 1 describes how LowPaxos works. LowPaxos
is implemented in Rust with ≈7K Lines of Code (LoC)
with ≈1.8K for leader election and ≈5.2K for consensus
operations.

1) NORMAL OPERATION OF LOWPAXOS
The normal operation of LowPaxos proceeds as shown in
Figure 6. LowPaxos is a leader-based protocol and will
require that a strong leader has been elected and is available
before requests can be processed. The replicas use their
ballots, roles and peer profile information from the Monitor
to request for votes. A candidate changes its status to
ELECTION and sends a RequestVote(ballot, profile, role,
type) message to each of the members. The role is used
to validate the type of election that a replica has initiated.
LowPaxos defines five types of elections:
• Default: When replicas start, a random timer is initiated.
At the expiry of this timer, a replica issues the vote

91278 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

FIGURE 6. The normal operation of LowPaxos: A client sends a request to the replica system

which eventually ends at the leader . The leader increments the slot number in the ballot, logs

the request and sends a proposal to the replica members . The members validate the proposal

and provides a response to the leader . The leader needs a quorum of responses to commit the

operation and subsequently execute it on the application . The leader will then provide the

result of the execution to the client and sends the commit message to the members . The

members will update the log accordingly and the operation is executed by only the rebel replica
members. Using the ballots, the replicas my get outdated and will need to request for new state

from the leader . The leader will provide a section of the state as per the request to the most

recent commit that will be executed by only the rebel replica .

request. On receipt of this request, a replica confirms
the freshness. A replica will provide a vote response
if the profile of the source replica matches the local
value or is better. Otherwise, the replica will temporarily
change its role to a rebel and start a timer within which it
will either expect to receive leader information, or start
a new timeout election type. Replicas that have voted
will also expect leader information within a timeout
period before ultimately starting the degraded election
type. The timeout election takes precedence and hence
the timer is shorter. The randomness of this election
type reduces possibilities of conflicts at the start of the
protocol and is similar to Raft [10] in operation. The
main role of the default election type is to trial the
possibility of electing a leader within the first round
as a fast path. While this may not be achieved, other
election types provide more opportunities for electing
a leader.

• Timeout: Only a rebel can start this election type after
an unsuccessful default election type. The chances of
electing a leader at this stage increase as there is at least
a replica that will provide a vote response. A similar
or newer ballot term is allowed for vote processing.
The recipient replicas check this ballot property and

subsequently the profile information. As before, new
rebel replicas may be created that could potentially
restart this election type or a vote response is provided
to the source replica.

• Profile: As replicas communicate in the lifetime of an
application, profile variations are a norm in challenged
environments. The current leader performance may
degrade and is not the best choice going forward.
A threshold is defined on what is an unacceptable
degradation in the performance of the leader. Profile
information is shared in two ways: the leader includes
it in heartbeat messages sent to all replicas and in
responses to status checks (polls) by the rebels. The
recipient replica compares the profiles and if outside
the threshold will initiate the profile election type. If a
leader receives this election type request and confirms
that its profile is indeed degraded, it will change its mode
to ELECTION and provide a vote response. The leader
also sets a timer within which the rebel is expected to
have attained leadership. If the leader doesn’t receive
new leader information or still has a better profile, it will
assert its leadership role by increasing the term in the
ballot and sending the new configuration to the rest of
the replicas.

VOLUME 12, 2024 91279

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

• Offline: As with the profile election, the leader main-
tains its liveness position by providing regular heartbeats
and poll responses to the replicas. The leader defines
a lease timer after which it broadcasts the heartbeat
message. The replicas also define the heartbeat timer
within which they will expect to hear from the leader.
The rebels take a step further: poll the leader at
much shorter intervals and expect a response. General
heartbeat messages from the leader reset the poll timers.
The leader will assert its leadership position if it receives
this election type.

• Degraded: The degraded election mode is provided
to ensure progress in the election of the leader. This
is similar to other leader-based consensus protocols
as the profile information is not used in an election.
Any replica in the system has an equal opportunity for
leadership given it has the most current state. LowPaxos
will use the profile election type at some point of the
transaction to ensure that a better leader is eventually
elected.

A LowPaxos client has a unique identifier and keeps track
of its request and leader information. The client is started
with the default configuration Config 0 and will send the first
request to a random replica. The leader replica only provides
responses to client requests. For each response received, the
leader information may be updated at the client. The request
information is a vector of requests each with a status flag
and the instants at which it was sent and response received.
The client sets a timeout for each request after which it will
be resent to the leader or another random replica. The client
assigns a monotonically increasing identifier, generates the
payload as REQUEST (id, operation) and sends it to the
replica system. The rest of the request processing proceeds
as follows:

1) The leader receives the request and proposes it to
the members. If a non-leader replica receives a client
request, it forwards it to the last known leader, which
ultimately provides a response to the client if valid.
The leader adds the request as an entry to its log
with the status PROPOSE, and subsequently sends the
Proposal message as PROPOSE (ballot, request) to all
the replicas. The proposed slot number in the ballot is
incremented for each new request.

2) When a replica receives the proposal message, it veri-
fies that it is from a known leader in the current term.
It additionally checks for the validity or freshness of the
request as per the ballot in the message. If all the checks
pass, the replica will add the request to the log with
status PROPOSED and provide a response to the leader
in a PROPOSEOK (ballot, commit_index) message.

3) The leader requires a majority of PROPOSEOK
messages to proceed with the commit and execute oper-
ations of the state machine. For each message received,
the leader checks that the request has been previously
logged with the PROPOSE status and continually
checks for quorum. Once a quorum is reached, the

leader replica updates its ballot, the operation number,
and execution index. It then executes the operation
and responds to the client. The log entry is also
updated to reflect the COMMITTED and EXECUTED
status, along with the result of the operation call. The
leader sends the commit message (COMMIT(ballot,
commit_index)) to all replicas. When a replica receives
this message, it verifies the freshness of the ballot
and confirms that the operation had been previously
logged. The replica also has to ensure that all previous
proposals have been committed requesting for state
transfer where necessary. A rebel replica performs
similar actions as the leader but does not provide a
response to the client. The witness replica only logs the
operation and sets its status to Committed.

4) The leader replica provides the result of the execution
of the operation to the client. The client, upon receiving
the response, updates the status of the corresponding
request to prevent further redundant processing.

There are possible deviations from the normal processing
of requests that can be encountered at any stage of the
protocol. These issues and how LowPaxos can handle them
to ensure a consistent state of the application are discussed in
the next subsection (IV-B2).

2) RECOVERY IN LOWPAXOS
LowPaxos relies on the ballot, decision quorums, profiles
and various attributes of a replica state (such as the replica’s
operation state when a request is received) for a consistent
and high performance state machine. A replica operating in
the normal mode will handle requests from known or higher
terms, and strictly higher slot numbers. The replica’s role at
the time of request receipt dictates the subsequent course of
action. If the term in the replica’s ballot is lower than the one
in the incoming proposal, it suggests that a new election has
been successfully completed without the replica’s awareness.
Additionally, a new configuration has been generated and
the replica will change its status to CONFIGURATION
and request for this update from the leader. If the next
slot number in the proposal ballot does not correspond to
the replica’s, then one of the replicas will require transfer
of the log from the leader. A replica will change its
status to RECOVERY and send the REQUESTSTATE(ballot,
commit_index) message to the leader. The leader is also not
immune to failure, for example in cases where it is isolated
or marked offline by most replicas. The ballot information of
subsequent interactions will dictate the operational status of
a given replica and the next course of action. When a leader
realizes that it is stale, it transitions its role to a rebel and
mode to CONFIGURATION and requests for updated state
information from the new leader.
The rebels will realize that the leader is unreachable if it

does not respond to the periodic polls or send heartbeats while
the witness only needs the heartbeat timeouts. A leader will
be marked as unavailable and a replica will change its mode
to ELECTION, and issue an offline election type request with

91280 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

a new term. If the current leader receives the vote request,
it will assert its leadership role by updating to a new term,
creating a new configuration and sending it to the rest of the
replicas.

a: PERFORMANCE DEGRADATION
The leader includes profile information in the poll responses
and heartbeat messages sent to the replicas. If the per-
formance of the leader degrades, then the replicas have
to determine its degradation level in comparison with the
recipient profile. A threshold is defined beyond which a
replica can initiate another round of elections. The replicawill
change its mode to ELECTION and issue the profile election
type request. When the leader receives this election request,
it has to confirm that its performance has indeed degraded.
If the performance of the leader is still acceptable, the leader
will update its ballot term and create a new configuration to be
sent to the replicas. If performance is confirmed as degraded,
the leader changes its role to rebel and mode to ELECTION
and checks the ballot of the replica seeking election. If the
commit stage of this replica is behind, the leader (now rebel)
will explicitly transfer the log and request it to restart the
election type. Additionally, the leader will set a timer within
which it will expect another election request or configuration.
If there is a timeout, the leader will resume its role and
continue processing client requests.

b: LOG TRANSFER
Replicas may fail or become unreachable and are either fully
or partially involved in the state machine operations. At the
next leader transaction (client request, poll or heartbeat),
a replica may learn of this state. This requires that replicas
request for new state or log data from the leader. The
replica changes its mode to RECOVERY and issues the
REQUESTSTATE message containing its current ballot and
commit index. The additional request attributes ensure that
the leader only provides a subset of the log to the replica.
The leader confirms that the replica is outdated, retrieves the
requested log portion and sends it to the requesting replica
in form of a LOGSTATE(ballot, commit_index, log). The log
contains the data from the commit index of the request to the
current commit index of the leader.

The recipient replica determines that the received state is
valid (there is a part of it missing in its log). The replica
processes the state information from its last commit index
to that in the received state message according to its role.
A rebel will commit and execute all the operations as it
increments its operation number, the commit and execution
indices. A witness only commits the received entries to its
log. After all these recovery actions are completed, the replica
will change its mode to NORMAL.

c: RECONFIGURATION
A number of role transitions are possible as a result of
elections, request processing and other exchanges between
replicas as shown in Figure 7. In a successful election,

FIGURE 7. Role transitions in LowPaxos. A member will transition to
leader, rebel or witness after an election. A leader transitions to a rebel or
witness after it has been marked as offline by a majority of replicas and a
new election has been successfully conducted. A witness can also be
promoted to a rebel or a rebel is demoted to a witness after the leader
reconfigures the setup based on new profile information. In most cases,
these transitions necessitate state transfer from the current leader.

a configuration is generated to assign the rest of the replicas
their respective roles. In the first election, the transition
from a member to a role does not require additional state
machine related operations. Subsequent configurations may
require transitions, for example, a witness promoted to a
rebel or a rebel demoted to a witness or a leader demoted
to rebel/witness. Promotions require that the replica requests
for a log portion from a leader if not updated with the latest
information. Additionally, the new rebel will need to execute
all operations committed if this had not been done before. The
execution index is used to track the last log entry to have been
executed by a replica. If a replica is demoted, the functions
associated with the role at that instant shall proceed normally,
with optional request for new state.

In a low resource setting, replicas may join or leave the
system. It is imperative that the leader keeps track of the
replicas to ensure that the configuration is updated. When a
leader receives a message from a replica, its alive status is
updated. The rebel status takes more precedence as this is a
potential leader. If the leader doesn’t hear from a rebel for
an extended period of time, it will create a new configuration
and broadcast it to the replicas. This necessitates a transition
of one or more replicas from witness to rebel and subsequent
log request and transfer. A new node joins the system by
sending a Join message to one of the available replicas
that will process (if leader) or forward it to the leader. The
leader creates an updated configuration and shares with all
the replicas. The role of the new replica will be witness but
can transition to either leader or rebel at latter stages of the
protocol.

C. LOWPAXOS GUARANTEES
LowPaxos provides the same guarantees as Paxos or Mul-
tiPaxos in both its leader election and consensus protocol
components. Stateright [34], an actor-based model checker,
is used to verify particularly the following properties:
• Non-triviality: Committed commands by the replica
system must have been issued by a client in form of

VOLUME 12, 2024 91281

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

Algorithm 1 LowPaxos Consensus Algorithm
Require: request, requestID,ComIdx,ExecIdx
Require: r ∈ ri, ri+1,rn; n; b; t; l; p; s; d ; o; R ▷

Replica r, n - number of replicas, b - ballot, t - election
type, l - replica role, p - profile, s - status of replica, d -
log or state at replica, o - operation number, R - leader
replica

Require: θ ▷ Profile difference threshold
1: procedure HandleRequest(ballot, request)
2: if ¬R then
3: StartElectionCycle(t)
4: else
5: if r ← R & s← Normal then
6: if NewRequest then
7: d ← request
8: Propose(b+ 1, request)
9: else

10: ResendResponse
11: end if
12: else
13: ForwardToLeader
14: end if
15: end if
16: end procedure
17: procedure HandlePropose(b, request)
18: if b← Fresh then
19: switch b do
20: case Next
21: d ← request
22: ProposeOk(b)
23: case Future
24: ProposeOk(b)
25: s← RECOVERY
26: RequestState(b,ComIdx)
27: elseRequestConfig(b)
28: end if
29: end procedure
30: procedure HandleProposeOk(ballot)
31: for request ∈ ProposeOk(b) do
32: if request ∈ d then
33: CheckQuorum
34: if Quorum then
35: Update(b, d, o,ComIdx)
36: result ← OperationCall
37: Response(result)
38: Update(ExecIdx)
39: Commit(b)
40: end if
41: end if
42: end for
43: end procedure

a request to one of the member replicas (leader, rebel
or witness). In addition, the commands must have been
proposed by a consensual leader.

44: procedure HandleCommit(b)
45: if b← Next then
46: switch l do
47: case Rebel
48: PerformOperation
49: Update(b, d,OpNumber)
50: Update(ComIdx,ExecIdx)
51: caseWitness
52: Update(b, d,OpNumber)
53: Update(ComIdx)
54: end if
55: if b← Future then
56: s← RECOVERY
57: RequestState(ComIdx)
58: end if
59: end procedure
60: procedure HandleStateRequest(b, idx)
61: if r ← R & s← Normal then
62: if b← Old & ComIdx > idx then
63: dp← d(idx1,ComIdx)
64: SendState(ComIdx, dp)
65: end if
66: end if
67: end procedure
68: procedure HandleStateReceipt(idx, dp)
69: for entry ∈ dp do
70: switch l do
71: case Rebel
72: PerformOperation
73: Update(b, d(entry),OpNumber)
74: Update(ComIdx,ExecIdx)
75: caseWitness
76: Update(b, d(entry),OpNumber)
77: Update(ComIdx)
78: end for
79: s← NORMAL
80: end procedure
81: procedure processVote(j, b) ▷ Replica r receives vote

from j
82: for responseVote(b) do
83: CheckQuorum
84: if Quorum then
85: r ← ‘R′

86: config← CreateConfiguration
87: end if
88: end for
89: end procedure
90: procedure processProfile(P1,P2)
91: if P1 ⩾ P2 then
92: true
93: else
94: false
95: end if
96: end procedure

91282 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

97: procedure StartElectionCycle(t)
98: procedure requestVote(i, b, l,Pi,j)
99: for j ∈ r do ▷When replicas receive the

requestVote
100: Pj,i← Monitor(i)
101: p← processProfile(Pj,i,Pi,j)
102: switch t do
103: case DEFAULTorTIMEOUT
104: if p then
105: voted ← i, b, t
106: return responseVote(b)
107: else
108: l ← ‘rebel ′

109: end if
110: case PROFILEorOFFLINE
111: switch l do
112: case leader
113: if θ then
114: l ← ‘rebel ′

115: s← ‘ELECTION ′

116: return responseVote(b)
117: else
118: assert(l ← R)
119: end if
120: case other
121: ProcessrequestasDefault
122: case DEGRADED
123: return responseVote(b)
124: end for
125: end procedure
126: end procedure

• Safety: There is total ordering of the commands as
issued by a client and proposed by the leader. Commands
are identified by a tuple of client and request identifiers.
In the proposal phase, an operation or proposal number
is assigned to the command and advanced as part of
the ballot for a consensus vote. All these identifiers are
incremented monotonically to ensure progression.

• Liveness: A proposed command will eventually be
committed by role-assigned members of the system as
long as a majority of the replicas are available. Further,
the commands are executed by the leader and rebel
replicas and a response will be provided to the client. For
a given term, a unique leader will ultimately be elected
to propose commands.

V. EVALUATION
LowPaxos is evaluated againstMPaxos and EPaxos as leader-
based and leaderless protocols respectively. The evaluation
will give a comparative idea of performance of the two types
of protocols in a challenged environment. The evaluation
sought to answer the following questions:

• How does LowPaxos compare with leader and leaderless
protocols in performance when deployed in an environ-
ment with low and variable resources?

• What are the performance implications of changes in the
properties of a challenged environment to a distributed
application deployed in these settings?

• How does LowPaxos recover under extremities of
challenged environments compared to MPaxos and
EPaxos?

To answer these questions, two environments were used:
A microbenchmark environment on CloudLab [32] and the
production setting composed of nodes in different data center
locations (cities) in Africa. Each environment consists of five
nodeswith themicrobenchmark environmentmore uniformly
distributed in computing and network resource setup.

A. EXPERIMENTAL SETTINGS
The production environment is mainly heterogeneous with
variations in compute resources (Table 2) and network
attributes. For example, the network latencies between nodes
range from 5ms to 350ms at best. The nodes in the CloudLab
environment are homogeneous 8-core 64GiB Memory HP
ProLiantM510 Servers connected over a Local AreaNetwork
(LAN) via Mellanox ConnectX Interfaces. The nodes are
installed with Ubuntu 18.04 LTS. The CloudLab environment
allows for on-fly modification of node properties as experi-
ments are run.

TABLE 2. Node Specifications for the Production Environment in Africa.

B. THROUGHPUT AND LATENCY
TheMPaxos and EPaxos implementations used for evaluation
are written in Go. In the initial experiment conducted
within the controlled CloudLab environment, the aim was
to compare the throughput and latency performance of the
three protocols in a homogeneous setting, particularly with
the inclusion of LowPaxos implemented in Rust. The network
properties for each node interface were configured to operate
at 1Gbps with a latency of 20ms and a packet loss of
0.0000001%. This is to introduce some arbitrary property
values in order to maintain a level of homogeneity. Both the
load generator (client) and replica nodes run with identical
specifications, and the client issues closed-loop requests. The
predetermined number of requests is sent, and measurements
of latencies are recorded and subsequently used to calculate
the throughput. Figure 8 illustrates comparative plots of
throughput and total latency for a number of requests for the
three protocols.

VOLUME 12, 2024 91283

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

At lower request levels, the throughput of LowPaxos
is initially lower but gradually catches up, ultimately
converging with the other two protocols. During periods of
low request volume, LowPaxos engages in leader election,
and the initial requests may be directed to a non-leader
node, thereby contributing to the lower throughput. However,
as the load increases, the throughput stabilizes, facilitated by
the establishment of a strong leader that allows the client
to communicate directly, resulting in sustained competitive
throughput. This observation implies that the Rust implemen-
tation of LowPaxos is not a significant influencing factor
in the next experiments. Additionally, the total latency plot
demonstrates that all three protocols operate within the same
range in the homogeneous setting.

FIGURE 8. In homogeneous settings, LowPaxos, MPaxos, and EPaxos
exhibit similar behaviors. During the initial election phase in LowPaxos,
the determination of a strong leader by a client results in reduced
throughput at lower request loads. As the request load increases, the
throughput of LowPaxos competes favorably with the other two
protocols. Notably, the total latencies eventually converge for all three
protocols in this controlled setup.

In the production environment, the client is positioned
within one of the five data centers. The protocols are
initiated, and the client issues 10,000 requests to the replica
system over a 220-second period. The results are depicted
in Figure 9. The election of the most suitable leader in
LowPaxos leads to lower request latencies, averaging 25ms
in its optimal scenario, compared to EPaxos at 60ms and
MPaxos at 135ms. This is mainly attributed to election of
a strong leader (usually centralized), allowing consensus to
be reached among most replicas in the shortest possible
time. In MPaxos, the selection of the leader tasked with
proposing commands may vary, and the most optimal choice
is highly probabilistic. In EPaxos, commits on the fast-path
can yield significant performance gains for non-conflicting
requests. However, conflicting requests expose EPaxos to the
leadership challenges of MPaxos.

C. RECOVERY
Recovery and adaptation to changing properties is an
important design consideration of a consensus protocol for

FIGURE 9. The 99th percentile latency plots for LowPaxos, MPaxos, and
EPaxos (10% command conflict) in the production environment over a
runtime duration of 220 seconds for 10,000 requests issued by a client in
one of the data centers. The election of a strong leader can significantly
improve the performance of a leader-based consensus protocol.
In MPaxos, this is probabilistic and and inversely proportional to the
number of replicas. EPaxos can perform better than MPaxos and
LowPaxos for non-conflicting commands issued by clients to the
immediate data center replica, but can suffer from MPaxos leadership
challenges for conflicting requests.

challenged environments. In the CloudLab environment,
the latency between the client and the replicas is set to
5ms and the network properties of the replicas varied
(Table 3) as 7,500 client requests are issued. The network
properties varied include the latency, packet loss and the
link capacity. The requests are issued with the default
network configuration and the link properties changed after
every 120 seconds as shown in Figure 10. In LowPaxos,
the changes lead to computation of new profiles as shown
in Table 4, and in most cases will necessitate a profile
election type if the current leader profile drops below a
threshold (10% in the experimental setup). The network
changes temporarily defaults the setup and hence the periodic
lower request latencies for each of the protocols under
consideration. In the default setup, the performance of the
three protocols in the first 120 seconds is similar given
the homogeneity of the environment, as shown in Figure 8.
From t = 125s to t = 270s, the degradation of the
network setup introduces performance changes with most
requests processed approximately within 220ms for all the
three protocols. This is because of the minimal variation
especially in the latency property of the three nodes required
for consensus. From t = 280s to t = 415s, further
changes to the network setup degrades the performance
with requests now processed approximately within 360ms
for EPaxos and MPaxos while LowPaxos completes within
280ms. LowPaxos will choose a leader amongst replicas 2,
3 and 4 to achieve this lower processing latency. After t =
415 s, the network setup is reset to the default and hence
similar performance expected henceforth. The latency drops
at t = 120s intervals is due to the change script deleting the
previous configuration before applying a new one. It should
also be noted that LowPaxos has higher latency spikes

91284 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

TABLE 3. Network property changes for the five replicas categorized into
three, with Setup 0 as the default configuration. The changes are
periodically made to the network interface using the Linux Traffic Control
(tc) utility tool.

TABLE 4. Replica profiles (10−2) for three network change setups in
LowPaxos. The profile values are computed using Equation 1 and the
network property values in Table 3. Other resource properties are kept
constant for all the replicas in the evaluation.

especially at the onsets of leader election, reconfiguration and
log recovery stages.

Further adaptation experiments are conducted in the
heterogeneous environment consisting of the five replicas
described in Table 2. These replicas run the three protocols,
with client requests issued at intervals (the conflict rate for
EPaxos client requests is set to 20%). LowPaxos, MPaxos,
and EPaxos, when configured with optimal leaders, achieve
similar throughput levels, with most requests completing
within 100ms, as shown in Figure 11. However, the nature of a
challenged environment demands dynamism in the operation
of a consensus protocol. In LowPaxos, this dynamism is
driven by changes in replica and network performance,
often necessitating the election of a new leader. The new
leader is at the apex of the performance pyramid and forms
quorum with other replicas within the shortest period of
time. The introduction of command conflicts, even at a low
percentage, significantly degrades EPaxos’s performance,
with some requests taking approximately 575ms to complete.
This delay occurs because requests must take the slow-path
to ensure no other replica is proposing similar commands.
In MPaxos, the long-term leader’s performance initially
shows better results but degrades over time. Since MPaxos
is not adaptive, the protocol’s performance is constrained
by the leader’s performance. The ability to elect a good
leader and continually assess its strength in LowPaxos results
in overall better performance compared to MPaxos and
EPaxos. Although this process may require state transfer due
to role changes, the protocol eventually stabilizes at better
throughput levels compared to the other two protocols.

D. PERFORMANCE OVERHEAD
To analyze the performance overhead of LowPaxos relative
to EPaxos and MPaxos, Prometheus 1 is deployed on a

1https://prometheus.io/

FIGURE 10. The 99th percentile latency plots for LowPaxos, MPaxos, and
EPaxos (10% command conflict) in the CloudLab environment for 7,500
client requests. The homogeneity of the environment for duration t = 0s
to t = 120s leads to the similar results as described in Figure 8. From
t = 12s to t = 270s, most of the protocols will complete request
processing within 220ms due to a minimal variation in the latency
property of the participating replicas. Additional changes to the network
degrades the performance of MPaxos and EPaxos further, while
LowPaxos election of a new strong leader ensures better comparative
request latencies from t = 280s to t = 415s.

FIGURE 11. The 99th percentile latency plots for LowPaxos, MPaxos, and
EPaxos (20% command conflict) in the heterogeneous challenged setting
in Africa for 16K client requests. With optimal leaders, LowPaxos, MPaxos
and EPaxos achieve similar throughput levels as most requests are
processed within 100ms. As the challenged environment is susceptible to
change, the adaptive nature of LowPaxos ensures that a new leader is
elected (and high performance configuration of replicas) when a
performance threshold is reached. This ensures that LowPaxos has a
better overall throughput in comparison to MPaxos and EPaxos.

client node. Prometheus is a monitoring system that logs
metrics in a time series database and offers a flexible
query language PromQL. A local node exporter daemon
tracks the CPU, memory, and network utilization of the
replicas. Periodically, Prometheus scrapes these metrics from
the replicas and stores them in its database. During each
execution of the three protocols, the client generates 10,000
requests, and metric queries are collected throughout the
entire request processing duration. The findings of the
performance overhead evaluation are illustrated in Figure 12.

The CPU utilization of EPaxos is significantly higher
(upto 4X) than that of LowPaxos and MPaxos. In EPaxos,
each replica can lead the operations of the state machine.
This requires that replicas keep additional state to advance
the client requests. Each replica also tracks dependencies

VOLUME 12, 2024 91285

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

FIGURE 12. The peformance overhead of LowPaxos, EPaxos and MPaxos for 10K requests on
the microbenchmark environment. The CPU, Memory and Network utilization are tracked for
the duration of each protocol execution. The results show that CPU utilization in EPaxos is
upto 4X of LowPaxos and MPaxos. The memory utilization for both protocols is largely similar.
The network overhead of LowPaxos is higher compared to the other two protocols as extra
information is required to relay topology changes.

between proposed values to ensure consistency and correct-
ness. These are CPU-intensive operations and explains the
high CPU load in EPaxos. LowPaxos and MPaxos rely on
a single leader and hence the CPU load concentration is on
this replica. However, the overall CPU utilization is lower for
the two protocols compared to EPaxos. For the duration of
the execution, the memory utilization of the three protocols
is largely similar.

The network throughput for EPaxos at the start of the
execution is high but quickly stabilizes to lower rates. This
is partly down to initial exchanges between replicas for
dependencies and possible conflicts and their resolution.
Given that most of the requests are non-conflicting, additional
network overhead is not required as the fast path will be
used for commits. The use of the long-term leader in MPaxos
keeps the network utilization relatively uniform for the entire
duration of the execution. In LowPaxos, the higher network
overhead is attributed to monitoring and liveness checks. For
example, there are extra messages required to periodically
share profile information. In addition, the leader notifies all
replicas of its status while the rebels keep probing the leader.
Despite this overhead, the performance of LowPaxosmatches
EPaxos and MPaxos in a homogenous setting as shown in
Figure 12. Efforts to minimize the network overhead shall be
explored in future work.

VI. CONCLUSION AND FUTURE WORK
The components constituting a distributed system are prone
to failure during any phase of the system’s operation.
Failures can arise from issues related to communication

and performance within the distributed elements. These
challenges add complexity to the design and functioning
of resilient and highly available distributed systems, which
have become increasingly necessary for ensuring quality
of service. On one hand, having greater control over the
environment can offer operational guarantees, facilitating the
attainment of desirable performance levels. Conversely, envi-
ronments facing challenges contend with heightened uncer-
tainties, including limitations and fluctuations in resources
that hinder the optimal operation of the system. This further
complicates the design and implementation of distributed
systems within such settings.

This paper presents LowPaxos as a distributed consensus
protocol designed specifically for challenging environments.
LowPaxos leverages the unique properties of these settings
to identify the long-term leader, determining its relative
strength compared to the other replica members. The protocol
integrates the consideration of resource variations, enabling
it to adapt to the typical changes in properties of challenged
environments, where deviations from the norm are more
common. The experimental findings show that incorporating
these attributes into the leader election process yields better
performance gains when compared to both leader-centric
and leaderless protocols. Moreover, LowPaxos demonstrates
better adaptability to the dynamic and evolving changes that
are characteristic of low-resource settings, showcasing its rel-
evance in challenged and resource-constrained environments.

The extension of this research will involve implementing
further optimizations to enhance LowPaxos, including the
incorporation of command batching to achieve improved

91286 VOLUME 12, 2024

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

performance. Numerous consensus protocols have illustrated
that batching can yield significant performance gains, with
some studies reporting enhancements of up to 4.5 times [33].
Another extension aspect will be on snapshot management,
to ensure control over log sizes. As more data is accumulated,
integration of machine learning techniques such as parallel
deep neural networks [39] to manage role designations shall
be explored.

ACKNOWLEDGMENT
The authors would like to thank all contributions in feedback
and resources towards this research publication. A special
thanks to the University of Washington and the Paul Maritz
Foundation for the fellowship, and colleagues at the Systems
Laboratory for collaboration efforts especially Priyal Suneja,
Kevin Zhao, andHenry Schuh. They also thank Cloudlab [32]
and UbuntuNet Alliance 2 for the evaluation infrastructure,
the Platform and Testbed for Improved Observability of
African Networks (PATIO) project and Government of
Uganda through Makerere University Research and Innova-
tion Fund (RIF).

REFERENCES
[1] L. Lamport, R. Shostak, andM. Pease, ‘‘The Byzantine generals problem,’’

ACM Trans. Program. Lang. Syst. (TOPLAS), vol. 4, no. 3, pp. 382–401,
1982.

[2] ETCD. Accessed: Oct. 26, 2023. [Online]. Available: https://etcd.io/
[3] M. Burrows, ‘‘The Chubby lock service for loosely-coupled distributed

systems,’’ in Proc. 7th Symp. Operating Syst. Design Implement., 2006,
pp. 335–350.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘‘ZooKeeper: Wait-
free coordination for Internet-scale systems,’’ in Proc. USENIX Annu.
Tech. Conf. (USENIX ATC), 2010, p. 11.

[5] J. L. Carlson, Redis in Action. New York, NY, USA: Manning, 2013.
[6] F. Cristian, ‘‘Understanding fault-tolerant distributed systems,’’ Commun.

ACM, vol. 34, no. 2, pp. 56–78, Feb. 1991.
[7] I. Moraru, D. G. Andersen, andM. Kaminsky, ‘‘There is more consensus in

egalitarian parliaments,’’ in Proc. 24th ACM Symp. Operating Syst. Princ.,
Nov. 2013, pp. 358–372.

[8] S. Tollman, S. J. Park, and J. Ousterhout, ‘‘EPaxos revisited,’’ in Proc.
18th USENIX Symp. Networked Syst. Design Implement. (NSDI), 2021,
pp. 613–632.

[9] L. Lamport, ‘‘Paxos made simple,’’ ACM SIGACT News, Distrib. Comput.
Column, vol. 32, no. 4, pp. 51–58, Dec. 2001.

[10] D. Ongaro and J. K. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Annu. Tech. Conf., 2014, pp. 305–319.

[11] C. S. Barcelona, ‘‘Mencius: Building efficient replicated state machines for
WANs,’’ in Proc. 8th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2008, pp. 369–384.

[12] K. Ngo, S. Sen, and W. Lloyd, ‘‘Tolerating slowdowns in replicated state
machines using copilots,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement., 2020, pp. 583–598.

[13] H. Howard, D. Malkhi, and A. Spiegelman, ‘‘Flexible paxos: Quorum
intersection revisited,’’ 2016, arXiv:1608.06696.

[14] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar, ‘‘WPaxos: Wide
area network flexible consensus,’’ 2017, arXiv:1703.08905.

[15] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy, ‘‘Designing
distributed systems using approximate synchrony in data center networks,’’
in Proc. 12th USENIX Symp. Networked Syst. Design Implement. (NSDI),
2015, pp. 43–57.

[16] J. Li, E.Michael, N. K. Sharma, A. Szekeres, and D. R. Ports, ‘‘Just say NO
to Paxos overhead: Replacing consensus with network ordering,’’ in Proc.
12th USENIX Symp. Operating Syst. Design Implement. (OSDI), 2016,
pp. 467–483.

2https://ubuntunet.net/

[17] J. Guarnieri and A. Charapko, ‘‘Linearizable low-latency reads at the
edge,’’ in Proc. 10th Workshop Princ. Pract. Consistency Distrib. Data,
May 2023, pp. 77–83.

[18] T. Nyirenda-Jere and T. Biru, ‘‘Internet development and Internet
governance in Africa,’’ Internet Soc., pp. 1–44, May 2015. [Online].
Available: https://www.internetsociety.org/wp-content/uploads/2017/08/
InternetInAfrica-2015070820Final.pdf

[19] B. Charyyev, E. Arslan, and M. H. Gunes, ‘‘Latency comparison of cloud
datacenters and edge servers,’’ in Proc. IEEE Global Commun. Conf.,
Dec. 2020, pp. 1–6.

[20] O. Victor Babasanmi and J. Chavula, ‘‘Measuring cloud latency in Africa,’’
in Proc. IEEE 11th Int. Conf. Cloud Netw. (CloudNet), Nov. 2022,
pp. 61–66.

[21] T. Biswas, R. Bhardwaj, A. K. Ray, and P. Kuila, ‘‘A novel leader election
algorithm based on resources for ring networks,’’ Int. J. Commun. Syst.,
vol. 31, no. 10, p. e3583, Jul. 2018.

[22] G. Ishigaki, R. Gour, A. Yousefpour, N. Shinomiya, and J. P. Jue, ‘‘Cluster
leader election problem for distributed controller placement in SDN,’’ in
Proc. IEEE Global Commun. Conf., Singapore, Dec. 2017, pp. 1–6, doi:
10.1109/GLOCOM.2017.8254748.

[23] V. Karpov and I. Karpova, ‘‘Leader election algorithms for static swarms,’’
Biologically Inspired Cogn. Archit., vol. 12, pp. 54–64, Apr. 2015.

[24] Y. Zuo, W. Yao, Q. Chang, X. Zhu, J. Gui, and J. Qin, ‘‘Voting-based
scheme for leader election in lead-follow UAV swarm with constrained
communication,’’ Electronics, vol. 11, no. 14, p. 2143, Jul. 2022, doi:
10.3390/electronics11142143.

[25] B. Awerbuch, ‘‘Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems,’’ in Proc.
19th Annu. ACM Conf. Theory Comput. (STOC), 1987, pp. 230–240.

[26] Q. Dong and D. Liu, ‘‘Resilient cluster leader election for wireless
sensor networks,’’ in Proc. 6th Annu. IEEE Commun. Soc. Conf. Sensor,
Mesh Ad Hoc Commun. Netw., Rome, Italy, Jun. 2009, pp. 1–9, doi:
10.1109/SAHCN.2009.5168966.

[27] V. Raychoudhury, J. Cao, and W. Wu, ‘‘Top K-leader election
in wireless ad hoc networks,’’ in Proc. 17th Int. Conf. Comput.
Commun. Netw., St. Thomas, VI, USA, Aug. 2008, pp. 1–6, doi:
10.1109/icccn.2008.ecp.35.

[28] J. Maeng and I. Joe, ‘‘Energy-based leader election (E-LE) for group
management of IoT,’’ in Software Engineering Perspectives in Systems
(Lecture Notes in Networks and Systems), R. Silhavy, Ed., Cham,
Switzerland: Springer, 2022, pp. 177–184, doi: 10.1007/978-3-031-09070-
7_15.

[29] X. Xu, L. Hou, Y. Li, and Y. Geng, ‘‘Weighted RAFT: An improved
blockchain consensus mechanism for Internet of Things application,’’
in Proc. 7th Int. Conf. Comput. Commun. (ICCC), Chengdu, China,
Dec. 2021, pp. 1520–1525, doi: 10.1109/ICCC54389.2021.9674683.

[30] D. Pearce, J. Dunlop, and R. C. Atkinson, ‘‘Leader election in a personal
distributed environment,’’ in Proc. IEEE 16th Int. Symp. Pers., Indoor
Mobile Radio Commun., Berlin, Germany, Oct. 2005, pp. 1307–1311, doi:
10.1109/PIMRC.2005.1651652.

[31] L. Zamir, A. Shaan, and M. Nojoumian, ‘‘ISRaft consensus
algorithm for autonomous units,’’ in Proc. IEEE 29th Int. Conf.
Netw. Protocols (ICNP), Dallas, TX, USA, Nov. 2021, pp. 1–6, doi:
10.1109/ICNP52444.2021.9651979.

[32] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra, ‘‘The
design and operation of CloudLab,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), Jul. 2019, pp. 1–14.

[33] M. Whittaker, N. Giridharan, A. Szekeres, J. M. Hellerstein, and I. Stoica,
‘‘Compartmentalized consensus: Agreeing with high throughput,’’ Dept.
Elect. Eng. Comput. Sci., Univ. California, Berkeley, CA, USA, 2020.

[34] Stateright. Accessed: Nov. 25, 2023. [Online]. Available: https://www.
stateright.rs

[35] V. Arora, T. Mittal, D. Agrawal, A. El Abbadi, and X. Xue, ‘‘Leader
or majority: Why have one when you can have both? Improving
read scalability in raft-like consensus protocols,’’ in Proc. 9th USENIX
Workshop Hot Topics Cloud Comput. (HotCloud), 2017, p. 14.

[36] L. Lamport, ‘‘The part-time parliament,’’ in ACM Trans. Comput. Syst.,
vol. 16, no. 998, pp. 133–169, 2019.

[37] B. M. Oki and B. H. Liskov, ‘‘Viewstamped replication: A new primary
copy method to support highly-available distributed systems,’’ in Proc. 7th
Annu. ACM Symp. Principles Distrib. Comput., 1988, pp. 8–17.

VOLUME 12, 2024 91287

http://dx.doi.org/10.1109/GLOCOM.2017.8254748
http://dx.doi.org/10.3390/electronics11142143
http://dx.doi.org/10.1109/SAHCN.2009.5168966
http://dx.doi.org/10.1109/icccn.2008.ecp.35
http://dx.doi.org/10.1007/978-3-031-09070-7_15
http://dx.doi.org/10.1007/978-3-031-09070-7_15
http://dx.doi.org/10.1109/ICCC54389.2021.9674683
http://dx.doi.org/10.1109/PIMRC.2005.1651652
http://dx.doi.org/10.1109/ICNP52444.2021.9651979

A. Mwotil et al.: LowPaxos: State Machine Replication for Low Resource Settings

[38] B. Liskov and J. Cowling, ‘‘Viewstamped replication revisited,’’ MIT,
Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2012-021, 2012.

[39] S. Khan, M. A. Khan, M. Khan, N. Iqbal, S. A. AlQahtani,
M. S. Al-Rakhami, and D. M. Khan, ‘‘Optimized feature learning for anti-
inflammatory peptide prediction using parallel distributed computing,’’
Appl. Sci., vol. 13, no. 12, p. 7059, Jun. 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/12/7059

ALEX MWOTIL received the B.Sc. and M.Sc.
degrees in computer science from Makerere Uni-
versity, Kampala, where he is currently pursuing
the Ph.D. degree. He is the product lead at Crane
Cloud an abstraction platform for deployment
and management of containerized applications in
resource constrained settings. Previously, he has
worked as a Systems Engineer with different
research and academic institutions in Uganda.
His research interests include cloud for resource-

constrained settings and trust and identity services in Africa.

THOMAS ANDERSON is currently a Professor
with the Paul G. Allen School of Computer Sci-
ence and Engineering, University of Washington.
His research interests include building practical,
robust, and efficient computer systems, including
distributed systems, operating systems, computer
networks, multiprocessors, and security. He is the
winner of the USENIX Lifetime Achievement
Award, the USENIX STUG Award, the IEEE
Koji Kobayashi Computer and Communications

Award, the ACM SIGOPS Mark Weiser Award, and the IEEE Communi-
cations Society William R. Bennett Prize.

BENJAMIN KANAGWA is currently anAssociate
Professor of software engineering with Makerere
University, Kampala, and heads the software
systems center whose main focus is to develop
collaborations with industry leading to high end
technology startups and adoption. His research
revolves around software engineering with a spe-
cial emphasis on software architectures, especially
service oriented systems, microservice, and cloud
computing. He is also involved in open source

initiatives, including Helecare2x, a solution aimed at helping health facilities
automate patient records.

THEANO STAVRINOS received the Ph.D. degree
from Princeton University, in May 2023. She
is currently a Postdoctoral Researcher with the
University of Washington working on the Tree-
house and Future of Cloud Infrastructure (FOCI)
projects. She is exploring how to build storage
systems that will support a power control plane
for cloud systems. Her research interests include
distributed systems, caching, storage, and systems
sustainability.

ENGINEER BAINOMUGISHA is currently an
Associate Professor of computer science and the
Chair of the Department of Computer Science,
MakerereUniversity. His research focuses on com-
puter science-driven solutions to the prevailing
world challenges. He leads several innovative
and research initiatives that aim to create and
apply computational methods and tools that can
improve the quality of life, especially in the
developing world setting. His current research

interests include building and deploying distributed systems of miniature the
IoT/mobile devices to measure and derive trends of air quality in major cities
in Africa.

91288 VOLUME 12, 2024

