
Received 22 May 2024, accepted 23 June 2024, date of publication 1 July 2024, date of current version 12 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421239

Compositional Verification Using Geodesic
Distance via Assume-Guarantee Reasoning
XIAOYAN LIU
School of Software, Henan Polytechnic University, Jiaozuo 454000, China

e-mail: xyanliu@hpu.edu.cn

This work was supported by the Horizontal Project "A Model Checking Method for Concurrent Systems" from Henan Polytechnic
University, under Project 12230699.

ABSTRACT Assume-guarantee reasoning is indeed an effective compositional verification technique that
can help mitigate the state explosion problem in model checking. However, the biggest challenge of applying
assume-guarantee reasoning is how to best decompose a system. This paper presents a novel compositional
verification frame based on geodesic distance. The proposed algorithm introduces novel techniques to
decompose system components into groups. The algorithm’s effectiveness and efficiency are evaluated
through a comparative analysis with four state-of-the-art methods commonly used in the field. The results
of the comparison consistently demonstrate that the proposed algorithm outperforms the state-of-the-art
methods. This implies that the new algorithm exhibits superior performance in terms of decomposition
quality and verification efficiency.

INDEX TERMS Model checking, compositional verification, assume-guarantee reasoning, group
technology, combinatorial testing, geodesic distance, partition.

I. INTRODUCTION
Formal verification is a comprehensive, precise, and auto-
mated validation approach that employs formalized lan-
guages andmathematical tools to prove that a system’s design
meets specific specifications or requirements, while elimi-
nating any potential errors or vulnerabilities in the design.
Model checking is a prominent and widely used formal
verification technique due to its ability to provide automated
analysis when both the system model and the desired
properties are available. Model checking is a technique in
formal verification that automatically explores a finite-state
model of a system to detect whether that model violates
a given property. It systematically checks whether a given
system satisfies a temporal logic formula, which describes a
property that the system should possess. The process ofmodel
checking typically involves three main steps: constructing a
model of the system, specifying the desired properties in a
temporal logic formula, and running the model checker to
verify whether the model satisfies the properties. However,
as the scale of a system increases, particularly with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

addition of concurrent components or processes, the number
of possible system states can grow exponentially. State space
explosion is a widely acknowledged issue, which is one of
the challenges faced by model checking [1], [2], [3], [4], [5].
Compositional verification employs the principle of ‘‘divide
and rule’’ to address this problem in system verification. The
idea behind compositional verification is breaking down the
verification process into smaller, more manageable parts and
analyzing them separately before combining the results to
verify the overall system.
Assume-guarantee reasoning (AGR) is a powerful compo-

sitional verification technique that involves breaking down
a system into components and verifying their behavior
based on assumptions and guarantees [6], [7], [8], [9], [10].
AGR provides rules for transforming the global verification
of a system into local, more manageable verifications of
individual components. These rules are based on the notion of
refinement and enable us to verify the behavior of subsystems
in isolation, given assumptions about their environment and
guarantees about their behavior. LetM1,M2,ϕ be components
and a property of a system, respectively. The notationM1∥M2
represents the composition of two concurrent components,
M1 and M2. Consider the following assume-guarantee

92612

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1759-6424
https://orcid.org/0000-0002-7194-3159

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

FIGURE 1. Overall flow.

reasoning rule:

M1 ∥ A2 |H ϕ and M2 ⪯ A2
M1 ∥ M2 |H ϕ

M2’s abstraction is A2. A2 represents a simplified or
summarized version ofM2. It captures the key characteristics
or behaviors ofM2 while disregarding certain specific details.
The notation M2⪯A2 means A2 can replicate the behavior
of M2 through simulation. Informally, the rule says that to
show M1∥M2|Hϕ, it suffices to find an assumption A2 such
that A2 simulates M2, and M1 composed with A2 satisfies ϕ

as well. However, the biggest challenge in applying AGR is
how to split the system into two distinct parts, M1 and M2.
Each part represents a subset of the original system’s parallel
components, allowing for separate analysis or processing.
If there is no good decomposition strategy, the efficiency of
AGR may be lower than that of overall model checking [11].

The partition approach proposed in this work helps address
the decomposition problem in AGR-based compositional
verification. The heart of this approach comes from the
idea of graph clustering. Figure 1 shows overall flow of
AGR compositional verification based on geodesic distance.
In this work, the proposed model consists of several indi-
vidual components running concurrently. These components
interact by accessing and modifying shared variables to
exchange information and synchronize their actions, making
up the overall behavior of the model. Firstly, a concurrent
subsystem diagram (Definition 1) is constructed. Then the
geodesic distance (Definition 2) between any two vertices
in the diagram is calculated, and the eccentricity of each
vertex (Definition 3) in the diagram is calculated [12]. Next,
group the vertices according to the eccentricity. Based on
the grouping results, the initial partition of compositional
verification can be obtained. In this step, the key idea is
to group the system diagram to ensure that the components
in the same group are interrelated, and the components in
different groups aremore distant and less interrelated. Finally,
the advantages of this method are demonstrated through
experiments using AGR compositional verification based on
geodesic distance.

This work’s primary contributions can be summarized as
shown below:

1) A new compositional verification framework based on
geodesic distance is proposed.

2) A novel system decomposition method based on
geodesic distance is proposed to solve the decompo-
sition problem in AGR compositional verification.

The rest of this paper is described blow. Section II
summarizes previous related work. Section III introduces
the preliminaries used in this paper. Section IV describes
our partition algorithm. Section V shows how to apply
compositional verification based on geodesic distance.
Section VI illustrates our approach with a complete example.
Experimental results are presented in sectionVII. sectionVIII
provides a comprehensive conclusion and highlights avenues
for future research.

II. RELATED WORK
Jamieson et al. [13] introduce a framework that leverages
the L∗ algorithm [14] and the noncircular assume-guarantee
(AG-NC) rule to automate the generation of assumptions for
AGR. L∗ algorithm is utilized to learn a language which is
not yet identified or categorized as a regular language. L∗

algorithm can generate a Deterministic Finite-State Automa-
ton (DFA) that can recognize and accept this language.
References [15], [16], and [17] improve L∗ algorithm by
reducing the size of learning alphabet.

The framework proposed by Shang-Wei et al. [18] applies a
systematic approach to analyze the systemmodel and identify
the root causes of the counterexamples. It then performs
appropriate modifications or refinements to eliminate these
problematic behaviors. Whenever a model checker gives
a counterexample, a class of counterexamples that exhibit
similar problematic behavior will be eliminated. The process
of eliminating counterexamples in the proposed framework
follows a compositional approach.

By formulating the problem as a hypergraph partitioning
problem and implementing a proof rule that exhibits cir-
cularity and symmetry, Wonhong et al. [19] simplify the
counterexample elimination process by automatically group-
ing components and minimizing the number of premises and
assumptions required. The hypergraph partitioning algorithm
used by them decomposes the set of variables in the
system model into n disjoint subsets, enabling more efficient
processing and analysis of the counterexample elimination
problem. Each of these variable partitions Xi resulting
from the hypergraph partitioning algorithm corresponds to a
specific component Mi within the system.

By providing a systematic approach to identifying and
addressing blocking behavior in a compositional verification
framework, the algorithms proposed by Robi et al. [20]
contribute to improving the reliability and correctness of
discrete event systems. They introduce the counterexample
calculation process of two kinds of common abstract rules.

VOLUME 12, 2024 92613

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

David et al. [21] present CSim2, a framework for
top-down validation using a compositional rely-guarantee-
based approach. The Isabelle/HOL theoremproving machine
is used. They create a new concurrent imperative language
called CSimpl. To maintain soundness and assurance prop-
erties across different CSimpl standards or abstract levels,
a simulation-based framework is introduced.

Yang et al. [22] contribute a random and meristic
assume guarantee compositional verification framework for
probabilistic automata by utilizing the NL∗ algorithm. The
framework can rapidly identify and conclude when the
system fails to satisfy the expectant properties. They use
PRISM tool to implement the framework.

By combining deep learning, Ruiyang et al. [23] aim
to address the limitations of traditional model checking
approaches and enhance their performance. Using first-order
recursive logic, the model checking issue is transformed
into a game for loss and win with complete information.
By improving the neural MCTS algorithm to handle loops,
Xu et al. address a significant challenge in searching
the state space. Their enhancements enable more robust
and efficient exploration, improving the overall perfor-
mance and effectiveness of the algorithm in complex
environments. Experiments were conducted based on two
labeled transition systems, numerical game and Dining
Philosophers.

Mbarka et al. [24] use the CSP language and PAT model
checker to verify properties of Hadoop schedulers. The
analysis of the OpenCloud scheduler serves as a practical
case study to demonstrate the real-world applicability of
their work. They verify schedulability, resources-deadlock
freeness and fairness of Hadoop by integrating model
checking techniques and simulation.

Asma et al. [25] use the SPIN model checker and Linear
Temporal Logic to verify the peer to peer system called
WebRTC. They utilize an intermediate format called IF as
an intermediate language for generating a Promela model.
Promela is a modeling language. By expressing desired
properties as LTL properties, the verification and validation
process provides a formal and systematic approach to ensure
that the model behaves as intended and complies with
specified requirements.

Kenji et al. [26] utilize two different strategies to verify
the reflective system. To elaborate, a metalevel labeled
transition system (MLTS) is a formalism used for modeling a
reflective system. SPIN is used as model checker to verify
a system. They demonstrate that symmetry reduction and
divergence-sensitive stutter bisimulation techniques can be
used effectively in the context of MLTS models. For the
reconnaissance robot system, MLTS is used to model its self-
adaptation capabilities. In the case of the internet-of-things
system, MLTS is employed to model its dynamic evolution.

AlSobeh [27] integrates techniques such as statistical
model checking, AOP modularity, and formal methods, and
employes a propositional model to observe the properties and
constraints of Electronic Human Resource (EHR) systems,

providing a rigorous approach for verifying the reliability of
EHR systems.

AlSobeh et al. [28] utilize Aspect-Oriented Program-
ming (AOP) to formally verify the dynamic behaviors of
blockchain systems. Through a case study of a cryptocur-
rency system, they outline the workflow that ranges from
analyzing contextual data, to conducting statistical model
checking using aspects, and finally to evaluating service
quality.

The most relevant method is that of Lin [1]. This method
solves the partition problem in AGR by dissatisfied cores of
bounded model checking (BMC) formulas. The components
associated with the unsatisfied core are grouped into M1.
They refine the abstraction of M2 based on interpolants.
This method is effective, but it does not work well for some
systems. Here, geodesic distance is used to solve the partition
problem.

III. PRELIMINARIES
This section presents concise explanations of important
terms.
Definition 1 (Concurrent Subsystem Diagram): The con-

current subsystem diagram is denoted by G(V,E). V is the set
of vertices and E is the set of edges. If two components share
variables, there is an undirected edge between the vertices of
the two components.
Definition 2 (Geodesic Distance): For vertex v1∈ V, v2∈

V, the geodesic distance of any two vertices is the number
of edges in the shortest path between two vertices, denoted
as geodis(v1, v2). The geodesic distance between two
non-connected vertices in the diagram is defined as infinity.
Definition 3 (Eccentricity): For vertex v∈V, the eccentric-

ity of v is the maximum geodesic distance between v and the
other vertices u∈V-{v}, denoted as eccen(v). The eccentricity
of v captures how far v is from the farthest vertex in the
diagram.
Definition 4 (Diameter of Diagram): The diameter of a

diagram is the maximum eccentricity for all vertices of the
diagram. The diameter represents the maximum distance
between all vertex pairs in the diagram.
Definition 5 (Peripheral Vertices): Peripheral vertices are

vertices on the diameter.

IV. GROUP THE VERTICES TO GET INITIAL PARTITION
Our grouping objectives are as follows:

• The vertices in each group are connected.
• The similarity (Definition 7) of each pair of vertices
within each group is as high as possible.

• The eccentricity of the vertices in each group has at most
two values (This is to ensure that each group does not
contain too many vertices).

• At most one group has only one vertex.

The following illustrates how to group the vertices
according to the eccentricity and get the initial partition.

92614 VOLUME 12, 2024

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

To group vertices, follow these steps: (1) Get the set of
peripheral vertices (Definition 5). Neighbors of peripheral
vertices are grouped with peripheral vertices. If multiple
peripheral vertices have the same immediate neighbors,
they are merged into a group. (2) Get the ungrouped set
of vertices. If the ungrouped set is empty, the algorithm
ends. (3) Find the vertex set with the greatest eccentricity
(denoted as MAXECC) among the ungrouped vertex sets.
For vertex i (eccen(i) = MAXECC), j is ungrouped vertex,
if geodis(i, j) = 1 (that is to say, j is the immediate neighbor
of i), combine j and i into a group. For vertex i (eccen(i) =
MAXECC), vertex m (eccen(m) = MAXECC), if i and m
have the same immediate neighbor, combine i and m into
a group. Repeat the process until all vertices are grouped.
Algorithm 1 offers a clear and concise representation of the
proposed grouping algorithm’s logic and operations. The time
complexity of Algorithm 1 is O(n4).
Next, initial partition M1,M2 can be obtained according to

the group number of each component. First, put componentCi
that is related to the verified property into M1. If component
Cj and Ci have the same group number, i.e., group(j)=
group(i), then put component Cj into M1. If Component Ck
is the neighbor of Ci (i.e. geodis(Ck ,Ci)=1) and Ck is not
a member of M1, then put component Ck into M1 as well.
Components that do not belong to M1 are placed in M2.
Algorithm 2 shows the procedure for obtaining the initial
partition. The time complexity of Algorithm 2 is O(n).
Take a simple system as an example. Figure 2(a) is the

system diagram and Figure 2(b) is the result of its grouping.
The details of obtaining the initial partition M1,M2 is as
follows:

1) For a given diagram G(V,E), i∈V, j∈V, calculate the
geodesic distance geodis(i, j) between vertex i and j.

2) Calculate the eccentricity of each vertex. eccen(a)= 3,
eccen(b) = 2, eccen(c) = 4, eccen(d) = 4, eccen(e) =
3, eccen(f)= 4, eccen(g)= 3, eccen(h)= 3, eccen(i)=
4, eccen(j) = 3. Vertices c, d, f and i have the greatest
eccentricity, so they are peripheral vertices.

3) Get one vertex out from vertices with the greatest
eccentricity: vertex c. Set group(c) = 1. Because a and
d are immediate neighbors of c (for geodis(c, a) = 1,
geodis(c, d) = 1), set group(a) = 1 and group(d) = 1.

4) Get one vertex with the greatest eccentricity from
ungrouped vertices: vertex f . Set group(f) = 2.
Because e and g are immediate neighbors of f (for
geodis(f , e) = 1, geodis(f , g) = 1), set group(e) =
2 and group(g) = 2.

5) Get one vertex with the greatest eccentricity from
ungrouped vertices: vertex i. Set group(i)= 3. Because
h and j are immediate neighbors of i (for geodis(i, h)=
1, geodis(i, j) = 1), set group(h) = 3 and group(j) = 3.

6) Vertex b is the unique ungrouped vertex, so
group(b) = 4.
So far, each vertex has a group number. Group 1 has the
component a, c and d . Group 2 has the component e,

f and g. Group 3 has the component h, i and j. Group
4 has the component b.

7) If the verified property has relation with component a,
put components a, c and d intoM1 (Because component
a is in a group that contains c and d). M1 = {a, c,
d}. Component b is the immediate neighbor of a (for
geodis(a, b) = 1), so put b into M1 as well. M1 =

{a, b, c, d}.
8) In the end, we get the initial partition:M1 = {a, b, c, d},

M2 = {e, f , g, h, i, j}
The benefits of such grouping are explained below through

the similarity between vertices.
Definition 6 (Neighbourhood of Vertex): Given undirected

graph G=(V,E), for vertex u∈V, the neighbourhood of u is
defined as:

0(u) = {v | (u, v) ∈ E} ∪ {u}

Definition 7 (Similarity between Two Vertices): Use nor-
malized common neighborhood sizes to measure the similar-
ity between two vertices u, v∈V:

σ (u, v) =
| 0(u) ∩ 0(v) |

√
| 0(u) | × | 0(v) |

The greater σ (u, v), the greater similarity between vertices
u and v.

The neighborhood of each vertex in Figure 2 is as follows:
0(a)= {abcd}, 0(b)= {abegh}, 0(c)= {acd}, 0(d)= {acd},
0(e) = {bef }, 0(f) = {efg}, 0(g) = {bgf }, 0(h) = {bhi},
0(i) = {hij}, 0(j) = {bij}.

σ (a, c) =
√
3
2 , σ (a, d) =

√
3
2 , σ (a, b) = 1

√
5
.

Two vertices with the same eccentricity have the same
similarity to their common neighbor if their neighborhood is
the same, as shown in Figure 2, vertex c and d .

In Figure 2, vertices a, c, and d are grouped together while
vertex b is not grouped with a. This is because σ (a, c) =
σ (a, d) and σ (a, c) > σ (a, b).
For each group obtained by algorithm 1, the similarity

of the vertices within the group is high, that is to say, the
components within the group are the most relevant.

V. COMPOSITIONAL VERIFICATION BASED ON
GEODESIC DISTANCE
In this section, we introduce the application of AGR
compositional verification using geodesic distance. The
verification process, shown in Figure 3, are as follows:

1) K , the geodesic distance of the vertex, the initial value
is 2.

2) A2, an over-approximation of M2, the initial value is
TRUE. Then check whether the condition M1 ∥ A2 |H
ϕ holds. If it holds, then the conclusion M |H ϕ can be
got. If it does not hold, assume it reaches¬ϕ inm steps.

3) Use them-step boundedmodel checking formula. If the
formula is satisfiable, then the conclusion M |H ϕ does
not hold. If the formula is unsatisfiable, go to step 4.

4) Analyze whether k ≤ s-1 (s is the number of
subsystems). If k > s-1, the conclusion M|H ϕ holds.

VOLUME 12, 2024 92615

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

Algorithm 1 GROUPING
Input: C1,C2, . . . ,Cn // a set of components
Output: group(1),group(2), . . . ,group(n) // the group number of each component
begin

group(i)=0; // i=1...n, n is the number of components
k = 1; // k is the group number
calculate geodis(i, j); // the geodesic distance between vertex i and j
calculate eccen(i); // the eccentricity of vertex i; Vertex i denotes component Ci
while There are ungrouped vertices do

Calculate the maximum eccentricity(MAXECC) of the ungrouped vertices;;
for i = 1;i <= n;i++ do

Find the ungrouped vertices i and eccen(i)=MAXECC;
group(i)←k;
for j = 1;j <= n;j++ do

find the ungrouped neighbors j of vertex i;
group(j)←k;
for jn = 1;jn <= n;jn++ do

find the ungrouped neighbors jn of vertex j and eccen(jn)=eccen(i);
group(jn)←k;

end
end
k++;

end
end
Output group(1), group(2), . . . , group(n);

end

FIGURE 2. A Simple System. The yellow vertices c, d , f , and i in the figure are peripheral vertices.

Algorithm 2 PARTITION

Input: C1,C2, . . .,Cn ; // a set of components
Output: M1, M2
M1← ∅;
M2← ∅;
Suppose Component Ci is related to the property ϕ;
for j = 1;j <= n;j++ do

if group(j)=group(i) ∨ geodis(Cj,Ci)=1 then
M1← M1 ∪ {Cj};

end
// group(j)=group(i)denotes Cj and

Ci belong to the same group;
geodis(Cj,Ci)=1 denotes Cj is a
direct neighbor of Ci;

end
M2← AllComponents−M1;

If k ≤ s-1, find the neighbors (k-NN) with geodesic
distance k of the subsystems related to the property.

If k-NN is empty, the conclusion M |H ϕ holds. If k-
NN is not empty, change M1 to the union of M1 and
k-NN. k = k + 1.

5) If M1 unchange, go to step 4.
6) If M1 change, go to step 2.

VI. A COMPLETE EXAMPLE
The following illustrates how the proposed approach works
using a complete example. First, use the approach to get
the initial partition of the system. Then, verify the system
using compositional verification based on geodesic distance.
In [1], the authors employ a technique called interpolation to
estimate the behavior of a system as it transitions from one
state to another.

We develop a model of a six-bit counter that is composed
of six individual components, as shown in Figure 4. Each
component uniti for i ∈{1,2,3,4,5,6} has three variables which
are all of Boolean type: biti, ini, outi. biti represents the
current binary value of uniti. ini represents whether to assert
the carry value of uniti. outi is a signal that determines

92616 VOLUME 12, 2024

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

FIGURE 3. Verification Process. M |H ϕ denotes the system M satisfies the property ϕ. M ⊭ ϕ

denotes the system M does not satisfy the property ϕ.

whether the current bit value of uniti should be propagated
or carried over to the next stage. Ii is the initial condition
and Ti denotes the relation that describes how each of the two
components transition from one state to another in the system.
Their encoding are as described below.

• I1: ¬ bit1 ∧ in1
• Ii: ¬ biti // i=2,· · · , 6
• T1: (bit1′ ← bit1 ⊕ in1) ∧ (out1′ ← bit1 ∧ in1) //⊕ is
XOR

• Ti: (ini′← outi−1) ∧ (biti′← biti ⊕ ini) ∧ (outi′← biti
∧ ini) // i=2,· · · ,6

Suppose to verify the property ϕ = ¬(out2 ∧ bit2 ∧ in2).
First, construct the system diagram. For i∈ {1, 2, . . . , 6}, uniti
denotes vertex Ci of the diagram. Out1 variable which
belongs to unit1 appears in the unit2, so there is an edge
between vertex C1 and vertex C2. By analogy, the system
diagram is shown in Figure 5(a).

Next, group the system. The eccentricity of each vertex
is shown in Table 1. The geodesic distance of two vertices
is shown in Table 2. Find the first vertex with the greatest
eccentricity C1, and set the grouping number of C1 to 1, that
is, group(C1) = 1. For geodis (C1,C2) = 1, set group(C2) =
1. Find vertex C6 with the highest eccentricity among the
ungrouped vertices, and set group(C6) = 2. For geodis(
C5, C6) = 1, set group(C5) = 2. Find vertex C3 with the
highest eccentricity among the ungrouped vertices, and set
group(C3)= 3. For geodis (C3,C4) = 1, set group(C4) = 3.
So far, the system has been divided into 3 groups,

as shown in Figure 5(b). Group 1 has component C1 and C2.
Group 2 has component C5 and C6. Group 3 has component
C3 and C4.

TABLE 1. Eccentricity of vertices.

TABLE 2. Geodesic distance between vertices.

Then obtain the initial partition of the system. Since the
property ϕ has relation with C2 and C2 belongs to group 1,
put C1 and C2 which are included in group 1 into M1. For
geodis(C2,C3)=1, put C3 intoM1 too. Therefore, the initial
partition of the system is obtained:M1 = {C1,C2,C3},M2 =

{C4,C5,C6}.
Finally, use AGR compositional verification to verify the

system. Construct an abstraction A1 forM1 and an abstraction
A2 for M2.

In the initial state, make A2’s transition relation true, and
set A1 to be M1. TRUE is known as the weakest over-
approximation, which means that it assumes all possible
transitions are valid or true. A1 contains variables bit1, in1,
out1, bit2, in2, out2, bit3, in3, out3. Variables contained in A2
denoted by X2. X2 can be any values. For i∈ {0, 1, · · · , 8},

VOLUME 12, 2024 92617

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

FIGURE 4. The counter example.

FIGURE 5. 6-bit counter.

Statei is the state of A1 ∥ A2, as shown in Figure 6. For
convenience, the value of 0 is FALSE, and the value of 1 is
TRUE. State0 is the initial state. A1 ∥ A2 is always switching
between state1, state2, · · · , and state8. The value of bit3,
bit2 and bit1 is from 000, 001, 010, 011, 100, 101, 110 to
111. In these states of the system, out2, bit2 and in2 are
never TRUE at one time. After the first iteration, it can be
concluded that A1 ∥ A2 |H ϕ. Because A1, A2 are abstractions
of M1, M2 respectively, the conclusion can be drawn that
M1 ∥ M2 |H ϕ.

VII. EXPERIMENTS
Use following systems as benchmarks to to highlight the
advantages and strengths of our approach over existing
methods.

• Flexible Manufacturing Systems (FMS). A FMS [29]
is responsible for manufacturing blocks with cylindrical
painted pins by transforming raw blocks and raw pegs
through a series of manufacturing operations. Buffers
are used to connect devices, and each buffer has a
capacity of one part. Buffer overflow and underflow
issues can occur within a FMS. Verify that each buffer
within a system should not overflow.

• Dining Philosophers (DP).TheDP [30] problem serves
as an example of a resource sharing challenge in
concurrent programming. In this problem, a group of
philosophers are seated in a manner where they form
a circle around a table, with each philosopher having a
fork to their left and right. Each philosopher requires two

forks to eat their meal. Verify the property that it is not
possible for any two neighboring philosophers to eat at
one time.

• AIPManufacturing System (AIP).AIP [31] manufac-
turing system is a production system that involves the
use of two distinct types of materials to produce two
different products. It consists of several key components,
including the I/O station, transport units, assembly
stations, external loops, and a central loop. The AIP
system has the problem of disordered manufacturing.
Verify that the paths or directions of the two distinct
types of materials should be reversed.

• Synchronous Bus Arbiters (SBA). The SBA [30], [32]
refers to a specific protocol used in synchronous digital
circuits for bus arbitration.. A bus consists of nodes
connected in a loop. A special token is sequentially
passed from one node to another in a predetermined
order. The token circulates among the nodes in the
network, and only the node possessing the token is
permitted to use the bus for transmitting data. Verify
the properties that only one node has the permission to
transmit data on the bus, that is, two nodes cannot control
the bus at one time.

• MSI Cache Coherence Protocol (MSI). In the
MSI [30], [32] cache coherence protocol, n nodes share a
memory. Each individual node is equipped with a cache.
The memory and the caches of the nodes are connected
by a bus. Verify the property that only one node has the
permission to transmit data on the bus, that is, two nodes
cannot control the bus at one time.

The PAT model checker [33] is used to obtain the provided
experimental results. The experimental environment is a 64-
bit win7 laptop with 4GB Random Access Memory and i5-
3230M processor. The language used for describing system
models in our system is a simplified version of the input lan-
guage used by NuSMV. In all of our experimental scenarios,
we have observed that every tested property holds true and
is satisfied. Compare four verification methods: McMillan′s
interpolation-based compositional verification (denoted as
Mc-ITP), Lin′s compositional verification (denoted as C-
ITP), C-ITPmethod plus abstractingM1 (denoted as C-ITPA),

92618 VOLUME 12, 2024

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

FIGURE 6. The state of 6-bit counter system.

TABLE 3. Verification results.

and C-ITP method plus decomposition strategy and the
abstraction of M1 (denoted as C-ITPP+A). Our method

is denoted as Geo-AGR. Table 3 shows the results of
experiments.

Mc-ITP approach gets initial partition randomly. In C-ITP
and
C-ITPA, M1 contains the first four components and
M2 contains the remaining components. Users can specify
the input order. C-ITPP+A approach uses a partition method
that is derived from unsatisfiability core of the BMC
theorem. The initial decomposition is obtained by running
this decomposition method in two steps.

Using our geo-distance based compositional verification
method, the verification time is greatly reduced. For system
FSM_12, no matter which methodMc-ITP, C-ITP, or C-ITPA
is adopted, it is always out of memory, but the result can
be obtained within 10 seconds after using our method. For
system FSM_30, all the first three methods are time out (over
30 minutes), but the result can be obtained within 25 seconds
after using our method. For system DP_06, D_08, DP_10,
DP_20, DP_30, AIP_04, AIP_06, AIP_08, AIP_10, AIP_11,
AIP_12, SBA_06, SBA_07, SBA_08, SBA_09, and SBA_10,
using method C-ITP, all of them are out of memory or time
out, but the results can be obtained quickly after using our
method.

C-ITPP+A method uses a partition heuristic, so the
validation efficiency of this method is much higher than that
of Mc-ITP, C-ITP, and C-ITPA. However, our algorithm is
much more efficient than C-ITPP+A, except for FSM_02,
FSM_04, . . . FSM_20 (See the last 2 columns in Table 3).

Assume-guarantee reasoning compositional verification
needs to decompose the system into M1 and M2. The
efficiency of verification has a great correlation with

VOLUME 12, 2024 92619

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

partition. The proposed partition algorithm can ensure
that M1 contains fewer components which are related to
verification properties. This is the main reason why the
proposed algorithm is superior to C-ITPP+A.

VIII. CONCLUSION AND FUTURE WORK
This paper introduces a new decomposition algorithm for
assume-guarantee reasoning. The decomposition algorithm
can greatly reduce the number of components that M1 con-
tains in AGR. A compositional verification framework based
on geodesic distance is proposed. This framework offers
a solution to mitigate the issue of state space explosion
that often arises during compositional verification. In five
parameterized test cases, the method takes the shortest time
compared with McMillan′s approach and Lin′s interpolation-
guided compositional verification. The grouping algorithm
presented in this paper does not yield a unique result when
applied to a system which graph is cyclic. For systems
with a very large number of components, calculating the
geodesic distance for every pair of components can become
computationally expensive, especially for dense graphs.
Future work will aim to address the limitations of the current
grouping algorithm by exploring modifications to handle
cyclic graphs, implementing efficient approximations for
geodesic distance calculations, and investigating alternative
grouping algorithms that are more suitable for large, dense
systems.

REFERENCES
[1] S.-W. Lin, J. Sun, T. K. Nguyen, Y. Liu, and J. S. Dong, ‘‘Interpolation

guided compositional verification (T),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Lincoln, NE, USA, Nov. 2015, pp. 65–74,
doi: 10.1109/ASE.2015.33.

[2] R. Jhala and K. L. Mcmillan, ‘‘Interpolant-based transition relation
approximation,’’ Log. Methods Comput. Sci., vol. 3, no. 4, pp. 1–17,
Nov. 2007, doi: 10.2168/LMCS-3(4:1)2007.

[3] E. M. Clarke and E. A. Emerson, ‘‘Design and synthesis of synchro-
nization skeletons using branching time temporal logic,’’ in Logics of
Programs, vol. 131. Berlin, Germany: Springer, 1981, pp. 52–71, doi:
10.1007/BFb0025774.

[4] E. M. Clarke, O. Grumberg, and D. E. Long, ‘‘Model checking
and abstraction,’’ ACM Trans. Program. Lang. Syst., vol. 16, no. 5,
pp. 1512–1542, Sep. 1994, doi: 10.1145/186025.186051.

[5] Q. Jean-Pierre and S. Joseph, ‘‘Specification and verification of concurrent
systems in CESAR,’’ in Proc. Int. Symp. Programming, vol. 137, M.
Dezani-Ciancaglini and U. Montanari, Eds. 1982, pp. 337–351, doi:
10.1007/3-540-11494-7_22.

[6] E. M. Clarke, D. E. Long, and K. L. Mcmillan, ‘‘Compositional
model checking,’’ in Proc. 4th Annu. Symp. Log. Comput. Sci., 1989,
pp. 353–362.

[7] O. Grumberg and D. E. Long, ‘‘Model checking andmodular verification,’’
ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843–871, May 1994,
doi: 10.1145/177492.177725.

[8] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, ‘‘You assume, we
guarantee: Methodology and case studies,’’ in Proc. Int. Conf. Comput.
Aided Verification, Vancouver, BC, Canada,1998, pp. 440–451, doi:
10.1007/BFb0028765.

[9] A. Pnueli, ‘‘In transition from global to modular temporal reasoning about
programs,’’ in Logics and Models of Concurrent Systems (NATO ASI
Series), vol. 13, K. R. Apt, Ed., Berlin, Germany: Springer, 1984,
pp. 123–144, doi: 10.1007/978-3-642-82453-1_5.

[10] Q. Xu, W.-P. de Roever, and J. He, ‘‘The rely-guarantee method for
verifying shared variable concurrent programs,’’ Formal Aspects Comput.,
vol. 9, no. 2, pp. 149–174, Mar. 1997, doi: 10.1007/bf01211617.

[11] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, ‘‘Breaking up is
hard to do: An investigation of decomposition for assume-guarantee
reasoning,’’ in Proc. Int. Symp. Software Test. Anal., 2006, pp. 97–108, doi:
10.1145/1146238.1146250.

[12] H. Jiawei, P. Jian, and T. Hanghang, Data Mining: Concepts and
Techniques. Burlington, MA, USA: Morgan kaufmann 2022.

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, ‘‘Learning
assumptions for compositional verification,’’ in Tools and Algorithms
for the Construction and Analysis of Systems (Lecture Notes in
Computer Science), vol. 2619, H. Garavel and J. Hatcliff, Eds.,
Berlin, Germany: Springer, 2003, pp. 331–346, doi: 10.1007/3-540-36577-
X_24.

[14] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’
Inf. Comput., vol. 75, no. 2, pp. 87–106, Nov. 1987, doi: 10.1016/0890-
5401(87)90052-6.

[15] S. Chaki and O. Strichman, ‘‘Optimized L-based assume-guarantee
reasoning,’’ in Tools and Algorithms for the Construction and
Analysis of Systems (Lecture Notes in Computer Science),
vol. 4424, O. Grumberg and M. Huth, Eds., Berlin, Germany:
Springer, 2007, pp. 276–291, doi: 10.1007/978-3-540-71209-
1_22.

[16] M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu, ‘‘Refining
interface alphabets for compositional verification,’’ in Tools and Algo-
rithms for the Construction and Analysis of Systems (Lecture Notes
in Computer Science), vol. 4424, O. Grumberg and M. Huth, Eds.,
Berlin, Germany: Springer, 2007, pp. 292–307, doi: 10.1007/978-3-540-
71209-1_23.

[17] S. Nishant and C. Edmund, ‘‘SAT-based compositional verification using
lazy learning,’’ inComputer Aided Verification (LectureNotes in Computer
Science), vol. 4590, W. Damm and H. Hermanns, Eds., Berlin, Germany:
Springer, 2007, pp. 39–54, doi: 10.1007/978-3-540-73368-3_8.

[18] S.-W. Lin and P.-A. Hsiung, ‘‘Counterexample-guided assume-guarantee
synthesis through learning,’’ IEEE Trans. Comput., vol. 60, no. 5,
pp. 734–750, May 2011, doi: 10.1109/TC.2010.94.

[19] N. Wonhong and A. Rajeev, ‘‘Learning-based symbolic assume-
guarantee reasoning with automatic decomposition,’’ in Automated
Technology for Verification and Analysis (Lecture Notes in
Computer Science), vol. 4218, S. Graf and W. Zhang, Eds., Berlin,
Germany: Springer, 2006, pp. 170–185, doi: 10.1007/11901914
_15.

[20] R. Malik and S. Ware, ‘‘On the computation of counterexamples in
compositional nonblocking verification,’’ Discrete Event Dyn. Syst.,
vol. 30, no. 2, pp. 301–334, Jun. 2020, doi: 10.1007/s10626-019-00305-
w.

[21] D. Sanan, Y. Zhao, S.-W. Lin, and L. Yang, ‘‘CSim 2: Compositional
top-down verification of concurrent systems using rely-guarantee,’’ ACM
Trans. Program. Lang. Syst., vol. 43, no. 1, pp. 1–46, Mar. 2021, doi:
10.1145/3436808.

[22] Y. Liu and R. Li, ‘‘Compositional stochastic model checking proba-
bilistic automata via assume-guarantee reasoning,’’ Int. J. Networked
Distrib. Comput., vol. 8, no. 2, pp. 94–107, 2020, doi: 10.2991/ijndc.k.
190918.001.

[23] R. Xu and K. Lieberherr, ‘‘On-the-fly model checking with neural
MCTS,’’ in NASA Formal Methods (Lecture Notes in Computer Science),
vol. 13260, J. V. Deshmukh, K. Havelund, I. Perez, Eds., Cham,
Switzerland: Springer, 2022, pp. 557–575, doi: 10.1007/978-3-031-06773-
0_30.

[24] M. Soualhia, F. Khomh, and S. Tahar, ‘‘Failure analysis of Hadoop
schedulers using an integration of model checking and simulation,’’ 2021,
arXiv:2109.04196.

[25] A. El Hamzaoui, H. Bensaid, and A. En-Nouaary, ‘‘Model checking of
WebRTC peer to peer system,’’ Comput. Inf. Sci., vol. 12, no. 4, pp. 56–71,
Oct. 2019, doi: 10.5539/cis.v12n4p56.

[26] K. Tei, Y. Tahara, and A. Ohsuga, ‘‘Towards scalable model
checking of reflective systems via labeled transition systems,’’ IEEE
Trans. Softw. Eng., vol. 49, no. 3, pp. 1299–1322, Mar. 2023, doi:
10.1109/TSE.2022.3174408.

[27] A. AlSobeh, ‘‘OSM: Leveraging model checking for observing dynamic
1 behaviors in aspect-oriented applications,’’ 2024, arXiv:2403.
01349.

[28] A. M. R. AlSobeh and A. A. Magableh, ‘‘BlockASP: A framework for
AOP-based model checking blockchain system,’’ IEEE Access, vol. 11,
pp. 115062–115075, 2023.

92620 VOLUME 12, 2024

http://dx.doi.org/10.1109/ASE.2015.33
http://dx.doi.org/10.2168/LMCS-3(4:1)2007
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1145/177492.177725
http://dx.doi.org/10.1007/BFb0028765
http://dx.doi.org/10.1007/978-3-642-82453-1_5
http://dx.doi.org/10.1007/bf01211617
http://dx.doi.org/10.1145/1146238.1146250
http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_23
http://dx.doi.org/10.1007/978-3-540-71209-1_23
http://dx.doi.org/10.1007/978-3-540-73368-3_8
http://dx.doi.org/10.1109/TC.2010.94
http://dx.doi.org/10.1007/11901914_15
http://dx.doi.org/10.1007/11901914_15
http://dx.doi.org/10.1007/s10626-019-00305-w
http://dx.doi.org/10.1007/s10626-019-00305-w
http://dx.doi.org/10.1145/3436808
http://dx.doi.org/10.2991/ijndc.k.190918.001
http://dx.doi.org/10.2991/ijndc.k.190918.001
http://dx.doi.org/10.1007/978-3-031-06773-0_30
http://dx.doi.org/10.1007/978-3-031-06773-0_30
http://dx.doi.org/10.5539/cis.v12n4p56
http://dx.doi.org/10.1109/TSE.2022.3174408

X. Liu: Compositional Verification Using Geodesic Distance via Assume-Guarantee Reasoning

[29] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, ‘‘Multitasking
supervisory control of discrete-event systems,’’ Discrete Event Dyn. Syst.,
vol. 15, no. 4, pp. 375–395, Dec. 2005.

[30] Y. F. Chen, E. M. Clarke, A. Farzan, M. H. Tsai, Y. K. Tsay, and
B. Y. Wang, ‘‘Automated assume-guarantee reasoning through implicit
learning,’’ in Computer Aided Verification (Lecture Notes in Computer
Science), vol. 6174, T. Touili, B. Cook, and P. Jackson, Eds., Berlin,
Germany: Springer, 2010, pp. 511–526, doi: 10.1007/978-3-642-14295-
6_44.

[31] R. J. Leduc, M. Lawford, and P. Dai, ‘‘Hierarchical interface-based
supervisory control of a flexible manufacturing system,’’ IEEE Trans.
Control Syst. Technol., vol. 14, no. 4, pp. 654–668, Jul. 2006, doi:
10.1109/TCST.2006.876635.

[32] K. L. McMillan, ‘‘Symbolic model checking,’’ in Symbolic Model
Checking. Boston, MA, USA: Springer, 1993, doi: 10.1007/978-1-4615-
3190-6_3.

[33] J. Sun, Y. Liu, J. S. Dong, and J. Pang, ‘‘PAT: Towards flexible
verification under fairness,’’ in Computer Aided Verification (Lecture
Notes in Computer Science), vol. 5643, A. Bouajjani and O. Maler, Eds.,
Berlin, Germany: Springer, 2009, pp. 709–714, doi: 10.1007/978-3-642-
02658-4_59.

XIAOYAN LIU received the B.S. degree in
computer science and technology from Henan
Polytechnic University, Jiaozuo, in 2004, and the
M.S. degree in information science from Xidian
University, Xi’an, in 2007.

From 2007 to 2022, she was a Teacher with
the College of Computer Science and Technology,
Henan Polytechnic University, where she has been
a Teacher with the School of Software, since
2022. She is the author of two books, more

than ten articles. She holds three patents. Her research interests include
big data application technology, deep learning, model checking, software
engineering, and bioinformation.

VOLUME 12, 2024 92621

http://dx.doi.org/10.1007/978-3-642-14295-6_44
http://dx.doi.org/10.1007/978-3-642-14295-6_44
http://dx.doi.org/10.1109/TCST.2006.876635
http://dx.doi.org/10.1007/978-1-4615-3190-6_3
http://dx.doi.org/10.1007/978-1-4615-3190-6_3
http://dx.doi.org/10.1007/978-3-642-02658-4_59
http://dx.doi.org/10.1007/978-3-642-02658-4_59

