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ABSTRACT The probabilistic Bayesian neural network(BNN) is good at providing trustworthy outcomes
that is important, e.g. in intrusion detection. Due to the complex of probabilistic BNN, it is looks like a
‘‘black box’’. The explanation of its prediction is needed for improving its transparency. However, there
is no explanatory method to explain the prediction of probabilistic BNN for the reason of uncertainty.
For enhance the explainability of BNN model concerning uncertainty quantification, this paper proposes a
Bayesian explanatorymodel that accounts for uncertainties inherent in BayesianAutoencoder, encompassing
both aleatory and epistemic uncertainties. Through global and local explanations, this Bayesian explanatory
model is applied to intrusion detection scenarios. Fidelity and sensitivity analyses showcase that the proposed
Bayesian explanatory model, which incorporates external uncertainty, effectively identifies key features and
provides robust explanations.

INDEX TERMS Bayesian explanation, Bayesian autoencoder, uncertainty quantification, explainability,
aleatoric and epistemic uncertainties.

I. INTRODUCTION
In the rapidly evolving landscape of cybersecurity, the
deployment of probabilistic deep learningmodels has become
increasingly prevalent for their unparalleled ability to discern
complex patterns within vast datasets. Despite their efficacy,
the opaqueness of these models presents a formidable
challenge to understanding their decision-making processes.
This can give rise to problems in critical applications where
mistakes can be costly, including cybersecurity where it can
contribute to the generation of excessive amounts of false
alerts [1] by intrusion detection based IDS.

The reliability of intrusion detection results plays a critical
role in determining the usability of the detection model.
To address the deep learning model’s tendency towards over-
confidence, enhancing trustworthiness involves two crucial
aspects: quantifying uncertainty and providing explanations
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for model outputs [2]. The probabilistic Bayesian Neural
Network (BNN) model, e.g. Bayesian Autoencoder (BAE)
with uncertainty quantification, utilizes Bayes’ rule to yield
probability outcomes, which is a widely adopted method [3]
to get a trustworthy model by uncertainty quantification.

However, their inherent complexity often renders them
as ‘‘black boxes’’, leaving cybersecurity practitioners and
stakeholders in the dark as to their operation. This lack
of explainability not only hinders the broader adoption of
deep learning in cybersecurity but may also pose serious
concerns regarding the potential introduction of biases or
vulnerabilities that may go unnoticed. At the same time,
curious analysts or experts don’t like to rely on model
outputs without understanding the additional reasoning
behind certain predictions that would earn the user’s trust and
confidence.

For the black box issue, the need for eXplainable AI (XAI)
methods for understanding and improving trust in AI models
has arisen [4]. Explainability attempts to provide a human
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interpretable reasoning for the model outcomes [5]. One
such approach examines how each data feature influences the
model’s outcomes. This proves valuable in assisting experts
in verifying the model’s correctness and guiding them in
making necessary improvements.

The estimation of uncertainty in the BNN model enhances
confidence in the results. However, it is imperative to
acknowledge and consider the impact of this uncertainty on
the model’s interpretation. This holds particular significance
in critical domains, such as intrusion detection.

Several studies investigating explanations of BNN’s pre-
dominantly employ deterministic explanations [6], [7], [8],
[9] [10], and some use ensemble methods to quantify
uncertainty in explanatory models [6], [7], [11].
However there has been been very few studies combining

explainability with uncertainty analysis [2], [6], [7]. In addi-
tion, recent research on feature attribution has addressed
the unreliability of salience maps when the test point is
out-of-distribution [12].
As a result of this shortcoming we examine feature-based

explainability for BNNs with uncertainty quantification
(specifically for a BAE instance) whilst considering the
impact of the uncertainty quantification on the model expla-
nation. We therefore propose to derive a Bayesian method
(explanatory model or interpretable model) [5] to attribute
feature based explanations for the BAE with uncertainty
quantification (reference model or original model). This
method not only provides insights into the BAE with
uncertainty quantification (BAE-UQ in short), but also give
a Bayesian explanatory score with uncertainty to support
further decision-making.

It is necessary at this stage to distinguish between
two distinct issues, both falling under the umbrella of
‘‘explanatory uncertainty’’:

1) Explanatory External Uncertainty: the uncertainty in
the reference model when this model is based on
Bayesian methods, as e.g. in BNN. The uncertainty
in the reference model not only influences the actual
predictions (output by the reference model) but also
introduces uncertainty into the explanation of the
prediction results output by the explanatory model.

2) Explanatory Internal Uncertainty: the uncertainty in
the explanatory model itself i.e. when the explanatory
model is based on Bayesian methods. The consequent
inherent uncertainty in the explanatory model intro-
duces uncertainty into the explanatory scores.

In this paper, our focus is solely on the first category,
referred to as explanatory external uncertainty. The structure
of this research is shown in Fig. 1. The BNNmodel furnishes
predictions in the form of anomaly scores, subsequently
quantifying the uncertainties associated with these scores,
encompassing both aleatoric and epistemic uncertainties.
Through a holistic assessment of the anomaly score and
its accompanying uncertainties, a Bayesian approach is
employed (in the explanatory model) to furnish compre-
hensive explanations. Additionally, the external uncertainty

FIGURE 1. The structure of this research.

of these explanations is estimated, further enhancing the
explainability and reliability of the reference model’s
insights.

Moreover, the explanatory model can provide both local
and global feature explainability. At a global level the goal
is to identify the most relevant features for a given model
across all the data instances whilst local explainability aims to
identify the most relevant features for each each data instance
separately [5]

Our contribution therefore is:
• An explanatory model is proposed for the BAE ref-
erence model concerning both aleatoric and epistemic
uncertainties (BAE-UQ).

• The explanatory model uses Bayesian methods to
produce a Bayesian explanatory score for both local and
global model explanations.

• The Bayesian explanatory score considers the effect
from the aleatoric and epistemic uncertainties of the
BAE model, further provided interpretation with the
external uncertainty quantification.

• This interpretable method combined with BAE-UQ is
applied on the real intrusion detection dataset.

The remainder of the paper is structured as follows:
Section II provides a literature review, while Section III
delineates the interpretation method employed for BAE-UQ.
Section IV presents experiments, covering both global and
local explanations. Subsequently, Section V presents a thor-
ough discussion of the results obtained. Finally, Section VI
outlines the future directions and draws conclusions based on
the findings presented.

II. LITERATURE REVIEW
Numerous methods have been proposed for explaining deep
learning models, and one notable approach is Local Inter-
pretable Model-Agnostic Explanations (LIME). Developed
by Ribeiro et al. [13], LIME provides a model-agnostic
methodology for generating locally faithful explanations for
individual predictions. By systematically perturbing input
instances and observing their impact onmodel outputs, LIME
constructs interpretable surrogate models that approximate
the behavior of the underlying deep learning model within
a local context. This fine-grained explainability not only
enhances the understanding of model decisions but also
facilitates the identification of vulnerabilities. This, in turn,
contributes to the robustness and trustworthiness of deep
learning applications in the field of cybersecurity.

Bykov et al. [6] delved into the explanation of uncertainty
in BNN, where uncertainty is treated as an anomaly score.
In their work, Layer-wise Relevance Propagation (LRP)
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and integrated gradients serve as explanatory score methods
within the ensemble BNN architecture. Importantly, the
choice of the explanatory score method is flexible. The union
and intersection explanation, in practical terms, translates
BNN’s predictive uncertainty into uncertainty associatedwith
input features. This enriches XAI explanations, especially
in the context of image data. In the study conducted
by Clare et al. [7], uncertainty quantification in BNN is
investigated using entropy. In this approach, the model
prediction itself serves as a measure of uncertainty, and
explanations are provided from both local and global
perspectives to elucidate the results. The ensemble LRP
and the ensemble SHAP (SHapley Additive exPlanations)
are employed as two explanatory models. These models
not only offer their respective on the explanatory value
ranges for ocean and climate awareness in images but
also provide a nuanced understanding of uncertainty levels
through ensemble techniques.

The exploration of uncertainty in BNN models encom-
passes variousmethodologies. Depeweg et al. [8] investigated
the sensitivity of aleatoric and epistemic uncertainties with
respect to input features in BNNs with latent variables,
utilizing a gradient-based approach.

In image analysis, Zintgraf et al. [9] generated smooth
salience maps to visualize uncertainty in probabilistic mod-
els.Moving forward, Piironen et al. [14] employed aBayesian
model as a reference, utilizing Lasso and the entire elastic net
family for feature selection to enhance accuracy. Peltola et al.
[10] extended this method, combining KL-divergence with
LIME (LIME-KL) for local interpretation of BNN predictive
models. KL-divergence measures the difference between the
predictivemodel’s output and the explanatorymodel’s output,
acknowledging that in practice, the prediction is the mean of
a distribution.

In an improved version, Afrabandpey et al. [11] employed
a classification and regression tree as an explanatory model
to offer both local and global explanations for Bayesian
predictive models. Both studies highlight that aleatoric and
epistemic uncertainties originating from the reference model
can be captured in the interpretive model. The explanatory
model is fitted to match the reference posterior predictive
distribution, achieving aleatoric uncertainty by aligning with
the reference model’s posterior predictions and epistemic
uncertainty by fitting the interpretive model to multiple
posterior predictions.

A noteworthy probabilistic model serving as an explain-
able model has been formulated within a unified frame-
work [5]. This framework is designed to achieve both
global and local explainability for complex machine learning
models, introducing the concept of Bayesian Importance of
Features (BIF).

In this unified framework, a classification model is initially
trained to learn the weights. Subsequently, a Bayesian
explanatory model is linked to this classification model,
with fixed weights. The input to the classification model
is the product of the input data and the sample of the

explanatory score. The entire model is then trained to obtain
the Bayesian explanatory score, which adheres to a Dirichlet
distribution. This score reflects the relative importance of
each feature to the model output. The explanatory model
can take the form of variables for global explanations or
a neural network model for local explanations. The output
of the neural network model serves as the hyperparameters
for the posterior distribution of the explanatory scores. The
experimental validation of this approach was conducted using
a subset of the KDD’99 dataset.

III. METHOD
A. APPROACH
This research focuses on explaining probabilistic BNN
through a Bayesian model. Following the framework estab-
lished by [5], the BAE with uncertainty quantification
(BAE-UQ) serves as the reference model, emphasizing high
accuracy without the need to concern explainability. The
quantification of uncertainty in the BAE encompasses both
aleatoric and epistemic uncertainties [15]. The Bayesian
model, following [11], is utilized as an explanatory model,
employing KL-divergence to align the Bayesian model’s
predictions closely with those of the BAE-UQ. The weights
in the Bayesian model follow a distribution, specifically
the Dirichlet distribution as used in [11]. The posteriors
of these weights constitute the Bayesian explanatory score,
showcasing the relative contribution of each feature to the
prediction.

We introduce a novel Bayesian explanatory score incorpo-
rating external uncertainty for probabilistic BNN. Aleatoric
uncertainty, arising from unknown data acquisition factors,
manifests itself in predictive distributions with noise. The
output distribution of the explanatory model is designed to
infinitely approximate the output distribution of the reference
model. Through backward transfer, this output distribution
of the explanatory model results in a distribution that aligns
with the values of the explanatory scores. Consequently, the
effect of aleatoric uncertainty on interpretation is reflected
in the variation of explanatory score values. For epistemic
uncertainty, commonly adopted in probabilistic BNNs, the
ensemble method is utilized. Employing this approach, the
external epistemic uncertainty of the Bayesian explanatory
score is obtained. The Bayesian explanatory scores thus
provide a foundation for expert judgment, considering
external uncertainties for a comprehensive understanding.

Let X = {xn}Nn=1, represent a data set of size N , where
xn = (xn1, . . . , xnd )T is a D-dimensional feature vector, and
yn ∈ R is the target (either discrete or continuous). There
is a highly predictive BAE-UQ (reference) model f (x) fitted
to the training data without explainability constraints.

The uncertainties include aleatoric uncertainty pertains to
the inherent randomness inherent in an output and epistemic
uncertainty arises from the variability of the parameters.
In practical implementations of BAE models for uncertainty
quantification, distinct methodologies are employed for
each uncertainty. Specifically, aleatoric uncertainty is often
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FIGURE 2. Bayesian explanatory model framework for ensemble BAE.

modeled by introducing noise ϵ to the data, the ϵ ∼ N (0, 1),
the prediction yt ∼ N (f (x), ϵ). Meanwhile, for capturing
epistemic uncertainty, ensemble BAE models are commonly
utilized, with parameters ω sampled from the trained poste-
rior distribution of the encoder and the decoder. As depicted
in Fig. 2, (ω1, ω2, . . . , ωt) ∼ Dist(α), where α is the trained
hyper-parameters. Functioning as a reference model, the
BAE-UQ is regarded as a black box in the context of Bayesian
explainability. In Bayesian explainability, each BAE-UQ
prediction distribution is elucidated by a corresponding
Bayesian explanatory model, wherein the parameters of the
Bayesian explanatory model are represented as a distribution
with hyperparameters β.

B. THE BAE AND UNCERTAINTY QUANTIFICATION
In the BAE model, Bayesian inference is applied to
the parameters.The loss function [16], [17] shows as in
equation (1).

−

∫
�

q(ω) log px(y|x, ω) dω + KL[q(ω) ∥ p(ω)] (1)

This first term represents the negative log-likelihood, where
� is the space of possible parameters ω. The q(ω) is the
variational distribution used for approximating the true poste-
rior distribution. The p(y|x, ω) is the likelihood, representing
the probability of the observed data y given the input x and
parameters ω. The integral sums up the contribution of all
possible parameter values. This second term represents the
KL divergence between the posterior variational distribution
q(ω) and the prior distribution p(ω). Due to the integral,
the quantity is not easy to calculate. There are several
approximating inference method, we choose Monte Carlo
Dropout(MCD) [17] here. The model parameters are learned
by maximizing the evidence lower bound(ELBO), as shown
in the follow equation 2. A set of approximate posterior

{ωm}
M
m=1 sampled from the posterior q(ω|x), and M is the

number of samples.

Lω(x) =
1
M

M∑
m=1

log p(y|x, ωm) − KL[q(ω|x) ∥ p(ω)] (2)

The moment based predictive uncertainty quantification
approach is used [15]. After the training phase, the hyperpa-
rameter α is optimized, and consequently, {ω̂t }Tt=1 is sampled
from the distribution with the optimised hypterparamter α.
Using Monte Carlo approximation, the variance Var(y∗) of
the predictive distribution for new data (x∗, y∗) during the
testing phase is estimated as follows:

Var(y∗) ≈
1
T

T∑
t=1

[
diag{p(y∗|x∗, ω̂t )} − p(y∗|x∗, ω̂t )⊗2

]
(3)

+
1
T

T∑
t=1

{
p(y∗|x∗, ω̂t ) − p̂(y∗|x∗)

}⊗2 (4)

The p(y∗|x∗, ω̂t ) is the predictive probability of y∗ given
x∗ and the sample ω̂t , diag{p(y∗|x∗, ω̂t )} is a diagonal
matrix with the elements of p(y∗|x∗, ω̂t ) on the diagonal.
p(y∗|x∗, ω̂t )⊗2 is the outer product of the predictive distri-
bution with itself. Equation (3) captures the aleatoric uncer-
tainty, and equation (4) captures the epistemic uncertainty.
The p̂(y∗|x∗) is the expectation of the prediction.

C. THE BAYESIAN EXPLANATORY MODEL
Our objective is to identify a Bayesian explanatory model
g(x∗) that effectively captures the behavior of the reference
model, characterized by the likelihood p(y∗ | x∗, η, g),
where η represents the parameters of the explanatory model,
also referred to as the Bayesian explanatory score, with η

following a distribution represented as Distribution(β).
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We opt for the Dirichlet distribution as the distribution that
governs the Bayesian explanatory score, thereby allowing
the Bayesian explanatory score to illustrate the relative
importance of each feature to the output [5].

The Bayesian explanatory score is a universal
D-dimensional vector which is assigned to the set of
input features in the dataset X. This vector quantifies the
relevance or importance of each feature for the entire dataset,
providing a global probabilistic explanation for each feature.
Alternatively,the Bayesian explanatory score can be a matrix,
each data instance xn is allocated a distinct D-dimensional
feature importance score. This approach offers a local
probabilistic explanation for each record in the dataset.

The ideal explanatory model is the one that closely mirrors
the predictions of the referencemodel while ensuring explain-
ability. To measure the similarity in predictive behavior
between the explanatory model and the reference model
(probabilistic BNN), we calculate the KL divergence between
their predictive distributions, as outlined in [11]. Addi-
tionally, we take into account the KL-divergence between
the prior distribution and the posterior distribution of the
Bayesian explanatory parameters is, as shown in equation (5).

η̂t = argmin
η

∫
πx∗ (z)KL

[
p(y∗ | z, ω̂t , f ) ∥ p(y∗ | z, η, g)

]
dz

+ 8(η) + KL[q(η)||p(η)]. (5)

The expression involves the KL divergence, and πx∗ (z)
which is a probability distribution defining the local neigh-
borhood around x∗, the data point for which the prediction
is to be explained. Minimizing the KL divergence ensures
that the interpretable model exhibits comparable predictive
performance to the reference model. The 8 represents the
penalty function for the complexity of the interpretable
model, We also choose the non-zero Bayesian score as the
basis of penalty.

To calculate the expectation in equation (5), a set of
samples {zs}Ss=1 from πx∗ (z) is drawn using Monte Carlo
approximation. Minimising KL-divergence is equal to max-
imising the expected log-likelihood of the explanatory model
log p(y∗s|zs, η) over the posterior likelihood of the reference
model (y∗s|zs, ω̂) [14]. Combined to KL-divergence on the
parameters, the Bayesian explanatory model obtained by
maximizing ELBO:

argmax
η

1
S

S∑
s=1

Ey∗s|zs,ω̂t

[
log p(y∗s|zs, η)

]
− 8(η)

−KL[q(η)||p(η)] (6)

The final Bayesian explanatory score η′ is the average of
the Bayesian explanatory score for each sample prediction of
the reference model.

η′
=

1
T

T∑
t=1

η̂t (7)

1) GLOBAL EXPLANATION
A probability vector serves as the vehicle for describing
feature importance, providing a nuanced depiction of the
relative weight of each feature. Importance is interpreted
as the contribution of a feature to closely align with the
prediction distribution of the reference model, denoted as
η. We employ Dirichlet distribution as the prior distribution
Dir(β0). Both β and β0 represent parameter vectors within the
Dirichlet distribution. We maintain the value for the param-
eters β0 as fixed constants, focusing our optimization efforts
solely on the parameters β. The utilization of the Dirichlet
distribution for both the posterior and the prior distributions
facilitates the derivation of a closed-form KL-divergence in
equation (6). Consequently, the objective function outlined
becomes contingent on the Dirichlet parameters.

2) LOCAL EXPLANATION
Local explanations diverge from global ones in their assess-
ment of feature importance, as they evaluate the importance
of each feature for individual data instances. Unlike the global
setting, which yields a single vector, the local context pro-
duces an importance matrix. Specifically, every data point x∗

n
is assigned a vector that represents the feature importance for
that specific data point. Consequently, a Bayesian importance
matrix of size N × D is formed for the dataset X. In terms
of parameterization, within the realm of local explains, each
importance vector follows the posterior Dirichlet distribution
with individual hyper-parameters βn. A neural network
is utilized to derive the hyper-parameters βn. Following
equation (8), the corresponding feature importance score ηn
is drawn from the Dirichlet distribution with the parameter βn
for each data instance. Similar to the global case, we utilize
the evidence lower bound; however, in the local scenario, the
new objective function on ηn becomes reliant on the outputs
of the neural network.

argmax
ηn

1
S

S∑
s=1

Ey∗s|zs,ω̂t

[
log p(y∗s|zs, ηn)

]
− 8(ηn) − KL[q(ηn)||p(ηn)] (8)

In Bayesian inference within the Bayesian explanatory
model, the model’s output exhibits uncertainty, referred to
as internal uncertainty. This internal uncertainty aligns with
the common uncertainty quantification principles applied to
BNN. It is important to note that the exploration of internal
uncertainty falls within the broader scope of BAE uncertainty
quantification and is not specifically addressed in this study.
For those interested in delving into the details of internal
uncertainty within BNN, pertinent literature on the subject
is recommended for further reference [5].

3) EXTERNAL UNCERTAINTY
Regarding the uncertainty associated with the BAE-UQ, it’s
crucial to acknowledge that the model’s output is not a single
fixed value. The inherent uncertainties, namely aleatoric
and epistemic uncertainties, contribute to the variability
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in the model’s predictions. It’s noteworthy that a single
discrete explanatory model is insufficient for comprehensive
explanations in the presence of such uncertainties.

In situations where both aleatoric and epistemic uncer-
tainties are considered, traditional ensemble approaches
may only effectively capture the epistemic uncertainty.
This limitation emphasizes the need for more sophisticated
methods that can handle both types of uncertainties for robust
and accurate explanations.

The external epistemic uncertaintyExUncerepis of explana-
tory score is captured by ensemble the Bayesian explanatory
score posterior distribution of each explanatory model
Dist(βt ). The variance of this ensemble group represents
the external epistemic uncertainty, mirroring the approach
used to capture epistemic uncertainty in the reference
model. For practical implementation, the variance of the
mean of each posterior distribution is computed. On the
other hand, the external aleatoric uncertainty ExUnceralea
of explanatory score originates from the variance of the
prediction distribution of the reference model, as perceived
by the explanatory model. The ideal prediction distribution
of the explanatory model serves as an approximation of the
reference model’s predicted distribution. Through retrospec-
tive analysis, it becomes apparent that the variance of the
prediction distribution of the explanatory model influences
the variance of the parameters of the explanatory model
Var(Dist(βt )), thereby contributing to the overall external
aleatoric uncertainty. As shown in follows:

ExUnceralea =
1
T

T∑
t=1

Var(Dist(βt )) (9)

ExUncerepis = Var(Dist(β1),Dist(β2), . . . ,Dist(βt )) (10)

= Var(meanDist(β1),meanDist(β2),

. . . ,meanDist(βt )) (11)

Features exhibiting high epistemic uncertainty signal the
need for vigilant monitoring or additional data collection
to enhance model understanding and reduce uncertainty.
On the other hand, features with elevated aleatoric uncertainty
imply a connection with other unobserved or latent variables,
underscoring the complexity associated with those particular
features [8]. Identifying and addressing these uncertainties
are crucial for improving model performance and reliability.

D. METRICS
To assess the effectiveness of the BAE model in intrusion
detection, we rely on the AUC-ROC (Area Under the
Receiver Operating Characteristic) metric, which evaluates
the trade-off between the false positive rate and true positive
rate. The AUC-ROC after rejected records with higher
uncertainty than a threshold, denoted rejected-AUC, is used
to quantify uncertainty in BAE-UQ.

Ensuring the transparency and explainability of the BAE
model is imperative for their successful deployment in
cybersecurity. Here, we use fidelity analysis, as demonstrated

in [11], to measure the model explanation, by scrutinizing the
alignment between a model’s predictions and its interpretable
counterpart. This analysis ensures that the model’s behavior
remains comprehensible and aligned with its intended
objectives.

For the global explanation, sensitive analysis (leave-one-
out) method is used for easy feature size selection [14].
This method facilitates the demonstration of the Bayesian
explanatory score’s efficacy by systematically evaluating
the impact of individual or groups of features on model
performance. Initially, features with the highest Bayesian
explanatory scores are selected, and their performance is
assessed using metrics such as AUC-ROC. This top-n
features, which can take higher AUC-ROC than the whole
features, demonstrates that the Bayesian explanatory score
captured the correct importance. To enhance execution
efficiency, feature selection is conducted incrementally in
steps of 3, aiming for improved AUC-ROC values with fewer
selected features.

The external uncertainty encompasses both aleatoric and
epistemic uncertainties, which are aggregated to form the
total uncertainty metric. To assess the impact of external
uncertainty quantification on the Bayesian explanatory score,
we progressively filter out features exhibiting higher uncer-
tainty than a threshold and defer the evaluation of these
features to domain experts. Subsequently, sensitivity analysis
is conducted at each step to gauge the effect. To preserve
the significance of the retained features, the rejection rate
varies within the range of [1, D/2] with a step size of 7.
By eliminating features with high uncertainty values, the
remaining scores are deemed reliable, and the sensitivity
analysis should reveal higher AUC-ROC values with fewer
selected features compared to the unrejected scenario.

E. DECISION PROCESS
This section describes the final decision process according
to uncertainties and the explanation, as in Fig. 3. From
the start, after getting the prediction and the uncertainty in
BAE-UQ, the Bayesian explanatory score of each prediction
is calculated concerned aleatoric and epistemic uncertainties
of the prediction. Simultaneously, the external uncertainty
of the Bayesian explanatory score is calculated. At first, the
uncertainty of the prediction needs to be estimated. If it is
less than a threshold (threshold1) for BAE-UQ, the external
uncertainty of the Bayesian explanatory score of each feature
needs to be estimated in the next step. If the external
uncertainty of a Bayesian score is larger than a threshold
(threshold2), the score is rejected as it can not be trusted. The
relative importance of the feature to the prediction is unclear.
If the external uncertainty of Bayesian scores are less than
the threshold2 for the explanation, a trustworthy prediction
is provided, which means the previously calculated Bayesian
explanatory score is validated. This also is the ideal outcome,
named road 1⃝.

However, if the uncertainty of the prediction is larger than
the threshold1, the prediction will normally be forwarded to
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FIGURE 3. The decision process.

an analyst to make a decision on its merit. In our process
however the Bayesian explanatory score and the external
uncertainty of each feature can assist the analyst to analyse.
If the external uncertainty of a Bayesian explanatory score
is larger than threshold2, the Bayesian explanation of this
feature is suspect, the score is rejected as it can not be trusted.

If the external uncertainty of Bayesian scores are less than
threshold2, the convinced Bayesian explanation is provided
to the analyst, this is the road 2⃝ in Fig. 3. In this way, the
Bayesian explanatory score and the external uncertainty will
aid the analyst in making quick decisions and reducing their
workload.

IV. EXPERIMENT
This experiment leverages the UNSW-NB15 dataset and
KDD’99 dataset to quantify both aleatoric and epistemic
uncertainties in BAE, subsequently assessing global and local
explanations in light of external uncertainty explanation.
The specific interpretation process is illustrated in two case
studies in UNSW-NB15.

UNSW-NB15 dataset [18] serves as a comprehensive
repository of network activities, encompassing real benign
network behaviors and synthetic attack scenarios. It cate-
gorised into nine sub-types, each representing a distinct cyber
threat (refer to Table 1). The evaluation is conducted from
the perspective of each attack type, where the benign class
is partitioned into two subsets: 20% for testing and 80% for
training. The 20% subset of normal data is then amalgamated
with each attack type to form the respective test sets, enabling
the assessment of the model’s capability to detect each attack
type.

TABLE 1. Contents on UNSW-NB15 dataset.

KDD’99 [19], is a comprehensive and widely-used
benchmark in the field of intrusion detection systems. This
dataset was created by processing raw TCP dump data
into a well-structured format, which includes a diverse
range of network intrusions simulated in a military network
environment. It consists of approximately 4.9million records,
each containing 41 features that capture various aspects of
network traffic and host activities, as shown in Table 2.
We divided the benign data into a training set (20%) and a
test set (80%).

A. MODEL SETUP
A neural network is used to construct the encoder and
the decoder in BAE model as the reference model with
the size (128,64,32). The network architectures of BAE in
MCD is shown in Table 3, which also set out the output
shape, activation function and parameters of each layer.
D is the original dimension, D equals 47 in UNSW-NB15
and equals 41 in KDD’99. In addition, the learning rate is
configured as 0.0001 with mini-batch stochastic optimization
method AMSGrad. The batch normalization method with
momentum 0.95 and random Normal initializer is used to
normalize the data before output. Each model was trained
over 100 epochs. The number of samples, M=1 and the batch
size equals 512 in the learning phase and the sample size
T=5 in inference phase. An L2 regularizer with parameter
0.1 is used to regularize the weights and the bias in
MCD, with initialization method He [20] under a Gaussian
distribution, and with dropout rate 0.2. When modelling
the aleatoric uncertainty in BAE, a diagonal multivariate
Gaussian distribution is followed.

As for the Bayesian explanatory model, the batch sets
to 512, epochs equals to 100, the sample size S is 5.
In order to escape the local minima and saddle points
and converge to the global optima, the annealing rate of
KL-divergence on the parameters is set to 0.1 during training.
For global interpretation, the learning rate is 0.6, the prior
of the Bayesian explanatory model parameters follows a
Dirichlet distribution with the concentration parameter 0.01.
For local explanation, the learning rate is 0.0005, the prior
distribution follows a Dirichlet distribution with parameter
0.5. The architecture of the neural network to derive the
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TABLE 2. Contents on KDD’99 dataset.

hyper-parameters in local explanation is shown in Table 4,
which has 3 dense layers and 2 BatchNormalization layers.

In order to take aleatoric uncertainty and epistemic
uncertainty into consideration and for ease of comparison, the
sum of the two uncertainties is chosen as the basis of rejection
both in the reference model and the explanatory model. Due
to large numbers of combinations, results that maximise the
accuracy are reported.

B. EVALUATION
The BAE-UQ is used as the referencemodel. Aleatoric uncer-
tainty and epistemic uncertainty are quantified following the
method in [15].
In this experiment, performance is evaluated from both

global and local perspectives, focusing on the relative
importance of each feature to the predicted outcomes of
the reference model as indicated by the Bayesian explana-
tory score. For convenience, our Bayesian explanatory
model, which considers KL-divergence and is referred to
as BEM-KL, is compared to LIME and LIME-KL in terms
of local explanation. The evaluation results are summarized
in Table 5 and Table 6.

In the first part of the table 5, the global explanation, the
AUC-ROC of the reference model on each attack type is
firstly presented as baseline in the table, then the highest
AUC-ROC of each attack type under top-n important features
is shown. Remarkably, the AUC-ROC obtained with the
top-n features surpasses the AUC-ROC of the reference
model for each attack type. Additionally, the AUC-ROC
under the external uncertainty quantification is shown in
the fourth column. Compared to the AUC-ROC with top-n
features, the higher AUC-ROC under the external uncertainty
quantification on fewer number of features is obtained in
each attack type. The fidelity and the standard deviation in
global explanation are depicted in the next column, indicating
that the global explanatory predictions closely align with the
reference model predictions.

In the second part of the table 5, the local explanation
is assessed by the fidelity and the standard deviation of
LIME, LIME-KL and our proposed method. Specifically,
we evaluate these metrics on records with minimized
uncertainty for each attack type. A comparison across attack
types reveals that LIME exhibits the highest fidelity, while
our method demonstrates the lowest fidelity with a smaller
variance.

The same performance in KDD’99 can be observed,
as shown in Table 6. However, the fidelity of the global

TABLE 3. Network architecture of BAE in MCD.

TABLE 4. Network architecture of the local explanatory model.

explanation is smaller than in UNSW-NB15, similar to the
results within LIME-KL and BEM-KL. This indicates that
the Bayesian explanatory model has better explainability
in KDD’99 than in UNSW-NB15. Another noteworthy
observation is that the U2R type in KDD’99 and the Generic
type in UNSW-NB15 have worse AUC-ROC scores, less than
0.6, compared to other types. Fortunately, considering top-n
features and uncertainty quantification can quickly enhance
performance.

C. GLOBAL EXPLANATION CASE OF FUZZERS
This section shows the case of global explanation on the type
of Fuzzers in UNSW-NB15. Fuzzers are a type of attack
commonly employed to identify vulnerabilities in software
by injecting invalid, unexpected, or random data. Given
their potential to disrupt operations and compromise security,
understanding and mitigating Fuzzers attack are paramount
in safeguarding digital assets and maintaining the integrity of
systems and networks.

Key features commonly analyzed to identify Fuzzers attack
include unusual payloads, high input rate, protocol violation,
systematic testing, abnormal traffic patterns, unexpected
application behavior, input validation errors and exception
handling triggers.

In the context of Fuzzers, external uncertainty quantifica-
tion allows us to gauge the impact of external uncertainties
to the model on its predictive performance. By examining the
performance metrics under the external uncertainty, we can
gain insights into how robust our model is in detecting
Fuzzers attack amidst uncertainty.
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TABLE 5. Measurements on UNSW-NB15 dataset.

TABLE 6. Measurements on KDD’99 dataset.

By mapping the distribution of uncertainty across pre-
dictions, a comprehensive view of model reliability is
provided. Fig. 4 illustrates the reference model’s uncertainty
density map for the Fuzzers attack type. By analyzing this
map, the epistemic uncertainty is less than 1e-5. We can
discern regions where the model exhibits higher uncertainty,
indicating areas where its predictions may be less reliable or
more variable.

The global Bayesian explanatory score of each feature in
Fuzzers attack is depicted in blue in the Fig. 5. Features are
sorted by the Bayesian explanatory score that are represented
in the form of the label of each bar. Each feature is positive
important and the Bayesian explanatory scores are distributed
in a step-wise fashion. Additionally, the external uncertainty
associated with the Bayesian explanatory score is represented
in orange and green in Fig. 5, falling in the range of [0,1].
For clarity, the external epistemic uncertainty values have
been magnified by a factor of one hundred to enhance
visibility and facilitate interpretation. As shown in this figure,
epistemic uncertainty, less than 6e-4, is smaller than aleatoric
uncertainty, even aleatoric uncertainty is less than 0.0047.
This visualization enables a comprehensive understanding
of both the relative importance of features captured by the
Bayesian explanatory score and the associated uncertainty
levels, providing valuable insights for decision-making and
model evaluation in cybersecurity applications.

To assess the efficacy of external uncertainty quantifi-
cation, a sensitivity analysis is conducted after iteratively
rejecting features with high external uncertainty. The rejec-
tion is carried out in step sizes of 7, as illustrated in
Fig. 6. The blue line represents the scenario with no
rejected features, i.e., no uncertainty quantification, where the
AUC-ROC is calculated using the top features determined

by the Bayesian explanatory score. The highest AUC-ROC
achieved is 0.935 with the top 28 features, as indicated in
Table 5. As more features with high external uncertainty
are rejected, the maximum AUC-ROC improves, requiring
fewer important features. Notably, the maximum AUC-ROC
of 0.977 is attained after rejecting 22 features with the highest
uncertainty, using only the first 10 trusted features. This
trend underscores the effectiveness of external uncertainty
quantification in enhancing the model’s performance and
reducing the reliance on uncertain features.

Then, the global explanation of the Fuzzers attack with the
maximum AUC-ROC is specified by means of features, tak-
ing into account both with and without external uncertainty
quantification. As in Table 7, the first 28 features produces
the highest AUC-ROC without concern uncertainty is listed,
along with the interpretation that is provided by UNSW-
NB15. There are 11 features that overlap with the feature
subset found in [21]. For example, the most relative important
feature ‘proto’ has the score about 0.054, which shows the
transaction protocol. This feature is a key feature for detecting
protocol violations and can signal a potential Fuzzers attack
in the network traffic [22]. Feature ‘dloss’ and feature ‘sloss’
mean abnormal packets from destination and source, which
signal abnormal traffic patterns or unexpected application
behavior. Feature ‘ct_ftp_cmd’ shows a command in ftp
session, which is the key of abnormal traffic patterns, input
validation errors and exception handling triggers.

After removing 22 features with the highest external uncer-
tainty, the first 10 features left together produces the best
performance, including ‘smeansz’, ‘dttl’, ‘ct_src_dport_ltm’,
‘ct_srv_src’, ‘dur’, ‘ct_dst_ltm’, ‘ct_src_ltm’, ‘sttl’, ‘Stime’,
and ‘dbytes’. In summary the critical aspects for detecting
Fuzzers attack in UNSW-NB15 are as follows:
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FIGURE 4. Uncertainty density of the Fuzzers.

• Unusual packet lengths: Fuzzing often involves sending
packets with abnormal lengths, such as very short or
very long packets ( ‘smeanz’ and ‘dbytes’). Monitoring
for packets with lengths significantly outside the normal
range can indicate fuzzed traffic.

• Unusual traffic patterns: Analyzing the number of con-
nections from the same source address (‘ct_src_ltm’),
or togetherwith the destination port (‘ct_src_dport_ltm’),
or together with the same service (‘ct_srv_src’) at a
time interval that may be indicative of high input rate
or abnormal traffic patterns, as well as the number of
connections to the same destination address at a time
interval (‘ct_dst_ltm’). Connections may also be of
unusual laengths (‘dur’).

• Protocol: Protocol fuzzing typically targets specific
network protocols or implementations. Monitoring the
distribution of protocols (‘proto’) in the dataset and
identifying unexpected or uncommon protocols being
used could help detect protocol-specific fuzzing attack

• Variations in TTL:(‘sttl’ as,’dttl’.) variations may be due
to e.g. manipulating the TTL field directly to test for
specific behaviors or vulnerabilities in network devices
or protocols, packets that take different paths through the
network help identify systemic testing from Fuzzers or
unexpected application behavior.

D. LOCAL EXPLANATION CASE IN FUZZERS
This section delves into a case of local explanation within the
Fuzzers category in UNSW-NB15, focusing on one specific
record characterized by the minimal uncertainty (Fig. 7) in
the reference model. The record with the minimal uncertainty
indicates the most likely cause for the anomaly prediction to
help validate the accuracy of the Bayesian explanatory score
and the external uncertainty following route 1⃝ in Fig. 3.
As illustrated in Fig. 7, the Bayesian explanatory score

for local explanations on records with minimal uncertainty
follows a step-wise distribution. This suggests the absence
of any particularly prominent features, aligning with global

FIGURE 5. The Bayesian explanatory score with external uncertainty of
global explanation for the type of Fuzzers.

FIGURE 6. Sensitive analysis concerning the external uncertainty.

explanations. Features exhibiting external uncertainty above
the threshold were removed, while the remaining features
were analyzed for indications of a Fuzzer attack. The
external aleatoric uncertainty and the external epistemic
uncertainty are shown in orange and green respectively.
The external epistemic uncertainty is also very small, about
less than 1.4e-5, and enlarged 150 times for visual effect.
Most features have very small external uncertainty less
than 0.0028, except ‘srcip’, ‘is_ftp_login’, ‘ct_src_ltm’,
‘Djit’,’ct_ftp_cmd’, ‘synack’, and ‘Sjit’ that have relatively
high external uncertainty.
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TABLE 7. Global Interpretation of key features.

This record is judged to be an abnormal after analysing
features as in Table 8, which corresponds to the prediction

FIGURE 7. The Bayesian explanatory score with the external uncertainty
of the record with the minimise reference model uncertainty.

(abnormal) and the real (abnormal). This table is summarized
according to four risks on Fuzzers as follows.

1) Risk A: unusual packet lengths, i.e. high input rate
2) Risk B: protocol violation
3) Risk C: unusual payload
4) Risk D: abnormal traffic patterns
For each risk, specific features with value are listed in

the second column, the description about the characteristics
of the risk is the third column, the risk name is in the last
column. The risks are sorted by the highest Bayesian score
of features of each risk i.e. by descending likelihood of risk.
Thus, the analyst can quickly make decision according to the
top risks. For this record, the first (highest) risk is high input
rate, which is an indicative of a Fuzzer attack. The second risk
and the third risk et al. are supplemental and supportive of the
prediction.

V. DISCUSSION
We strive to enhance the reliability of intrusion detection
systems by conducting thorough analysis and scrutiny within
the UNSW-NB15 and the KDD’99 datasets. Our goal is to
understand the inner workings of the models, improving their
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TABLE 8. Local interpretation of key features (follow threshold).

decision-making and reliability in real-world cybersecurity
situations.

Our experiment highlights the effectiveness of global
explanations in pinpointing important features for predictive
model. The explanatory model shows a clear distinction in
confident features when factoring in external uncertainty.
For Fuzzers, the rejection threshold for external uncertainty
assessment is vital; if too many features or crucial attributes
are rejected based on external uncertainty, it affects perfor-
mance. Therefore, carefully selecting the rejection threshold
is crucial for optimizing sensitive analysis outcomes.

The case study on local explanations for records with
minimized reference model uncertainty validates the effec-
tiveness of external uncertainty quantification in facilitating

confident interpretations for intrusion detection scenarios.
Typically, records with higher uncertainty may yield either
correct or incorrect predictions, requiring the intervention of
analysts or experts for decision-making. External uncertainty
quantification provides valuable insights into such records,
enabling experts to mitigate uncertainties and make informed
decisions.

Notably, the model performs worse on the Generic attack
type in UNSW-NB15 and the U2R attack type in KDD’99
compared to other types. This variance may be due to the
fact that Generic attacks have the highest number of records
among attack types in UNSW-NB15, while U2R attacks have
the fewest records in KDD’99. Therefore, the imbalance in
record distribution needs to be analyzed for this model.

Additionally, it is essential to consider both computational
complexity and scalability when applying our Bayesian
explanatory model to real application. The model’s complex-
ity is influenced by the need to perform Bayesian inference,
which inherently involves probabilistic computations that
can be computationally intensive. This is particularly true
when dealing with large datasets or high-dimensional data,
where the number of parameters and operations increases
exponentially. In the context of our Bayesian explanatory
model, the incorporation of KL-divergence adds an additional
layer of computational demands, as it requires the calculation
of divergence between probability distributions, further
contributing to the overall complexity.

Scalability, on the other hand, refers to the model’s ability
to handle increasing amounts of data without a significant
degradation in performance. Our experiments indicate that
while the Bayesian explanatory model provides robust and
interpretable results, its scalability can be a challenge. Specif-
ically, the Generic type in UNSW-NB15 has themost records,
leading to a noticeable decrease in performance along with
increased time and memory consumption. To mitigate these
issues, optimization techniques such as parallel processing,
efficient sampling methods, can be employed.

VI. FUTURE AND CONCLUSION
The explanation of the BAE-UQ serves to clarify the internal
mechanisms and features driving predictions, enabling users
to gain a deeper understanding of its functioning. Similar
to uncertainty quantification, explainability enhances the
transparency of the behavior of the BAE-UQ, thereby
increasing trust of users, empowers users to make decision.

This research introduces a Bayesian model for globally
and locally explaining the BAE-UQ, the aleatoric and
epistemic uncertainties are transfer effect on the explanations
as the external uncertainty. By integrating predictions and
uncertainties of the BAE into the explanatory process,
the experiment then transfers the Bayesian explanatory
score to interpretable intrusion detection scene, providing
decision-makers with a reliable and trustworthy basis for their
decisions.

This method offers a reference for the explanation of the
probabilistic BNNmodel.When the Bayesianmodel does not
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take external uncertainty into account, it is model-agnostic,
allowing it to explain any model and derive the Bayesian
explanatory score.

However, this method, which aligns with the probabilistic
BNN uncertainty acquisition approach, is computationally
demanding. Streamlining this process is the next challenge
to address.

REFERENCES
[1] W. Alhakami, A. ALharbi, S. Bourouis, R. Alroobaea, and N. Bouguila,

‘‘Network anomaly intrusion detection using a nonparametric
Bayesian approach and feature selection,’’ IEEE Access, vol. 7,
pp. 52181–52190, 2019.

[2] J. Antorán, U. Bhatt, T. Adel, A. Weller, and J. M. Hernández-Lobato,
‘‘Getting a CLUE: A method for explaining uncertainty estimates,’’ 2020,
arXiv:2006.06848.

[3] H. Wang and D.-Y. Yeung, ‘‘A survey on Bayesian deep learning,’’ ACM
Comput. Surv., vol. 53, no. 5, pp. 1–37, Sep. 2021.

[4] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral,
R. Confalonieri, R. Guidotti, J. Del Ser, N. Díaz-Rodríguez, and F. Herrera,
‘‘Explainable artificial intelligence (XAI): What we know and what is left
to attain trustworthy artificial intelligence,’’ Inf. Fusion, vol. 99, Nov. 2023,
Art. no. 101805.

[5] K. Adamczewski, F. Harder, and M. Park, ‘‘Bayesian importance of
features (BIF),’’ 2020, arXiv:2010.13872.

[6] K. Bykov, M. M.-C. Höhne, A. Creosteanu, K.-R. Müller, F. Klauschen,
S. Nakajima, andM. Kloft, ‘‘Explaining Bayesian neural networks,’’ 2021,
arXiv:2108.10346.

[7] M. C. A. Clare, M. Sonnewald, R. Lguensat, J. Deshayes, and V. Balaji,
‘‘Explainable artificial intelligence for Bayesian neural networks: Toward
trustworthy predictions of ocean dynamics,’’ J. Adv. Model. Earth Syst.,
vol. 14, no. 11, Nov. 2022, Art. no. e2022MS00316.

[8] S. Depeweg, J. M. Hernández-Lobato, S. Udluft, and T. Runkler, ‘‘Sen-
sitivity analysis for predictive uncertainty in Bayesian neural networks,’’
2017, arXiv:1712.03605.

[9] L. M Zintgraf, T. S. Cohen, T. Adel, and M. Welling, ‘‘Visualizing
deep neural network decisions: Prediction difference analysis,’’ 2017,
arXiv:1702.04595.

[10] T. Peltola, ‘‘Local interpretable model-agnostic explanations of
Bayesian predictive models via Kullback–Leibler projections,’’ 2018,
arXiv:1810.02678.

[11] H. Afrabandpey, T. Peltola, J. Piironen, A. Vehtari, and S. Kaski,
‘‘A decision-theoretic approach for model interpretability in Bayesian
framework,’’Mach. Learn., vol. 109, nos. 9–10, pp. 1855–1876, Sep. 2020.

[12] J. Adebayo, M. Muelly, I. Liccardi, and B. Kim, ‘‘Debugging tests for
model explanations,’’ 2020, arXiv:2011.05429.

[13] Y. Zhang, K. Song, Y. Sun, S. Tan, and M. Udell, ‘‘‘Why should you
trust my explanation?’’’ understanding uncertainty in LIME explanations,’’
2019, arXiv:1904.12991.

[14] J. Piironen, M. Paasiniemi, and A. Vehtari, ‘‘Projective inference in high-
dimensional problems: Prediction and feature selection,’’ Electron. J.
Statist., vol. 14, no. 1, pp. 2155–2197, 2020, doi: 10.1214/20-EJS1711.

[15] Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik, ‘‘Uncertainty quantifi-
cation using Bayesian neural networks in classification: Application to
biomedical image segmentation,’’ Comput. Statist. Data Anal., vol. 142,
Feb. 2020, Art. no. 106816.

[16] Y. Gal, ‘‘Uncertainty in deep learning,’’ Ph.D. thesis, Dept. Comput. Sci.,
Univ. Cambridge, Cambridge, U.K., 2016.

[17] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun,
‘‘Hands-on Bayesian neural networks—A tutorial for deep learning users,’’
IEEE Comput. Intell. Mag., vol. 17, no. 2, pp. 29–48, May 2022.

[18] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[19] S. Hettich and S. D. Bay, ‘‘The UCI KDD archive,’’ Dept. Inf. Comput.
Sci., Univ. California, Irvine, CA, USA, 1999. [Online]. Available:
http://kdd.ics.uci.edu

[20] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,’’ inProc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[21] M. S. Al-Daweri, K. A. Z. Ariffin, S. Abdullah, and M. F. E. M. Senan,
‘‘An analysis of the KDD99 and UNSW-NB15 datasets for the intrusion
detection system,’’ Symmetry, vol. 12, no. 10, p. 1666, Oct. 2020.

[22] J. Li, B. Zhao, and C. Zhang, ‘‘Fuzzing: A survey,’’ Cybersecurity, vol. 1,
no. 1, pp. 1–13, Dec. 2018.

TENGFEI YANG received the M.Sc. degree in
computer software and theory from Henan Uni-
versity of Technology, Zhengzhou, China, in 2011.
She is currently pursuing the Ph.D. degree with the
Software Research Institute (SRI), Technological
University of the Shannon: Midlands Midwest
working in the field of cyber security. Her research
interests include network security and Bayesian
deep learning.

YUANSONG QIAO (Member, IEEE) received
the Ph.D. degree in computer applied technology
from the Institute of Software, Chinese Academy
of Sciences, Beijing, China, in 2008. He is
currently a Senior Research Fellow with the
Software Research Institute (SRI), Technological
University of the Shannon: Midlands Midwest,
Ireland. He is a Science Foundation Ireland (SFI)
Funded Investigator in the SFI CONFIRM Smart
also Manufacturing Centre. His research interests

include future internet architecture, blockchain systems, robotic control and
coordination, and edge computing/intelligence. He is a member of IEEE
(Robotics and Automation Society and Blockchain Community) and ACM
(SIGCOMM and SIGAI).

BRIAN LEE (Member, IEEE) received the Ph.D.
degree in computer science from the Trinity Col-
lege Dublin, in 2004. He is currently the Director
of the Software Research Institute (SRI), Tech-
nological University of the Shannon: Midlands
Midwest, Ireland. He is also a Science Foun-
dation Ireland (SFI) Funded Investigator in the
SFI CONFIRM Smart Manufacturing Centre.
His research interests include computer security
(access control, network security, and security

analytics) and programmable networking, and edge computing. He is a
member of IEEE (Communications, Computer andRobotics andAutomation
Societies) and ACM.

97016 VOLUME 12, 2024

http://dx.doi.org/10.1214/20-EJS1711

