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ABSTRACT This paper presents a data-driven approach tomaximize the power of a wind farm by developing
a dynamic mode decomposition with input and output for reduced order model (DMDior)-based reduced
ordermodel (ROM) formodel predictive control (MPC). Themain goal of this research is to efficientlymodel
and manage the complex flow field within a wind farm to enhance power production. We leveraged DMDior
to transform extensive high-dimensional flow data into an accurate yet simplified ROM, which successfully
represents the essential dynamic features of wind flow, including the critical interactions between turbines
and their adaptive response to environmental changes. Based on this ROM, theMPC frameworkwas carefully
designed. MPC uses this model to dynamically adjust the yaw angle of a wind turbine to optimally match
changing wind patterns to maximize power output. The system also incorporates an adaptive Kalman filter
designed for the state estimation in MPC applications. This estimation is critical to the effective execution
of the MPC in each iteration. This ensures that the MPC operates based on the most up-to-date and accurate
representation of the wind farm’s state, improving the overall reliability and efficiency of the control strategy.
This approach demonstrates a practical and effective way to increase the power output of a wind farm, with
experimental results indicating a power increase of about 4.72%.

INDEX TERMS Wind farm control, data-driven approach, dynamic mode decomposition with input and
output, reduced order model, model predictive control, adaptive Kalman filter.

NOMENCLATURE
ROM Reduced Order Model.
DMD Dynamic Mode Decomposition.
DMDior DMD with Input and

Output for Reduced-order model.
SVD Singular Value Decomposition.
MPC Model Predictive Control.
KF Kalman Filter.
AKF Adaptive Kalman Filter.
PGR Power Growth Rate.
θ Yaw angle of the wind turbine.
γ Yaw offset of the wind turbine.
γe Yaw error of the wind turbine.
γ̇ Yaw rate of the wind turbine.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

P Electrical power of the wind turbine.
ws Wind speed.
wd Wind direction.
xk State vector of flow

fields at time step k .
x̃k Reduced-order state vector of

flow fields at time step k .
xuk Previous control input

vector of flow fields at time step k
xak Augmented state vector

of flow fields at time step k .
ˆ̃xk Estimated reduced-order

sate vector of flow fields at time step k .
A,B,C,D State-space matrices of flow fields.
Ã, B̃, C̃ Reduced-order

state-space matrices of flow fields.
A′,B′,C ′ Augmented state-space matrices of flow fields.
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Q State weighting matrix.
R Control input weighting matrix.
Qk Process noise covariance matrix at time step k .
Rk Measurement noise covariance

matrix at time step k .

I. INTRODUCTION
Increasing environmental awareness and the shift to sustain-
able energy havemade renewable energy sources, particularly
wind power, crucial in the global effort to reduce greenhouse
gas emissions and reliance on fossil fuels. Driven by
environmental necessity and technological advances, the
wind energy sector has expanded rapidly, making wind power
not just an alternative to conventional energy sources, but an
essential component of achieving a sustainable, low-carbon
future.

The growing importance of wind energy has led to
an increase in the scale of operations from individual
turbines to large wind farms. These wind farms, consisting
of multiple turbines, are strategically placed for optimal
wind energy utilization. However, effectively managing these
farms requires addressing complex aerodynamic interactions
between turbines, particularly wake effects, which have
a significant impact on power generation and turbine
lifetime [1], [2], [3], [4], [5]. Optimizing these interactions
is critical to maximizing wind farm energy production and
extending turbine lifetime.

Recent research has explored optimizing wind farm control
through turbine yaw angle adjustment. Yaw control, which
aligns turbines to minimize wake effects, has been shown
to improve overall plant efficiency and power output [6],
[7], [8], [9], [10], [11], [12]. Studies have demonstrated that
positive yawmisalignment can optimize power production by
redirecting wakes away from downstream turbines, thereby
minimizing structural loads and net power losses [6], [7].
Various computational models and large eddy simulations
have been used to quantify and maximize these potential
power gains [7].

To further enhance wind farm performance, various
methods have been proposed. These include a learning model
predictive control (LMPC) algorithm, which produces up to
15%more power than conventional methods in offshore wind
farms, and a data-driven stochastic model predictive control
(SMPC) method that improves power production by 2.64%
using Gaussian mixture model clustering for active yaw
control [13]. High-fidelity simulation models such as PALM
have also been implemented for power tracking, demon-
strating better performance than greedy control [15]. Tools
such as FLORIS have facilitated the development of data-
driven multi-objective predictive control strategies based on
evolutionary optimization [16]. Additionally, research has
been conducted to maximize the power output of wind
farms by determining the optimal yaw using a data-driven
approach introduced as an alternative to FLORIS [17].
Furthermore, reinforcement learning has been extensively

studied to maximize the power output of wind farms [18],
[19], [20].

Despite these advances, wind farms, as complex systems,
still face challenges in accurate modeling and control due
to the vast amount of data and calculations involved. Model
reduction methods are essential for achieving computational
efficiency and real-time control [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30]. These methods reduce the
complexity of models while retaining essential dynamics,
making them suitable for practical applications. Significant
strides have been made in this area. For instance, DMD
with control (DMDc) has been developed to create precise
input-output models for high-dimensional systems, effec-
tively distinguishing between system dynamics and actuation
effects [27]. Another study demonstrated that DMDc can
generate reduced-order models for real-time control of
high-dimensional systems such as thermal actuators [28].
Additionally, Koopman-based MPC with morphing surface
techniques has shown that active flow control with a morph-
ing flap can effectively regulate flow-induced vibrations and
provide insights into environmental changes [29]. Research
on distillation columns using MPC based on the DMD
method revealed that DMD can construct accurate linearized
models for predicting state variables, significantly improving
control performance in nonlinear systems [30].
However, the application of model reduction techniques

specifically for wind farm control remains limited, indicating
a significant research gap that needs to be addressed to
improve the efficiency and effectiveness of wind farm
operations. To bridge this gap, this study introduces a
data-driven approach using model predictive control (MPC)
based on dynamic mode decomposition with input and
output for reduced-order models (DMDior) to derive a
reduced-ordermodel (ROM) of awind farm to enhance power
production. In DMDc or DMDio, the system is first identified
and then approximated with a ROM. In contrast, DMDior
directly identifies the ROM, which is more computationally
efficient and better suited for handling millions of nodes
in flow fields. The study focuses on transforming compre-
hensive high-dimensional aerodynamic flow data within a
wind farm into an accurate and manageable ROM. This
model effectively represents the important dynamics of wind
flow, including critical turbine interactions and the adaptive
response of turbines to environmental changes. Using this
ROM, we developed a detailed MPC framework to dynam-
ically adjust the yaw angle of a wind turbine and maximize
power output in response to constantly changing wind pat-
terns. An important feature of our system is the incorporation
of a carefully designed adaptive Kalman filter [31], [32], [33],
[34] for accurate state estimation within theMPC framework.
This estimation is critical to the efficient functioning ofMPC,
ensuring that operational decisions can be made based on
the most up-to-date and accurate understanding of the state
of the wind farm, significantly improving the reliability and
efficiency of the control strategy. This approach provides
a viable solution for improving the power production of
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FIGURE 1. Overview of the data collection process.

wind farms, as demonstrated by results showing improved
outcomes compared to traditional greedy control schemes.
It also represents a significant advance in control strategies
for wind energy systems and lays a solid foundation for
continued research and development in this area.

This paper is organized as follows: Section II presents a
methodology for generating a ROM suitable for wind farm
control. Section III describes the design and integration of
model predictive control based on these models by incor-
porating state estimation via Kalman filters. In Section IV,
we present simulation results that show how effective our
approach is compared to traditional greedy control methods.
Finally, Section V concludes the paper with the main insights
and implications of our findings.

II. REDUCED ORDER MODEL FOR WIND FARM CONTROL
A. SNAPSHOT DATA CONSTRUCTION
The development of a ROM to optimize yaw control in
wind farms begins with the step of constructing snapshot
data. This data captures specific instances of the wind
farm’s flow dynamics over time and comprises the velocity
vectors of the wind farm’s flow field. It was meticulously
collected over a period of 1,000 seconds. The entire data
collection process, which demonstrates our comprehensive
methodology, is depicted in Figure 1.
To generate accurate inflow wind data, we employed

TurbSim [35], developed by the National Renewable Energy
Laboratory (NREL). This is known for its proficiency in
simulating realistic atmospheric boundary layer conditions.
This capability is vital for authentic simulations of individual
wind turbines and entire wind farms. For our study, TurbSim
was configured to simulate a flow field under specific
conditions: a mean wind speed of 8m/s, a mean wind

direction of 0◦ (indicating wind coming from the west), and
a turbulence intensity (TI) of 6%. Additionally, we employed
the IECKaimal turbulencemodel, as defined in IEC 61400-3.
Figure 2 shows the wind conditions according to the
simulation time. This setup was strategically chosen to
effectively demonstrate the impact of yaw control on ourwind
farm layout, taking into account factors such as prevailing
wind directions and the geography of the wind farm.

FIGURE 2. Wind speed and direction of the flow field generated by the
Turbsim.

FAST.Farm [36] was chosen as our simulation tool because
it provides a balanced approach for capturing the complex
aerodynamic interactions within wind farms while ensuring
computational efficiency. This medium-fidelity simulation
tool incorporates components such as the FAST.Farm
driver, super controller, openFAST [37], wake dynamics,
and modules for ambient wind and array effects. These
components are instrumental in accurately modeling the wind
farm dynamics. The integration of ZeroMQ [38] enables
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seamless and efficient communication between Fortran, used
in FAST.Farm, and Python, utilized for the control logic.
This integration allows for the data processing and control
adjustments.

The upper right corner of Figure 1 illustrates the data
exchange between FAST.Farm and the control logic. The
measurements of FAST.Farm, which include the yaw angle θ ,
the yaw error γe, the electrical power P, and the wind speed
of each turbine, send to the control logic. The yaw rate γ̇ is
the input into the super controller, which then controls the
yaw angle of the turbine usingOpenFASTwithin FAST.Farm.
Meanwhile, both yaw offset γ and yaw error γe quantify the
angle between the actual wind direction and the turbine’s
yaw orientation. Yaw offset references the wind direction,
while yaw error is relative to the turbine’s yaw position. These
parameters, especially γ and P are important for identifying
wind flow fields and for posterior state estimation via the
Kalman filter.

FIGURE 3. Turbine layout.

In this study, the wind farm layout was designed as
a 1 × 3 turbine arrangement, with turbines positioned side
by side at intervals of 5D (where D represents the turbine
diameter, 126m), as shown in Figure 3. The 1 × 3 turbine
layout, though compact, was selected because it represents
the smallest unit of a wind farm sufficient to observe the
influence of wake interactions on power generation. This
arrangement allows for a focused study of the impact of
wake effects on turbine efficiency within the farm. The
turbines employed in our simulation were modeled after the
NREL 5MW reference turbine [39], widely recognized as
a benchmark model in wind turbine research. This specific
turbine model and layout were integrated into the FAST.Farm
module, aiming to realistically represent the aerodynamic
interactions within the farm.

We utilized FAST.Farm to collect a comprehensive dataset,
including velocity components (u, v,w) and important tur-
bine metrics such as yaw angle and power. This dataset was
instrumental in developing a ROM through Dynamic Mode
Decomposition with Input and Output for Reduced-order
model (DMDior). This approach allowed us to create a model
that accurately captures the operational dynamics of wind
farms. The ROMderived from this extensive FAST.Farm data
is essential for accurately modeling wind farm dynamics and
enhancing their power output.

B. DIMENSIONALITY REDUCTION USING DMDIOR
1) DYNAMIC MODE DECOMPOSITION WITH INPUT AND
OUTPUT FOR REDUCED-ORDER MODEL
In wind farm system analysis, dealing with complex,
high-dimensional systems requires sophisticated modeling.
DynamicMode Decomposition (DMD) [40], a technique that
simplifies complex dynamics into more manageable low-
dimensional representations, is effective but has limitations,
notably its inability to factor in external inputs and outputs.
Addressing this, our research introduces a refined model,
DMDior, which builds on standard DMD by integrating
both control inputs and system outputs. This significant
enhancement facilitates a deeper understanding of turbine
dynamics, particularly for yaw control in varying wind
conditions, leading to improved operational efficiency and
energy production in wind farms. By including input and
output data in the DMD framework, DMDior offers a more
efficient, comprehensive tool for analyzing and optimizing
wind farm performance.

Let us consider the unknown discrete time system we aim
to identify as follows:

xk+1 = Axk + Buk
yk = Cxk + Duk (1)

where xk ∈ Rn, uk ∈ Rp, and yk ∈ Rq are state, input
and output vectors respectively. Matrices A ∈ Rn×n,B ∈

Rn×p,C ∈ Rq×n, and D ∈ Rq×p are the state matrix
constituting the state space representation. The dimensions p
and q of the input and output are generally very small values
compared to n, (p, q ≪ n). The DMDior algorithm can be
divided into following steps:

1) Snapshot data collection and matrix representation:
The snapshot data uk and yk of m state variables
snapshot data xk and (m − 1) inputs and outputs are
collected and expressed in matrix form as in (2). where
uk is an arbitrary input and X ′ is a matrix that shifted X
by time step.

X = [x1, x2, . . . , xm−1] ∈ Rn×(m−1)

X ′
= [x2, x3, . . . , xm] ∈ Rn×(m−1)

I = [u1, u2, . . . , um−1] ∈ Rp×(m−1)

Y = [y1, y2, . . . , ym−1] ∈ Rq×(m−1) (2)

2) Calculate the singular value decomposition (SVD) of
the matrix X and �̃:

X = U6V T
≈ Ur6rV T

r (3)

where U ∈ Rn×n, 6 ∈ Rn×(m−1),V ∈

R(m−1)×(m−1),Ur ∈ Rn×r , 6r ∈ Rr×r , and Vr ∈

R(m−1)×r . The subscript r becomes a design variable
as a truncation value to reduce the dimension of
the system from n to r . The transformation matrix
is determined using the snapshot proper orthogonal
decomposition (POD) algorithm to determine the base
coordinate axis that minimizes the prediction error.
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Since the transformation matrix of the state variable is
a transformation matrix, the left singular vector of the
SVDof thematrixX must be used as the transformation
matrix.
Then, the SVD of the matrix �̃ is as follows:[

X ′

Y

]
=

[
A B
C D

] [
X
I

]
=

[
Ur ÃUT

r Ur B̃
C̃UT

r D

] [
X
I

]
(4)

This can be simplified to:[
UT
r X

′

Y

]
=

[
Ã B̃
C̃ D

] [
UT
r X
I

]
≈

[
Ã B̃
C̃ D

] [
6rV T

r
I

]
Z = F�̃ (5)

where �̃ =

[
6rV T

r
I

]
∈ R(r+p)×(m−1) is a matrix

containing both a reduced product of singular value
and right singular vector of state and input snapshot

information, Z =

[
UT
r X

′

Y

]
∈ R(r+q)×(m−1) is a matrix

containing a product of the reduced left singular vector
of state and the shifted state matrix and output snapshot

information, and F =

[
Ã B̃
C̃ D

]
∈ R(r+q)×(r+p) is a

matrix that DMDior wants to identify as a combination
of the system’s configuration matrix.

�̃ = Û6̂V̂ T
≈ Ûs6̂sV̂ T

s (6)

where Û ∈ R(r+p)×(r+p), 6̂ ∈ R(r+p)×(m−1), V̂ ∈

R(m−1)×(m−1), Ûs ∈ R(r+p)×s, 6̂s ∈ Rs×s, and V̂s ∈

R(m−1)×s. The subscript s becomes a design variable as
a truncated value.

3) Formulation of the Reduced Order Model:
The ROM is then expressed through new equations that
represent the system dynamics in a lower-dimensional
space:

x̃k+1 = Ãx̃k + B̃uk
yk = C̃ x̃k + Duk (7)

where xk = Ur x̃k , and each matrix is as follows:

Ã = UT
r X

′Vs6̂−1
s ÛT

1 ∈ Rr×r

B̃ = UT
r X

′Vs6̂−1
s ÛT

2 ∈ Rr×p

C̃ = YVs6̂−1
s ÛT

1 ∈ Rq×r

D = YVs6̂−1
s ÛT

2 ∈ Rq×p (8)

where ÛT
s = [ÛT

1 ÛT
2 ], Û1 ∈ Rr×s, and Û2 ∈ Rp×s.

4) Calculate eigenvalues, eigenvectors, and DMDior
modes of reduction matrix Ã:
The eigenvalues and eigenvectors of matrix Ã are as
follows:

Ãwi = λiwi, i = 1, 2, . . . , r (9)

The DMDior mode is calculated as follows:

φi = X ′V̂s6̂−1
s ÛT

1 wi (10)

In this study, the DMDior algorithm is applied to the wind
farm to construct a ROM of the wind farm.

2) APPLYING DMDIOR TO WIND FARM MODEL
In our research focusing on wind farm control using DMDior,
we have identified key parameters that reflect the complex
environmental and operational conditions typical of wind
farms. Selecting these parameters was important to ensuring
the accuracy and relevance of our ROM.

The foundation of our study is a dataset comprising
999 snapshots, collected over a simulation period of 1,000
seconds. Each snapshot contains 2,433,696 values, providing
an extensive and detailed temporal representation of the wind
farm’s dynamics and capturing its operational complexity
over time. As illustrated in Figure 3, We utilized FAST.Farm
for the simulation, setting the field dimensions to (x, y, z) =

(1, 500, 500, 155)(m). The grid was designed with 251 points
on the x-axis, 101 points on the y-axis, and 32 points on the
z-axis, with intervals of 6 m, 5 m, and 5 m, respectively. This
spatial configuration is well-suited to accurately capture the
interactions within the wind farm, including the dynamics
between individual turbines.

In our methodology, a pivotal step was the normaliza-
tion of collected data for effective matrix representation
in the DMDior process. This was essential given the
high-dimensional and nonlinear characteristics of wind farm
dynamics. Specifically, the state variable matrix X ∈

R2,433,696×999 was normalized to ensure all data were in a
dimensionless format. This normalization enabled uniform
contributions from each variable across different datasets,
enhancing the numerical stability and performance of the
DMDior algorithm. Concurrently, data for the matrix Y ∈

R3×999 was collected in MegaWatt (MW) units, and the input
matrix I ∈ R3×999 was collected in degrees (◦). Combining a
dimensionless representation for X and MW units for Y was
important to maintaining the integrity and relevance of the
information, ensuring accurate representation and analysis
within our wind farm model.

DMDior in our study serves not only as a technique
for dimensionality reduction but also as a method for
preserving the unique dynamic characteristics of the original
system. We conducted a detailed study to determine the
truncation value, aiming to achieve a balanced representation
of the complex and nonlinear characteristics of wind farm
dynamics. Our goal was to identify a truncation value that
satisfies both the observability and controllability of the
dynamic behaviors captured by the model.

Through these experiments, we determined that the
36-dimensional model strikes an optimal balance between
capturing the essential dynamics of the wind farm and
maintaining computational efficiency. The 36-dimensional
model was chosen because it adequately preserved the
key dynamic interactions within the wind farm flow field
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without introducing unnecessary computational complex-
ity. Detailed comparisons showed that models with fewer
dimensions failed to capture important dynamics, while
models with more dimensions did not provide significant
improvements but increased computational load. Therefore,
the 36-dimensional model provides a reliable foundation for
further analysis and the development of control strategies,
effectively preserving the essential dynamics of thewind farm
system.

The ROM we designed is suitable for applying model
predictive control. This model will serve as a state-space
model within theModel Predictive Control (MPC) algorithm.

C. VALIDATION OF THE REDUCED-ORDER MODEL
In this study, we validated the ROM created using DMDior.
Our validation process aimed to assess the accuracy and
reliability of the ROM by employing novel inputs not used
during the model’s construction phase. Figure 4 illustrates the
input signals used for both the construction and subsequent
validation of the model. We employed these signals because
they provide distinct transitions that help in capturing the
system’s dynamic response. These signals allow us to observe
the system’s reaction to sudden changes, making it easier to
model the wind farm’s dynamics accurately. Inputs used to
identify the model are represented by solid blue lines, while
those used for validation are depicted as dashed red lines. This
deliberate methodological choice ensures a comprehensive
evaluation of the ROM’s performance with new input signals.

For the specific case of the 1 × 3 turbine configuration,
which involves turbines T1, T2, and T3 arranged from
west to east, targeted strategies were implemented. These
strategies included controlled adjustments to the yaw angles
of all turbines in response to the wind direction variations,
optimizing their aerodynamic efficiency. A pivotal step
in our methodology was the deliberate introduction of a
noise component into the input signals before applying the
DMDior technique for ROM development. To this end,
Gaussian noise e, characterized by e ∼ N (0, 0.1), was
added to the inputs to more accurately simulate operational
variabilities. The augmented input signal, incorporating this
noise, is mathematically expressed as follows:

ũ(t) = u(t) + e (11)

where ũ(t) denotes the noise-augmented input signal, u(t)
represents the original input signal, and e signifies the
Gaussian noise. This procedural detail was important for
demonstrating how operational noise impacts the ROM’s
effectiveness and reliability. Our findings show that incor-
porating noise not only tests the model’s resilience but also
significantly increases its robustness and real-world utility.
The ability of the model to accommodate noise highlights
a substantial improvement in its generalization capabilities,
a vital aspect for dynamic systems like the wind turbine
configurations explored in this study.

To validate the ROM, it was essential to compare the
reconstructed flow fields from the ROM with the original

FIGURE 4. Input signal profiles for DMDior model identification and
validation.

models derived from FAST.Farm simulations. By examining
and quantifying the discrepancies between these flow fields,
wewere able to assess the ROM’s fidelity. Given that thewind
speed in front of the turbine rotor significantly affects power
generation, our comparison specifically targeted the velocity
components in this critical region. Particularly, at moments
200, 400, and 800 seconds, we focused on the Y -Z plane
to provide a clear visual representation of the original flow
fields, the reconstructed flow fields from the ROM, and
the errors between them. As demonstrated in Figure 5, this
comparison effectively illustrates that the ROM accurately
captures the characteristics of the original model, thereby
confirming its validity and the precision of its reconstruction
capabilities.

Throughout the simulation period, we conducted a thor-
ough analysis of errors related to the primary velocity
components: u (aligned with the x-axis), v (along the y-
axis), and w (along the z-axis), denoted as Eu, Ev, and
Ew, respectively. To comprehensively assess the combined
errors from these three dimensions, we introduced the
total velocity error magnitude, EU , which is defined as
error of U =

√
u2 + v2 + w2. This measure, depicted in

Figure 6, illustrates the progression of errors for each velocity
component throughout the simulation, measured in meters
per second (m/s). Despite observing significant errors during
transitions from impulse response to steady state in the
model development phase, the average error remained around
1.18 m/s, underscoring the model’s notable accuracy.

Additionally, Table 1 provides a closer look at the
dynamics in front of the rotor, detailing the minimum,
maximum, average, and standard deviation for each velocity
component at this critical location across different turbines.
The comprehensive data confirm the ROM’s ability to
accurately capture the essential dynamics of the flow field,
maintaining errors within acceptable limits, especially for
the velocity components at the forefront of the rotor. This
combined analysis underscores the ROM’s precision and
effectiveness in modeling the behavior of the flow field,
highlighting its value in simulations involving complex
aerodynamic interactions.
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FIGURE 5. Comparison of FAST.Farm data and reconstruction data. The dashed circle indicates the diameter of a NREL 5MW turbine.

FIGURE 6. Simulation errors in velocity components u, v, w according to
simulation time.

TABLE 1. Velocity component error according to simulation time.

This validation process, enhanced by comprehensive
statistical and graphical analysis, confirms that the ROM
effectively captures the wake dynamics of the wind farm
system, maintaining an acceptable error margin, particularly
for the velocity components at the front of the rotor. The

robustness and reliability of the model are thus firmly
established, paving the way for the development of advanced
and effective wind farm management strategies.

III. IMPLEMENTATION OF MODEL PREDICTIVE CONTROL
WITH KALMAN FILTER
A. PROBLEM FORMULATION FOR MPC IN WIND FARM
CONTROL
In this section, we outline the formulation of the MPC
problem, aiming to maximize the power output of a
wind farm. The primary objective of this approach is
to determine the optimal yaw offsets and yaw rates for
the wind turbines. This strategy is designed to not only
maximize power production but also adhere to opera-
tional constraints, ensuring the wind farm’s safety and
efficiency.

As we narrow our focus from the overarching goal of
maximizing power production within the wind farm to
the detailed implementation of our control strategy, the
necessity to adapt to the dynamic and intricate nature of wind
farm environments becomes clear. The time-varying wind
conditions and the complex interactions between turbines
demand a control strategy that is not only adaptive but
also meticulously precise. Given the intricate challenges
presented by wind energy production, the incremental MPC
method stands out as particularly proper for this context. This
approach, bymodulating the differences between consecutive
control inputs, offers a refined mechanism to handle the
operational complexities inherent in managing wind farms.
The distinguishing strength of incremental MPC lies in its
precision—allowing for the meticulous adjustment of control
actions. This ensures that each change not only aligns with
the operational capabilities of the turbine actuators but also
provides a safeguard against the potential instabilities that
sudden shifts might provoke. Through this method, we can
achieve a balance of optimal performance and stability,
tailoring our control strategies to the nuanced demands of
wind power maximization.

To implement this method, it is essential to redefine the
system’s dynamics by integrating incremented control inputs
into an existing state-space model. The former model can be
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defined by (7).[
x̃k+1
xuk+1

]
=

[
Ã B̃

Op×r Ip×p

] [
x̃k
xuk

]
+

[
B̃

Ip×p

]
1uk

yk =
[
C̃ D

] [
x̃k
xuk

]
+ D1uk (12)

where 1uk , xuk , and xuk+1 is defined as following.

1uk = uk − uk−1

xuk = uk−1

xuk+1 = xuk + 1uk (13)

In the final formulation of the state-space model for
our control strategy, the augmented state vector xa can be
succinctly expressed as seen in (14), which comprises the
system states and control input vector.

xa =

[
x̃
xu

]
(14)

The subsequent state xa is determined by following:

xak+1 = A′xak + B′1uk
yk = C ′xak + D1uk (15)

Equation (15) represents the state-space model utilized
for incremental MPC in FAST.Farm. Here, 1uk symbolizes
the incremental control input, that is, the yaw rate, and yk
signifies the system’s output, namely, the electrical power
output of the wind turbine. This comprehensive state-space
representation encapsulates the dynamics of our control
system, laying the groundwork for the optimized regulation
of the yaw rates within the operational constraints of the wind
farm.

The objective function of the MPC is pivotal to its efficacy
in maximizing the wind farm power output. It is formulated
as follows:

max
ut:t+N−1

J = yTt+NQf yt+N

+

N−1∑
j=0

(
yTt+jQyt+j − 1uTt+jR1ut+j

)
(16)

where y represents the power output from each turbine. The
function spans a performance interval N , with j, the length
of the horizon, set to 10. For the optimization process, the
weighting factors Qf and Q are utilized as identity matrix
I3×3, and R is implemented as 0.1 ∗ I3×3, to finely tune
the optimization. These specific settings are instrumental
in adjusting the optimization process to achieve desired
outcomes.

The operational constraints are a critical component of the
MPC framework. These constraints involve limitations on
the yaw offsets γi of the turbines, which are the essential
in preventing mechanical stress and reducing aerodynamic
interference between turbines, thereby preserving efficiency.
Specifically, the yaw offsets for turbines T1 and T2 are
constrained between γmin = −25◦ and γmax = 0◦.

In addition to these positional constraints, the rate of
change of the yaw offsets, denoted as γ̇min = −0.3◦/s
and γ̇max = 0.3◦/s. These limits are imposed to avoid
rapid yaw movements that could cause mechanical strain
or reduce the aerodynamic performance of the turbines.
This range optimizes their aerodynamic performance and
avoids damaging loads. The turbine T3, on the other hand,
employs a greedy control strategy, maintaining a yaw offset
of 0◦ because it operates downstream. This constraint allows
for responsive yet controlled adjustments in each turbine’s
orientation, essential for maintaining structural integrity and
operational stability. The formal constraints for yaw offsets
are expressed as follows:

xat+j+1 = A′xat+j + B′1ut+j, j = 0, . . . ,N − 1 (17)

γmin ≤ ui ≤ γmax, i = 1, 2, 3

γ̇min ≤ 1ui ≤ γ̇max, i = 1, 2, 3 (18)

where ui denotes the yaw offset of the i-th turbine that i
is the number of the turbine, and j is the horizon length of
the MPC. This constraint is instrumental for the MPC in
making decisions that balance immediate power production
objectives with the long-term condition and efficiency of the
wind farm.

In terms of computational considerations, reducing the
state-space model to 36 dimensions has significantly stream-
lined the computational process. The reduced matrices Ã ∈

R36×36, B̃ ∈ R36×3, C̃ ∈ R3×36, and D ∈ R3×3 enhance
computational efficiency by reducing demands on storage
andmemory. Such efficiency is important for the applications
and large-scale implementations, ensuring that the model
remains both practical and responsive.

B. STATE ESTIMATION VIA KALMAN FILTERING
The design of the Kalman filter in our wind farm control
system is tailored to effectively interpret the noisy and
uncertain data characteristic of wind energy environments.
This precision is important for achieving accurate state
estimation, which directly influences the efficiency and
reliability of the MPC. Therefore, we introduced an Adaptive
Kalman Filter (AKF), which improves the ability to adjust
its parameters, enhancing the system’s responsiveness to
changing environmental conditions. This characteristics of
the AKF enabled us to evaluate the practicality of our wind
farm control system more effectively. By adapting to the
dynamics of the wind farm environment, the AKF ensured
more reliable and robust state estimations.

1) IMPLEMENTATION OF ADAPTIVE KALMAN FILTER
Our AKF design involves calibrating its parameters to align
with the dynamics of the wind farm as represented by the
ROM. The variable x̃k represents a state variable that has
been dimensionally reduced to r dimensions from an original
n dimensional wind flow field. The variables uk and zk are
the yaw offset and the power of each turbine. The random
noise variables wk ∈ Rr and vk ∈ Rq respectively represent
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the process noise and the measurement noise. The state-space
representation and measurement equation are formulated as
follows:

x̃k+1 = Ãx̃k + B̃uk + wk
zk = C̃ x̃k + Duk + vk (19)

where the subscript k is the time variable, which indicates the
time step. the process noise wk and the measurement noise
vk are assumed to be Gaussian distributed white noise as
follows:

E[wk ] = 0, E[vk ] = 0, E[wivTj ] = 0, ∀ i = j ∈ N (20)

E[wiwTj ] = Qk , E[vivTj ] = Rk , ∀ i = j ∈ N (21)

where covariance matrices Qk for the process noise and Rk
for the measurement noise at step k as in (21).
The AKF algorithm is an iterative process of correction-

prediction steps. In the correction step, the prior variables
are employed to refine the posterior variables, whereas in the
prediction step, posterior variables are utilized to update the
prior variables. Equations (22) to (25) formalize the Kalman
filter algorithm.
Step 1 - Initialization:

ˆ̃x−1|−1 = E[x̃−1]

P−1|−1 = E[(x̃−1 − ˆ̃x−1|−1)(x̃−1 − ˆ̃x−1|−1)T ] (22)

where the subscript ‘‘k|k ′′ denotes a posteriori state. Specif-
ically, ˆ̃x−1|−1 represents the initial posteriori state estimate,
andP−1|−1 represents the initial posteriori covariancematrix.
Step 2 - Prediction:

ˆ̃xk|k−1 = Ã ˆ̃xk−1|k−1 + B̃uk−1

Pk|k−1 = ÃPk−1|k−1ÃT + Qk−1 (23)

where the subscript ‘‘k|k − 1′′ denotes a priori state. The
priori state estimate ˆ̃xk|k−1 is predicted through the dynamic
relationship between the posteriori state estimate and control
inputs. The priori covariance matrix Pk|k−1 is updated based
on the posteriori covariance matrix and the process noise
covariance Qk−1.
Step 3 - Correction:

ẑk|k−1 = C̃ ˆ̃xk|k−1 + Duk
Sk = C̃Pk|k−1C̃T

+ Rk

Kk = Pk|k−1C̃T S−1
k (24)

ˆ̃xk|k = ˆ̃xk|k−1 + Kk (zk − ẑk|k−1)

Pk|k = Pk|k−1 − KkSkKT
k (25)

where ẑk|k−1 is the priori measurement estimate predicted
from the priori state estimate. Sk is the innovation covariance
and Kk is the kalman gain as in (24).

In (25), ˆ̃xk|k represents the posteriori state estimate, which
subsequently serves as an input to the MPC to determine
the optimal control inputs for FAST.Farm. Additionally, Pk|k
indicates the posteriori covariance matrix.

Kalman filter design variables like Qk−1, Rk , and P0 are
set using system knowledge and empirical methods. Yet,
physical relevance can be lost when reducing matrix A
dimensions with DMDior, which may render system knowl-
edge impractical and trial-and-error costly in finding correct
covariances. To address these challenges, we designed an
AKF by drawing on themethodologies and insights presented
in the studies [31], [32], [33], [34].

At each time step, the AKF updates the noise covariances
Qk−1 and Rk using ‘innovation’ and ‘residual’, respectively.
the innovation dk is the difference between the measurement
zk and the priori measurement estimate ẑk|k−1 as in (26).
In contrast, the residual εk is the difference between the
measurement zk and the posteriorimeasurement estimate ẑk|k
estimated from the posteriori state estimate as in (29).

The formulas that are represented in (27) and (30), which
offer an innovation or residual-based approach for adaptive
estimation, have been proven by [32]. Building on this
foundation, [31] advanced the approach by proposing a
delayed updating method that utilizes a forgetting factor
about the noise covariances. We adopted this delayed
updating method, and it is incorporated into (28) and (31).

• Update the Qk−1 with innovation:

ẑk|k−1 = C̃ ˆ̃xk|k−1 + Duk
dk = zk − ẑk|k−1 (26)

wk−1 = x̃k − (Ãx̃k−1 + B̃uk−1)

ŵk−1 = ˆ̃xk|k − ˆ̃xk|k−1

= Kk (zk − ẑk|k−1) = Kkdk (27)

Q̂k−1 = E[ŵk−1ŵTk−1]

= E[Kk (dkdTk )K
T
k ]

= KkE[dkdTk ]K
T
k

Qk = αQk−1 + (1 − α)Q̂k−1 (28)

• Update the Rk with residual:

ẑk|k = C̃ ˆ̃xk|k + Duk
εk = zk − ẑk|k (29)

Ŝk = E[εkεTk ]
= E[vkvTk ] − C̃Pk|k C̃T

R̂k = E[εkεTk ] + C̃Pk|k C̃T (30)

Rk+1 = αRk + (1 − α)E[εkεTk ] + C̃Pk|k C̃T (31)

where α is a forgetting factor [31], (0 < α < 1),
serving as an alternative to the moving window approach
in the expectation of errors in [33] and [34]. This factor
modulates update speed by equilibrating previous and emerg-
ing covariance values. Subsequent to the prediction phase,
process noise covariance Qk−1 is refined employing (28).
Post-correction, measurement noise covariance Rk undergoes
updating via (31), preparing noise covariances for subsequent
steps.
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Updates to noise covariances commence from the time step
at k = 1, excluding the initial time step at k = 0. Specifically,
R1 is set to R0 when applying (31) at k = 1 for Rk .

2) VALIDATION OF KALMAN FILTER IN WIND FARM
This research on wind farm control systems places significant
emphasis on the integration and validation of an AKF in
conjunction with FAST.Farm, a medium-fidelity wind farm
simulator. The next section will elaborate on the integration
aspect, while this section focuses on the validation of the
AKF.

To validate the AKF’s effectiveness within a wind farm
setting, we conducted a comprehensive simulation spanning
1,000 seconds using FAST.Farm. Post-simulation, the AKF’s
design was ascertained using actual measurements zk against
the predictedmeasurements ẑk|k−1. Figure 7 illustrates graphs
comparing the actual power measured in FAST.Farm to the
power predicted by the AKF over the same duration. The
innovation, the difference between measured and predicted
power, confirms its containment within the standard deviation
range predicted by the AKF. The outcomes indicate that the
AKF effectively predicted the turbines’ power output.

FIGURE 7. Power innovation and standard deviation for each turbine.

The level of accuracy achieved by the AKF not only
validates its robustness but also emphasizes its essential role
in optimizing operational efficiency and control within wind
farm systems. Accurate state estimation, as facilitated by
the AKF, is indispensable for the effective deployment of
MPC strategies. These strategies rely heavily on precise and
current data to optimize wind farm performance. The AKF’s
exemplary performance in this simulation strongly supports
its practical implementation for managing and enhancing
wind energy resources.

C. INTEGRATED MPC FRAMEWORK
The integration of MPC with an AKF represents a advance-
ment in wind farm control systems, substantially enhancing

both operational efficiency and power output. As shown
in Figure 8, this synergistic framework combines the
predictive capabilities of MPC with the precision of the
AKF. This integration enables the optimal adjustment of
turbine yaw angles, significantly improving overall wind
farm performance.

This integrated approach focuses on accurately deter-
mining yaw angles for each turbine, a important factor in
maximizing farm power output. TheMPC, leveraging precise
state predictions from the AKF, dynamically calculates the
yaw rate for each turbine to achieve the optimal yaw angles.
These calculations consider various parameters, including
wind speed, direction, and interactions between turbines,
to ensure optimal power output under diverse operational
conditions.

In this setup, the AKF plays an essential role in contin-
uously updating the wind farm’s state estimates, utilizing
measurement data from FAST.Farm. This data accurately
reflects the wind farm’s true operational conditions and
is processed through the ROM. Consequently, the Kalman
filter provides the MPC, detailed insights into the farm’s
status, including critical aspects such as wind patterns and
turbine metrics. This capability is pivotal for the MPC to
make accurate predictions of future states and to adjust
yaw angles subsequently to maximize power output. The
integrated system is designed not only to enhance immediate
power output but also to improve the long-term efficiency and
sustainability of the wind farm.

IV. RESULTS AND ANALYSIS
A. SIMULATION RESULTS
This section presents the results of our simulations, aimed
at evaluating the performance of the proposed approach.
The wind conditions used in these simulations are shown
in Figure 2. The results provide valuable insights into our
approach’s effectiveness.

The simulation results demonstrate the efficacy of the
proposed approach in maximizing the power output of a
wind farm within the given constraints. The simulation
was conducted over 1,000 seconds to provide a sufficient
timeframe for observing the impact of wake effects and
the performance of control strategies, considering it takes
approximately 200 seconds for the wind to propagation from
Turbine T1 to T3. This duration allows for a comprehensive
evaluation of the MPC framework’s efficiency, considered
appropriate for assessing its performance relative to greedy
control.

Figure 9 displays the outcomes for the optimal yaw offset
for each turbine alongside the turbine’s yaw offset. The
turbine’s yaw offset is indicated by the blue solid line, while
the red solid line represents the optimal yaw offset determined
by the MPC. T1 and T2 effectively apply the turbine’s yaw
offset along the optimal yaw offset value, while T3 is adjusted
to produce maximum power through greedy control.

Figure 10 illustrates a comparative power output graph
over a period of 1,000 seconds. The blue dotted line in
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FIGURE 8. MPC framework.

FIGURE 9. Optimal yaw offset for each turbine.

the graph represents the power generated under greedy
control, whereas the red solid line indicates the power output
for the optimal yaw as calculated from the MPC model.
Greedy control initially produces more power for Turbine
T1, positioned at the front. However, for Turbines T2 and
T3, MPC outperforms greedy control in terms of power
generation. Up until about 250 seconds, greedy control
performs better due to the wake effects in the simulation
not yet significantly impacting the other turbines. This is the
primary reason why greedy control initially produces more
power. However, after this period, it becomes evident that
controlling the yaw angles using the MPC framework results
in greater power production thanwhat is achievedwith greedy
control.

To evaluate the performance of MPC over a 1,000 second
span, we introduced a metric called the power growth
rate (PGR). This metric quantitatively demonstrates how
much MPC surpasses greedy control in power generation.
Additionally, for a clearer comparison another algorithm,

FIGURE 10. Power for each turbine and farm.

YDNN [17], which also output the yaw offset, were included
in the comparison. The PGR calculation formulas are as
follows:

PGRMPC (%) =
PMPC − PGreedy

PGreedy
∗ 100. (32)

PGRYDNN (%) =
PYDNN − PGreedy

PGreedy
∗ 100. (33)

YDNN include the first-order actuator model as shown
in (34), which is given by:

γ̇ = (γcmd + γe)/τ (34)

This allows for a clearer comparison of the performance
of MPC and YDNN. Figure 11 displays the cumulative
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PGR, allowing a visual comparison of the cumulative power
production by greedy control, MPC, and YDNN control
methods. Initially, the greedy control produces more power
than the other methods, but after 494 seconds, the MPC
cumulatively generates more power than greedy control.

FIGURE 11. Comparison of cumulative PGR.

The proposed MPC in this study allows for finer adjust-
ments, which results in faster recovery from wake effects
compared to the another algorithm. This improved precision
in controlling the yaw rate enables MPC to optimize power
generation more effectively, demonstrating its superiority
in adapting to dynamic conditions and maximizing overall
efficiency.

Table 2 presents both the cumulative power generated
by greedy control, MPC, and YDNN control, along with
the calculated PGR, over a 1000sec simulation period.
The results reveal that, the incremental MPC produced
approximately 0.1522GW more energy than the greedy
control method. This equates to an increase of about 4.72%
in farm power output. This significant enhancement in power
output underscores the efficacy of the incremental MPC
approach, particularly in its ability to optimize the power
output of the wind farm.

TABLE 2. Power comparison between greedy and MPC.

B. DISCUSSION OF THE FINDINGS AND IMPLICATIONS
The analysis of the PGR demonstrates a significant improve-
ment in power output resulting from the application of the
MPC framework compared to greedy control in wind farm
operations. This comparison highlights the direct advantages
of implementing MPC and provides clear evidence of its
superior performance over greedy control, showcasing the
efficacy of MPC in enhancing the efficiency of wind farm
power generation.

Greedy control requires each turbine to independently
maximize its power output. This method necessitates separate
wind speed and direction measurements for each turbine,
leading to less efficient power production due to individual

control and wake effects. In contrast, the MPC framework
optimizes the entire farm’s turbine alignment and operation
collectively using upstream wind information. This strategy
streamlines the control process by minimizing the need
for individual turbine data and boosts farm efficiency
through a coordinated approach that acknowledges turbine
interdependencies.

A crucial component of ourMPC framework is the integra-
tion of the AKF. The AKF provides accurate state estimation
by correcting model predictions with real-time data. This
integration is essential for dealing with uncertainties and
noise in measurement data, thus enhancing the reliability and
precision of the control strategy. By ensuring that the MPC
framework has access to accurate and up-to-date information,
the AKF significantly improves the ability of the MPC to
adapt to changing wind conditions, resulting in better overall
performance and stability.

The outcomes of this study pave the way for further
investigations into the scalability of the MPC framework,
especially under fluctuating wind conditions and intricate
wind farm configurations. These findings imply the practical
applicability of MPC in real-world scenarios. Moreover,
the results represent the potential of MPC to augment the
operational efficiency of wind farms, particularly in scenarios
afflicted by wake effects. While the current study applies
this approach to a 1 × 3 turbine layout, the efficacy of the
MPC framework is expected to be applicable across a broader
spectrum of conditions.

In summary, the key contributions of our MPC framework
in this study are:

• Dynamic optimization:Enables continuous optimization
of control parameters, ensuring turbines operate at
optimal settings to maximize power output.

• Simplified control via ROMs: Utilizes reduced-order
models to simplify complex aerodynamic interactions,
allowing for rapid and precise control decisions.

• Adaptability:Adapts to changing wind patterns, making
proactive adjustments based on time-varying data and
forecasts.

• Accurate state estimation with AKF: Integrates the
Adaptive Kalman Filter to improve control strategy reli-
ability and precision, crucial for real-time adjustments
and managing uncertainties.

• Incremental control for fine-tuning yaw rates: Employs
an incremental approach to MPC, enabling fine adjust-
ments to yaw rates, which further maximizes power
production and reduces wake effects.

These features collectively demonstrate the potential of our
MPC framework to significantly improve the performance
and efficiency of wind farm operations under a variety
of scenarios, highlighting its robustness and real-world
applicability.

V. CONCLUSION
In this study, we successfully developed a ROM to maximize
the power output of a wind farm using MPC. Initially,
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a 36-dimensional ROM was designed via DMDior using
snapshot data collected from FAST.Farm. This process
was crucial for identifying and extracting the dynamic
characteristics of the wind farm flow field. The ROM
effectively captured the wake model, and its performance was
validated through model reconstruction.

The developed ROM was integrated into the MPC frame-
work to solve the optimization problem of maximizing wind
farm power output. This approach facilitated the generation
of the optimal yaw angle under time-varying wind conditions
and was further enhanced by incorporating an adaptive
Kalman filter for more realistic operational scenarios. The
study results showed that the power output of the wind
farm under this MPC approach was approximately 4.72%
higher compared to the traditional greedy control scheme,
demonstrating the effectiveness of our proposed method.

This study makes several key contributions to the field.
We successfully developed a ROM that accurately captures
the dynamic characteristics of wind farm flow fields, which
is essential for effective control and optimization. By inte-
grating this model with an MPC framework, we optimized
turbine’s yaw angles, resulting in significant improvements
in power output. Furthermore, the inclusion of an AKF
enhanced the realism and applicability of the MPC approach
in operational scenarios by providing accurate state esti-
mation. The simulation validation demonstrated a 4.72%
increase in power output compared to traditional control
methods, underscoring the practical effectiveness of our
approach.

However, the limitations of the current study include the
use of a linear model based on singular wind speed and
direction. Future research will address these constraints by
expanding beyond linear assumptions to incorporate more
complex and variable wind conditions. This will enhance the
MPC framework’s applicability, enabling a more dynamic
and flexible control system capable of adapting to wind
complexities, thereby further improving the efficiency and
reliability of wind farm operations.

In conclusion, this study provides a promising path to
significantly advance the control and optimization techniques
of wind farm operations, improving power generation and
operational efficiency. Future work should aim to extend
this study to include a wider range of wind farm configu-
rations, evaluate its performance in real-world applications,
and explore additional optimization techniques for further
improvement. By addressing these areas, the practical impact
and applicability of the proposed MPC framework can be
significantly enhanced.
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