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ABSTRACT This article presents an improved solution to the open vocabulary keyword spotting task
with the keyword given by text. This solution is based on the acoustic model and unigram language
model architectures. Such models are commonly used in the automatic speech recognition task. However,
they can also be minimized and deployed to mobile devices while preserving the ability to transcribe
extensive vocabulary data. Our improvements can be applied to any type of sequence-to-sequence model
architecture generating token probabilities. Furthermore, they do not increase the latency since they are
applied to the acoustic model output. We propose three modifications: 1) leveraging multiple hypotheses
generated by the beam search algorithm, 2) modifying the method of the language model initialization, and
3) smoothing the acoustic model outputs. We evaluated those improvements on the public testsets (MOCKS:
Multilingual Open Custom Keyword Spotting Testset and Google Speech Commands) with an exemplary
highly compressed acoustic model. Comparison of the results with the baseline solution revealed an equal
error rate reduction by 1.6–1.7% relative depending on the testset.

INDEX TERMS Acoustic model, custom keyword spotting, language model, on-device keyword spotting,
open vocabulary keyword spotting, query-by-text.

I. INTRODUCTION
In recent years, keyword spotting (KWS) has gained
significant attention. While traditional KWS involves a
limited set of predefined keywords, the open vocabulary
version of this task poses a more complex challenge of
recognizing any word or phrase. This task is essential for
various applications such as voice assistants, transcription
systems, audio search engines, and more, where detecting
and understanding specific keywords in real time is crucial.
Throughout this paper, KWSwill refer to the open vocabulary
version of this task.

Solving the KWS problem requires overcoming several
constraints and challenges. One such constraint is the
necessity of running solutions on-device. KWS is usually
performed in real time as the initial step of the processing
pipeline. Furthermore, with an increasing emphasis on
protecting user data, processing audio locally on the user’s
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device becomes imperative. Thus, on-device execution is
meant to secure low latency and avoid transmitting sen-
sitive information to the cloud. This constraint introduces
new challenges as deploying complex keyword recognition
models without compromising the system’s functionality on
resource-constrained mobile devices like smartphones and
IoT devices becomes daunting.

Another significant challenge in KWS is distinguishing
similar words from the target keywords. Words with similar
phonetic properties or homophones pose considerable diffi-
culty in accurate recognition. Resolving this issue requires
advanced solutions that can contextually understand the audio
input and correctly interpret the intended word or phrase.

Overall, addressing the constraints and challenges in KWS
requires striking the right balance between the accuracy and
efficiency of the system. This article proposes a solution
based on the acoustic model (AM) and language model
(LM). AMs commonly used in the large vocabulary automatic
speech recognition (ASR) task are too large to run on-
device [1]. There are techniques for compressing AMs, such
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as knowledge distillation (KD) [2], [3], [4], [5], where the
goal is to train a model with a reduced number of parameters
by extracting information stored in a full-scale model with a
similar architecture. Another technique applied to reduce the
model size is quantization [6], [7], [8], [9], which is based
on the idea of replacing floating point model parameters
with lower precision numbers. However, model compression
usually results in a drop in the quality of hypotheses [10].
A simple unigram LM can fix this issue without impacting
the latency [11]. In this article, we build upon this idea.
Our modifications to the baseline method improve the results
on multiple testsets without increasing the latency. Our
contribution described in this article is the following:
• We propose extending the hypotheses set compared with
the keyword with the top-k beam path outputs during
inference.

• We propose an improved method of LM weights
initialization.

• We introduce AM output scores smoothing.
Improvements presented in this article can be easily

applied to KWS solutions based on the models processing
audio data and generating per-frame probability distributions.
In the most straightforward case, the sample space consists
of tokens in the given vocabulary (e.g., phonemes, letters,
or strings). The model output can be decoded either with
a simple greedy search or variants of the beam-search
algorithm [12]. In both cases, re-scoring is easy to apply, and
the simplicity of the unigram LM ensures a minor impact
on the computational complexity.

The rest of this paper is organized as follows. Section II
discusses previously implemented solutions to the KWS
problem. In Section III, we present baseline model archi-
tecture with its respective parts (Subsection III-A) and
the proposed improvements (Subsection III-B). Results of
experiments with those improvements are presented in
Section IV. We conclude this paper with a discussion
in Section V and provide some possible future research
directions in Section VI.

II. RELATED WORK
KWS can be categorized into query-by-text (QbyT) and
query-by-example (QbyE). In QbyT, the keyword is obtained
from written text, while in QbyE, one or more audio
recordings are provided during the initialization phase to
serve as ‘‘enrollment’’ examples. In the inference stage,
these recordings are utilized as ‘‘keywords’’ in various ways
depending on the chosen solution.

Most QbyE solutions are implemented on an acoustic
level by comparing embeddings generated by the enrollment
and test audio data. Such an idea was the basis of the
solutions presented in [13], [14], [15], [16], [17], and
[18], where sequence-to-sequence models were used to
generate embeddings for the enrollment and test audio data.
Different metrics (e.g., cosine similarity) were applied to
those embeddings, and the distance was compared with a
predefined threshold. An interesting variant of this approach

was used in [19] and [20], where an additional classification
layer was used on top of the embedding model. This layer
was adapted for a specific keyword with the enrollment data.
QbyE can also be approached as a few-shot learning keyword
spotting task (FS-KWS) when the target keyword is not seen
during training. Applying this perspective [21] introduced an
unsupervised training approach that used only synthetic data.
The goal was to alleviate the requirement of a large labeled
dataset containing target keywords to learn rich embedding
space representation.

A large group of QbyE solutions can be characterized
as converting QbyE to QbyT. Such solutions operate on
the textual output of the model rather than directly on the
acoustic-level embeddings. ASR model with connectionist
temporal classification (CTC) [22] was used in [23] to
generate n-best phonetic level keyword phrases for the enroll-
ment audio. During inference, each test audio was processed
with a similar AM. The log probability was computed for
each keyword, weighted by respective confidence score, and
added to the final score. The keyword was detected if this
score was above a certain predefined threshold. A similar
approach was also used in [24]. An ASR model processed
enrollment audio data, and phonetic level posteriorgrams
were compiled into finite-state transducers (FST). In the
inference phase, the audio was processed with the AM, and
the output was scored using the keyword model FST. Finally,
the score was compared with the threshold, which was
chosen automatically based on the enrollment recordings and
negative samples generated by rearranging each enrollment
waveform.

Unlike QbyE, which needs multiple audio samples, QbyT
uses text to provide the keyword. A thorough review of
solutions to this problem can be found in [25]. The models
designed for this task have evolved similarly to the acoustic
models used in speech recognition. Previously, the models
were based on the hidden Markov model (HMM) and
Gaussian mixture model (GMM) architecture [26], [27]. The
GMM modeled the acoustic features in this approach, and
its output was used as the HMM emission probabilities.
The Viterbi decoding [28] was used for inference to find
the best path in the decoding graph generated by HMM.
Later, the GMM component was replaced by deep neural
networks (DNN) [29], [30]. With the advent of end-to-
end architectures in speech processing, techniques such
as CTC and attention mechanisms [31] have also become
standard solutions in KWS. These models typically consist
of an encoder and a decoder. The encoder generates frame-
level embeddings, while the decoder is trained to compile
those embeddings into a sequence of posterior probabilities,
which are usually much sparser than the frame sequence.
The solutions differ in how the decoder generates the
posteriors and how they are handled in the postprocessing
step. Additionally, some solutions have a more sophisticated
transformation in the keyword encoder module, while others
use a simple identity function or translation to phonetic
transcription.
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The most straightforward methods in QbyT just use the
output from the ASR model with CTC. One such model,
described in [32], consisted of three long short-term memory
(LSTM) layers that predicted characters. When the negative
log posterior of the output keyword character sequence
was below a predefined threshold then the keyword was
detected. A similar architecture based on the LSTM-CTC
model was used in [33] but with phonetic vocabulary. The
model hypothesis was compared with minimum edit distance
to one or more phoneme sequences representing the keyword
during inference. Detection occurred when the distance was
lower than a predefined threshold, estimated separately for
each phoneme keyword sequence based on the training data
and lexicon.

The connection betweenKWS andASR can also be limited
to the training phase. In [34], the model was trained using
a multi-task approach incorporating ASR and KWS outputs.
During inference, the model relied solely on the KWS output.
This approach aimed to enhance the model’s generalizability
and performance in challenging acoustic environments.
However, multi-task training with a KWS target focused the
model on a single keyword; thus, it lacked open vocabulary
support. The solution outlined in [35] utilized an audio
encoder network and a convolutional classifier. The audio
encoder network was trained using the ASR task, while the
classifier network employed filters generated by a keyword
encoder. The keyword encoder was a bidirectional LSTM
(BiLSTM) layer that processed the text keyword provided
by the user. In [36], an ASR model composed of five LSTM
layers was utilized. While the model was trained with CTC
loss, it also incorporated a keyword encoder and attention
network to direct the prediction network’s focus toward the
specific keyword of interest. One of the models described in
the paper adopted a phoneme level 6-gram LM (∼ 1.5M 6-
grams), which enhanced the model’s performance.

There were also multiple propositions based on joint audio
and text embeddings. In [37], input audio queries were
compared with enrolled text keyword sequences. An adapted
attention-based cross-model matching approach placed the
audio and text representations within a shared latent space.
It was trained end-to-end with monotonic matching loss
and keyword classification loss. Another audio-text-based
end-to-end model solution for KWS was presented in [38].
The model consisted of an audio encoder with conformer
architecture [39] and a text encoder to get respective
embeddings. A projection block was used to map those
individual embeddings to a common latent space where they
were aligned using the dynamic sequence partitioning (DSP)
algorithm to make a prediction. The DSP algorithm was also
used with cosine similarity in the classifier network in [40].
A small-footprint conformer model trained with CTC loss
on a rich speech dataset was employed as an audio encoder.
The text encoder converted the target keyword to phonemes
applying a grapheme-to-phoneme (G2P) model and then to
phoneme vectors using a phoneme-to-vector database built
beforehand with an audio encoder. Audio and phoneme

embeddings were used in the classifier network to make the
prediction.

FIGURE 1. Overview of the baseline KWS solution with static LM [11].

An interesting solution named AdaKWS was presented
in [41]. It was also based on an audio and text encoder
with a classification layer. The frozen Whisper [42] encoder
model was used to process audio data, allowing robust gen-
eralization in various acoustic conditions. The text encoder
was trained to output keyword-conditioned normalization
parameters. The keyword-conditioned audio representation
was fed to the linear classifier layer to decide whether
the keyword was present. This solution achieved state-of-
the-art results on KWS benchmarks but required higher
computational resources so that the on-device usage might
be limited.

It should be noted thatmanyKWS solutionswere evaluated
with a subset of Google Speech Commands (GSC) [43]. It is
a public dataset developed for training and evaluating models
designed for simple command recognition. It is also used for
the KWS task. Despite its popularity, the GSC testset cannot
evaluate KWS solutions thoroughly for several reasons: the
number of keywords is relatively low, and the negative
samples are entirely different from the keywords. All the
samples were recorded without background noise and were
cut with high precision. These issues make GSC inadequate
for emulating actual production conditions. However, GSC
is a useful testset for classification problems with a fixed
number of classes.

III. MODEL ARCHITECTURE
The solution presented in this paper is an extension of the
KWS architecture proposed in [11]. The overview of the
baseline solution is shown in Figure 1. It comprises three
main elements: AM, LM, and a keyword classifier. The AM
is used to generate frame-level scores for each output token.
These scores are subsequently weighted by the values stored
in the LM. Finally, the beam search algorithm is used to
obtain the best path, which is converted into text transcription
of the phrase in the audio data. Such a solution is commonly
used in ASR systems. However, the KWS system should
be designed as a binary classifier; hence, the output from
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TABLE 1. AM architecture.

the ASR module is compared with the given keyword, and
based on their similarity, the True or False value is returned.
We describe each of those modules in detail below.

A. BASELINE ARCHITECTURE
1) ACOUSTIC MODEL (AM)
The AM used in the experiments described below was
based on a sequence-to-sequence architecture implementing
a monotonic chunkwise attention mechanism (MoChA) [44].
This approach splits the audio data into frames for which the
model input features are computed. The encoder generates
frame-level embeddings, which are processed by the decoder
equipped with the attention mechanism. The output from
the decoder consists of a sequence of vectors interpreted as
the likelihood of the output tokens. Such tokens are usually
extracted from the training data and consist of phonemes,
letters, word parts, or entire words.

Since KWS solutions are usually designed to run on
customer devices, the goal is to create a small model while
preserving high performance. Hence, we applied KD to
compress the model, as in [45]. There are two steps in this
paradigm:

1) training a large teacher model,
2) training a small student model leveraging the

knowledge obtained by the teacher.

In our solution, both models shared the same architecture
but differed in layer sizes. A detailed description of teacher
and student models is presented in Table 1. The input
normalization parameters were computed over all training
samples. The model’s output vocabulary was generated using
the adaptation of byte pair encoding (BPE) [46] over all
transcriptions from the trainset.

TABLE 2. Hyperparameters of AM training procedure.

Table 2 describes the training procedure for teacher
and student models. We used all the training splits from
LibriSpeech [47] and all the samples from Mozilla Common
Voice (MCV) version 7.0 [48], which were not included
in the testset. The data was mixed with background noise
from AudioSet [49] (with random signal-to-noise ratio in the
range −2 dB–12 dB) and augmented with randomly selected
in-house room impulse response (RIR). The RIR dataset
contained simulations of distances from one to five meters
and reverberation time between 0.2 s–0.9 s. We applied
exponential learning rate (LR) decay every 10 validation steps
without change.

The final model size was approximately 3.2MB, and
the model scored the following word error rates (WER):
16.0% on LibriSpeech test-clean and 30.9% on LibriSpeech
test-other.

2) LANGUAGE MODEL (LM)
We used a simple unigram LM to re-score the token
likelihoods generated by the AM, where the model is a vector
of the same length as the AM output layer size. This type of
LM introduces only a minor additional memory footprint and
a slight increase in latency. With this kind of LM, re-scoring
consists of element-wise multiplication of the scores returned
by the AM and the LM vector.

The initialization of weights is the key to a LM of this
type. This step should be performed only once for each
novel keyword; hence, it does not influence latency during
the inference phase. We used a straightforward initialization
method which we named Static LM. In this method,
LM weights were initialized only with two values: 1 and
boost weight, which was treated as a model hyperparameter.
The BPE algorithm was applied to the keyword with the
same vocabulary that was used to convert the AM scores to
obtain the hypothesis. Tokens included in the keyword were
assigned a boost weight, and all the remaining tokens were
assigned 1. Note that setting boost weight to 1 would not
change AM scores, and setting boost weight to values smaller
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FIGURE 2. LM re-scoring example. ASR consists of AM and beam search
(width = 3). A star denotes multiplication by LM weights.

than one would decrease the probability of recognizing the
keyword.

Figure 2 shows an example application of the LM re-
scoring. The processing flow is from bottom to top for
each token and from left to right for consecutive tokens.
In this example, ASR consists of the AM and the beam
search algorithm, with a beam width equal to 3. Each ASR
output is re-scored by the LM. The correct keyword is
‘‘mister marshall’’. LM is initialized so that the tokens
included in the keyword are assigned weight 10, and all
the remaining tokens are assigned weight 1. Without LM
re-scoring, the hypothesis would be ‘‘mister mortal’’.
However, re-scoring modifies the token scores and forces the
model to return the keyword as the hypothesis.

3) KEYWORD CLASSIFIER
Generating an ASR-based hypothesis was only the first step
in the KWS solution. Based on this hypothesis, deciding
whether the recording contained the required keyword was
necessary. The pseudocode of the procedure we employed
for this purpose is presented in Algorithm 1. Note that
the recording processed by the AM might contain more
speech data than just the keyword. To remedy this issue,
we compared the keyword with all the subsequences of
the hypothesis of the same word length. We calculated the
character level normalized Levenshtein distance between
each such subsequence and the keyword. If the distance was
smaller than a predefined threshold, the system returned the
positive value (keyword detected), and the negative value was
returned otherwise (keyword not detected).

B. PROPOSED IMPROVEMENTS
1) ALL BEAM PATHS – MULTI-HYPOTHESES
The concept of the solution proposed in this paper is based on
generating a hypothesis from an ASRmodel and comparing it
with the given keyword. Contemporary ASR models employ
the beam search algorithm to create the hypothesis. The beam
width is a parameter that directly impacts the latency, memory

Algorithm 1 Keyword Classifier Algorithm
Input: keyword – custom keyword
Input: hyp – hypothesis returned by AM
Input: t – recognition threshold
1: L ← len(keyword) {number of words in keyword}
2: for s ∈ {sub : sub is substring of hyp ∧ len(sub) = L}

do
3: if dist_norm(keyword, s) ≤ t then
4: return true
5: end if
6: end for
7: return false

footprint, and quality of the hypothesis. A beam width of
4 was used in the baseline solution, but only the best path was
compared with the keyword. However, multiple hypotheses
can be comparedwith the given keyword, and the onewith the
smallest distance can be used for further processing. This idea
requires extending the keyword classifier in such a way that
it would iterate over the list of hypotheses and search for the
one with minimal edit distance from the keyword. The final
decision should be made by comparing this distance with a
threshold. The list of hypotheses can be simply composed of
all the paths returned by the beam search algorithm.

For example, let the keyword be ‘‘mister marshall’’,
and assume that the audio sample contains this keyword
(positive test case). Let the hypotheses generated by the AM
and LM be (in order of the score):

1) ‘‘mr martial’’,
2) ‘‘mister marshall’’,
3) ‘‘mister martial’’.

Normalized character level Levenshtein distances to the
keyword for those hypotheses would be 0.467, 0.000, and
0.200, respectively. The second beam has the lowest distance,
which is also the correct hypothesis. This test case would
fail if only the best beam would be considered. However,
analyzing all beams fixes this test case.

This solution will be referred to as ‘‘all beams’’, while the
baseline solution will be called ‘‘best beam’’.

2) LANGUAGE MODEL WITH NEIGHBOR TOKENS WEIGHT
BOOSTING
It has been shown that re-scoring token weights with a
unigram LM can significantly improve the results in terms
of EER [11]. However, with large boost values, the tokens
contained in the keyword dominate over other tokens. This
can be problematic with phrases similar to the keyword but
slightly different. In this case, even if the AM assigns high
values to the correct tokens, re-scoring can set the preference
for the incorrect tokens.

For example:

• let the keyword be ‘‘an action’’, with token split
(an, ac-, tion),
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• let the transcription of the audio sample be ‘‘+in
action+’’ (negative test case), with the sequence of
tokens correctly recognized by the AM +(in, ac-,
tion)+.

With the LM boosting tokens contained in the keyword,
it might happen that token an will be preferred by beam
search, causing false acceptance.

To mitigate this issue, we propose to extend the list of
boosted tokens. The idea is to assign large boost values to the
tokens contained in the keyword and moderate boost values
to tokens that could be included in phrases similar to the
keyword.

Listing all possible phrases similar to the arbitrary keyword
might be challenging. A useful heuristic that can be used to
remedy this issue is the following:

w(s) =


boost if s ∈ BPE(keyword),
n_boost if s /∈ BPE(keyword)∧

∃t∈BPE(keyword)dist(s, t) = 1,
1 otherwise.

(1)

In this equation, w(s) is the weight assigned to token s during
re-scoring, BPE(keyword) is the set of tokens included in
the keyword (generated by the BPE algorithm), dist(s, t) is
the character-level Levenshtein distance. Finally, boost and
n_boost scalar values are the hyperparameters of the LM. The
latter is used to re-score tokens similar to those contained
in the keyword. Setting n_boost > 1 increases the scores
of those tokens; hence, this method will be referred to as
‘‘neighbor boosting’’.

3) OUTPUT SMOOTHING
The KWS solutions are usually deployed on devices with
limited resources; thus, the model must be highly com-
pressed. As a result, the model, which should support any
type of keyword, has limited memorization capabilities.
This limitation hampers the model’s ability to generalize.
In particular, this is the case with AMs and tokens that
were infrequent during the training. Consequently, the model
returns similar, more ‘‘popular’’ tokens for rare phrases
with high confidence during inference. Despite employing
various regularization techniques during the training, the
overconfidence persists.

To address the issue of generating incorrect tokens,
we found that higher boosting weight in the LM was
necessary to counteract the AM’s overconfidence [11].
However, as mentioned in Section III-B2, increasing this
weight too high had an adverse impact on negative test cases.
The model became overconfident with tokens contained in
the given keyword. To mitigate this problem, we propose
inference-time smoothing of the model’s outputs. We will
refer to this method as ‘‘output smoothing’’.

This proposition is based on label smoothing [51], a widely
used regularization technique that helps prevent neural
networks from becoming overconfident and improves their
generalization capabilities. Typically, it is applied during

training by replacing ground-truth, one-hot distribution yhot
with:

yls = (1− α) ∗ yhot + α/K (2)

Here K represents the number of label classes, and α is a
hyperparameter determining the amount of smoothing. Such
smoothed ground-truth distribution is used to compute the
loss.

In output smoothing, we modify the model output
probabilities ypr by:

yls(k) =

 ypr (k) ∗ (1− α) if k = argmax(ypr ),

ypr (k)+ α
max(ypr )
|vocab| − 1

otherwise.

(3)

Here |vocab| is the model vocabulary size, and α ∈ [0, 1]
is once more a hyperparameter determining the amount of
smoothing. Note that this method reduces the highest score
by factor α and distributes this amount equally among all the
other tokens.

IV. EXPERIMENT RESULTS
A. EVALUATION PROCEDURE
Our solution was tested with Multilingual Open Custom
Keyword Spotting Testset 1.0 (MOCKS) [52] and GSC v2
testset, and followed the same evaluation procedure as in [11].
Each test case consisted of a keyword given by text and
an audio file. We used only English subsets of MOCKS
(en_LS_clean, en_LS_other, and en_MCV). Each of those
subsets was split into three distinct parts:
• positive test cases – where the test audio contained a
given keyword,

• similar test cases – where the test audio contained a
different phrase than the given keyword, but both were
close phonetically,

• different test cases – where the test audio contained
a different phrase than the given keyword, and the
phonetic distance between both was large.

We used the equal error rate (EER) metric to compare
the impact of the proposed features with respect to their
hyperparameters. EER was computed for each MOCKS split
separately.

Although GSC was not explicitly designed for the open
vocabulary KWS task, we employed it to contrast our
proposed improvements with previous studies. We presented
our findings using accuracy, a widely employed metric in
this testset. Evaluation on GSC is a 12-class classification
problem (10 positive classes and two negative classes:
_silence_ and _unknown_). At the same time, our
solution was designed for the generic case of open vocab-
ulary classification. To compute accuracy on this testset,
we proceeded as follows:
• Each positive test case was counted as 1 if the reference
was contained in any of the hypotheses generated byAM
and LM, and it was counted as 0 otherwise.
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TABLE 3. EER in % for different combinations of proposed improvements
on en_LS_clean.

TABLE 4. EER in % for different combinations of proposed improvements
on en_LS_other.

TABLE 5. EER in % for different combinations of proposed improvements
on en_MCV.

• Each test case from _unknown_ and _silence_
special classes was counted as 0 if any of the hypotheses
generated by AM and LM contained any of the positive
keywords and it was counted as 1 otherwise.

Accuracy was computed as the average over the
abovementioned values.

For confidence interval estimation, we used bootstrap
resampling of the testsets [53]. The trainset and model
remained fixed during the evaluation. Each testset was
resampled 200 times with replacement, and an evaluation
was performed with such data. To provide a 95% confidence
interval, we calculated the [2.5, 97.5] percentile boundaries
over all resampled evaluation results.

B. EVALUATION RESULTS
Detailed results for each method and subset of MOCKS
can be found in Tables 3, 4, and 5. These tables contain
EER results for the best hyperparameter values found in
our experiments. The baseline solution used only the best
beam, no neighbor token boosting (n_boost = 1), and
no output smoothing (α = 0.0). Hence, there was only
one hyperparameter: boost . We searched for the minimal
EER over the set of integer boost values since such a level
of granularity is a fair compromise between precision and
compute resources necessary to perform the experiments. The
baseline experiment results are presented in the top rows of
each table.

Similarly, Table 6 contains detailed results of evaluations
on GSC in terms of accuracy. Once again, the baseline model
is presented in the top row.

FIGURE 3. Evaluation results with unigram LM, using hypothesis from the
best beam compared with hypotheses from all beams, for en_LS_clean
testset.

TABLE 6. Accuracy in % for different combinations of proposed
improvements on GSC.

1) ALL BEAM PATHS IMPACT
The first modification we evaluated was extending the
list of hypotheses compared with the keyword with other
beams. Once again, we searched for the minimal EER over
integer boost values. Figures 3 and 4 present the comparison
of the baseline model (best beam) with the proposed
modification (all beams) for en_LS_clean in MOCKS and
GSC, respectively.

We observed that in the case of MOCKS, this simple trick
lowered the minimal EER by more than 1% relative for
each subset. Furthermore, with all beams being compared
with the keyword, it was possible to significantly reduce
the boost value for which the minimal EER was obtained.
We also observed that EER in the function of boost had a
more significant gradient in the case of ‘‘all beams’’ than
with the ‘‘best beam’’. Hence, boost values with low EER
were more specific for different MOCKS subsets with ‘‘all
beams’’. On the other hand, it was easier to choose one boost
value, which gave low EER results for all the subsets with
‘‘best beam’’.

Comparison of the ‘‘best beam’’ and ‘‘all beams’’ methods
on GSC proved that the accuracy dropped in the latter case
(Figure 4). Detailed analysis of the results showed that
the accuracy increased in the positive test cases with large
boost values. However, this metric dropped significantly on
the negative classes with boost > 1, especially on the
_silence_ class. In this case, even if the best beam was
an empty string, the list of all the other beams contained
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FIGURE 4. Evaluation results with unigram LM, using hypothesis from the
best beam compared with hypotheses from all beams, for GSC testset.

non-empty strings. For many test cases, after boosting, one
of those additional beams was equal to one of the positive
classes and was counted as 0.

2) NEIGHBOR TOKENS WEIGHT BOOSTING IMPACT
After estimating the utility of the ‘‘all beams’’ method,
we moved to ‘‘neighbor boosting’’. This proposition intro-
duced one more hyperparameter to the LM. That is the reason
we chose to concentrate only on the combined utilization of
‘‘all beams’’ and ‘‘neighbor boosting’’ in fine granularity, i.e.,
for each n_boost ∈ {1, 2, 3, 4, 5, 6, 7, 8}, we checked integer
values of boost. Figure 5 shows the selected results of those
evaluations on en_LS_clean. Increasing n_boost required
larger boost values to obtain minimal EER. However, with
moderate n_boost values, the EER dropped slightly. This
is visible in Figure 5 with n_boost ∈ {4, 8}. We decided
that n_boost ∈ {4, 5, 6} gave the best improvement in EER
compared to the necessary boost increase.

We performed similar experiments with the ‘‘best beam’’
and ‘‘neighbor boosting’’ on MOCKS but with only selected
pairs of n_boost and boost . Those experiments confirmed
previous observations: increasing n_boost requires a larger
boost and lowers EER. However, since EER was still higher
than in any of the ‘‘all beams’’ experiments, we omit results
for ‘‘neighbor boosting’’ with only one hypothesis generated
by the AM.

Boosting neighbor tokens as described in Section III-B2
caused a drop in the accuracy on GSC, especially with higher
values of n_boost . The problem was once more visible in the
_silence_ class. Increasing scores of the additional tokens
promoted non-empty hypotheses in the case of recordings
containing non-speech data. Some of those hallucinations
were equal to actual keywords from the positive classes.
To remedy this, we extended the neighbor tokens set with
the <unk> special token. It is used by the AM to represent
non-speech events and re-scoring it with n_boost fixed the
accuracy on _silence_ class. Table 6 contains evaluation
results for the ‘‘neighbor boosting’’ method described above.

FIGURE 5. Evaluation results with unigram LM, all beams, and boosting
neighbor tokens, for en_LS_clean testset.

FIGURE 6. Evaluation results with unigram LM, best beam, and output
smoothing, for en_LS_clean testset.

Adding ‘‘neighbor boosting’’ to ‘‘best beam’’ improved
the accuracy only slightly. GSC contains simple and short
phrases; thus, the impact of this feature is negligible.
Similar to the case of MOCKS, in experiments on GSC,
increasing n_boost required applying an even larger boost .
Mixing ‘‘neighbor boosting’’ with ‘‘all beams’’ improved the
accuracy from 85.64% to 93.46%, but this value was still far
from the best result obtained with ‘‘best beam’’.

We also performed experiments on MOCKS with re-
scoring <unk> token by n_boost , but the results were the
same as without this change.

3) OUTPUT SMOOTHING IMPACT
The last modification to the baseline method we tested was
smoothing the output weights. This method was applied
just before LM boosting. Figure 6 shows evaluation results
with output smoothing, only the best beam, and no neighbor
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FIGURE 7. Evaluation results with unigram LM, all beams, boosting
neighbor tokens, and output smoothing, for en_LS_clean testset.

boosting for en_LS_clean. Note thatα = 0.0means no output
smoothing (baseline case). We observed that with small α

values, it was possible to reduce the boost value, which
resulted in the smallest EER. With significant smoothing
factors (α > 0.2), the boost necessary to minimize EER was
even lower, but, simultaneously, the model’s performance
deteriorated.We performed experiments with different values
of α and other combinations of the proposed modifications.
Figure 7 shows a closer inspection of the results obtained with
‘‘all beams’’, ‘‘neighbor boosting’’ and ‘‘output smoothing’’
for en_LS_clean. Those experiments revealed similar model
behavior with different values of α: increasing the smoothing
factor lowered the boost necessary to minimize EER.
However, Figure 7 also shows that evenwith α as small as 0.1,
EER increases slightly. The EER values presented in Tables 3,
4, and 5 prove that this conclusion holds for other MOCKS
subsets as well.

Output smoothing with ‘‘best beam’’ applied to GSC led
to similar conclusions as with MOCKS: small values of α

allowed for boost reduction; however, this was also at the
cost of lower accuracy. On the other hand, output smoothing
applied to ‘‘all beams’’ increased the accuracy by 4% relative.
Nevertheless, this valuewas still much lower than the baseline
model with the ‘‘best beam’’ method.

C. COMPARISON OF OUR SOLUTION WITH OTHER
MODELS
In Table 7, we present a comparison of the results obtained by
our solution in the context of previously developed models,
evaluated on LibriPhrase [37]. This testset is based on the data
extracted from the training splits of LibriSpeech. It consists
of two subsets: LibriPhrase Hard (LPH ) and LibriPhrase
Easy (LPE ), containing phrases phonetically similar and
different from the given anchor phrase. LibriPhrase became
a fairly popular means of model comparison in the open
vocabulary KWS community. However, we prefer evaluation

TABLE 7. Comparison of our solution tested on LibriPhrase.

TABLE 8. Summary of the results presented in this paper, models
evaluated on MOCKS.

on MOCKS since it is not based on the training splits
of a popular dataset such as LibriSpeech. The AM used
in our solution was trained, among others, on LibriSpeech
training data. Thus, it might be slightly biasedwhen evaluated
on LibriPhrase. Nevertheless, we are confident that such a
comparison provides a fair perspective of our solution and
others.

Table 7 presents the results for EER metric and model
size (where this value was available). Even though our
solution does not present the best results in terms of EER,
the model size is the smallest among the most recent
reports. This feature is crucial with on-device keyword-
spotting applications. Notably, the solution described in this
paper applies to all models based on per-frame probability
distribution and algorithms such as beam search. Thus, it was
important to present the improvement over the baseline
model. Eventually, such an improvement is visible for both
MOCKS and LibriPhrase testsets.

V. DISCUSSION AND CONCLUSION
The experiments performed with MOCKS suggest that
the most significant improvement in EER was gained by
introducing multiple hypotheses generated by beam search
into the final keyword comparator. However, it should be
noted that with GSC, this modification reduced accuracy
significantly. Detailed inspection of the results showed that
the problem was in the test cases containing non-speech
data. This issue was visible with higher boost values. Thus,
it is advisable to use an additional voice activity detector
(VAD, e.g. [55]) combined with an end-of-sentence detector
(EOS, e.g. [56]) before the KWS solution based on multiple
hypotheses and unigram LM. This way, the AM will operate
on speech data only.
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The goal of neighbor token boosting is to reduce the
false positive rate (FPR) by improving AM performance
on phrases similar to the given keyword. This improvement
should also lower EER. Experiments performed on MOCKS
confirmed this hypothesis. As a side-effect, we observed
an increase in the boost necessary to obtain minimal EER.
This behavior was expected since increasing the probability
of neighbor tokens being returned by the model increased
the false negative rate (FNR). To countermeasure this
issue, an increase in boost was necessary. Finally, minor
improvements with neighbor boosting on GSC suggest that
this method works well with more complicated phrases
and challenging negative samples. GSC contains elementary
keywords, which can be split into one or two tokens.
Furthermore, the negative samples are significantly different
phonetically from the positive keywords.

In this work, we also proposed a method that reduced
the most significant AM score by a fraction that was evenly
distributed among all the other tokens. We tested this method
jointly with LM boosting. It allowed for a decreased boost
value necessary for EERminimization; however, the minimal
value of this metric increased. Those effects were even more
visible with larger α values. Thus, α = 0.1 seems to be the
largest value that should be used with this method.

A summary of the experiments described in this paper
can be found in Table 8. It contains the EER values for
the baseline model compared with the best results as shown
above.

VI. FUTURE WORK
In the future, we plan to work on incorporating the
total confidence scores from beam paths into a keyword
comparator. Such scores could be used to weight the keyword
detection decision or to reject paths with low probability.
This modification could solve the issue of non-speech data
recognized as a legitimate keyword.

Another interesting research topic is improving the method
for neighbor token selection. The heuristic described in this
paper is very simple and does not consider the phonetic
similarity between tokens. This way, some phonetically
similar phrases might be omitted. Furthermore, this heuristic
might promote non-existent phrases, especially those that are
not pronounceable. An improved heuristic for neighbor token
selection should fix both issues and lower FPR and FNR.

Finally, output smoothing could be implemented with a
different type of function used for score modification. The
function proposed in this paper increased all the scores
equally except for the largest one. Applying non-uniform
smoothing might allow for the reduction of boost without a
negative impact on EER.
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