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ABSTRACT As a noninvasive, nonradiative and high-speed imaging modality, fluorescence imaging in
the second near-infrared window (NIR-II, 1,000-1,700 nm) has demonstrated great potential for biomedical
research and clinical study. The NIR-II window can be further divided into two spectral regions: NIR-IIa
(1,000-1,300 nm) and NIR-IIb (1,500-1,700 nm). Compared to NIR-IIa, imaging in NIR-IIb region affords
high-resolution imaging at subcentimeter tissue depths due to suppressed photon scattering and diminished
tissue autofluorescence at long wavelengths, but relies on probes with high toxicity. To address the problem,
researchers employ deep learning networks to attain NIR-IIb images from NIR-IIa images. However, current
methods require numerous paired or unpaired images (more than 2800 images) as training sets, which can
hardly acquire. In this work, an innovative convolutional neural network (BRCycle-GAN) is trained based
on a small training set (merely 63 images) to transform NIR-IIa images into images with NIR-IIb imaging
qualities. The NIR-IIb images generated by BRCycle-GAN outperform previous network models in terms
of peak signal-to-noise ratio, cosine similarity and other image evaluation indices.

INDEX TERMS Deep learning, biomedical image processing, optical imaging.

I. INTRODUCTION
With enhanced penetration depth and improved signal-to-
noise ratio (SNR), fluorescence imaging in the second
near-infrared window (NIR-II, 1,000-1,700 nm) has emerged
as a novel imaging modality for noninvasive, real-time
imaging of internal structure and function in vivo [1], [2],
[3], [4], [5], [6]. Benefiting from low tissue scattering and
autofluorescence, imaging in the NIR-IIb window (1,500-
1,700 nm) has been reported to achieve high spatial resolution
deep inside living mammals when compared to NIR-IIa
window (1,000-1,300 nm) and thus has attracted much
attention in the field of biomedical research [7], [8], [9],
[10], [11], [12]. Fluorescent probes that emit in the NIR-IIb
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region are prerequisite for NIR-IIb imaging and the reported
NIR-IIb probes are mainly based on inorganic quantum dots
(QDs) [4], [13], [14] and rare earth nanoparticles (RENPs)
[15], [16], [17]. Although NIR-IIb imaging of animal models
can be successfully realized with these probes, their toxicity
cannot be neglected in further clinical study. Therefore,
many researchers turned to imaging processing that generates
images with resolution and SNR approximating NIR-IIb
images from NIR-IIa images [18], [19].

Conversion of NIR-IIa images to NIR-IIb images requires
image style migration without any loss of original infor-
mation. Recent years have witnessed rapid development of
image processing in medical imaging, including transferring
cross-modal images [20], [21], [22], denoising low-dose
images [23], [24], [25] and reconstructing super-resolved
microscopic images [26], [27]. Goodfellow et al. [28] firstly
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proposed generative adversarial network (GAN) in 2014,
which was a milestone in image processing and subsequently
derived various GAN-based style migration models, such as
pix2pix [29], cycle-GAN [19] and starGAN [30]. GAN is
the most promising network model for unsupervised learning
on complex distribution recently, but often suffers from
convergence difficulty and generator collapse. Zhu et al [19]
proposed cycle-GAN in 2017, which was a famous algorithm
model for image-to-image translation with unpaired training
sets [31]. Pix2pix employs U-net [32] model and achieves
highly retaining of detailed information, while relies on
strictly paired images for training.

Compared to traditional algorithms [18], deep learning
demonstrates excellent performance in feature learning and
mapping when processing fluorescence images. Ma [33]
and coworkers employed cycle-GAN to convert images
captured in NIR-I (800-1000 nm) and NIR-IIa windows
into images with similar resolution and SNR to NIR-IIb
images [19]. However, this network requires large amount
of NIR-IIa and NIR-IIb images (more than 2800 images)
for training, which are unavailable for average users.
To address the problem, in this study, we proposed a
modified cycle-GAN network, BRCycle-GAN, that requires
a training set of merely 63 images and affords image
quality higher than that obtained using previous reported
methods. In BRCycle-GAN, a bottleneck residual module is
introduced in the generators to increase the network depth
and reduce loss of original information. The modification
further improves image clarity as well as image evaluation
parameters including peak SNR and cosine similarity.
BRCycle-GAN lowers the threshold for users and thus
broaden the application of NIR-II imaging in the field of
biomedicines.

II. MATERIALS
A. DATABASE DESCRIPTION
The training data used in this study are 63 paired NIR-IIa and
NIR-IIb 2D images with 512 × 640 pixels and a bit depth
of 8. Each image is randomly sliced into 256 × 320 pixels
before inputting into the network and a horizonal flip of 5o is
employed to improve the diversity of training set. The test set
is 20 paired images.

B. NIR-II FLUORESCENT PROBES
PbS/CdS core-shell quantum dots coated with oleyamine-
branched polyacrylic acid are prepared according to previous
reports [13] and then PEGlyated to obtain CSQD-OPA-PEG,
which is employed as a fluorescent probe that emits in
NIR-IIb region. Polyethylene glycol grafted polystyrene (PS-
g-PEG) is synthesized according to previous reports [34] and
a commercial dye, IR813 (I863886,Macklin), is encapsulated
in a micelle formed with PS-g-PEG to obtain p-813 [35],
which is employed as a fluorescent probe that emits in NIR-
IIa region. Detailed structures, synthetic methods and optical
properties can be found in references listed above.

C. MOUSE HANDLING
All animal experiments are approved by the ethics committee
of Southern Medical University (SYXK(yue)2016-0167).
C57 mice were purchased from Risemice Biotech. Hair
of mice is carefully removed by Nair to avoid damage to
skin before subjected to fluorescence imaging. For a typical
imaging experiment, a mouse is anesthetized by inhalation
of isoflurane (2.5%) under an air flow of 10 L min−1.
A continuous flow of isoflurane (2%) is applied to maintain
the anesthesia status of the mouse. CSQD-OPA-PEG and p-
813 are dispersed in PBS at an equivalent concentration of
1.5 mg mL−1 and the mixture (0.15 mL) is administered
intravenously through tail vein. The mouse is allowed to fully
recover before being returned to the cage.

D. WIDE-FIELD NIR-II FLUORESCENCE IMAGING
A wide-field setup for NIR-II fluorescence imaging is
described in our previous reports [35]. In brief, a mouse
injected with probes is mounted on the stage beneath a zoom
lens (1-50502-IR, Navitar). The excitation light is provided
by an 808 nm laser through a multi-mode optical fiber (F-
MSC-C-1SMA, Newport) with an average excitation power
density of 60 mW cm−2 at the imaging plane. A water-
cooled InGaAs charge coupled device camera (NIRvana HS,
Princeton Instruments) is used to record the image. Filters
of 1000 nm longpass (FELH1000, Thorlabs) and 1300 nm
shortpass (89-676, Edmund Optics) are used for imaging in
NIR-IIa window and a 1500 nm longpass filter (FELH1500,
Thorlabs) is used for imaging in NIR-IIb window. Images
are saved in the form of 32-bit grayscale with a size of
512 × 640 pixels and transformed into 8-bit ones using
ImageJ.

III. METHODS
A. NEURAL NETWORK ARCHITECURE
This study proposes a network model, BRCycle-GAN, con-
sisting of two generators (Ga2b, Gb2a) and two discriminators
(Da2b, Db2a). The generators realize mapping between NIR-
IIa and NIR-IIb images and the discriminators determine
whether the images are real or synthesized by generators.
When training the model, we input real NIR-IIa and NIR-
IIb images are inputted into the network and the generators
generates synthesized images, which are randomly inputted
into the discriminators together with the real ones. The
discriminators recognize whether the inputted image is real
or not and feed the result back to the generators to improve
the quality of generated images until the discriminator cannot
recognize the synthesized images. This process is achieved
by the adversarial loss function Ladv, similar to a two-player
game, where the generators minimize objective function
and the discriminators maximize it until equilibrium is
reached [19]. This is a complete cyclic process of mapping
between NIR-IIa and NIR-IIb images, which is shown
in Fig. 1A.
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FIGURE 1. BRCycle-GAN-based NIR-IIa–to–NIR-IIb image transfer.
(A) Training process of the BRCycle-GAN model. (B) Network architecture
for generators.

B. LOSS FUNCTION
The goal is to learn the mapping function between NIR-IIa
domain (denoted as A) and NIR-IIb domain (denoted as B)
based on NIR-IIa images (denoted as {xi}Ni=1) and NIR-IIb
images (denoted as {yi}Ni=1) in the training set. Generator
Ga2b implements the mapping A→B and generator Gb2a
implements the mapping B→A. Adversarial discriminator
Da2b aims at distinguishing real images {y} from synthesized
ones {Ga2b(x)} and Db2a aims at distinguishing real images
{x} from synthesized ones {Gb2a(y)}. Adversarial loss
function Ladv is used to match generated image with data in
the target domain and cycle consistent loss function Lcyc is
used to ensure that the learned mapping is similar to original
image.

The loss function is defined as follows:

Ladv(Ga2b,Db2a) = Ex∼A||Db2a(Ga2b(x)) − 1||22
+ Ey∼B||Db2a(y)||22

Ladv(Gb2a,Da2b) = Ey∼B||Da2b(Ga2b(y)) − 1||22
+ Ex∼A||Da2b(x)||22

Lcyc(Ga2b,Gb2a) = Ex∼A||Gb2a(Ga2b(x)) − x||1
+ Ey∼B||Ga2b(Gb2a(y) − y||1

L(Ga2b,Gb2a,Da2b,Db2a) = Ladv(Ga2b,Db2a)

+ Ladv(Gb2a,Da2b)

+ ϒLcyc(Ga2b,Gb2a)

Adversarial loss Ladv is a mean squared error loss and cycle
consistent loss Lcyc is a L1 loss. Total loss is a weighed sum

of adversarial loss and cycle consistent loss. Hyperparameter
ϒ = 10 is set for all experiments. Generators are trained
to minimize the loss, while discriminators are trained to
maximize the loss.

C. U-NET-LIKE GENERATOR
Compared to traditional cycle-GANnetwork usingU-net [32]
in generators, bottleneck residual blocks are introduced in
generators of BRCycle-GAN (Fig. 1B) to increase network
depth, facilitating extraction of deep image features and
attenuation of gradient vanishing. The generator consists of
encoding layers and decoding layers, which are connected
by skip connection. Encoding layers acquire shallow features
of the image and decoding layers acquire deep features,
allowing generated image containing deep features without
loss of shallow features.
Generators in this work have 49 convolution layers, includ-

ing 4 encoding and 4 decoding layers. We extract 64 feature
maps from 256 × 320 pixels 2D grayscale images with
channel number 1 using 3 × 3 convolution kernels as inputs
(stride = 1, padding = 1), followed by batch normalization
and a leaky ReLu with 0.2 negative. Batch normalization,
proposed by Peng et al. [36], provides several advantages,
such as fast training, better performance and low sensitivity
to initialization. Pooling, widely applied in classification
or recognition tasks [37] to reduce dimensions of feature
maps, often decreases sensitivity to small differences, loses
image features and thus is not employed in BRCycle-GAN.
Between encoding layers, down-sampling of feature maps is
conducted, using 3 × 3 convolution kernels with stride of 2,
padding of 1 and channel numbers are thus doubled after each
down-sampling. Architecture of the following bottleneck
residual block is shown in the right side of Fig. 1B: it consists
of two 1×1 convolution layers and one 3×3 convolution layer
and batch normalization of the feature map and a leaky ReLu
with 0.2 negative are added between layers. After 4 encoding
layers, obtained image features are sent to decoding layers
for deconvolution, which utilize 2 × 2 convolution kernels
(stride = 2, padding = 2). Shallow features from encoding
layers and feature maps obtained from up-sampling are both
inputted into two bottleneck residual blocks in decoding
layers. After 4 decoding layers, generator produces a 256 ×

320 pixels synthesized image.

D. DISCRIMINATOR ARCHITECTURE
Size of discriminator input is the same as that of generator
output (256 × 320 pixels). PatchGAN [29] is used as the
discriminator, which contains 5 convolution layers, each
followed by a batch normalization (except for the first layer)
and a leaky ReLu activation with a slope of 0.2 for negative
input (except for the last layer). Convolution kernel is 4 × 4
with stride of 2, padding of 1 and channel numbers are thus
doubled after each layer. Receptive field of final output is
70 × 70 pixels.
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E. TRAINING PARAMETER
System configurations: Intel Core i9-10900X CPU HP,
3.7 GHz NVIDIA GeForce GTX A6000 GPU along
with 40 GB RAM and Windows 10 (64 bit) operating
system. Pytorch is used as the framework to train the
models. All weights of neural networks are initialized with
a normal distribution with a mean of 0 and a standard
deviation of 0.02, and all bias terms are initialized as 0.
To train the neural networks, we apply an Adam optimize
[38] with hyperparameters β1 = 0.5 and β2 = 0.999.
Learning rate is 0.0002 for 100 epochs. Training period
is optimized: less iterations cannot generate meaningful
images and too many iterations will overfit and produce
artifacts. For ResNet generator, learning rate is 0.0002 for
the first 50 epochs and then decay linearly to 0 in the
next 50 epochs. A batch size of 4 is used during training.
In each iteration, a random NIR-IIa image and a random
NIR-IIb image are selected from training set and the loss
is computed. Generated images are stored in a generated
image pool [19]. The optimizer then updates parameters of
generators. The loss of discriminators is calculated using
the real image and a random image from generated image
pool and the optimizer updates parameters of discriminators
[19]. After training, the generator Ga2b is used to transfer
an input NIR-IIa image to an image that resemble a
NIR-IIb image. Our code is publicly released on GitHub
(https://gitee.com/wanglugui979899/wlg-brcycle-gan.git).

IV. EXPERIMENTS AND RESULTS
A. EVALUATION METHODS
In evaluating the quality of the images generated by our
network, we use the ground-truth captured NIR-IIb window
fluorescence images as the base truth values for calculating
the corresponding evaluation metrics. In this study, mean
square error (MSE), mean absolute error (MAE), peak signal-
to-noise ratio (PSNR), and cosine similarity (COSINs) are
used as evaluation metrics, where smaller MSE and MAE
indicate better quality of the generated images, and larger
PSNR and COSINs indicate better quality of the generated
images. MAE denotes the average of the absolute errors of
pixel values of the generated images and the real NIR-IIb
images. The MAE is calculated as follows:

MAE =
1

m × n

m−1∑
i=0

n−1∑
j=0

|x(i, j) − y(i, j)|

MSE denotes the average of the sum of squares of the
difference between the pixel values of the generated image
and the real NIR-IIb image, and the MSE is computed as
follows:

MSE =
1

m × n

m−1∑
i=0

n−1∑
j=0

[x(i, j) − y(i, j)]2

PSNR is an objective measure of the quality of the
generated image and the de-noising ability of the real NIR-
IIb image.PSNR is usually expressed in logarithmic decibel

units and the PSNR is computed as follows:

PSNR = 10×log10(
2552

MSE
)

Here, x(i, j) denotes the value of pixel (i, j) in the
generating images y(i, j) represents the value of pixel (i, j)
in the ground truth image, and m× n is the total number of
pixels.

COSINs measures the similarity between the generated
image and the real NIR-IIb image by measuring the cosine
value of the inner product space of the two vectors of the
generated image.The formula for COSINs is as follows:

COSINs =

n−1∑
i=0

(xi × yi)

/
(

√√√√n−1∑
i=0

x2i ×

√√√√n−1∑
i=0

y2
i )

B. QUALITATIVE EVALUATION OF IMAGE QUALITY
To compare generated images with real ones, NIR-IIa
fluorescence probe, p-813, is injected intravenously into C57
mice together with NIR-IIb fluorescence probe, CSQD-OPA-
PEG. In this case, wide field NIR-IIa and NIR-IIb images
of the same view can be simultaneously collected. NIR-
IIa images are inputted into the trained generator Ga2b and
a new image is generated. The new image is not same
as any image in training set, indicating no memory effect
of the network [33]. When compared with original NIR-
IIa one, the generated image exhibits high contrast and
clarity with vasculature pattern preserved and sharpened
(Fig. 2A). Signal-to-background ratio (SBR) of images are
analyzed by plotting the cross-sectional intensity profiles
of the same areas in the NIR-IIa, NIR-IIb and generated
images. The generated image is very similar to real NIR-IIb
image with highly overlapped fluorescence intensity curves
(Fig. 2B). The generated images have the same high SBR
as the NIR-IIb images, and both are higher than the NIR-IIa
images (Fig. 2C). These results indicate that BRCycle-GAN
can enhance contrast of NIR-IIa image precisely without
introducing artifacts.

We further compare image processing of our BRCycle-
GAN with traditional cycle-GAN [19] and pix2pix [29]
models (both using U-net as generator). As shown in Fig. 3A,
BRCycle-GAN produces image with the highest similarity to
real NIR-IIb image. Image generated by cycle-GAN is grainy
and noisy, while pix2pix generated blurry image with vessel
detail loss. In the second row of Fig. 3A, which is a zoomed-
in view of the ROI region, we can see that BRCycle-GAN
generates an image with the sharpest details and the most
similarity to the real NIR-IIb image, and pix2pix generates
an image with blurred details and the strongest noise.

As reported previously, CSQD-OPA and IR813-OPA can
effectively accumulate in bone marrow and thus can be used
as fluorescence probes for bone imaging in NIR-IIb and
NIR-IIa windows, respectively. NIR-IIa bone images are
also processed with BRCycle-GAN. Image generated with
BRCycle-GAN is significantly better than those generated
by cycle-GAN and pix2pix (Fig. 3B). Fluorescence intensity
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FIGURE 2. Wide-field fluorescence imaging with BRCyle-GAN. (A) In vivo
fluorescence imaging of a C57 mouse injected with p-813 and
CSQD-OPA-PEG. The NIR-IIa image was processed by the generator Ga2b
to obtain the contrast-enhanced image. (Scale bar, 10mm.) (B)
Cross-sectional intensity profiles of the same vessel (labeled in A) in the
NIR-IIa, NIR-IIb, and generated images. (C) SBR of 5 NIR-IIa, NIR-IIb and
generated images.

FIGURE 3. Comparison of images generated by different models. In (A),
the first row displays wide-field fluorescence images of C57 mice
generated by different models, the second row shows a magnified view
of the vascular ROI. From left to right, each column presents NIR-IIa,
Cycle-GAN, pix2pix, BRCycle-GAN, and NIR-IIb. (Scale bar, 10 mm.) (B)
Illustrates a comparison of bone imaging comparisons. (C) Normalized
fluorescence intensity of the red dotted line shown in B. Fluorescence
intensity was normalized by the maximum intensity on the line.

curves of red dotted line in Fig. 3B are shown in Fig. 3C.
Image generated by BRCycle-GAN is similar to real NIR-
IIb image and has the smallest half-peak width.The half-peak
width of the original NIR-IIa image is 1.41mm, while the
half-peak width of the image generated by our model is only
0.38mm, which is reduced by 73.05%, while the half-peak
width of the image generated by Cycle-GAN is 0.76mm, and
the half-peak width of the image generated by pix2pix is
1.28mm, which are higher than that of the image generated

TABLE 1. Test results of Cycle-GAN, pix2pix and BCRCycle-GAN models.

FIGURE 4. Ablation experiment. In (A), the first and second row display
wide-field fluorescence images of C57 mice generated by different
models, from left to right, each column presents NIR-IIa, Cycle-GAN,
Res-Cycle-GAN, BRCycle-GAN, and NIR-IIb. (Scale bar, 10 mm.) (B) shows
a magnified view of the vascular ROI (labled in A).

by our model. These results indicate superiority of BRCycle-
GAN in processing NIR-II bone images.

C. QUANTITATIVE EVALUATION
To compare image quality quantitively, peak SNRs (PSNRs),
cosine similarities (COSINs), MSEs and MAEs of 20 paired
images in test set are calculated and shown in Table 1. Using
the real NIR-IIb images as the reference, the PSNRs of the
original NIR-IIa images, Cycle-GAN, pix2pix and BRCycle-
GAN model generated images were 15.94±2.92 dB,
19.80±4.62 dB, 15.75±5.84 dB and 20.05±4.00 dB respec-
tively. PSNRs of BRCycle-GAN generated images are higher
than those generated by Cycle-GAN and pix2pix. The PSNRs
of images generated by our model are 25.78% higher than
those of original images and 27.30% higher than those gen-
erated by pix2pix. COSINs of our model are also best among
these networks, from 0.6690±0.0982 and 0.6639±0.1656 for
Cycle-GAN and pix2pix models to 0.7475±0.1294 for our
model generated images. The COSINs is 6.94% higher than
the existing optimal model Cycle-GAN.

We also further calculated MAE and MSE, and the images
generated by BRCycle-GAN have smaller MAE values than
the Cycle-GAN and original NIR-IIa images. In addition,
the MSE value of the image generated by our model is
the smallest among all models, which is 54.73% smaller
than the original NIR-IIa image and 8.22% smaller than the
best existing model. In summary, these results demonstrate
excellent performance of BRCycle-GAN in processing wide-
field NIR-II vascular images.
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TABLE 2. Test results of Cycle-GAN, Res-Cycle-GAN and BRCycle-GAN
models.

D. ABLATION EXPERIMENT
In order to verify the effect of bottleneck residual blocks in
our model, we perform ablation experiments. For the same
training set, three Cycle-GAN models are trained, including
traditional Cycle-GAN (U-net as generator), Res-Cycle-
GAN (ResNet as generator) and BRCycle-GAN (combining
U-net and ResNet). As shown in Fig. 4A, Res-Cycle-GAN
only learns outline and introduces numerous artifacts and
noise. Cycle-GAN learns some image features, but the
generated image is granular with high background and noise.
In contrast, BRCycle-GAN generates realistic images with
high SNR. In Fig. 4B, zooring the ROI we can clearly see that
the images generated by our model are most similar to the
real NIR-IIb images.As shown in Table 2, image generated
by BRCycle-GAN exhibits the highest PSNR, 1.26% higher
than tranditional Cycle-GAN and 43.30% higher than Res-
Cycle-GAN. COSINs of BRCycle-GAN is also 6.94% higher
than Cycle-GAN and 12.60% higher than Res-Cycle-GAN.
The MAE and MSE values of the images generated by
BRCycle-GAN are also the smallest among all models, which
are 5.25% and 70.00% lower than Cycle-GAN and Res-
Cycle-GAN for MAE values, respectively. For MSE, our
models were 8.22% and 73.93% lower than Cycle-GAN
and Res-Cycle-GAN respectively. Above results show that
introduction of bottleneck residual blocks in U-net generator
has a significant effect on improving PSNRs, COSINs of
generated images, producing image with high quality.

V. CONCLUSION
In this paper, we propose an innovative network model,
BRCycle-GAN, for NIR-II image processing based on a
small training set. Bottleneck residual blocks are introduced
in U-net generator of Cycle-GAN and network adjustments,
such as discarding pooling layers and utilizing batch nor-
malization instead of layer normalization, improve learning
capability of the network, achieving high-quality conversion
of NIR-IIa images to quasi-NIR-IIb images. Compared
with existing NIR image conversion models, BRCycle-GAN
demonstrates outstanding performance in processing NIR-
IIa images. Ablation studies further confirm the outstanding
performance is attributed to bottleneck residual blocks.
Our innovative network model extends application of deep-
learning based image processing in NIR-II imaging and
broadens horizons for the design of novel algorithms for
image processing.
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