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ABSTRACT The critical role of a remote chemical sensing using a Fourier Transform Infrared (FT-IR)
spectrometer has been emphasized for detecting lethal chemicals in the atmosphere. To enhance standoff
detection capabilities, acquiring adequate gas spectral data is crucial for training and optimizing detection
algorithms across diverse outdoor scenarios. However, the collection of outdoor infrared spectra with a
number of conditions is constrained owing to uncontrolled weather factors including a temperature and
humidity, leading to impaired reliability of the data. In addressing outdoor data acquisition challenges,
we introduced a data augmentation method using a conditional CycleGAN. This technique utilizes spectral
data obtained exclusively under controlled laboratory conditions. The proposed deep generative model
takes as input the background spectrum, which is concatenated with two critical attributes: the temperature
difference between the target substance and the background, and pathlength concentration. Subsequently, the
model computes a brightness temperature spectrum for a gas against a specific background, employing SF6
as the target chemical gas. The validity of the generated data was assessed using two detection algorithms: the
Pearson Correlation Coefficient and Adaptive Subspace Detector. In addition, the accuracy performance of
detectors trained with the augmented dataset was compared and evaluated against those trained with the pure
dataset. The results demonstrated that the model can simulate gas spectra onto unseen background spectra
and enhance the chemical sensing database, and it can contribute to data augmentation for improving the
performance of chemical gas detection systems.

INDEX TERMS Brightness temperature spectrum, data augmentation, deep generative model, FT-IR
spectroscopy, generative adversarial network, remote chemical sensing.

I. INTRODUCTION
Chemical gases such as chemical warfare agents (CWAs)
and toxic industrial chemicals (TICs) pose a significant risk
of causing severe casualties and fatalities. However, their
odorless and colorless characteristics pose challenges for
human nervous system recognition [1]. In order to safeguard
individuals from hazardous substances, extensive research
has investigated methods for detecting and identifying
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chemical gases [2], [3], [4], [5]. Especially, a remote chemical
sensing is a promising technology for mitigating operator and
equipment contamination without direct contact.

Capturing and analyzing a spectrum of chemical gas is one
of the methods for a long-range chemical detection. Toxic
chemicals, in particular, exhibit distinctive spectral patterns
primarily in the long-wave infrared (7 ∼ 14µm) region.
These patterns serve as unique fingerprints for identification.
To acquire the spectrum, a passive Fourier Transform Infrared
(FT-IR) spectroscopy has been investigated since it is feasible
to be optimized for a mobile surveillance application.
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Typically, a prediction accuracy improves with an
increasing number of reference datasets for the inference
scheme. However, obtaining sufficient spectral data remains
challenging owing to the difficulty of conducting outdoor
experiments under controlled ambient conditions. In outdoor
environments, precise control over gas plume temperature,
background conditions, plume concentration, and dispersion
is challenging due to weather uncertainties. In addition,
conducting outdoor experiments with toxic chemicals is
restricted by the elevated risk of personnel injury and testing
region contamination.

This study introduces a methodology of synthesizing a
pure gas spectrum under the controlled laboratory condition
and various natural background spectrum using a conditional
CycleGAN. We trained the Generative Adversarial Network
(GAN) model with its attributes to control the generation
of the chemical spectrum. As a result, we demonstrated
the feasibility of integrating our generated spectra with an
unseen background spectrum. In order to validate realism
and rationality, we evaluated the generated spectrum using
two detection algorithms: the Pearson Correlation Coefficient
(PCC) and an Adaptive Subspace Detector (ASD). Finally,
to demonstrate that the data generated by the proposed
deep generative model can lead to improvements of the
performance in actual chemical gas detection systems,
we conducted the comparative analysis of detectors trained
on the augmented dataset and the pure dataset, respectively.

The proposed deep generative model is capable of
achieving a meaningful contribution to addressing data
acquisition challenges, which is additionally leading to
improvement of the experimental environment, condition,
and safety. Moreover, it is anticipated to have a potential
with its generalizability and scalability for all data-driven
technologies to offer more constructive contributions in the
field of contemporary science and technology.

II. RELATED WORKS
A. INFRARED RADIATION EMULATION
Models that emulate the interplay between infrared radiation
and outdoor environments, including the toxic chemicals
have been studied. Notably, a simplified model of atmo-
spheric composition, also known as 3-Layer Model [6],
facilitates gas spectrum generation through mathematical
modeling. This model assumes a linear combination of
atmospheric radiation, gas plume, and background, yield-
ing a realistic gas spectrum. However, obtaining essential
atmospheric parameters for modeling, including atmospheric
transmittance, poses challenges. This requirement necessi-
tates the use of an additional model, such as MODTRAN [7],
which significantly complicates the augmentation of spectral
data. Moreover, even with such a spectrum, errors in linear
approximation cannot be entirely avoided.

B. DEEP GENERATIVE MODELS
To address these limitations of the linear mathemati-
cal generation model, deep generative models have been

suggested. Generative Adversarial Network (GAN) proposed
by Goodfellow et al. [8] has a potential to augment a
database with realistic and meaningful data while involving
nonlinearity. To apply the data augmentation technique to
various tasks, several forms of GAN have been developed
by modifying the network architecture or adjusting the loss
function such as cGAN [9], WGAN [10], DCGAN [11], and
CycleGAN [12].

C. DATA AUGMENTATION USING GAN
Augmented data using deep generative models has been
demonstrated to enhance performance in recognition and
detection. For instance, Kukreja et al. [13] achieved improved
accuracy in vehicle number plate recognition by train-
ing a CNN with an augmented dataset using a GAN.
Wang et al. [14] devised a deep generative model based on
DCGAN to address the scarcity of training samples for palm-
print recognition. Luo and Lu [15] introduced a conditional
Wasserstein GAN (CWGAN) for EEG data augmentation
to enhance EEG-based emotion recognition in terms of its
accuracy. Patel et al. [16] improved the F1 score of automatic
modulation classification with the augmented dataset using
a conditional GAN (cGAN). Sandfort et al. [17] enhanced
robustness and generalizability of organ segmentation in
CT segmentation tasks with the dataset extended utilizing
CycleGAN.Motamed et al. [18] suggested IAGAN to detect a
pneumonia and COVID-19 in chest X-ray images with higher
sensitivity, specificity, and accuracy. Waheed et al. [19]
employed CovidGAN to enhance CNN-based COVID-19
detection using synthetic X-ray images. LeafGAN proposed
by Cap et al. [20] increased a detection reliability for a
practical plant disease diagnosis.

Deep generative models have also contributed to a devel-
opment in image-to-image translation area. For example,
AugGAN devised byHuang et al. [21] demonstrated effective
image translation while maintaining characteristic consis-
tency through training YOLO and Faster R-CNN detectors.
In addition, Lin et al. [22] introduced cd-GAN, a conditional
image translation method that preserves domain-independent
features while reconstructing images in the target domain.
Furthermore, Lu et al. [23] investigated a conditional
CycleGAN for generating high-resolution face images from
low-resolution inputs. Notably, they achieved precise control
over facial attributes by incorporating an additional attribute
vector into the input.

III. METHODS
A. BRIGHTNESS TEMPERATURE SPECTRUM
Spectral data were acquired using a Miniaturized Stand-off
Chemical Agent Detector (MSCAD), a custom built passive
FT-IR spectroscopy in the long-wave infrared (LWIR)
region. The system relies solely on reflected radiation,
without an active light source. The Michelson interferometer
captures the spectrum as light traverses it, equidistantly
from the moving mirror. Subsequently, the sampled data in
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FIGURE 1. Network architecture of proposed conditional CycleGAN for domain to domain translation of brightness temperature
spectrum.

spatial domain are converted into the spectral radiance in
wavenumber domain by a Fast Fourier Transform.

The spectral radiance of black body B(ν̄, T ) is represented
as Planck function,

B(ν̄, T ) =
2hc2ν̄3

exp(hcν̄/kBT ) − 1
, (1)

where ν̄ is the wavenumber, T is the temperature, h is the
Planck constant, kB is the Boltzmann constant, and c is the
speed of light according to the black body radiation theory.
For a certain material with temperature T and its spectral
radiance L(ν̄, T ), the emissivity of the material is defined as
a ratio of the spectral radiance of the material and the black
body,

ϵ(ν̄) =
L(ν̄, T )
B(ν̄, T )

. (2)

However, identifying gas absorption patterns from the
spectral radiance poses challenges due to its wavenumber and
temperature dependence. Consequently, a stable baseline for
comparison with the reference database is lacking. To address
this, we employ a spectral brightness temperature T (ν̄, L)
derived using the inverse Planck function,

T (ν̄, L) =
hcν̄

kB ln(2hc2ν̄3/L + 1)
. (3)

In the LWIR region, when operating the remote chemical
sensing, most common Earth background material exhibit

emissivity values within the range 0.9 ∼ 1, with spectral
radiance comparable to that of the black body [24]. If a
chemical substance exists in the atmosphere, the spectral
brightness temperature exhibits a specific peak, contrasting
with the pure background spectrum. The location of the
peak depends on the chemical substance type, while its
height primarily relies on two attributes: the temperature
difference (1T ) between background and the substance,
and the concentration along the line of sight of the
spectroscopy, also known as pathlength concentration (γ ) [6].
In this study, the data acquisition, model training, and
model validation were conducted by varying these two
parameters.

B. CONDITIONAL CYCLEGAN FOR SPECTRAL DATA
AUGMENTATION
The objective of the deep generative model is to generate
the gas spectrum given the background. In addition, the
generated gas spectrum is controlled by its attributes. Thus,
the conditional CycleGAN [23] architecture was applied to
domain-to-domain translation. Let the background domain as
B and the gas spectrum domain as S. The translation B → S
takes attributes vector z of the gas spectrum. Thus, we denote
generators as G(B, Z )→S and GS→B and discriminators as
DS and DB. The network design of the generative model is
illustrated in figure 1.
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The adversarial loss L(G(B, Z )→S , DS ) is defined as,

L(G(B,Z )→S ,DS ) = min
G

max
D

{Es,z[logDS (s, z)]

+ Eb,z[log(1 − DS (G(B,Z )→S (b, z), z))]},

(4)

and adversarial loss L(GS→B,DB) is defined as,

L(GS→B,DB) = min
G

max
D

{Eb[logDB(b)]

+ Es[log(1 − DB(GS→B(s)))]}. (5)

The cycle consistency loss Lc(G(B, Z )→S ,GS→B) is defined
as,

Lc(G(B, Z )→S ,GS→B)

= ∥GS→B(G(B,Z )→S (b, z))−b∥1
+ ∥G(B,Z )→S (GS→B(s))−s∥1. (6)

The identity loss Li(G(B, Z )→S ,GS→B) is defined as,

Li(G(B, Z )→S ,GS→B)

= ∥G(B,Z )→S (s, z)−s∥1
+ ∥GS→B(b)−b∥1. (7)

Thus, the total loss is

L(G(B,Z )→S ,GS→B,DB,DS )

= L(G(B,Z )→S ,DS ) + L(GS→B,DB)

+ λcLc(G(B, Z )→S ,GS→B)

+ Li(G(B, Z )→S ,GS→B). (8)

The value of λc was 1 in this study.
We also induced the generative model to ultimately gener-

ate gas spectra matching the input attributes by considering
the mismatched attributes during the training. Therefore, the
gas discriminator DS of the network is trained to classify real
spectrum with incorrect labels as spurious. Consequently, the
gas discriminator loss LDS is calculated as

LDS = log(ds,real) +
1
2
log[(1 − ds,gen)(1 − ds,mis)], (9)

and the background discriminator loss LBS is calculated as

LBS = log(db,real) + log(1 − db,gen). (10)

C. DETECTION ALGORITHMS
1) BACKGROUND REMOVAL
In order to validate the generated dataset, detection algo-
rithms were used. The prerequisite for running the algorithms
is to get pure gas spectrum which does not contain the
background information. A Linear Subspace Model was
employed to achieve the pure gas spectrum assuming that an
incident spectrum x is a linear combination of pure gas signal,
background signal, and noise. Let x be denoted as

x = sg+ Kbgybg + n, (11)

where x is the fingerprint spectrum of gas, g is the pure gas
signal intensity, Kbg is a matrix of background information,

ybg is a vector of background coefficients, and n is a Gaussian
noise. Given K = [s,Kbg] and y = [g, yTbg]

T , the signal is
denoted as

x = Ky + n. (12)

By applying least square method, the approximate signal
coefficient vector ŷ is,

ŷ = (KTK)−1KT x = [ĝ, ŷTbg]
T . (13)

Thus, the approximate pure spectrum p̂ is obtained by,

p̂ = x − Kbgŷbg, (14)

which is subsequently compared against the database using
the algorithms.

2) PEARSON CORRELATION COEFFICIENT
Assume a database spectrum t = (t1, t2, . . . , tn) of size n. The
approximate pure spectrum p̂ = (p̂1, p̂2, . . . , p̂n) is compared
to t using Pearson Correlation Coefficient, which is defined
as

TPCC =
n6tip̂i − 6ti6p̂i√

6t2i − (6ti)2
√

6p̂2i − (6p̂i)2
. (15)

The threshold of TPCC for SF6 to be detected is 0.89. This
value was set according to the results of SF6 detection
experiments using a MSCAD prototype in Agency for
Defense Development, South Korea.

3) ADAPTIVE SUBSPACE DETECTOR
Using the Linear Subspace Model, we assume two hypothe-
ses H0 and H1, such that

H0 : x = Kbgybg + n

H1 : x = sg+ Kbgybg + n, (16)

where H0 represents the absence of the target gas, and
H1 represents the presence of the target gas. Since n follows
a Gaussian distribution, the incident spectrum x is a random
variable, such that

H0 : x ∼ N (Kbgybg, σ 2
0 I)

H1 : x ∼ N (Ky, σ 2
1 I). (17)

Then, the Generalized Likelihood Ratio of the hypotheses is,

TASD(x) =
xT (PKbg − PK)x

xTPKx
, (18)

where PK = I − K(KTK)−1KT and PKbg = I −

Kbg(KT
bgKbg)−1KT

bg. The threshold of TASD for SF6 to
be detected is 1.0. This standard was also determined
based on the findings from the SF6 detection experiments
using MSCAD.
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FIGURE 2. Configurations of the Spectrum acquisition experiment. (a) Laboratory spectrum acquisition with black body as the
background. (b) Outdoor spectrum acquisition with natural background.

FIGURE 3. Samples of acquired training data with black body background. X-axis and Y-axis indicate wavenumber in units
of cm−1 and normalized value of the spectral brightness temperature, respectively.

IV. EXPERIMENT
A. DATASET
1) DATA ACQUISITION
The training data were acquired in a laboratory environment,
as shown in Figure 2(a). The target gas was a Sulfur
Hexafluoride (SF6). The FT-IR spectrometer occupied one
side of a horizontal cylindrical chamber, with observation
facilitated through a ZnSe window transparent in the IR
region. A temperature-controlled black body was positioned
on the opposite side of the chamber as background. The
SF6 gas inside the chamber was elevated to a temperature

of 40◦C . The temperature range of the black body was
systematically adjusted from 30◦C to 35◦C with 1◦C
interval, resulting in six distinct temperature difference (1T ).

The pathlength concentration γ is calculated as

γ = cgas × L [mg/m2]. (19)

L represents the optical path length within the gas cloud, and
cgas denotes the mean gas concentration along this path. For
simplicity, a constant γ0 = 172.55 mg/m2 was introduced.
The optical path length was a chamber length of 1m and the
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FIGURE 4. Samples of the generated brightness temperature spectra under different conditions with black body background. X-axis and Y-axis
indicate wavenumber in units of cm−1 and normalized value of the spectral brightness temperature, respectively.

gas concentration was calculated using the ideal gas law:

cgas =
Mgas

Vchamber
=

Mw

Vchamber
×
Pgas Vgas
RTgas

, (20)

where Mgas represents the mass of the gas, the molecular
weight Mw of SF6 is 146.055g/mol, the chamber volume
Vchamber is 0.0346185m3, and the gas constant R is 0.08205L ·

atm/K · mol. Since gas was injected into the chamber from
a tedlar bag using a gas-tight syringe at the laboratory
temperature, the gas pressure Pgas was 1atm and gas
temperature Tgas was 298K . Twenty-five different pathlength
concentration (γ ) were considered by varying Vgas from
0.2ml to 5.0ml with 0.2ml intervals.

Therefore, the dataset was constructed using data obtained
from 25 × 6 experimental conditions and the total size of
the dataset was 75, 000. The training and validation sets were
divided at a ratio of 8 : 2. Figure 3 depicts samples of obtained
training data on a black body background.

The test data were acquired in the outdoor environment
with natural backgrounds, as depicted in Figure 2(b). The

selected backgrounds contained four types that are commonly
found in nature, which are earthy ground, concrete walls,
asphalt, and tree-covered mountains. The portable chamber
containing SF6, where Vchamber is 0.002934016m3 and L
is 0.146m, was positioned before the spectrometer. The
gas injection procedure mirrored that of the training data
acquisition. The gas quantity was manipulated to achieve
three distinct path length concentrations: 0.4γ0, 1.0γ0, and
2.8γ0. Additionally, we controlled the chamber temperature
relative to the natural background temperature, considering
three different temperature differences: 8◦C , 10◦C , and
12◦C . The background temperature was measured using an
IR thermometer.

2) DATA PREPROCESSING
The background and gas spectrum were truncated to the
wavenumber range of [850, 1050] to achieve a size of 128,
since the dominant peak of SF6 is observed to be located
around 940cm−1. The spectrum was then subtracted by the
minimum value of the spectrum and divided by 10 to obtain
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a range in [0, 1]. The attribute vector z consists of two
attributes: temperature difference 1T ∈ N and pathlength
concentration γ ∈ R. The tuple of (1T , γ ) was repeated
64 times to create zwith a size of 128. This zwas subsequently
concatenated with the background spectrum. Thus, the input
size of G(B, Z )→S was 256.

B. NETWORK SETTINGS
The network architecture is depicted in Figure 1. The
generators consisted of symmetrical fully-connected layers
with dimensions of 64, 64, 32, 32 for the first half and
32, 32, 64, 64 for the second half with ReLU activation. The
discriminators consisted of fully-connected layers with size
of 256, 256, 64, 32 with leaky ReLU activation. The kernels
in the layers were applied with L2 regularization with a factor
of 0.00001. Adam optimizer was employed with adaptive
learning rate using cosine decay schedule to stabilize the
training steps. The number of epochs was 700 and size of the
minibatch was 256.

C. EXPERIMENTAL RESULTS
1) TRAINING RESULTS
Initially, we analyzed the controllability of brightness tem-
perature spectrum generation based on the given attributes,
which consisted of the temperature difference and pathlength
concentration. Figure 4 illustrates the brightness temperature
spectra produced by the deep generative model, the con-
ditional CycleGAN, across varying temperature difference
and the pathlength concentration. The spectra described the
shape of SF6 that has a distinctive peak near 940cm−1.
The generated spectra at lower concentrations had sharper
and lower peak. In contrast, thicker and higher peak was
formed under the condition with the high SF6 concentration.
In addition, a convex in the positive direction appeared near
930cm−1, which is positioned at the left slope of the peak
near 940cm−1. These peak characteristics were observed in
the spectra acquired during the experiment with a black body
background, as shown in Figure 3, where height of the peak
had a positive correlation with temperature difference and
pathlength concentration.

Subsequently, two detection algorithms were employed
to validate the generated spectra against a standard
SF6 database. The detection scores presented in table 1 were
ordered by varying the input concentration of SF6, which
were averaged over the temperature difference values. The
scores in table 2 were ordered by the temperature difference
between the gas and the background, which were averaged
over the pathlength concentrations. Notably, the Pearson Cor-
relation Coefficient scores exceeded 0.89 and the Adaptive
Subspace Detector scores surpassed 1.0. These thresholds
are based on the algorithms of in-operation spectrometer
prototype of the Agency for Defense Development.

As evidenced by the similarity in peak shapes and results
of the detection algorithms, it is clear that the deep generative
network has been trained properly to generate valid spectrum
with controlled attributes.

TABLE 1. Detection scores of the generated brightness temperature
spectrum with black body background by varying γ .

TABLE 2. Detection scores of the generated brightness temperature
spectrum with black body background by varying 1T .

2) TEST RESULTS
The performance of the conditional CycleGAN model,
in generating a brightness temperature spectrum using
unseen background spectrum, was evaluated. The test
dataset featured four different natural backgrounds including
mountains, earthy ground, asphalt, and concrete walls, which
were absent from the training dataset. The trained model
computed infrared spectrum for each background, assuming
the presence of SF6. Figure 5 illustrates samples of the
generated spectra alongside their corresponding ground-truth
spectra, considering three distinct path length concentrations
(γ ) and three different temperature differences (1T ) between
the gas and background. The pathlength concentration was
set to one of 0.4ml, 1.0ml, or 2.8ml and the temperature
difference was set to one of 8◦C , 10◦C , or 12◦C .
Figure 5(a), 5(b), 5(c), and 5(d) present the generated

brightness temperature spectra with the background of moun-
tain, earthy ground, asphalt, and concrete wall, respectively.
From this figure, the similarity between the spectra generated
by the model and the ground truth spectra can be assessed
for each case. The trend of a positive correlation between the
characteristics of the peak and two parameters, pathlength
concentration and temperature difference, was observed
across all backgrounds in the test dataset. Remarkably,
despite excluding temperature differences exceeding 10◦C
during training, the generated spectra for a 12◦C of tempera-
ture difference closely resembled the ground truth data. This
result implies that the GAN model successfully trained the
generalized peak characteristics based on the given attributes.
However, an offset discrepancy existed in the vicinity
of 1, 000cm−1. All four backgrounds exhibit emissivities
within the range of 0.9 or higher. Therefore, the brightness
temperature spectra of each background have similarity to
the black body radiation. However, there are unavoidable
differences which caused the offset. This phenomenon
became pronounced when a background spectrum exhibited
steeper concavity distinct from that of the black body.
If the training data include brightness temperature spectra
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FIGURE 5. Generated brightness temperature spectra with 4 different natural backgrounds, (a) Mountain, (b) Earthy ground, (c) Asphalt, and
(d) Concrete wall. The red line and the blue line indicate generated spectrum and reference spectrum, respectively. X-axis and Y-axis of each graph
indicate wavenumber in units of cm−1 and normalized value of the spectral brightness temperature, respectively.

across diverse backgrounds and the generative model learns
translations for various background domains, the conditional
CycleGAN can have a potential to mitigate these limitations.

The validity of the generated spectra with the natural
backgrounds was confirmed using the detection algorithms,
as listed in table 3. This table presents the detection
scores for each attribute condition in the form of (Pearson
Correlation Coefficient / Adaptive Subspace Detector). These
metrics demonstrate the realism of the generated data. The
scores in the table are averaged based on the number
of samples. The scores from both detection algorithms
satisfied the detection criteria, where the threshold of
Pearson Correlation Coefficient and Adaptive Subspace
Detector are 0.89 and 1.0, respectively. In all cases, the
Pearson Correlation Coefficient exceeded 0.927, and the

Adaptive Subspace Detector surpassed 3.407. These results
demonstrate the capability of the model to emulate the
gas spectra onto unseen background spectrum and augment
the database for chemical sensing by training the GAN
model using laboratory experimental spectral data. Thus,
the deep generative model facilitates scalable generation of
a brightness temperature spectrum reflecting the intention
of the user by adjusting the background and attributes.
Moreover, this findings demonstrate the potential of this
model to contribute to data augmentation for improving the
performance of chemical gas detection.

Subsequently, the performance of the deep generative
model was compared to the baseline model in order to
establish the superiority of the proposed model. The baseline
model was implemented by merely adding the brightness
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TABLE 3. Detection scores (Pearson Correlation Coefficient / Adaptive Subspace Detector) of the generated brightness temperature spectra with natural
backgrounds, (a) Mountain, (b) Earthy ground, (c) Asphalt, and (d) Concrete wall.

TABLE 4. Comparison results of detection scores, Pearson Correlation Coefficient and Adaptive Subspace Detector, between the proposed deep generative
model, conditional CycleGAN, and the baseline model, with four natural backgrounds, (a) Mountain, (b) Earthy ground, (c) Asphalt, and (d) Concrete wall.

temperature spectrum of SF6 gas and the background.
We measured the average Pearson Correlation Coefficient
score and average Adaptive Subspace Detector score of the
spectra generated by the conditional CycleGAN model and
the baseline model with respect to the reference spectrum
data. The table 4 presents the results of this comparative
analysis. The results indicate that, for all natural backgrounds
utilized in this study, the proposed deep generative model
generates spectra that are closer to the reference compared
to the baseline model. The deep generative model exhibited
+8.070%, +6.906%, +10.428%, and +11.352% improve-
ment in Pearson Correlation Coefficient scores compared to
the baseline for mountain, earthy ground, asphalt, and con-
crete wall, respectively. In addition, the model demonstrated
+52.05%, +19.64%, +81.53%, and +218.00% improve-
ment in Adaptive Subspace Detector scores compared to the
baseline for each mentioned backgrounds, respectively.

D. MODEL EFFECTIVENESS VALIDATION
The effectiveness of the trained deep generated model was
validated by testing the effectiveness of the augmented
dataset on the gas detection. In order to address our
proposed conditional CycleGAN model effectively improves
the performance of chemical gas detection systems by
augmenting the dataset, tests for an impact of the artificial
spectrum data on performance of detectors were conducted.

We compared the accuracy of the detectors trained with pure
dataset and augmented dataset, respectively. Support Vector
Machine-based detector and Deep Neural Network-based
detector were used for the tests. The pure dataset is
composed of data obtained exclusively from the actual
experiments, without incorporating any data generated by the
deep generative model. In contrast, the augmented dataset
refers to the pure dataset supplemented with brightness
temperature spectrum data generated by the developed
deep generative model. To evaluate the effects of data
augmentation, we compared the performance of two detectors
trained with the pure dataset, the 150% augmented dataset,
and the 200% augmented dataset. This comparative analysis
was performed using accuracy and ROC curve. The results of
this experiment can be observed in a Figure 6.
The pure dataset comprises 500 brightness temperature

spectra acquired from actual experiments. In the dataset,
250 spectra correspond to scenarios with the presence of
SF6 gas, while the remaining 250 spectra correspond to
scenarios without the gas. The 150% augmented dataset
consists of the pure dataset of 500 spectra supplemented
with an additional 250 spectra generated by the deep
generative model. The 200% augmented dataset comprises
the pure dataset with an additional 500 generated spectra. The
performance of the two detectors, each trained on datasets of
sizes 500, 750, and 1000, was evaluated using test dataset.
The test dataset consists of data with randomly assigned
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FIGURE 6. Accuracy and ROC curve of two detectors, Support Vector Machine (SVM) and Deep Neural Network (DNN), trained with pure dataset, 150%
augmented dataset, and 200% augmented dataset, for each natural backgrounds, (a) Mountain, (b) Earthy ground, (c) Asphalt, and (d) Concrete wall.
In the graphs on the right side, pink line, green line, and blue line indicate ROC curve of detectors trained with pure dataset, 150% augmented dataset,
and 200% augmented dataset, respectively.

conditions, specifically within a pathlength concentration
range of 0.0005γ0 to 0.001γ0 and a temperature difference
range of 5◦C to 10◦C . To facilitate effective comparative
analysis, the test dataset was constructed using data from
scenarios with low SF6 gas concentrations. In scenarios
with high SF6 concentrations, the detectors consistently
demonstrated high accuracy regardless of the training dataset
size or the type of detector, thereby obscuring anymeaningful
effects of the data augmentation.

The results in Figure 6 demonstrate an improvement in
accuracy due to the data augmentation using the proposed
deep generative model. Moreover, as data augmentation
is applied, the ROC curve shifts towards the upper left
corner. Thus, it is clearly confirmed that the spectral data
augmentation using the deep generative model effectively
improves the performance of the chemical gas sensing
systems.

V. DISCUSSION
When conducting research on machine learning-based gener-
ative models, it is essential to discuss which models are suit-
able depending on the situation, conditions, and objectives.
In this study, which involves developing a model to generate
spectra that vary according to temperature and concentration
conditions across different backgrounds, a conditional Cycle-
GAN was used. Other promising candidate methods capa-
ble of performing similar tasks include transformer-based
methods such as diffusion model. Therefore, it is meaningful
to consider the transformer-based model and perform a
comparative analysis between transformer-based diffusion

model and CycleGAN, when conducting research on the deep
generative models.

A. SUITABILITY FOR UNPAIRED DATASET LEARNING
CycleGAN exhibits suitability for learning from unpaired
datasets according to [12]. Since datasets are usually unpaired
in real-world, especially in the field of remote chemical
detection, CycleGAN is anticipated to fit into generative
model for scarce and scattered dataset. The conditional
CycleGAN model proposed in this study ultimately aims
to generate paired data using unpaired datasets for specific
backgrounds, temperatures, and path length concentrations.
CycleGAN learns mappings between two different domains
without requiring paired data for training. This can be
achieved by leveraging the cycle consistency loss.

B. COMPUTATIONAL EFFICIENCY
The transformer-based diffusion model can be another
suitable deep generative model. However, it is known to
be computationally complex. Self-attention mechanism in
the transformer models to calculate interactions between
each element in the input sequence requires high memory
bandwidth. Furthermore, transformer models typically have
a large number of layers and parameters.

Compared to the transformer models, CycleGAN holds
an advantage in terms of computational cost. This charac-
teristic enhances its feasibility and applicability, in resource-
constrained scenarios such as miniaturized edge devices for
chemical gas detection. In our study, the proposed model
utilizes a generator with only 8 layers of fully-connected
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layers and a discriminator with 5 layers of fully-connected
layers, requiring fewer learnable parameters compared to
transformer-based models. Additionally, the total training
time amounted to approximately only 3 hours for 700 epochs
with NVIDIA GeForce RTX 2080 Ti, further highlighting
its computational efficiency. Moreover, during the inference,
only the generator layers are needed to create the spectra,
which significantly reduces the number of parameters and
computation efforts. In fact, according to [25], it can be
observed that CycleGAN used approximately 33% less
training time and 59% fewer parameters compared to
UVCGAN, a transformer-based deep generative model.

VI. CONCLUSION
We proposed a method for augmenting spectral brightness
temperature data using conditional CycleGAN where the
generated spectrum relies on the attributes of the gas,
specifically the temperature difference and pathlength con-
centration. To train the network, we acquired spectra under
controlled experimental settings by varying the tempera-
tures of the chamber and black body, and adjusting the
concentration of SF6. With the obtained dataset, we trained
the network with the emphasis on its controllability of the
peak characteristics using the concatenated attributes vector.
According to the training results, the network successfully
learned the generation mechanisms of SF6, demonstrating the
learned patterns of morphological trends based on changes in
attributes. In addition, the generated spectra were validated
by testing them on the detection algorithms. Specifically, the
network successfully produced SF6 spectra on novel natural
backgrounds not included in the training data. Furthermore,
a simulating capability for a 12◦C temperature difference
case demonstrated control over previously unseen attributes.
Finally, the value of data augmentation using the proposed
deep generative model was demonstrated as the performance
of detectors trained on the augmented dataset surpassed that
of detectors trained on the pure dataset.

Therefore, this model enables the rational and proper
generation of brightness temperature spectra across various
conditions, including different backgrounds, temperatures,
and concentrations of chemical gases. This showed the
feasibility of spectral data augmentation of the chemical
gases using the conditional CycleGAN model. Obtaining a
sufficient amount of data is important to ensure adequate
performance of the tasks involving the detection and
identification of chemical gases. However, achieving this in
practice is challenging. Consequently, it is anticipated that
this data augmentation model can contributes to enhancing
the performance of the remote chemical sensing using FT-IR
spectroscopy, mitigating several practical difficulties.

Future works may include the development of deep
generative models for multiple types of chemical gas
spectrum which involves many-to-many domain translations.
This data augmentation is anticipated to enhance detection
performance across a wider range of backgrounds and
chemical substances. A comparative analysis of several

generative machine learning models for data augmentation
can also be considered as a meaningful future study.
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