
Received 4 June 2024, accepted 27 June 2024, date of publication 1 July 2024, date of current version 9 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421666

Dynamic Texture Classification Using
AutoEncoder-Based Local Features
and Fisher Vector Encoding
ZHE LI1, XIAOCHAO ZHAO 1, TIANFAN ZHANG 1, XIAO JING 2, WEI SHI1, AND QIAN CHEN1
1School of Computer and Information Science, Hubei Engineering University, Xiaogan 432000, China
2School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding author: Xiaochao Zhao (xczhao@hbeu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 72002067, in part by the Natural
Science Foundation of Hubei Province under Grant 2020CFB497 and Grant 2022CFB516, and in part by the Humanities and Social
Science Research Project of Ministry of Education of China under Grant 22YJCZH242.

ABSTRACT Dynamic texture classification has been widely studied because of its applications in various
computer vision tasks. The key to classifying dynamic textures lies in describing them, i.e., extracting
features from them. A variety of traditional dynamic texture descriptors have been carefully designed in
many research studies. And some researchers directly use pre-trained deep models for feature extraction.
However, training a deep model from scratch for dynamic texture description is rarely explored due to the
lack of a large-scale dynamic texture dataset. In this paper, we propose to train a deep model on existing
small-scale dynamic texture datasets for feature extraction. We first randomly sample a number of 3D cubes
from each training video. Then a simple AutoEncoder network is trained with the cubes, and the encoder will
serve as a local feature extractor. The features extracted from all the training cubes are used to fit a Gaussian
mixture model, which will later be used for Fisher vector encoding. Finally, given a video, we densely sample
cubes, feed them into the encoder, and encode the output local features into a global feature vector using
the learned Gaussian mixture model. The proposed method is evaluated on three benchmark datasets with
various evaluation protocols and its effectiveness is verified by the obtained competitive results.

INDEX TERMS Dynamic texture, feature extraction, AutoEncoder, Gaussian mixture model, fisher vector
encoding.

I. INTRODUCTION
Dynamic texture (DT) is the extension of static texture in the
temporal domain [1]. DTs are videos that contain repetitive
patterns in both the spatial and temporal domain. Typical
DT examples are sea waves, running water, and swaying
trees. DT classification has been extensively studied in the
last two decades because of its broad application in the
field of computer vision, such as traffic monitoring [2], fire
detection [3], crowd management [4], and facial analysis [5],
[6], [7].
Similar to static texture classification, the key for con-

ducting an effective classification on a set of DTs is feature
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extraction. However, DT classification is more challenging
because both static and dynamic patterns in DT can be
easily influenced by the changes of illumination, viewpoint,
scale and rotation, which makes it hard to extract stable
and discriminative features [8], [9]. Many DT descriptors
have been reported in the literature. According to whether a
learning process is involved andwhat type of learning process
it is, DT descriptors can be roughly grouped into three classes:
handcrafted, learning-based, and deep-learning-based. Some
typical and representative research studies in each class are
briefly reviewed below.

Handcrafted DT descriptors are carefully designed by
researchers without involving any learning process. Early
methods [10], [11], [12] focus on the motion patterns and
estimate optical flow information, calculating statistics from
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which DT features are derived. Optical flow features are
usually unstable and are rarely utilized nowadays. Another
line of research in this class is to use the simple but effective
local binary pattern (LBP) [13]. Zhao and Pietikainen [14]
extended LBP into a spatio-temporal descriptor called
volume LBP (VLBP) for DT description. Later, they treated a
DT video as three image sequences, from each of which LBP
features were extracted and concatenated for DT description
(called LBP on three orthogonal planes, LBP-TOP) [5].
The success of VLBP and LBP-TOP has inspired many
research works [6], [15], [16], [17], [18]. However, the high
performance of LBP-based methods is usually obtained at the
cost of high dimensionality, which may limit their application
in some scenarios. Fractal structure, a geometrical property,
is also utilized for DT description [19], [20], [21], [22], [23].
The design of handcrafted DT descriptors generally requires
strong prior knowledge and they do not adapt well to new
data [24].
Learning-based DT descriptors refer to those using tra-

ditional feature learning techniques. As a DT is considered
to be generated by a linear dynamical system (LDS) [1],
[25], the estimated system parameters are used for DT
description [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. However, a DT video is too complex to be precisely
modeled by a linear system and the performance is limited.
Incorporating a learning process to improve the representative
power of LBP has also been explored, such as optimizing
LBP structures [35], [36], salience analysis [37], filter
learning [38], [39], [40], [41], and dictionary learning [42],
[43], [44], [45], [46]. Involving a traditional learning process
does improve the performance for DT classification. But
there generally exists a set of key parameters needed to be
carefully tuned such that good performance can be obtained,
making these methods complex.

Deep-learning-based DT descriptors are those that learn
features from data by applying deep learning techniques.
Most methods in this class make use of the high repre-
sentational power of deep networks (e.g., VGGNet [47],
AlexNet [48], and GoogleNet [49]) that are pre-trained on
external large-scale datasets [50], [51], [52], [53]. Methods in
this class generally outperform those in the other two classes.
But it remains unclear whether a network can be trained
directly with DT datasets and used for DT classification.

According to the above review and discussion, it is
obvious that learning-based DT descriptors, especially those
deep-learning-based ones, are more preferable in terms of
performance. But there is an interesting question of why the
researchers choose to borrow the representational power from
pre-trained networks, rather than training one from scratch.
One answer is that existing DT datasets are insufficient for
the application of deep learning techniques. We disagree with
it and argue that deep learning techniques can be directly
applied to existing DT datasets, which is partly supported by
another data-limited task of diagnosing faults of aero-engine
bearings [54], [55]. To further verify our point, we will train a
simple network from scratch and utilize it for DT description.

In this paper, we propose a DT descriptor on the basis
of AutoEncoder [56] and Fisher vector (FV) encoding [57]
(denoted as AE-FV). Specifically, we first randomly sample
a small number of local sub-videos from each training DT
video, resulting in a training dataset. Then a simple AutoEn-
coder network is trained on this dataset. Subsequently, all
the randomly sampled sub-videos are fed into the encoder
of the trained AutoEncoder and their outputs are utilized to
fit a Gaussian mixture model (GMM). To extract features
from a given DT, we densely sample local sub-videos
from it and feed them into the encoder, of which the
outputs are aggregated into a global DT feature vector by
applying FV encoding with the trained GMM. The proposed
AE-FV is extensively evaluated on three benchmark DT
datasets with various evaluation protocols. The obtained
results outperform many traditional methods and some deep-
learning-based ones, thereby showing its effectiveness for
DT description. The contributions of this work are three-
fold: 1) the practicability of training a network from scratch
for DT description is verified to a certain extent; 2) as the
local feature extractor of a bag-of-words (BoW) model, even
a simple deep model can effectively improve performance;
3) the dimensionality of our AE-FV descriptor is no more
than 3000, which is lower thanmany state-of-the-art methods.

The rest of this paper is organized as follows. Section II
reviews related work. Section III describes the pro-
posed AE-FV in detail. Section IV presents details about
experiments. Section V concludes this paper.

II. RELATED WORK
In this section, we mainly focus on DT descriptors reported
in the last decade, most of which will be compared with the
proposed method in terms of DT classification in Section IV.
Those methods that are already introduced in Section I are
skipped.

A. HANDCRAFTED
Unlike those early methods that simply use statistics of
optical flow for DT description, Nguyen et al. proposed
to combine motion and appearance, and designed two DT
descriptors, i.e., features derived from directional trajectories
based on motion angle patterns (FD-MAP) [58] and direc-
tional dense trajectory patterns (DDTP) [59]. Both of them
provide relatively good performance.

Besides the above mentioned methods, most DT descrip-
tors in this class are variants of LBP. Sun et al. [60]
incorporated lacunarity analysis with local ternary pattern
(LTP) [61], resulting in a descriptor called LTP-Lac. Tiwari
and Tyagi [16], [17] proposed to improve the performance of
VLBP and LBP-TOP by introducing additional information
about the values of local central pixels, the magnitudes
of local pixel differences, and local contrast. Later, they
applied Weber’s law on LBP patterns (WLBPC) [62], and
also proposed the edge-weighted local structure pattern
(EWLSP) descriptor [63] that adaptively determined the local
threshold. On the basis of VLBP, Zhao et al. [6] proposed
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to count the number of ones in a binary code as a new
feature code such that including more pixels would not
significantly increase feature length. And they also made
use of additional information in a way similar to [16] and
[17]. By modifying the binary encoding scheme in LBP-TOP,
Nguyen et al. proposed a series of descriptors, which are
completed local structure pattern on three orthogonal planes
(CLSP-TOP) [64], complete statistical adaptive pattern
(CSAP-TOP) [65], hierarchical local pattern (HILOP) [66],
Rubik Gaussian-based pattern (RUBIG) [67], and momental
directional pattern (MEMDP) [68]. Moreover, they also
tried to extract LBP features from Gaussian-filtered data or
Gaussian gradients [18], [69], [70], [71].
As DTs contain repetitive patterns in the spatio-temporal

domain, a group of research works utilize fractal analysis
to capture such properties for DT description. Xu et al.
[20] built a DT descriptor called dynamic fractal spectrum
(DFS). Dubois et al. [72] tried to capture such self-similarity
information via 2D+T curvelet transform. Quan et al. [23]
proposed to use lacunarity, a specialized concept in fractal
geometry, to form a DT descriptor named spatio-temporal
lacunarity spectrum (STLS).

B. LEARNING-BASED
Although LDS is the original concept in the field of DT
analysis, a few LDS-based DT descriptors are reported
recently [32], [33], [34], [73]. Mumtaz et al. [73] first
extracted motion features from DTs and then organized them
into a tree structure called bag-of-systems tree (BoST) for DT
description. On the basis of LDS, Wang and Hu [32] built
a chaotic feature vector with four informative components.
Wang et al. [34] designed a LDS-based codebook using
extreme learning machine. Wei et al. [33] proposed a
LDS-based sparse coding framework to construct a dictionary
for DT description. Besides the above LDS-based methods,
graph theory is also utilized to model DTs [74], [75],
[76]. Gonçalves et al. [74] built a complex network based
on the Euclidean distance between related pixels for DT
description (DT-complex). Ribas and Bruno proposed the
diffusion-based DT features (DT-diffusion) [75] and applied
deterministic partially self-avoiding walk to extract features
from graphs of DTs (DT-DPS) [76].

There are alsomethods trying to combine LBPwith various
learning techniques for performance enhancement. Arashloo
and Kittler [38] modified LBP-TOP by replacing local pixel
differences with filter responses at multiple scales (MBSIF-
TOP), in which the filters were learned using independent
component analysis. Similarly, Zhao et al. [39] adopted
PCA for filter learning and proposed a DT descriptor called
multiscale PCA-based feature on three orthogonal planes
(MPCAF-TOP). Later, Arashloo et al. [40] learned multiple
sets of filters via PCA and organized them into a network
for DT description, resulting in a DT descriptor called
PCANet-TOP. Instead of extracting features separately from
three orthogonal planes, Zhao et al. [41] proposed learning
3D filters and directly extracting features from DT videos.

Some other methods discard the binary encoding scheme
and directly employ dictionary learning on local sub-
videos. Quan et al. proposed orthogonal tensor dictionary
learning [43] and equiangular kernel dictionary learning [44]
for DT description. But how they selected items from
the learned dictionary remains unknown. Jansson and
Lindeberg [77] utilized space-time separable kernels to
extract spatio-temporal receptive field (STRF) responses,
on which PCA-based dimension reduction was conducted.
Zhao et al. [45] applied 3D random projection to extract local
features, then a GMM was learned and used as a dictionary
for FV encoding. Similarly, Xiong et al. [46] proposed to
learn ICA-based filters for local feature extraction, and then
learned a GMM.

C. DEEP-LEARNING-BASED
Tran et al. [50] trained a 3D convolutional neural network
(C3D) on a large set of videos and used it as a DT feature
extractor. Qi et al. [51] and Hong et al. [52] fed selected
DT frames into the VGGNet [47] to extract frame-based
features, from which statistical features and Fisher vectors
were respectively built for DT description. Andrearczyk and
Whelan [53] viewed a DT video as three image sequences
and fed each image into AlexNet [48] or GoogleNet [49],
from which the outputs were aggregated into a feature vector
(denoted as DT-CNN). With the strong representational
power of models pre-trained on large-scale datasets, these
methods generally provide better performance than those in
the other two classes. Zrira et al. [78] proposed to train a deep
belief network with extracted LBP features. However, this
method was only tested on one dataset and had no advantage
over many handcrafted features. Additionally, two learning-
free networks [79], [80] reported good performance for DT
classification. Hadji andWildes [79] used a set of pre-defined
3D Gaussian third-order derivative filters as convolution
layers and Junior et al. [80] used random filters. Methods in
this class generally outperform those in the other two classes.

III. THE PROPOSED DT DESCRIPTOR
In this section, we describe the proposed AE-FV in detail.
Our AE-FV is a two-stage DT description method. The first
stage is to construct the dictionary from training data and
the second one is to encode a given DT into a feature vector
with the learned dictionary. Fig. 1 illustrates the processing
framework of AE-FV.

A. DATA PREPROCESSING
As existing DT datasets are generally insufficient to train
a deep model directly, we adopt the concept of BoW and
randomly sample a number of sub-videos from each training
DT, generating a relatively large number of samples for
training a deep model.

Given a training DT of size X×Y×T (X×Y represents the
frame size and T is the number of frames), N sub-videos of
size l × l × l are randomly sampled. We then vectorize these
sub-videos and normalize all the pixels to the range [0, 1] by
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FIGURE 1. Flowchart of the proposed AE-FV. The top flow is the training process and the bottom one is the feature
extraction process.

FIGURE 2. Structure of our AutoEncoder network. The layers in blue are
the encoder while those in gray are the decoder.

dividing them by 255, resulting in a set of vectors {xi}Ni=1 (xi ∈
RD,D = l3). By setting the value ofN appropriately, a dataset
sufficient for the application of deep learning techniques can
be obtained.

B. AutoEncoder TRAINING
After obtaining a large set of vectors corresponding to
sub-videos, an AutoEncoder network is trained on them.
An AutoEncoder is a type of neural network designed to
map the given input to its essential features, which allows
the original input to be most accurately reconstructed. The
essential features are usually low-dimensional and referred
to as latent variables. An AutoEncoder consists of three
parts: the encoder, the latent space, and the decoder. The
encoder compresses a given input to its latent variables
in the latent space. The decoder reconstructs the input
data from the latent variables. As an unsupervised learning
technique, the training of an AutoEncoder does not require
labels. The loss function typically measures the mean squared
error between the original input and the reconstructed output.
Given these properties, AutoEncoder is highly suitable for
feature learning.

We design a simple AutoEncoder to learn low-dimensional
representations for local sub-videos. Its structure is illustrated
in Fig. 2. In the encoding part, a D-dimensional input is
first mapped to a 1000-dimensional vector, which is then
gradually compressed into an H -dimensional vector in the
latent space. In the decoding part, the latent vector is
mapped reversely to reconstruct the input. Assuming there
are M training DTs, we denote the reconstruction of {xi}MNi=1
as {x̂i}MNi=1 , where N represents the number of sampled
sub-videos within each training DT. The loss function is
defined as

loss =
1
MN

MN∑
i=1

D∑
d=1

(xid − x̂id )2. (1)

The network is trained for 20 epochs using the Adam
optimizer and the learning rate is 0.001. Once the training is
completed, the encoder is utilized as a local feature extractor.
The features extracted from all the training sub-videos are
denoted as {ei}MNi=1 (ei ∈ RH ).

C. GMM TRAINING
After obtaining the local features from all the training data,
we further need to construct a dictionary that will be used
to aggregate all the local features from each sample into a
global feature vector, as is done in many BoW methods. The
two most used dictionaries are GMM and K-means Clusters.
As GMM can capture second-order information, we choose
it as our dictionary and conduct FV encoding in the next
section.

GMM is a generative model and assumes that sam-
ples are generated by multiple Gaussian distributions.
Therefore, a GMM can be estimated by applying the
expectation-maximization algorithm on the training feature
set {ei}MNi=1 . The model is comprised of K Gaussian distri-
butions, which are denoted as 2 = (µk , σk , πk : k =
1, . . . ,K ). µk , σk and πk respectively correspond to the
mean, covariance matrix and weight of the kth distribution.
When a feature vector is fed to the kth Gaussian component,
the output is the probability that the sample is generated by
this component. So far, the training process of our AE-FV is
completely introduced and it is summarized as Algorithm 1.
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D. FEATURE ENCODING
In Section III-B and Section III-C, we have obtained two
dictionaries, i.e., the encoder of our AutoEncoder network
and the GMM. Now we use them to generate a global feature
vector for each DT. Here, we employ dense sampling instead
of the random sampling scheme used in Section III-A. Given
a DT of size X×Y×T , sub-videos of size l×l×l are densely
sampled, generating a set of local samples {xp}Pp=1, where
P = (X − 2⌊ l2⌋)× (Y − 2⌊ l2⌋)× (T − 2⌊ l2⌋). Subsequently,
each of {xp}Pp=1 is fed to the encoder, generating a set of
latent vectors {ep}Pp=1 (ep ∈ RH ), which are used as the
extracted local features of the given DT. Finally, we conduct
FV encoding with the learned GMM such that all the P local
descriptors are aggregated into a global feature vector to
represent the given DT.

Algorithm 1 Training Process of AE-FV

Input: Training set ofM DTs Xtra = {X1, . . . ,XM
}

Parameter: N , l, H , K
Output: An AutoEncoder and a GMM

1 S = ∅
2 for m = 1 to M do
3 Randomly sample N l × l × l sub-videos from Xm

4 {xi}Ni=1← Vectorize and normalize them
5 S← S ∪ {xi}Ni=1
6 end
7 Train an AutoEncoder (the latent size is H ) with S
8 E = ∅
9 for j = 1 to MN do
10 Encode xj ∈ S into ej with the encoder
11 E← E ∪ ej
12 end
13 Estimate a GMM consisting of K components with E
14 return the AutoEncoder and GMM

For each local descriptor ep, its soft assignment weight to
the kth Gaussian component is calculated by

qpk =
πkPk (ep)∑K
t=1 πtPt (ep)

, (2)

where Pk (·) is the probability density function of the kth
Gaussian distribution.

With all the local descriptors and their corresponding
soft assignment weights, the partial derivatives of the kth
Gaussian component of the GMM with respect to its mean
and covariance are computed as

guk =
1

P
√

πk

P∑
p=1

qpk

(
ep − µk

σk

)
, (3)

gvk =
1

P
√
2πk

P∑
p=1

qpk

[(
ep − µk

σk

)2

− 1

]
, (4)

where guk and gvk are respectively the first-order and
second-order statistics of all the local descriptors to

the kth component. Finally, all the 2K derivatives
are concatenated to form the global descriptor f =

[gu1
T , gu2

T , . . . , guK
T , gv1

T , gv2
T , . . . , gvK

T ]T ∈ R2KH . Addi-
tionally, the signed square-rooting and the L2 normalization
are applied to f for feature enhancement [57]. The
feature encoding process of our AE-FV is summarized as
Algorithm 2.

IV. EXPERIMENTAL EVALUATION
In this section, the proposedAE-FV descriptor is evaluated on
three benchmark DT datasets, i.e., UCLA [25], DynTex [81],
and DynTex++ [82]. To emphasize the representational
power of DT descriptors, we intentionally choose the simple
nearest neighbor (NN) classifier. The similarity metric used is
Euclidean distance. The classification results of existing DT
descriptors are directly quoted from the literature.

Algorithm 2 Feature Extraction Process of AE-FV

Input: Dataset of Q DTs Xall = {X1, . . . ,XQ
}

Parameter: The trained AutoEncoder and GMM
Output: Global feature vectors for each DT

1 F = [ ]
2 for q = 1 to Q do
3 Densely sample P l × l × l sub-videos from Xq

4 {xp}Pp=1← Vectorize and normalize them
5 for p = 1 to P do
6 Encode xp into ep with the encoder
7 end
8 for k=1 to K do
9 guk , g

v
k ← Encode {ep}Pp=1 with the kth

Gaussian component
10 end
11 fq = [gu1

T , gu2
T , . . . , guK

T , gv1
T , gv2

T , . . . , gvK
T ]T

12 f′q← Apply signed square-rooting and L2
normalization to fq

13 F[:, q] = f′q
14 end
15 return F

FIGURE 3. Key frames in some DTs from UCLA (top) and DynTex (bottom).

A. DATASETS
In this section, the three benchmark DT datasets and their
corresponding evaluation protocols are introduced. As shown
in Fig. 3, the key frames in several DTs from the UCLA
dataset and DynTex dataset are presented. Before conducting
experiments, all the RGB DT videos are converted to
gray-scale ones.
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1) UCLA
This dataset contains 200 videos belonging to 50 classes,
each of which has 4 videos. The original video size is 160×
110 × 75. We choose a preprocessed version, in which the
video size is 48 × 48 × 75 and each DT only preserves key
dynamical properties. On this dataset, there are 3 breakdowns
with 4 evaluation protocols, which are described below.

a: 50-CLASS BREAKDOWN
This is the original setting and there are two protocols.
The first protocol is the leave-one-out (LOO) classification,
in which one DT is used as the test sample and the other
DTs are used for training. This process is repeated 200 times,
and the number of correctly classified DTs is counted. The
other protocol is the 4-fold cross validation (4CFV), where
all 200 DTs are divided into 4 groups (the division scheme is
provided with the dataset). Each group contains one DT from
each of the 50 classes. Each time, one group is used as the
test set, and the other three groups are used for training. The
four classification rates are finally averaged.

b: 9-CLASS BREAKDOWN
In the original 50-class breakdown, it can be observed that
some DTs in different classes share the same semantics.
Therefore, all the 200 DTs are semantically organized into
9 classes (smoke, fire, boiling, water, flower, sea, waterfall,
fountain, and plant). In the experiment, half of the DTs in
each of the 9 classes are used as a test set while the other
half is for training. This process is repeated 20 times, and
the 20 classification rates are averaged to obtain the final
classification rate.

c: 8-CLASS BREAKDOWN
As the plant class in the 9-class breakdown has 108 DTs,
resulting in an unbalanced data distribution, the experimental
result may be biased. Therefore, to remedy this imbalance,
the plant class is discarded, leaving the remaining 8 classes,
which are referred to as the 8-class breakdown. Then, the half-
and-half validation is repeated 20 times, and the classification
rates are averaged.

2) DynTex
This dataset contains 679 DT videos of size 352 × 288 ×
250. Four subsets of them are chosen for evaluation. The four
subsets are introduced as follows.

a: DynTex35
This is the first edition of the DynTex dataset. There
are 35 DT videos of size 400 × 300 × 250, each of which
belongs to a class. According to [14], each video is segmented
along three axes at the specific point (x = 170, y = 130,
and t = 100) to generate 8 samples. With an additional
segmentation at t = 100, there are a total of 10 DT samples
per class. Among all the 350 DT samples, those of the same
size are put into one group, resulting in 10 groups of DTs in
total. In the experiment, each time one group is used as the

test set while the other 9 groups are used for training. The
10 classification rates are finally averaged.

A few research studies have adopted the nearest class
center (NCC) classifier on this subset. The training feature
vectors that belong to the same class are averaged to represent
the class center. Then a test feature vector is assigned to
the class to which the vector’s distance to the center is the
minimum.

b: ALPHA
60 videos belonging to 3 classes are selected to form this
subset. Each class contains 20 DTs.

c: BETA
162 videos are selected to form this subset. They are
organized into 10 classes. The number of DTs in each class
ranges from 7 to 20.

d: GAMMA
275 videos are selected to form this subset. They are also
organized into 10 classes. The number of DTs in each class
ranges from 7 to 38.

For the three subsets of Alpha, Beta, and Gamma,
the classification task becomes increasingly challenging as
the number of DTs increases. For evaluation, the LOO
classification method is adopted.

3) DynTex++
As the videos in the DynTex dataset are generally influ-
enced by multiple factors such as viewpoint, camera
motion, background motion, zooming, etc. Ghanem and
Ahuja [82] selected 345 DTs from DynTex and clipped
them into 3600 DT videos, each of which was further
filtered and preprocessed to contain only one DT pattern.
All the 3600 DTs are grouped into 36 classes, and each
class contains 100 DTs. In the experiment, the half-to-half
validation scheme is adopted and repeated 10 times. The
10 classification rates obtained are finally averaged.

FIGURE 4. Performance of AE-FV with varying K on (a) the UCLA 8-class
breakdown and (b) the DynTex++.

B. PARAMETER SETTING
The proposed AE-FV has 4 key parameters, which are the
number (N ) and size (l) of the sampled sub-videos, the length
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TABLE 1. Performance comparison of the proposed AE-FV with other methods on the UCLA dataset.

(H ) of latent vectors, and the number (K ) of components
in the trained GMM. As our purpose is to verify that deep
learning techniques could be applied on small datasets with
the BoWmodel, we do not conduct experimental tests to find
a parameter setting that gives favorable performance. Instead,
we simply setN = 500, l = 3,H = 10 andwe do not tune the
structure of our AutoEncoder network for better performance.

As for the choice of K , using more Gaussian components
in a GMM would generally improve performance, while
the corresponding feature length also increases. To assess
the influence of K on the performance of our AE-FV,
we conduct two experimental tests respectively on the UCLA
8-class breakdown and the DynTex++ dataset, where the
value of K ranges from 10 to 300 with a step size of 10.
Results are shown in Fig. 4. For the less challenging UCLA
dataset, increasing the value of K would not bring notable
improvement. On the DynTex++ dataset, increasing the
value of K would gradually improve performance. When
K >= 150, the classification rates are above 95% and do

not exceed 96% even when K = 300. Considering these
results, a small K is suitable for simple DT datasets, while
a relatively large K is needed for challenging DT datasets.
To keep the feature length relatively short, we report results
with K ∈ {10, 20, 50, 150} in experiments.

C. COMPARATIVE EVALUATION
In this section, we evaluate the proposed AE-FV descriptor
on the three DT datasets and compare its classification rates
with those of many existing descriptors. The feature lengths
of the various DT descriptors, if available, are also compared.

1) RESULTS ON THE UCLA DATASET
The results on the UCLA dataset are shown in Table 1. For
the proposed AE-FV, it can be observed that increasing the
number of Gaussian components does improve performance
and also increase feature dimensionality.What is surprising is
that even AE-FVwithK = 10 can provide good performance
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and outperform many existing descriptors on the 9-class and
8-class breakdowns, verifying that the 10-dimensional local
descriptor produced by the encoder of our AutoEncoder is
highly discriminative.

Most methods achieve a classification rate of 99.50%
on the UCLA 50-class breakdown using the LOO scheme.
Our AE-FV with K = 50 provides a classification rate
of 99.50% and the descriptor has only 1000 dimensions.
Some methods (HoGF [18], DoDGF [71], MEMDP [68],
RUBIG [67]) achieve a classification rate of 100% by
using the SVM classifier, making it unclear how much
the descriptors themselves contribute to this performance.
They use high-dimensional features (dimensionality ranges
from 3888 to 21600) while ours is just 1000. A few other
descriptors (FD-MAP [58], DDTP [59], novel LBP [16],
MEWLSP [63], CVLBC [6]) achieve classification rates
below 99.50% even with high-dimensional features. Con-
sidering complexity, dimensionality, and performance, the
proposed AE-FV is more favorable than others. Moreover,
we further check the only DT sample mis-classified by our
AE-FV (K = 50). It turns out that a sample from the
smoke-b class is incorrectly classified into the water-b-near
class, as shown in Fig. 5. It can be observed that the two
samples highly resemble each other.

FIGURE 5. The first five frames from the mis-classified sample belonging
to the smoke-b class (top) and those from its nearest neighbor in the
training set (bottom). These two samples are found with AE-FV (k = 50).

As for the 4CFV scheme, the proposed AE-FV with
(K = 10) provides a classification rate of 98% and
outperforms most handcrafted descriptors as well as a few
traditional learning-based ones (DT-Diffusion [75], DT-DPS
[76], OTDL [43], DT-RNNs [80]) when adopting the NN
classifier. When using K = 50, AE-FV gives a classification
rate of 99.50%, which is only second to DBRF [9] and STRF
N-jet [77]. However, DBRF carefully chooses the parameter
setting by conducting experimental tests. STRF N-jet uses
16348-dimensional features and contains two stages of multi-
scale filtering, followed by PCA. TwoDT-CNN [53] methods
with pre-trained model (AlexNet [48] and GoogleNet [49])
also give a classification rate of 99.50%. In aspects of
complexity and dimensionality, the proposed AE-FV still has
some superiority over other methods.

When using the 9-class breakdown, AE-FV with K =
10 gives a classification rate of 99.10% and outperforms
many other methods, including the deep-learning-based ones,
and some evaluated with the SVM classifier. If we increase
the value of K , marginal improvement is observed. Among
existing methods, the classification rates of CVLBC [6],
MPCAF-TOP [39], 3DRF [45], and ICFV [46] are 99.20%,

FIGURE 6. Confusion matrix of AE-FV (K = 10) on 9-class breakdown.

FIGURE 7. Confusion matrix of AE-FV (K = 10) on 8-class breakdown.

99.15%, 99.24%, and 99.25%, respectively. If we set K =
50, the classification rate of our AE-FV is 99.25% and the
descriptor has only 1000 dimensions. Fig. 6 illustrates the
confusion matrix of AE-FV (K = 10) under this protocol.
It indicates that our AE-FV cannot well distinguish smoke
samples from water samples. Although some samples from
the two classes are visually similar, future effort should be
made to tackle such mis-classifications.

When evaluated on the 8-class breakdown, the classi-
fication rates of most methods decreased compared with
those on the 9-class breakdown. It gets more challenging
after removing the plant class. AE-FV with K = 10 gives
a rate of 99.10% and increasing the value of K would
only bring marginal improvement. Except for those using
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TABLE 2. Performance comparison of the proposed AE-FV with other methods on the DynTex and DynText++ datasets.

the SVM classifier, FD-MAP [58], CVLBC [6], STRF
N-jet [77], and DT-CNN-GoogleNet [53] give rates higher
than 99% and show marginal superiority over our AE-FV,
while DBRF [9] and ICFV [46] outperform our AE-FV by
about 1%. However, FD-MAP [58] and CVLBC [6] use
very high-dimensional features (more than 10000 dimen-
sions); STRF N-jet [77] is very complex, and DT-CNN-
GoogleNet [53] uses a model pre-trained on a large dataset;
Both DBRF [9] and ICFV [46] need to tune parameters
carefully. Comparedwith them, the proposedAE-FVdoes not
tune parameters and, with low-dimensional features, provides
a relatively high rate (slightly lower than 99%). The confusion
matrix is shown in Fig. 7. The main problem is still the
‘‘smoke-water’’ mis-classifications.

2) RESULTS ON THE DynTex DATASET
Results on this dataset are presented in Table 2. The
DynTex35 subset is not challenging, as most methods achieve
classification rates near or higher than 99%. While the

FIGURE 8. First three frames of the mis-classified DT (top) and those of
the corresponding nearest neighbors in the training set (bottom).

proposed AE-FV with K = 50 gives a classification rate of
99.43%, MEWLSP [63], DBRF [9], B3DF_SMC [41], and
ICFV [46] show a marginal improvement over AE-FV (K =
50), but their superiority is negligible. These methods either
use high-dimensional features or require to careful parameter
tuning for good performance. A few other descriptors that use
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FIGURE 9. Confusion matrix of AE-FV (K = 150) on the Beta subset.

the SVM classifier, also exhibit negligible superiority over
our method.

The Alpha subset is a little challenging. The classification
rates of many handcrafted descriptors are lower than 97%,
even though some of them are evaluated with the SVM
classifier. The proposed AE-FV (K = 150) gives a
rate of 98.33%, which can only be considered acceptable.
On the other hand, four deep-learning-based methods achieve
excellent performance. The VGGNet-based st-TCoF [51]
gives a rate of 98.33%, and is on par with our AE-FV (K =
150). The only DT mis-classified by AE-FV (K = 150) is
shown in Fig. 8. The top DT is from the grass class while the
bottom one is from the tree class. They are visually different.
However, if we focus on the local areas, the grasses and small
tree branches resemble each other and their motion patterns
are also similar.

On the Beta subset, the proposed AE-FV (K = 150)
achieves a rate of 93.88% and outperforms all the traditional
methods using the NN classifier, as well as several evaluated
with the SVM classifier. Deep-learning-based methods
significantly outperform others. It can also be noticed that
the classification rates on this subset are generally lower
than those on the Alpha subset. This is because the Beta
subset has 162 DTs from ten classes, in which both the
visual and dynamical patterns are very complex. Fig. 9
shows the confusionmatrix on this subset.Mis-classifications
are mainly conducted for the three classes of calm water,
escalator, and rotation.

The Gamma subset is constructed by introducing extra
DTs into the Beta subset and thus is even more challenging.
Even the deep-learning-based methods failed to provide a
classification rate of 100%. The proposed AE-FV (K =
150) and all the traditional methods evaluated with the
NN classifier achieve classification rates around 90%.
However, HoGF2D [18], HoGF3D [18], DoDGF2D [71], and
DoDGF3D [71] provide classification rates higher than 96%.

FIGURE 10. Confusion matrix of AE-FV (K = 150) on the Gamma subset.

We think the combination of high-dimensional features and
the utilization of the SVM classifier contributes to such
good performance. Except for C3D, the other deep-learning-
based methods undoubtedly outperform all the traditional
methods, demonstrating the strong representational power of
deep models trained on large-scale datasets. Fig. 10 shows
the confusion matrix on this subset. Only the DTs in the
three classes of sea, escalator, and grass are 100% correctly
classified. For other classes, about 10% of the DTs are
mis-classified on average.

3) RESULTS ON THE DynTex++ DATASET
Results on this dataset are also shown in Table 2. The
proposed AE-FV (K = 150) achieves a classification
rate of 95.21%. Among traditional methods using the NN
classifier, novel LBP [16],MEWLSP [63],MBSIF-TOP [38],
MPCAF-TOP [39], B3DF_SMC [41], and DT-RNNs [80]
outperform our method by 1.07%, 3.27%, 1.96%, 1.31%,
0.37%, and 1.3%, respectively. Except for MEWLSP [63]
and MBSIF-TOP [38], the superiority of other three methods
is marginal. MEWLSP [63] is learning-free and does not
perform well on the UCLA dataset. MBSIF-TOP [38] uses
high-dimensional features (6144 dimensions). For those
methods that are evaluated with the SVM classifier and
outperform our AE-FV, their advantages are generally less
than 2%. And whether the descriptors contribute more
than the SVM classifier remains unclear. Only DT-CNN-
AlexNet [53] and DT-CNN-GoogleNet [53] are tested on
this dataset. The results are respectively 98.18% and 98.58%,
which are 3% higher than that of our AE-FV. Overall, AE-FV
(K = 150) performs relatively well on this dataset. The
class-specific classification rates are illustrated in Fig. 11.
The classification rate can be as low as 73.2%, indicating that
the DTs in some classes are difficult to distinguish from other
DTs.
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FIGURE 11. Class-specific classification rates by AE-FV (K = 150). Results
lower than 90% are in red.

TABLE 3. Ablation study for AE-FV on UCLA 9-class breakdown.

D. ABLATION STUDY
In order to verify the effectiveness of the two individual
components (AutoEncoder for local feature extraction and
GMM for local feature aggregation) of AE-FV, we design
five variants for ablation analysis. As AE-FV first extracts
local features and then aggregates those from the same
DT into a global feature vector, we consider two other
typical local feature extraction methods (PCA and random
projection) and another feature encoding method (the classic
BoW model). PCA is applied to the training patches and the
top 10 eigenvectors are used as filters to extract features from
patches. Randomprojection (RP) uses 10 randomly generated
filters to extract local features. The sizes of PCA filters and
randomfilters are equal to the sample patch size. And both the
PCA-based local features and the random local features have
10 dimensions, which are the same as our AutoEncoder-based
local features. The classic BoW model first applies K -
means clustering to the training local descriptors, in which
the number of cluster centers can be 10, 20, 50, and 150.
Then, each of the local descriptors extracted from one DT
is assigned to a cluster center according to its distance to
each center. Finally, a histogram is built as the corresponding
global feature vector.

We have three types of local features (AutoEncoder-based,
PCA-based and RP-based) and two feature aggregation
methods (FV and BoW). To make a fair comparison, all
the three types of local features have 10 dimensions and
the number of Gaussian components in GMM is set equal
to the number of clusters in the classic BoW model.
Specifically, we combine each of the three features with
each of the two feature aggregation models, and compare the

TABLE 4. Runtime (in seconds) comparison of AE-FV, CVLBC, MPCAF-TOP
and PCANet-TOP.

performance of the six combinations on the UCLA 9-class
breakdown dataset in aspect of classification rate. The results
are shown in Table 3. When using BoW, the superiority
of AutoEncoder-based local features is fully demonstrated.
AE+BoW outperforms PCA+BoW and RP+BoW by about
3%. AE+BoW’s advantage over PCA+BoW and RP+BoW
is above 1.5% for K ∈ {20, 50, 150}. When using the
powerful FV encoding, the classification rates of all three
feature types are above 99%. For K ∈ {10, 20}, PCA+FV
and RP+FV slightly outperform AE+FV by about 0.1% and
0.3%, respectively. For K ∈ {50, 150}, AE+FV slightly
outperforms PCA+FV and RP+FV. One strange thing is
that the performance of RP+FV drops when increasing
K from 20 to 50, implying that random features may
not be very stable. Overall, local features extracted by a
simple AutoEncoder network are more discriminative than
PCA-based and RP-bade features when using BoW, and FV
encoding can significantly improve performance for each of
the three types of local features. Therefore, our AE-FV that
encodes AutoEncoder-based local features via FV encoding,
is indeed effective for the description of DTs.

E. COMPUTATIONAL EFFICIENCY
It has been claimed that computational efficiency is as
important as classification accuracy for a pattern recognition
task [37]. Therefore, we need to measure the time cost (wall-
clock time) of our AE-FV and compare it with those of
three existing methods, i.e., the learning-free CVLBC, the
learning-based MPCAF-TOP and PCANet-TOP. A feature
vector is extracted from a sample in theUCLAdataset by each
of the four methods. And the elapsed time between feeding
the sample into the program and obtaining the feature vector
is used as the computation time. To achieve a stable time
cost, we run each test 10 times and the computation times are
averaged as the final time cost. To make a fair comparison,
we useK = 150 for our AE-FVwhile the other threemethods
are tested with the parameter settings reported in the original
literature. All the methods are implemented with MATLAB,
and are executed on an idle server with dual E5-2680v4 CPUs
and 192GB memory (no GPU is involved).

The results are shown in Table 4. All of CVLBC,
MPCAF-TOP and PCANet-TOP inherit LBP’s drawback
that the sign of each feature code needs to be extracted.
As there are plenty of feature codes, either counting or
encoding the signs is time-consuming. Both MPCAF-TOP
and PCANet-TOP extract features at multiple scales,
which not only increases dimensionality, but also requires
more processing time. On the other hand, our AE-FV
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using 150 Gaussian components needs only 0.99 seconds
to process a DT, which is more efficient than other three
methods. Considering the results of the four methods in
Table 1 and Table 2, only CVLBC and MPCAF-TOP
respectively outperform our AE-FV (K = 150) on the UCLA
8-class dataset and the DynTex++ dataset by 0.32% and
1.31%, and these improvements aremarginal. For other cases,
our AE-FV (K = 150) is either on par with or better than
the other methods. Therefore, we firmly believe that our
AE-FV achieves a good balance between performance and
complexity.

F. SUMMARY AND DISCUSSION
With an arbitrary parameter setting, the proposed AE-FV
achieves good performance on the UCLA dataset and also
works well on the DynTex++ dataset. For evaluation on
the DynTex dataset, the performance is relatively good on
the DynTex35 and Alpha subsets. However, on the Beta
and Gamma subsets, the results of our AE-FV can only be
considered acceptable and are far from satisfactory. We think
the reason behind this situation are two-fold. One reason
is that the Beta and Gamma subsets are naturally very
challenging. The DTs in these two subsets may contain
multiple motion patterns, and some DTs from different
classes can appear visually similar in certain viewpoints or
at a specific scale. The other reason is that the parameter
settingmay be inappropriate for the Beta andGamma subsets.
Firstly, DTs in Beta and Gamma subsets are large in size.
But we still sample 3 × 3 × 3 sub-videos from them, which
may fail to capture the key dynamical patterns. Secondly, both
intra-class and inter-class variations in the two subsets are
large. But we only sample 500 sub-videos per DT for training
and the local descriptor has only 10 dimensions, which may
be insufficient to build a compact global descriptor.

V. CONCLUSION
In this paper, we adopt the bag-of-words model and directly
apply deep learning techniques to small-scale DT datasets for
classification. The proposed framework consists of a training
process and a feature extraction process. In the training
process, a small number of sub-videos are randomly sampled
from each training DT, which are further normalized and
vectorized. Then a simple AutoEncoder is trained with these
data. Finally, a Gaussian mixture model is fitted with the
encoded training data. The outputs of the training process
are the AutoEncoder network and the Gaussian mixture
model, which will be used as two dictionaries. In the
feature extraction process, sub-videos are densely sampled
and processed as in the training process. These sub-videos
are then fed into the encoder of the AutoEncoder network,
thereby generating a set of local descriptors. These local
descriptors from the same DT are aggregated into a global
feature vector via FV encoding with the Gaussian mixture
model. Even with an arbitrary parameter setting, the proposed
method still achieves good performance using the nearest
neighbor classifier. When we use 50 Gaussian components,

a good balance between performance and dimensionality is
obtained. With feature vectors having 1000 dimensions, the
classification rates on the UCLA dataset are around 99%.
On the challenging DynTex dataset, we increase the number
of Gaussian components to 150 (feature length increases to
3000) and our AE-FV outperforms most existing methods
that are also evaluated with the nearest neighbor classifier.
These experimental results demonstrate the effectiveness and
efficiency of our AE-FV, verifying the possibility of directly
applying deep learning techniques to small-scale datasets.
As a few methods using high-dimensional features slightly
outperform the proposed method, additional features such as
image gradients could be utilized to enhance performance.
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