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ABSTRACT To filter out noise in transient electromagnetic (TEM) signals, a Time-Space Fractional-order
DiffusionModel (TSFDM) based on intelligent optimization is proposed. Firstly, based on the characteristics
of the TEM signal, the signal is subjected to dynamic threshold segmentation processing. Then, the discrete
difference method and the Grunwald-Letnikov approximation method with displacement are separately
employed to approximate the time Caputo fractional derivative and the space Riemann-Liouville fractional
derivative for solving the time-space fractional diffusion equation, this establishes an iterative convergent
difference equation, and different smoothing operators corresponding to different stages of signal are set to
obtain the TSFDM filter. Moreover, the Harris Hawk algorithm combined with Golden Sine and Energy-
updating (GEHHO), is used to find the optimal value of the fitness function to obtain the optimal TSFDM
filter for each stage signal. Simulation results show that after using the proposed method, the SNR of the
TEM signal has increased by 33 dB, effectively restoring the trend of frequency domain curve changes.
Compared to traditional methods, this approach demonstrates better performance in the evaluation metrics.
Simulation experiments on geological structure inversion show that filtering and inversion of the noisy TEM
signals yield results consistent with directly inverting the original signals.

INDEX TERMS Transient electromagnetic signal, intelligent optimization, segmentation, filter, time–space
fractional-order diffusion equation.

I. INTRODUCTION
The Transient Electromagnetic (TEM) method is widely
employed in resource exploration and geological research
due to its advantages, such as remarkable exploration depth
and exceptional resolution [1], [2]. However, the dynamic
range of TEM signals is very large, and the amplitude decays
as exponential curve. Especially for the late-stage signal,
the Signal-to-Noise Ratio (SNR) of which is very low, and
the signal is almost submerged by noise [3], [4].Therefore,
signal preprocessing plays a pivotal role in the investigation
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of TEM, and attracts numerous scholars to study it. Therefore,
signal preprocessing is a crucial link in the study of transient
electromagnetic method, which has attracted many scholars
to explore it in depth.

There are many filtering methods to deal with TEM signal,
including Wavelet Transform (WT), Principal Component
Analysis (PCA), Adaptive filtering method and Deep learn-
ing mechanism. Ji Yanju et al proposed an exponential
fitting adaptive Kalman filter (EF-AKF) to remove mixed
electromagnetic noise while protecting signal features [5].
whom utilized wavelet thresholding and stationary wavelet
transforms to eliminate background noise and random spike
noise in TEM signals respectively two years later [6];
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Dai Xueping et al. employed discrete wavelet transform
to separate the signal and noise in TEM signals. The
principle is to conduct Fourier transform in the wavelet
domain and retains the first eight detail coefficients for
reconstruction, and for uncomplicated datasets, the curve-
fitting techniques are additionally utilized to smooth out the
signal. Research shows that the selection of wavelet basis has
a vital impact on feature extraction and wavelet algorithm.
Besides, wavelet algorithm is also limited by the number
of decomposition levels [7]. Wu Xin et al. introduced the
sampling function optimization method, which effectively
improved the suppression ability of TEM signal power
frequency noise through the bipolar synchronous sampling
method. The attenuation characteristics of the filtered signal
were not obvious enough [8]; Kass and Li established the
PCA denoising method through data organization selection,
covariance matrix construction, and principal component
selection in reconstruction [9], which effectively removed
the noise basis vector and preserve the effective signal. Feng
Bing et al. used the KernelMinimumNoise Fraction (KMNF)
method to map data from the original space to the feature
space through nonlinear mapping and then performed linear
analysis on the data to extract nonlinear information from
electromagnetic data. However, PCA and KMNF have strict
data distribution assumptions and sensitivity to parameter
selection, which lack flexibility in application [10]. On the
basis, Lin Fangqiang et al. proposed the SFSDSA(secondary
field signal denoising stacked autoencoders) model of deep
neural network based on feature extraction and denoising.
According to the depth characteristics of the signal, the noisy
signal points are mapped to the high probability points of the
clean signal as the reference to achieve the effect of signal
denoising [11]. Luan H et al Luan H et al proposes a Singular
Spectrum Analysis (SSA) for the grounded electrical source
airborne transient electromagnetic (GREATEM) data de-
noising. The window length was selected by particle swarm
optimization algorithm, and then the data was decomposed
and reconstructed by SSA algorithm, effectively improving
the data quality [12]. The above methods have a great
influence on the field of transient electromagnetic filtering.
However, due to the complexity of precise signal extraction,
the above methods have different degrees of limitations.

To solve the inherent limitations of the aforementioned
methods, such as the constraints of Fourier transform
and the difficulty of selecting basic functions, variational
mode decomposition (VMD), empirical mode decomposition
(EMD) and their improved algorithms are increasingly used
in transient electromagnetic method signal processing in
recent years. Wei Huiru et al. utilized the EMD to decompose
TEM signals into multiple intrinsic mode functions ranging
from high frequency to low frequency. Spectral analysis was
performed on the intrinsic mode components, and effective
signals were selected and reconstructed to obtain filtered
signals. EMD has shortcomings such as modal aliasing and
envelope fitting deviation. At the same time, the TEM signal
was adaptively decomposed into different center frequency

components through VMD, and the desired signal was
reconstructed to achieve noise suppression, overcoming the
difficulty of wavelet transform basis selection [13]; Feng et al.
utilized the Whale Optimization Algorithm (WOA) to
obtain the optimal penalty factor and decomposition level
results in VMD, and then used the Bhattacharyya distance
algorithm to identify effective patterns and noise patterns,
achieving signal reconstruction [14]; Qi et al. utilized the
Gray Wolf Algorithm (GWO) optimized VMD for adaptive
decomposition of TEM signals, and then used wavelet
thresholding to denoise the mixed-mode components and
reconstruct the desired components to achieve TEM signal
filtering [15].
The filtering effectiveness of the aforementioned methods

is better than that of regular methods. However, the number
of Intrinsic Mode Functions (IMFs) remains fixed when
dealing with the entire time domain TEM signal. If the
number is too large, it will bring early-stage signals
to the endpoint effect; conversely, if the number is too
small, it will reduce filtering effectiveness for later stage
signals. Therefore, selecting a suitable number of IMFs is
difficult. Whereupon, a segmented TEM filtering method for
Time-Space Fractional Diffusion equations (TSFDM) was
proposed. Among them, TSFDM is a diffusion model based
on fractional order has long memory and good multiscale,
which protects the signal features while flexibly dealing with
the changes of different scales of the signal [16], and is
suitable for dealing with nonlinear signals, therefore, it is
attempted to apply TSFDM in the field of noise reduction of
transient electromagnetic signals [17]. To obtain the optimal
TSFDM filters for each stage signal, the improved Harris
Hawk Optimization algorithm (GEHHO) is used for TSFDM
optimization. The proposed method can effectively reduce
the noise interference in the TEM signals while preserving
the attenuation characteristics of the signals. Besides, The
data quality and resolution of the inversion calculation are
improved.

II. FILTERING MODEL AND IMPLEMENTATION STEPS
A. ALGORITHM FRAMEWORK
The filtering algorithm framework is shown in Fig. 1. Firstly,
the TEM signal is converted into energy form, and energy
dynamic thresholds are set to segment the signal. Next, the
TSFDM and fitness function are established, meanwhile,
the GEHHO is used to optimize the fitness function to
obtain the optimal TSFDM filter for each stage signal.
Then the overlapping averaging method is used to determine
the concatenation points of filtered signals in each signal
stage. Finally, a complete filtered TEM signal is obtained by
splicing them together.

FIGURE 1. Filtering algorithm framework.
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B. SEGMENTATION STRATEGY
The characteristics of TEM signal change with the increase
of geological exploration depth: initially, the amplitude of
voltage is high, during the transitional phase, it decays
rapidly; it attenuates slowly and gradually tends to be
smooth in the later stage. Therefore, TEM is segmented to
obtain signals of different stages with different attenuation
characteristics before filtering, and then the filtering model
parameters and correlation functions corresponding to each
segmented signal are adjusted to achieve better filtering
results. According to the short-time energy variation law
of transient electromagnetic signal, it is divided into three
periods: early, middle and late. The specific segmentation
process is as follows:

Set the TEM signal as x(m), withN sampling points, which
are processed by frame segmentation and windowing. Then,
the short-time energy of each frame of the TEM signal by
summing their squares. the short-time energy is defined as
shown in equation (1) [18]:

ω(n) =

{
0.5(1 − cos(2πn/(P− 1))), 0 ≤ n < P− 1
0 , n=others

En =

∞∑
m=−∞

[x(m) × ω(n-m)]2

(1)

where ω(n) represents the Haining window function,
Prepresents the window length. En represents the energy
variation pattern of the TEM signal.

Set the energy dynamic thresholds as TH and TL, select
the En ≥ TH period as the early stage of the signal, the
TH ≥ En ≥ TL period as the middle stage of the signal,
and the En ≤ TL period as the late stage of the signal. Each
TEM stage signal extends N/1000 length before and after the
breakpoint. The segmented signal is follows in equation (2):

S’i


Si(1), 1 ≤ i ≤ X ′(TH ) +W
Si(2), X ′(TH ) −W ≤ i ≤ X ′(TL) +W
Si(3), X ′(TL) −W ≤ i ≤ N

(2)

where Si(1),Si(2), and Si(3) are early, middle, and late stages
signals respectively, X ′(TH ) and X ′(TL) are the abscissa
corresponding to the threshold of the TH and TL.

C. TIME-SPACE FRACTIONAL-ORDER DIFFUSED
EQUATION FILTERING MODELING
The TSFDM is used to filter TEM signals from different
stages. The proposed model exhibits a fractional-order
memory property. Throughout the iterative filtering process,
incorporating the prior signal information, the smoothing
operator with the diffusion function is employed to weigh
and update the gradient change results of both current and
historical signals. As the increasing number of iterations,
the smoothing operator suppresses the gradient value error
caused by noise and preserves the signal characteristics
effectively.

The TSFDM model employs the Caputo time fractional
derivative of order a and the Riemann-Liouville space
fractional derivative of order β to approximate the spatial
and temporal derivatives in integer-order partial differential
equations. This approach allows for obtaining the time-space
fractional-order diffusion equation based on the classical
diffusion model [19], as shown in equations. (3) and (4).

∂au (xi, tk)
∂ta

=G (u (xi, tk))Dβ
x u(x, t) 1 < i < N , 0 < k ≤ L

(3)

u(xi, t0) = Si (c) c = 1, 2, 3 (4)

where a ∈ (0, 1), β ∈ (1, 2), ∂au (xi, tk)
/
∂ta is the

Caputo fractional derivative of time order a;Dβ
x u(xi, tk ) is the

Riemann-Liouville fractional derivative of the space order β;
Si (c) is the segmented TEM signal to be filtered;N represents
the number of sampling points of TEM signal; u (xi, tk)
represents the filtered signal obtained by k iterations of Si (c),
and xi represents the i-th sampling point of the filtered signal
in the space shift direction (the space displacement of the
adjacent sampling points is h), xi = ih; tk represents k
iterations of the filtered signal in the time shift direction (time
step τ = 1), tk = kτ ; and G (u (xi, tk)) is the Diffusion
function, as shown in equation (5), which represent the
diffusion coefficient corresponding to the i-th sample point
of the sampling sequence after k iterations.

G (u (xi, tk+1))

= exp

(
−

(
|u (xi, tk)| ×

√
− ln (0.1)

max [u (xi, tk) − min u (xi, tk)]

)2
)

(5)

To achieve the filtering discrete signals, a finite difference
method is employed to discretize the continuous time-space
fractional diffusion equation, transforming the problem of
solving partial differential equations into solving algebraic
equation systems. Therefore, the Caputo fractional derivative
at the left end of the time-space fractional diffusion equation
is approximated by difference discretization [20], while the
Riemann Liouville fractional derivative at the right end of
equation (4) is approximated by Grunwald-Letnikov with
displacement [21], This approach allowed us to establish
discrete difference equations of the TSFDMfilters as follows:

U0
=

(
A0 + B0

)−1
U0 (6)

U k
=

(
Ak−1

+ Bk−1
)−1 (

(1 − b1)U k
+ bkU0

+

k−1∑
j=1

(
bj − bj+1

)
U k−j

 (7)

where bj = (j+ 1)1−a−j1−a,Un
=
[
un1, u

n
2, u

n
3, · · · , unN

]
, uki

represents u (xi, tk); equation (6) represents the first
iteration filtering result of the input signal through the
TSFDM filter; equation (7) represents the k iteration
filtering result of the TSFDM filter; (1 − b1)U k

+
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bkU0
+

k−1∑
j=1

(
bj − bj+1

)
U k−j represents the weighted

of historical iteration results; The smoothing matrices
Ak and Bkare shown in equations (8) and (9), shown
at the bottom of the page; The time order is ai =

|(u(xi, t1) − (u(xi, t2)| /(max |(u(xi, t1) − (u(xi, t2)|). By sub-
tracting the amplitude of each sampling point in the
original signal from that of each sampling point in the first
iteration filtered signal, a sequence of length N is obtained.
In this sequence, the ratio between the difference value
corresponding to each sampling point and the maximum
difference value is used as the order for each sampling
point, where Rki = τ a0 (2 − a)G (u (xi, tk))

/
hβ represents

the weight factor of the smoothing matrix that contains
diffusion functions.; The Grunwald-Letnikov approximation
coefficient is g0 = 1, gk =

(
1 − (β + 1

/
n)
)
gk-1; The

smoothing coefficients K1, K2 are non-negative numbers,
K1 +K2>0, and the matrix dimension(M-1) is equal to the
length of the signal.

Due to the voltage amplitude of TEM signal has different
attenuation changes in various periods, when processing the
early and middle stages signal, the coefficients K1 and K2for
smoothing matrices A and B are set as column vectors,
which are shown as equations (10) and (11), respectively.
Among them, the elements in these vectors increase linearly,
adjusting the weighting factor Ri in the smoothing matrix
to adapt to the decreasing SNR during attenuation process,
achieving a better smooth filtering effect. When processing
the late-stage signal, the attenuation trend of the signal during
this stage is relatively gentle, K1 and K2 are set as constant
values of 50 and 0.1.

K1 = θ [1/(M − 1), 2/(M − 1)

· · · , (M − 2)/(M − 1), 1]−1
1×(M−1) (10)

K2 =

[
(θ + ln (M − 1))−1, (θ + ln (M − 2))−1

· · · , (θ + ln (1))−1
]−1

1×(M−1)
(11)

FIGURE 2. TSFDM iterative convergence diagram.

As shown in Fig.2, the diagram illustrates the conver-
gence of TSFDM iterative filtering. As shown in Fig.2,
is the filtering schematic of TSFDM iterative convergence.
In this method, the random noise at each sampling point
is suppressed continuously by the smoothing operator of
weighted update during the 20 iterative filtering process
of the noise added signal with the amplitude of the EMF
decaying. Eventually, a signal curve with smooth attenuation
characteristics is obtained, and the signal-to-noise ratio
(SNR) is improved from 13 dB to 39 dB.

D. TSFDM PARAMETER OPTIMIZATION
1) FITNESS FUNCTION MODELING
In TSFDM filters, each stage signal corresponds to different
space step sizes and space order values to achieve better
filtering effects. Among them, the space step size represents
the level of discretization in the spatial domain of the solution
region. Appropriately reducing the value of space step size
can improve spatial resolution. By dividing the solution
domain into smaller intervals, more discrete spatial points
can be obtained to capture smaller scale variations. The
diffusion speed of the algorithm is also influenced by the
space order. Furthermore, according to equations (8) and (9),

Ak = K1



1
/
K1 − Rk1g1 − Rk1g2 −Rk1
−Rk2g2 − Rk2g3 1

/
K1 − Rk2g1 −Rk2

−Rk3g4 − Rk3g3 −Rk3g1 1
/
K1 − Rk3g1 −Rk3

-Rk4g4-R
k
4g5 -Rk4g3 -Rk4g2 1

/
K1 − Rk4g1 −Rk4

· · · · · · · · · · · ·

-RkM−2gM−2-R
k
M−2gM-1

-RkM−1gM−1-R
k
M−1gM

· · · · · · · · ·

-RkM-2gM−3
-RkM-1gM−2

· · · · · · · · ·

-RkM−2gM-4
-RkM−1gM-3

· · · · · · · · ·

-Rn
M−2gM-4

-Rn
M−1gM-4

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

−RkM−2
1
/
K1-RkM−1-R

k
M−1g1


M−1×M−1

(8)

Bk = K2



−Rk1
(
1 + g1

)
−Rk1g2 −Rk1g3 · · · · · · −Rk1gM−2 −Rk1(gM + gM−1)

−Rk2 −Rk2g1 −Rk2g2 · · · · · · −Rk2gM−3 −Rk2(gM−1 + gM−2)
−Rk3 −Rk3g1 · · · · · · −Rk3gM−4 −Rk3(gM−2 + gM−3)

· · · · · · · · · · · · · · · · · · · · · · · ·

−RkM−1 −RkM−1g1
−RkM−1

−RkM−1(g2 + g3)
−RkM−1(g1 + g2)


M−1×M−1

(9)
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the smoothing matrix weight factor R, which includes space
step size and space order, has an impact on the filtering
results. Therefore, when filtering processing segmented TEM
signals with TSFDM, intelligent optimization algorithms are
employed for parameter optimization to obtain the optimal
TSFDM filter. The fitness function in the optimization
algorithm is formulated as follows:

In the early and middle stages of the TEM signal, the
amplitude of the voltage rapidly decays, and use the least
squares method to obtain an estimated value that is similar
to the attenuation characteristics of the signal. Then, the
fitness function is set as the minimum absolute difference
between the estimated ϕ(xi) value and U3 (the filtering result
calculated through two iterations of TSFDM with different
parameter combinations). This minimum absolute difference
corresponds to the optimal TSFDM filter.

min
ϕ

m∑
i=1

|δi| =

m∑
i=1

∣∣∣ϕ(xi) − U3
∣∣∣ (12)

The TEM signal decays slowly in the late stage, and
the more orderly the arrangement of filtered data, the more
pronounced the attenuation characteristics. Therefore, the
lowest Permutation Entropy (PE) is used as the fitness
function for this stage signal. By performing spatial recon-
struction on the signal to obtain r components, arranging each
reconstructed component in ascending order numerically, and
obtaining a set of symbol sequences composed of column
indices representing element positions, we can calculate the
probabilities P1, P2, P3, . . .Pn of occurrence for r different
sequences. The time series permutation entropy is arranged
according to equation (13), and the lowest permutation
entropy corresponds to the optimal parameter combination of
the TSFDM.

H = −

r∑
i=1

Pi lnPi (13)

2) INTELLIGENT OPTIMIZATION ALGORITHM
The Improved Harris Hawk Optimization algorithm
(GEHHO) is employed to optimize the fitness function to
obtain the optimal TSFDM filter. Among them, GEHHO is
based on the Harris Hawk (HHO) [22] algorithm, combining
the golden sine function [23] and energy factor update
strategy to enhance its global optimization performance.
To traverse all numerical points within the range of space step
size and space order as much as possible during the numerical
search process. The specific process is as follows:

X (t + 1) =


Xrand (t) − r1 |Xrand (t) − 2r2X (t)| q ≥ 0.5
(Xrabbit (t) − Xm(t)) − r3 (lb+ r4(ub− lb)) ,

q < 0.5
(14)

From equation 14, Harris’s hawk conducts random search
when q≥0.5, without communicating with individuals in
the population,which has resulted the algorithm’s global

search capability need to be improved, making it difficult to
explore the whole solution space. Therefore, incorporating
the Golden Sine function into the HHO exploration phase
enhances its global search capability. The updated explo-
ration formula is shown in equation (15):

X (t + 1)


X (t) |sin(R1)| + R2 sin(R1) × |x1Xrabbit − x2X (t)| ,

q ≥ 0.5
(Xrabbit (t) − Xm(t)) − r3 (lb+ r4(ub− lb)) ,

q < 0.5
(15)

where the golden section coefficients of x1 and x2 are:x1 =

−π + (1 − γ )×2π, x2 = −π +γ ×2π, R1 ∈ [0, 2π ] ,R2 ∈

[0, π] ,R1determines the distance of individual movement
in the next iteration, and R2 determines the direction of
individual position update in the next iteration. γ is golden
section number, γ = (

√
5 − 1)

/
2.

As indicated by equation 16, the transition of Harris’s hawk
from global to local search is influenced by the escape energy
factor E .

E = 2E0(1 −
t
T
) (16)

where E0 represents random number range of (−1,1),
t represents the current number of iterations, and T represents
the maximum number of iterations.

The energy factor E plays a balancing role between global
search and local search. When E < 1, the algorithm performs
local search, and when E > 1, the algorithm performs global
exploration. From Fig.3, it can be observed that the energy
factor of HHO becomes less than 1 after 220 iterations,
indicating transition to local optimization. However, after
220 iterations, there is a probability that the energy factor
formula (equation 17) in GEHHO becomes greater than 1,
providing an opportunity to transition from local search back
to global search.

E = 2E0
t
T
e(−

t
2T ) + 2E0

(
1 −

t
T

)
(17)

FIGURE 3. Energy factor.
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E. SPLICING STRATEGY
As mentioned above, the transient electromagnetic signal is
divided into three periodswith the short-term energy variation
law. After signal filtering, the signals originally split into
three segments need to be concatenated again in series.
If the splicing is improper, it may cause greater signal error.
Therefore, the purpose of the splicing strategy is to make
the filtering signals of the three periods be spliced with as
little error as possible after filtering. The general idea is
that three filtered signals output by GEHHO-TSFDM are
concatenated in series to obtain the complete TEM filtered
signal with the minimum error between the stitched points
by the superposition average method. Firstly, the extended
regions of the filtered signal in two adjacent stages are
stacked, and calculate their average value. Then, this value is
subtracted from the extended region of the next stage filtered
signal, and take the absolute value, where the minimum value
point is the splice point, as shown in equations (18).U k (1),
U k (2) and U k (3) represent the filtered signals in the early,
middle, and later stage respectively, I1min represents the
splicing points of the early and middle stage filtered signal,
whileI2min represents the splicing points of the middle and
later stage filtered signal.

I1min =

∣∣∣((U k (1) + U k (2)))/2 − U k (2)
∣∣∣ ,

X ′(TH ) −W ≤ i ≤ X ′(TH ) +W

I2min =

∣∣∣((U k (2) + U k (3)))/2 − U k (3)
∣∣∣ ,

X ′(TL) −W ≤ i ≤ X ′(TL) +W

(18)

Obtain the splice points I1min and I2min through
equation (18), connect the adjacent filtered sequences from
the splice points to obtain the complete filtered signal (U k ),
as shown in equation (19).
After this strategy, the complete filtered TEM signal with

minimum error is obtained.

U k
=


U k (1), 1 ≤ i ≤ I1min
U k (2), I1min ≤ i ≤ I2min
U k (3), I2min ≤ i ≤ N

(19)

F. IMPLEMENTATION STEPS OF THE PROPOSED METHOD
The process of the GEHHO-TSFDM filtering diagram is
shown in Fig.4. The steps are as follows:

Step 1: Calculate the short-term energy of the TEM signal
and set the threshold to segment the signals. Select the fitness
function corresponding to each signal stage.

Step 2: Initialize TSFDM parameters: set time order a,
number of iterations, range of space step and space order,
smoothing coefficients K1, K2.

Step 3: Calculate the smoothing matrix weighting fac-
tor R0, the smoothing matrices A0 and B0. Next, from
equation (6), the first iteration filtering result is obtained. and
the a1, Rk , Ak , Bkare updated. Next, the k iterations filtering
result is obtained from equation (7).

Step 4: Initialize GEHHO parameters: population size and
number of iterations.
Step 5: Repeat step 3 and input the filtered result of

the two iterations with different parameters into the fitness
function. GEHHO searches for the Minimum value of the
fitness function to obtain the optimal parameters.
Step 6: Filter each stage of the signal using the optimal

TSFDM filter and concatenate them to acquire a complete
TEM signal.

III. SIMULATION TEST RESULTS
A. SIMULATION MODEL
UsingMATLAB to generate the discrete time series shown in
equation (20), its physical meaning is the time-domain TEM
signals of three underground target bodies in the geological
body space [24] and the theory TEM signal without noise is
shown in Fig.5.

S (t) = 2 × 10−4 exp(−t) + 6.5 × 10−4 exp(−9t)

+ 10−3 exp(−17t) + 3.5 × 10−6
+ n(t) (20)

where n(t) represents the noise component, including Gaus-
sian white noise, spike pulses, mixed sine wave noise. The
noise amplitude can be adjusted to change the signal-to-noise
ratio during simulation.

Filtering effect evaluation indicators: RMSE (Root Mean
Square Error), SNR (Signal-to-Noise Ratio), MAPE (Mean
Absolute Percentage Error).

RMSE =

√√√√ 1
N

N−1∑
n=0

(y (n) − s (n))2 (21)

SNR = 10 log

(
N∑
i=1

s2 (i)

/
N−1∑
i=0

|y (i) − s (i)|2
)

(22)

MAPE =
1
N

N∑
n=1

∣∣∣∣y (i) − s (i)
s (i)

∣∣∣∣× 100% (23)

s(n) and y(n) are the original signal and filtered signal,
respectively.

B. FILTERING EFFICIENCY OF PROPOSED METHOD
Adding Gaussian white noise to the entire simulated TEM
signal, simultaneously introducing spike pulse noise and
mixed sine wave noise to the late stage of the signal,
we obtained simulated TEM signals with 1 dB SNR. The
signal consists of 20,000 sampling points, and the voltage
amplitude decays exponentially from 0.18 mV to 3.5µV . The
filtering process and conclusions are as follows:

1) Signal segmentation: The TEM signal is converted
into short-time energy, and the energy threshold is set as
0.0467 and 0.0044, as shown in Fig. 6(a). Then extend
20 sampling points at the front and rear endpoints of each
stage signal. Finally, the sampling point ranges of each stage
TEM signal are: [1,100], [60,320], [280,20000].

2) GEHHO Optimization: The parameter optimization
results of the GEHHO algorithm are shown in Fig.6(b).
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FIGURE 4. GEHHO-TSFDDM filter flowchart.

FIGURE 5. Multiple target theoretical TEM signal.

Compared with the HHO algorithm, the GEHHO algorithm
achieves optimal values with fewer iterations than HHO.
The parameter combinations for space order and space
step are (1.50, 0.2384), (1.46, 0.0389), and (1.17, 0.0144)
respectively.

3) Analysis of GEHHO-TSFDM filtering results: The
filtered TEM signal with SNR of 34 dB is obtained by
concatenating the output data of the optimal TSFDM filter,
as shown in Fig.6(c). There are no endpoint effects or
distortion phenomena during the early and middle stages of
the signal. In the late stage, the filtered signal remains smooth
and restores the attenuating characteristics of the original
signal, Moreover, the RMSE decreases from 40.63 × 10(−7)

to 0.85× 10(−7), while the MAPE decreases from 91.45% to
1.64%. thus, verifying the feasibility of GEHHO-TSFDM.

C. COMPARISON SIMULATION
To validate the effectiveness of the proposed method, four
models including VMD, EMD, Time Fractional Diffusion
Model (TFDM) [25], and GEHHO-TSFDM are employed

to filter TEM signals with different SNR of 1dB, -10dB,
and -4dB. The types of noise included Gaussian white
noise, impulse noise, and mixed sinusoidal waves. In the
course of this process, VMD and EMD are used to filter
the entire signal directly, maximizing improve the SNR
of the TEM signal. Meanwhile, the TFDM adopted the
same segmentation strategy asGEHHO-TSFDMand selected
parameters through man-made experience. The following
conclusions could be drawn from the analysis of the model
output results:

TABLE 1. TEM signal filtering results with a SNR of 1.

TABLE 2. TEM signal filtering results with a SNR of −4dB.

The evaluation results of the four models are shown in
Table 1, Table 2 and Table 3. Among them, compared to
the filtering results of the four models, GEHHO-TSFDM
achieved the highest improvement in SNR, as well as the
lowest MAPE and RMSE values. Compared with before
filtering signals, the average MAPE and RMSE of the three
filtered signals output by GHEOO-TSFDM decreased to

VOLUME 12, 2024 91031



C. Tan et al.: Transient Electromagnetic Signal Filtering Method

FIGURE 6. GEHHO-TSFDM filtering process and results; (a) Segmentation
result (b) GEHHO optimization result (c) The filtered signal after
GEHHO-TSFDM processing.

1.41% and 1.87%, respectively, while the average SNR
increased by 33 dB.

The filtering effect diagram is shown in Fig.7(a). In the
TEM signals filtered by VMD, EMD, and TFDM, there are
many singular values in the middle stage of the signal, and the
voltage amplitude fluctuates greatly in the late stage, which
is not smooth enough. In addition, the filtered signal proceed
by VMD exhibits endpoint effects in the early stage. The

TABLE 3. TEM signal filtering results with a SNR of −10dB.

FIGURE 7. Comparison simulation result, (a) filtering results with
different algorithms, (b) Comparison of absolute error curves,
(c) Spectrum comparison chart.

error comparison between the filtered signal and the original
signal, as shown in Fig.7(b), the GEHHO-TSFDM output
signal has the smallest relative error, with a value of less
than 1 µV , which indicates a higher degree of smoothness
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FIGURE 8. Filter results of transient electromagnetic signals at each measurement point.

FIGURE 9. Comparison of inversion result before and after filtering (a) Simulated geoelectric structure diagram; (b) Inversion results of noisy data;
(c) Inversion results of no-noise data; (d) Inversion results of filtered data.

in the signal. In the frequency spectrum of Fig.7(c), four
models suppress noise above 1000Hz. However, the filtered
signals of EMD, VMD, and TFDM exhibit significant
fluctuations in the frequency curve within the range of 50Hz
to 500Hz, whereas GEHHO-TSFDM effectively suppressed
the abnormal protrusions in this frequency band and restored
the attenuation trend of the original signal frequency domain
curve.

The aforementioned analysis indicates that the proposed
method exhibits capability in restoring the attenuation
characteristics of TEM signals, with superior performance
in various evaluation indicators results, indicating its
effectiveness.

IV. EXPERIMENT AND DISCUSSION
In order to verify the feasibility of this method, comparing the
inversion results of original signals, noisy signals and filtered
signals.

1) Establish a standard geological body model diagram as
shown in Fig.9(a). Then, 21 undisturbed measurement point
TEM signals are generated in MATLAB and inverted to form
a simulated geological body as shown in Fig.9(c), a low-
resistance region with a resistance value of 5�·m and a length
of 20 m is observed in the depth range of 50-70 m, and a
layered low-resistance region with a resistance value of 5�·m
is observed in the depth range of 150-190 m. In addition,

stratified bands with resistance values of 20 � m exist at
depths ranging from 90m to 180 m.

2) Then, Gaussian white noise is added to the entire
undisturbed TEM signal of each measurement point, and
spike pulse noise and mixed sine wave noise are added to the
late-stage signals. This results in 21 noisy TEM signals with
an average of -2dB. Inversion calculations are performed on
these 21 noisy TEM signals, the results are shown in Fig.9(b),
the geological information is fuzzy and incomplete, making
it impossible to obtain effective geological information.

3) The GEHHO-TSFDM model is used to filter the noisy
signal from 21 measuring points, resulting in a filtered
signal with an average SNR of 28 dB. As shown in
Fig.8, comparing original signals, noisy signals and filtered
signals of measurement points 2, 7, 10, 12, 17, and 21,
it can be seen that the original signal feature information is
effectively reserved. Through the inversion imaging of the
filtered signals, the geological structure is shown in Fig.9(d).
Reproduces the layered resistance phenomenon depicted
in Fig.9(c). The initial geological structure is effectively
restored. This validates the feasibility of the proposed model.

V. CONCLUSION
To filter out noise and obtain TEM filtering signals with
distinct decay characteristics, a segmented TEM filtering
method based on GEHHO parameter optimization of the
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Time-Space Fractional Diffusion equation is proposed. The
method uses a segmented strategy and parameter-optimized
TSFDM filtering model, which makes the model parameter
values and function selection change adaptively with the
signal characteristics of each stage in order to achieve a better
filtering effect.

The simulation and experimental analysis results demon-
strate an average improvement of approximately 33 dB in
output SNR. Comparison between the signal before and
after filtering, RMSE reduced by about 1.41%, and MAPE
reduced by about 1.87%. High-frequency noise in TEM
signals is effectively removed while low-frequency noise
is suppressed. Compared to other filtering methods, such
as VMD, EMD and TFDM, the superiority of TSFDM is
verified. Furthermore, by filtering and inverting the measured
signals, the results closely resemble the actual geological
structure; thus, validating the effectiveness and feasibility and
of this proposed method.

Certainly, the method still has some limitations. The
proposed method uses the intelligent space-time fractional
order equation, essentially uses a matrix to iterate the signal,
and gets the filtered signal after several iterations. When the
input electromagnetic signal is more complex, the order of
the matrix is larger, the calculation speed will be greatly
affected, and the filtering accuracy will also be reduced to a
certain extent. On this basis, the calculation can be simplified
by changing the size or sparsity of the matrix, so that the
calculation speed can be maintained in complex cases, and
this problem should be paid more attention in the follow-up
research.

APPENDIX A
TSFDM employs the following time-space fractional nonlin-
ear diffusion equation, as shown in (24):

∂au (xi, tn)
∂ta

=G (u (xi, tn))Dβ
x u(xi, tn) 1 ≤ i ≤ N , 0≤n≤L

(24)

where ∂au (xi, tk)
/
∂ta represents the time Caputo fractional

derivative,Dβ
x u(xi, tk ) denotes the spatial Riemann-Liouville

fractional derivative, u (xi, tk) signifies the filtered signal
obtained after n-1 iterations, N represents the number of
sampling points in the input signal, L indicates the maximum
iteration count, and G (u (xi, tk)) represents the diffusion
function as shown in Equation (25).

G (u (xi, tn))=exp

(
−

(
|u (xi, tn)| ×

√
− ln (0.1)

max [u (xi, tn) − min u (xi, tn)]

)2
)

(25)

Firstly, the time fractional order is discretized directly,
as shown in Equation (26):

∂ua (xi, tn+1)

∂ta
≈

τ (−a)

0(2 − a)

n∑
j=0

bj
(
u
(
xi, tn+1−j

)
− u

(
xi, tn−j

))
(26)

where the time order a ∈ (0, 1), b(a)
j = (j+ 1)1−a−j1−a, 1 =

b(a)
1 > b(a)

2 > · · · > b(a)
k , τ represents the time step,

indicating the time interval between adjacent temporal layers.
tn = nτ, n = 0, 1, · · · ,L.
Then, for the space Riemann-Liouville fractional deriva-

tive, employ the displaced Grunwald-Letnikov approxima-
tion.

Dβ
x u (xi, tk+1) ≈ K10Dβ

x u (xi, tk+1) + K2xD
β
Nu (xi, tk+1)

(27)

where: 0D
β
x u (xi, tk+1) = K1h−β

i+1∑
j=0

g(β)j u
(
xi−j+1, tk+1

)
,

xD
β
Nu (xi, tk+1) = K2h−β

M−i+1∑
j=0

g(β)j u
(
xi+j−1, tk+1

)
.

where K1 and K2 are non-negative constants, with the
condition that K1 + K2 > 0. h is the space step size,
which represents the distance between two sampling points
(discrete interval). xi = ih, i = 0, 1, · · · ,N ; Space order
β ∈ (1, 2); Grunwald-Letnikov approximation coefficients
g0 = 1, gj =

(
1 − (β + 1

/
j)
)
gj-1, The time-space fractional

diffusion equation difference format is established based on
Equations (26) and (27), as shown in Equation (28):

G (u (xi, tk))(−1) τ (−a)

0(2 − a)

k∑
j=0

(
u
(
xi, tk+1−j

)
− u

(
xi, tk−j

))
= K1h−β

i+1∑
j=0

g(β)j u
(
xi−j+1, tk+1

)
+

k∑
j=0

K2h−β
M−i+1∑
j=0

g(β)j u
(
xi+j−1, tk+1

)
(28)

Smooth matrix factor Rki = τ a0 (2 − a)G (u (xi, tk))
/
hβ ,

u (xi, tk+1) = uk+1
i .

When k=0:

K1(R0i+1u
1
i+1 + R0i g1u

1
i + R0i−1ig2u

1
i−1 +

i+1∑
j=3

R0i−j+1gju
1
i−j+1)

+ K2

(
R0i u

1
i + R0i−1g1u

1
i−1 + R0i+1g2u

1
i+1

+

M−i+1∑
j=3

R0i+j−1gju
1
i+j−1

 = b(0)(u1i − u0i ) (29)

Move u1i to the left side of the equation and u0i to the right
side:

K1(−R0i+1u
1
i+1 − R0i g1u

1
i − R0i−1g2u

1
i−1

−

i+1∑
j=3

R0i−j+1gju
1
i−j+1) + u1i

+ K2

(
−R0i u

1
i − R0i−1g1u

1
i−1 − R0i+1g2u

1
i+1

−

M−i+1∑
j=3

R0i+j−1gju
1
i+j−1

 = u0i (30)
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Merge similar items:

K1(−R0i+1u
1
i+1 − (R0i g1 −

1
K1

)u1i − R0i−1g2u
1
i−1

−

i+1∑
j=3

R0i−j+1gju
1
i−j+1)

+ K2

(
−R0i u

1
i − R0i−1g1u

1
i−1 − R0i+1g2u

1
i+1

−

M−i+1∑
j=3

R0i+j−1gju
1
i+j−1

 = u0i (31)

(A0 + B0)U1
= U0 (32)

U1
=

[
A0 + B0

]−1
U0 (33)

where U1
=
[
u11, u

1
2, u

1
3, · · · , u1N

]
,assume u00 = u01, u

0
M−1 =

u0M ,A0 and B0 are smooth matrices, while A0i,j and B
0
i,j are

elements of matrices A0 and B0.

A0i,j

=



−R0i gi − R0i gi+1, i = 1, j = 2, 3 . . .M − 1
1/K1 − R0M−1 − R0M−1g1, i = M − 1, j = M − 1
1/K1 − R0i g1, i = j = 2, 3 . . .M − 2
−R0i gi−j+1, j< i−1, i ̸=1, j ̸= M − 1
−R0i , j = i+ 1
0, j > i+ 1

(34)

B0i,j

=



−R01(1 + g1), i = 1, j = 1
−R0i (gM−i+1 + gM−i), i = 1, 2 . . .M − 1, j = M − 1
−R0i g1, i = j = 2, 3 . . .M − 2
−R0i gj−i+1, j> i−1, i= j ̸=1, j ̸= M − 1
−R0i , i = j+ 1
0, i > j+ 1

(35)

Write it in the form of a matrix (36) and (37), shown at the
bottom of the next page.

When k≥1:

uk+1
i − uki +

k∑
j=1

bj
(
uk+1−j
i − uk−ji

)

= K2

M−i+1∑
j=0

Rki+j−1g
(β)
j uk+1

i+j−1

+ K1

(
g(β)(0)R

k
i+1u

k+1
i+1 + g(β)(1)R

k
i u

k+1
i + g(β)(2)R

k
i−1u

k+1
i−1

+

i+1∑
j=3

Rki−j+1g
(β)
(j) u

k+1
i−j+1

 (38)

Move uk+1
i to the right side of the Equation (38) and place uki

on the left side of the Eq. (38):

uki −

k∑
j=1

bj
(
uk+1−j
i − uk−ji

)

= −K2

M−i+1∑
j=0

Rki+j−1g
(β)
j uk+1

i+j−1

− K1

(
g(β)(0)R

k
i+1u

k+1
i+1 +(g(β)(1)R

k
i −

1
K1

)uk+1
i +g(β)(2)R

k
i−1u

k+1
i−1

+

i+1∑
j=3

Rki−j+1g
(β)
(j) u

k+1
i−j+1

 (39)

Merge similar terms on the left side of Equation (39):

uki −

k∑
j=1

bj
(
uk+1−j
i − uk−ji

)
= uki −

k∑
j=1

bju
n+1−j
i

+

k−1∑
j=1

bju
k−j
i + bku0i = uni −

n∑
j=2

bju
k+1−j
i − b1uki

+

k−1∑
j=1

bju
k−j
i + bku0i = uki −

k−1∑
j=1

bj+1u
k+1−(j+1)
i − b1uki

+

k−1∑
j=1

bju
k−j
i + bku0i = (1 − b1)uki + bku0i

+

k−1∑
j=1

(
bj − bj+1

)
uk−ji (40)

Merge similar terms on the right side of Equation (39):

− K1

(
g(β)(0)R

k
i+1u

k+1
i+1 + (g(β)(1)R

k
i −

1
K1

)uk+1
i + g(β)(2)R

k
i−1u

k+1
i−1

+

i+1∑
j=3

Rki−j+1g
(β)
(j) u

k+1
i−j+1

− K2

M−i+1∑
j=0

Rki+j−1g
(β)
j uk+1

i+j−1

=

[
Ak + Bk

]
U k+1 (41)

where U k+1
=

[
uk+1
1 , uk+1

2 , uk+1
3 , · · · , uk+1

N

]
, assume uk0 =

uk1, u
k
M−1 = ukM .

From Equation (40) and (41), it can be obtained that:

U k+1
=

[
Ak + Bk

]−1

×

(1 − b1)U k
+ bkU0

+

k−1∑
j=1

(
bj − bj+1

)
U k−j


(42)
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where Ak and Bk are smooth matrices, while Aki,j and B
k
i,j are

elements of matrices Ak and Bk .

Aki,j

=



−Rki gi − Rki gi+1, i = 1, j = 2, 3 . . .M − 1
1/K1 − RkM−1 − RkM−1g1, i = M − 1, j = M − 1
1/K1 − Rki g1, i = j = 2, 3 . . .M − 2
−Rki gi−j+1, j< i− 1, i ̸=1, j ̸= M−1
−Rki , j = i+ 1
0, j > i+ 1

(43)

Bki,j

=



−Rk1(1 + g1), i = 1, j = 1
−Rki (gM−i+1 + gM−i), i = 1, 2 . . .M − 1, j = M − 1
−Rki g1, i = j = 2, 3 . . .M − 2
−Rki gj−i+1, j> i−1, i= j ̸= 1, j ̸= M − 1
−Rki , i = j+ 1
0, i > j+ 1

(44)

Equations (45) and (46), shown at the bottom of the next
page. The order of Ak and Bk matrices:M-1= N

APPENDIX B
// TEM signals are converted to short-term energy
Set sampling frequency :Fs, frame length : wlen, frame
shift:inc
win=hanning(wlen); // Generate Hanning window with
length wlen
N=length(y); // Get the length N of the signal y
X=enframe(y,win,inc)’;/ Split-frame the signal y with frame
length wlen and frame shift inc to obtain the split-frame
matrix X
fn=size(X,2);// Calculate the number of frames fn, i.e. the
number of columns of the matrix X

time=(0:N-1)/Fs;// Calculate the time scale of the signal
according to the sampling frequency Fs
for i=1: fn // For each frame (from 1 to fn)
u=X(:,i);// Take out frame i and store it in u
u2=u.∗u;// Calculate the energy of the frame, i.e. the square
of each sample, and store it in u2
En(i)=sum(u2);// The energies of a frame are summed up to
get the total energy of the frame and stored in the En array
end
// TSFDM Implementation Steps
Input segmented signal, set the spatial step size h, spatial
order p, temporal order a, diffusion threshold z, and iteration
number gen
U(gen).ss=[];//Initialize U(gen).ss to an empty array.
F=max(U(1).ss-min(U(1).ss))./(-log(z)).^(0.5); // Calculate
the diffusion coefficient for the first iteration
((1/(gen)).^a.∗gamma(2-a))./h.^p; // Calculate the smoothing
matrix weight factor
G(1)=-p; // Calculate the Grunwald-Letnikov approximation
coefficients G

for j=2:M
G(j)=(1-(p+1)/j)∗G(j-1);

end
Set the values of K1 and K2, and if the signal is in the first or
middle stages:
for i=1:M-1

K1(i)=(10+log(i))^(-1);
end
for i=1:M

K2(i)=30∗(i/(M-1));
end
If the signal is late stage:
K1=50, K2=0.1;
Calculate the matrices A0 and B0 from Eqs. 8 and 9
The first iteration result U(2).ss is calculated from Eq. 6.
for j=2:gen //Set the number of iterations from 2 to gen
FF(j)=max(U(j).ss-min(U(j).ss))./((-log(z)).^(0.5));

// Updated diffusion coefficients

A0=K1



1
/
K1 − R01g1 − R01g2 −R01
−R02g2 − R02g3 1

/
K1 − R02g1 −R02

−R03g3 − R03g4 −R03g2 1
/
K1 − R03g1 −R03

−R04g4 − R04g5 −R04g3 −R04g2 1
/
K1 − R04g1 −R04

...

−R0M−2gM−2 − R0M−2gM−1

−R0M−1gM−1 − R0M−1gM

...

−R0M−2gM−3

−R0M−1gM−2

...

−R0M−2gM−4

−R0M−1gM−3

...

−R0M−2gM−4

−R0M−1gM−4

...

· · ·

· · ·

−R0M−2
1
/
K1 − R0M−1 − R0M−1g1


M−1×M−1

(36)

B0 = K2



−R01 (1 + g1) −R01g2 −R01g3 · · · −R01gM−2 −R01(gM + gM−1)
−R02 −R02g1 −R02g2 · · · −R02gM−3 −R02(gM−1 + gM−2)

−R03 −R03g1 · · · −R03gM−4 −R03(gM−2 + gM−3)
. . .

. . .
. . .

. . .

−R0M−1 −R0M−1g1
−R0M−1

−R0M−1(g2 + g3)
−R0M−1(g1 + g2)


M−1×M−1

(37)
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RR(j)=( (1/(gen).^a.∗gamma(2-a))./h.^p∗exp(-(abs(U(j).ss).
/FF).^2); // Update smoothing matrix weight
factors
Updating the matrices Aj and Bj by Eqs. 8 and 9
for i=1:j-1// Update historical weighted results temp1 and
temp2

if i==1
temp1=((i+1).^(1-a)-i.^(1-a)-(i+2).^(1-a)+(i+1).
^(1-a)).∗U(j-i).ss;

else
temp1=temp1+((i+1).^(1-a)-i.^(1-a)-(i+2).^(1-a)
+(i+1).^(1-a)).∗U(j-i).ss;

end
end
temp2=((j+1).^(1-a)-j.^(1-a)).∗U(1).ss+(2-2.^(1-a)).∗U(j).ss;
U(j+1).ss=(Q(j).ss)^(-1)∗(temp1+temp2); // Calculate the
filtered signal U(gen+1) from Equation (7).ss
end
//GEHHO Implementation steps
Setting the fitness function fobj, the dimension, the number
of iterations T, the number of populations, the range of values
of the parameters to be optimized lb and ub
t=0; //Loop counter
while t<T

for i=1:size(X,1) // Check boundries
FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).
∗(∼(FU+FL)))+ub.∗FU+lb.∗FL;
fitness=fobj(X(i,:)); // fitness of locations
if fitness<Rabbit_Energy // Update the location of

Rabbit
Rabbit_Energy=fitness;
Rabbit_Location=X(i,:);
end
end

E1=2∗exp(-0.5∗(t/T));E0=(2∗rand()-1)∗(t/T);E2=2
∗(1-(t/T));

for i=1:size(X,1)

Escaping_Energy=E1∗E0+E2∗(2∗rand()-1);
//escaping energy of rabbit
if abs(Escaping_Energy)>=1
// Exploration:Harris’ hawks perch randomly based

on 2 strategy:
q=rand();

if q>=0.5
r=rand();r1=(2∗pi)∗r;r2=r∗pi;gold=double((sqrt(5-

1)/2); // golden ratio
x1=-pi+2∗pi∗(1-gold); // Golden section coefficient

x1
x2=-pi+2∗pi∗gold; // Golden section coefficient x2

X(i,:)=X(i,:)∗abs(sin(r1))-r2.∗sin(r1)∗abs(x1∗

Rabbit_Location(1,:)-x2∗X(i,:));
elseif q<0.5 %perch on a random tall tree (random site inside
group’s home range)

X(i,:)=(Rabbit_Location(1,:)-mean(X))-rand()∗

((ub-lb)∗rand+lb);
end

elseif abs(Escaping_Energy)<1
// Exploitation:Attacking the rabbit using 4 strategies regard-
ing the behavior of the rabbit
// phase 1: surprise pounce % surprise pounce: multiple, short
rapid dives by different hawks

r=rand();
if r>=0.5 && abs(Escaping_Energy)<0.5 // Hard

besiege
X(i,:)=(Rabbit_Location)-Escaping_Energy∗

abs(Rabbit_Location-X(i,:));
end

if r>=0.5 && abs(Escaping_Energy)>=0.5
// Soft besiege

Jump_strength=2∗(1-rand()); // random jump strength
of the rabbit
X(i,:)=(Rabbit_Location-X(i,:))-Escaping_Energy∗abs
(Jump_strength∗Rabbit_Location-X(i,:));

end

Ak =K1



1
/
K1 − Rk1g1 − Rk1g2 −Rk1
−Rk2g2 − Rk2g3 1

/
K1 − Rk2g1 −Rk2

−Rk3g3 − Rk3g4 −Rk3g2 1
/
K1 − Rk3g1 −Rk3

−Rn4g4 − Rn4g5 −Rk4g3 −Rk4g2 1
/
K1 − Rk4g1 −Rk4

...

−RkM−2gM−2 − RkM−2gM−1

−RkM−1gM−1 − RkM−1gM

...

−RkM−2gM−3
−RnM−1gM−2

...

−RkM−2gM−4

−RkM−1gM−3

...

−RkM−2gM−4

−RkM−1gM−4

...

· · ·

· · ·

−RkM−2
1
/
K1 − RkM−1 − RkM−1g1


M−1×M−1

(45)

Bk = K2



−Rk1 (1 + g1) −Rk1g2 −Rk1g3 · · · −Rk1gM−2 −Rk1(gM + gM−1)
−Rk2 −Rk2g1 −Rk2g2 · · · −Rk2gM−3 −Rk2(gM−1 + gM−2)

−Rk3 −Rk3g1 · · · −Rk3gM−4 −Rk3(gM−2 + gM−3)
. . .

. . .
. . .

. . .

−RkM−1 −RkM−1g1
−RkM−1

−RkM−1(g2 + g3)
−RkM−1(g1 + g2)


M−1×M−1

(46)
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if r<0.5 && abs(Escaping_Energy)>=0.5 // Soft
besiege % rabbit try to escape by many zigzag deceptive
motions

Jump_strength=2∗(1-rand());
X1=Rabbit_Location-Escaping_Energy∗abs(Jump_strength
∗Rabbit_Location-X(i,:));
if fobj(X1)<fobj(X(i,:)) // improved move

X(i,:)=X1;
else // hawks perform levy-based short rapid dives around the
rabbit
X2=Rabbit_Location-Escaping_Energy∗abs(Jump_strength
∗Rabbit_Location-X(i,:))+rand(1,dim).∗Levy(dim);

if (fobj(X2)<fobj(X(i,:))) // improved move
X(i,:)=X2;

end
end

end
if r<0.5 && abs(Escaping_Energy)<0.5 // Hard besiege
rabbit try to escape by many zigzag deceptive motions

// hawks try to decrease their average location with the
rabbit

Jump_strength=2∗(1-rand());
X1=Rabbit_Location-Escaping_Energy∗abs
(Jump_strength∗Rabbit_Location-mean(X));
if fobj(X1)<fobj(X(i,:)) // improved move
X(i,:)=X1;

else // Perform levy-based short rapid dives around the
rabbit

X2=Rabbit_Location-Escaping_Energy∗abs(Jump_strength
∗Rabbit_Location-mean(X))+rand(1,dim).∗Levy(dim);

if (fobj(X2)<fobj(X(i,:))) // improved move
X(i,:)=X2;end;end;end;end;end
t=t+1;

end; end
function O=Levy(d) // Levy flight strategy
beta=1.5;
sigma=(gamma(1+beta)∗sin(pi∗beta/2)/(gamma((1+beta)/2)
∗beta∗2^((beta-1)/2)))^(1/beta);
u=randn(1,d)∗sigma;v=randn(1,d);step=u./abs(v).^(1/beta);
O=step;
end
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