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ABSTRACT Evolutionary and swarm intelligence-based algorithms are commonly used as the search
strategy component in Neural Architecture Search (NAS). However, little work has been done to quantify
the performance improvements that these nature-inspired metaheuristics offer compared to simpler baseline
methods such as random search. This work evaluates the efficacy of Particle Swarm Optimization (PSO) as
a NAS strategy for chain-structured Convolutional Neural Networks (CNNs) by conducting thorough and
fair comparisons of a PSO-based algorithm (termed evobpso) to 12 alternative methods from the literature
as well as random search. A total of 10 benchmark datasets are used for model evaluation, including eight
MNIST variations, MNIST-Fashion, and CIFAR-10. The results of this study suggest firstly that evobpso is a
competitive NAS algorithm when compared to the literature methods, producing models with the lowest test
error rate in three datasets (10.84% in MNIST-RD+BI, 1.62% in MNIST-RB, 5.44% in MNIST-Fashion).
Secondly, a statistical comparison of 30 independent executions of evobpso and random search showed that
the differences between the mean error rates of the models produced by the two algorithms were rather
limited, ranging between 0.02% and 1.9%, but always in favor of evobpso. Therefore, it is concluded that
evobpso is a viable NAS strategy able to find top-performing architectures, while random search also merits
significant consideration due to its lower complexity and good average performance.

INDEX TERMS Neural architecture search, particle swarm optimization, neuroevolution, convolutional
neural networks.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have been success-
fully utilized in various computer vision applications. One
of the early studies on CNNs was the work of LeCun et al.
on hand-written document recognition [1]. Since then,
a large number of improved network architectures has been
presented, illustrating the interest of the research community
and the potential of the methodology [2], [3], [4], [5],
[6]. Some of the more successful hand-crafted architectures
include LeNet [1], AlexNet [2], ResNet [3], DenseNet [4],
Inception [5], and U-Net [6]. All of the above networks were
crafted by experts in their field, after substantial trial and
error.

The overall design of a neural network can be separated
into the macro-architecture (number of layers, connectivity)
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and micro-architecture (kernel size, pooling layer type).
Finding optimal values of the macro- and micro-architecture
is time-consuming and necessitates domain-specific knowl-
edge. As a result, there is currently substantial interest in
the research community in automating the design of CNNs,
a field termed Neural Architecture Search (NAS). NAS is a
subfield of automated machine learning and overlaps with
hyper-parameter optimization [7], [8]. NAS algorithms are
composed of three main components: search space, search
strategy, and performance evaluation. Below, a summary of
these three components is provided; for more comprehensive
reviews the reader is referred to [7] and [9].

The search space defines the set of architectures that the
NAS algorithm is able to find [7]. One possible search space
is that of sequential chain-structured networks, where each
layer receives input from the previous layer and sends its
output to the next. More sophisticated search spaces consist
of layers whose connectivity can be described as a directed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/

91229


https://orcid.org/0000-0002-8616-3534
https://orcid.org/0000-0002-9285-2555

IEEE Access

K. Deligkaris: PSO and Random Search for Convolutional NAS

acyclic graph, with potentially multiple inputs or outputs per
layer. Besides the layer connectivity, the hyper-parameters of
each layer (e.g., the number of filters in convolutional layers)
are also part of the search space.

The search strategy defines the method employed to
create the solutions that will be evaluated. Bayesian opti-
mization [10], evolutionary algorithms [11], reinforcement
learning [12], and random search [13] have all been
successfully utilized. For example, Real et al. showed that
image classifiers evolved through reinforcement learning or
evolution strategies have higher classification accuracy than
random search [14]. Another study used the Adolescent
Identity Search Algorithm (AISA) to optimize popular
pre-trained convolutional architectures for diabetic retinopa-
thy classification [15]. The results were promising, since
AISA performed better than both random hyper-parameters
and Bayesian optimization.

Performance evaluation refers to the methodology of
assigning a fitness value to each candidate solution (neural
network). Several alternatives have been proposed, such
as full training, partial training, surrogate models, and
progressive training. Full training is the most accurate but also
computationally expensive, as each solution needs to be fully
trained before evaluation. Due to prohibitive computational
costs, several studies have opted for partial training during
optimization (down to one epoch), after which the optimum
solution is fully trained from scratch for a longer period (e.g.,
100+ epochs) [16], [17], [18].

Surrogate models offer an alternative, computationally
efficient approach [19]. However, their performance depends
on the ability of the surrogate model to make accurate
predictions for a large number of architectures based on
a small amount of training data, which poses its own
challenges. Lastly, progressive training refers to the case
where the amount of training data used is initially limited but
grows as the search progresses, improving the accuracy of
network evaluation [20].

Due to the high computational costs of NAS, evolutionary
and swarm intelligence-based algorithms are commonly
used as NAS search strategies, as they promise to quickly
find the global or local optima of a given problem. More
specifically, a variety of algorithms can be found in the
NAS literature, for example Particle Swarm Optimization
(PSO) [16], [21], genetic algorithms [22], as well as hybrid
approaches [23]. Despite their prevalence, however, whether
or not evolutionary metaheuristics outperform simpler base-
line hyper-parameter optimization methods, such as random
search, has not been clarified yet.

The contribution of this work is two-fold. Firstly,
a PSO-based NAS algorithm is devised (termed evobpso) and
its performance evaluated against state-of-the-art methods.
Secondly, an objective and statistically thorough comparison
to random search is conducted by replacing the search
strategy (PSO) with random initialization, while keeping
the rest of the algorithm the same. As a result, the
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comparison isolates the contribution of PSO (the search
strategy component) from the rest of the implementation
details (e.g., search space). It is found that evobpso is
a competitive algorithm with regards to both state-of-the-
art approaches as well as random search. However, the
performance differences compared to random search were
rather limited and dependent on the dataset. The results of this
work support the hypothesis that swarm intelligence-based
NAS approaches offer tangible but small improvements when
compared to random search.

Il. RELATED WORK

A. PARTICLE SWARM OPTIMIZATION

PSO is a population-based, iterative, stochastic optimization
algorithm originally proposed by Kennedy and Eberhart in
1995 [24]. PSO has attracted a lot of attention in science and
engineering due to its good performance, fast convergence,
and low number of hyper-parameters [25]. These properties
also make it suitable as a search strategy in computationally
demanding NAS algorithms [16], [26]. PSO originates from
the collective behavior of flocks of birds or schools of fish.
PSO simulates animals’ social behavior, where all group
members work together to accomplish a common goal. Each
individual, termed particle, is affected by their personal as
well as the group’s history.

Algorithmically, each particle keeps track of its own
personal best solution as well as the swarm’s best solution
(termed the global best solution). In each iteration, a particle’s
new position is updated based on both the personal and
global best solutions. The position update formula for PSO
is defined as:

xi(t + 1) = x;(t) +vit + 1) ey

where x; and v; are the position and velocity of the i-th
particle respectively. The velocity is calculated according to
the following formula:

vilt + 1) = 0 x vi(t) + c1 x r1 x (pi(t) — xi(1))
+ 2 x ry x (gi(1) — xi(1)) (2)

where w, ¢, and c¢; are hyper-parameters controlling the
behavior of the algorithm. The first hyper-parameter w is
termed momentum and affects how much the velocity of the
previous iteration will influence the velocity at the current
iteration. The second and third parameters, c; and c;, are
termed acceleration coefficients and control the influence
of the personal and global best solution respectively. The
personal and global best positions are denoted as p; and g;
respectively. Lastly, 1 and r, are random numbers in [0, 1]
aiding in search space exploration.

The Boolean PSO (BPSO) is a variation of the real-valued
PSO algorithm. BPSO is based on Boolean algebra and
although its parameters closely mimic those of the real-valued
PSO, BPSO works with binary variables [27], [28]. In BPSO,
the position and velocity update formulas are defined for each
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bit d in a particle as follows:
xg(t+1) =xq(t) ®vat + 1) 3

where the velocity is calculated according to the following
formula:

va(t + 1) = @ - vq(t) + ¢p - (pa(t) ® x4(1))
+ cg - (8a(t) @ x4(1)) “

In the above formulas, the Boolean and (-), or (+), and
xor (®) operations are used. The momentum (w), ¢, and
¢y acceleration coefficients are bits assigned stochastically
from predefined parameters (€2, Cp, Cg)in [0, 1] respectively.
More specifically, €2, C, and C, define the probability of w,
¢p, and ¢, being equal to 1. These three BPSO coefficients
define the influence of the previous iteration’s velocity, the
personal best solution, and the global best solution, similar to
the parameters of the real-valued PSO. For more information
on the selection of hyper-parameters the reader is referred to
the existing studies by Bratton and Kennedy [29], Trelea [30],
and Shi and Eberhart [31].

B. PSO FOR NEURAL ARCHITECTURE SEARCH

One of the first attempts to use PSO for NAS was
IPPSO, which used an encoding inspired by network IP
addresses [32]. In IPPSO, a specific layer is encoded by
a binary string of two bytes, which is then converted to
two separate values of one byte (termed an IP address).
To accommodate variable-depth networks, disabled layers are
utilized. Therefore, the number of dimensions in each particle
is constant, while the depth of the encoded network can vary
based on the number of disabled layers. IPPSO was evaluated
on three common benchmark datasets, the MNIST Basic, the
MNIST with Rotated Digits and Background Images, and the
Convex sets [33].

Junior and Yen proposed a PSO variant for NAS, up to
20 layers deep, termed psoCNN [16]. It was shown that
the psoCNN algorithm could outperform several other algo-
rithms in nine image classification problems, while having
competitive run-time performance and quick convergence.
A drawback of the psoCNN approach is that for each
iteration, the parameter values are being copied directly from
the global or personal best. In turn, this limits search space
exploration and the quality of the optimum solution found.

Subsequently, Lawrence et al. [17] proposed a method with
a new velocity update mechanism that takes into account
the value of layer parameters when both layers are convolu-
tional, an improvement upon the earlier psoCNN algorithm.
In addition, a group-based encoding was used to ensure the
number of pooling layers is valid without additional rules.
Eight well-known datasets were used for evaluation, with the
results showing state-of-the-art performance.

Singh et al. [34] proposed a PSO-based algorithm with two
different optimization levels (MPSO-CNN). The population
at the first level optimizes the architecture in terms of the
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number of convolutional layers, the number of pooling layers,
and the number of fully connected layers. At the same
time, the population at the second level optimizes the hyper-
parameters (e.g., number of filters) of each architecture.
MPSO-CNN utilized a sigmoid-like function to control the
inertia weight and maintain a balance between exploration
and exploitation. MPSO-CNN was tested on five benchmark
datasets including MNIST, CIFAR-10, and CIFAR-100,
having improved performance compared to other competitive
algorithms and models.

Nistor and Czibula [35] introduced IntelliSwAS, a frame-
work for discovering neural architecture cells. Cells are
small modules that can be aggregated in order to cre-
ate complete network architectures. IntelliSwAS utilizes a
machine learning model for predicting the relative quality of
a pair of network cells, rather than full training and testing.
IntelliSWAS showed high performance on a set of nine
standard sets, including CIFAR-10 and MNIST variations.

Elhani et al. [18] proposed a variant of the PSO
algorithm called Particle Swarm Optimization without Veloc-
ity (pswvCNN), aiming to minimize the computational
cost and the convergence time. However, this approach
copies layers directly from either the personal or global
best solutions, without creating novel layer configurations.
Therefore, similar to the algorithm proposed by Junior et al.
[16], pswvCNN may suffer from reduced space exploration.

Yuan et al. [20] proposed an autoencoder-based PSO
algorithm for efficient neural architecture search (EAEPSO).
In EAEPSO, variable-length network architectures are
encoded as latent vectors of fixed length, resulting in
dimensionality reduction while maintaining discriminative
features. Further, a progressive fitness evaluation scheme
was employed in order to conserve computational resources.
Briefly, particles are trained initially on partial datasets
until convergence, followed by additional rounds of training
with progressively more training data. EAEPSO achieved an
error rate of 2.74% on the CIFAR-10 and 16.17% on the
CIFAR-100 dataset respectively.

Ill. RESEARCH PROBLEMS AND CONTRIBUTIONS

As NAS is computationally expensive, evolutionary and
swarm intelligence algorithms, such as PSO and genetic
algorithms, can be utilized to efficiently guide the search.
On the other hand, the utilization of such population-based
metaheuristics increases the complexity of the algorithm as
well as the required computational resources.

For example, the presence of layer types with different
properties (pooling layer, convolutional layer) prevents the
straightforward hybridization of the personal and global best
terms (as in (4)). The effects of this discrepancy can be seen
in the literature, with some works bypassing hybridization
by copying the layers directly [16], [18], and others creating
sophisticated rules for hybridization [17]. A disadvantage of
the copying strategy is that it severely limits the range of
created solutions, while custom hybridization solutions may
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need additional modifications when the search space expands
to include other, incompatible, layer types.

On the contrary, random search requires no such modifica-
tions, and because of its nature it does not suffer from reduced
space exploration. Therefore, given the above obstacles
in the implementation of population-based metaheuristics,
it is important to document and quantify the performance
improvements evolutionary strategies offer in comparison
to random search. In turn, this will allow practitioners to
make well-informed decisions on whether the benefits of
implementing an evolutionary NAS strategy outweigh the
added complexity costs.

Further, earlier studies showed that state-of-the-art NAS
methods failed to substantially beat random search [8], [36]
in several popular NAS benchmarks, such as ENAS [37]
and DARTS [38]. In light of this result, consideration of the
performance of random search is necessary for the proper
evaluation of evolutionary NAS algorithms. However, to the
best of the author’s knowledge, there are no thorough and fair
comparisons of PSO to random search. As aresult, a literature
gap in relation to the performance of PSO and random search
has been identified.

The main goal of this work is to perform a critical
evaluation of the efficacy of PSO as a search strategy in NAS,
by quantifying its performance gains in classification accu-
racy rates against those of random search. More specifically,
the contributions of this work are as follows:

o Anovel PSO-based algorithm is described, composed of
a binary search space encoding and a modified version
of the BPSO algorithm. It is shown that the devised
algorithm exhibits competitive performance against
alternative methods and models from the literature.
An analysis of the algorithm’s behavior illustrates the
good convergence properties and robustness of the
proposed method.

o The proposed method is then compared to random
search in nine benchmark datasets. A thorough and
fair statistical comparison of the two approaches is
ensured by running each algorithm 30 times, using
the same experimental parameters otherwise. To the
best of the author’s knowledge, this work is the
first study that objectively and thoroughly quantifies
potential performance improvements of PSO compared
to baseline methods.

IV. METHODS

A. SEARCH SPACE AND NETWORK ARCHITECTURE
ENCODING

The basic architectural scheme used in this work is a
chain-structured CNN (Fig. 1), composed of Convolutional,
Max Pooling, and Average Pooling layers. At the end of the
network, a fully connected layer with the number of neurons
equal to the number of classes in the corresponding dataset is
always added. In addition, a maximum of two pooling layers
can be present in any architecture.
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Input Output

FIGURE 1. Chain-structured CNN architecture used in the current study.
Conv: Convolutional layer; MP: Max Pooling layer; AP: Average Pooling
layer; FC: Fully Connected layer.

TABLE 1. Encoding of a single layer and search ranges.

Bits | Representation Range of values
8 Convolutional filters size [1,256]
3 Convolutional kernel size [2,9]
1 Existence of pooling layer [0, 1]
0: True
1: False
1 Type of pooling layer [0, 1]
0: Max pooling
1: Average pooling
1 Kernel size of pooling layer | [0, 1]
0: 2x2
1: 3x3

A challenge in optimizing chain-structured architectures
with population-based metaheuristics is the incompatibility
of the convolutional and pooling layers. Convolutional layers
have a corresponding number of filters and kernel size while
pooling layers are not associated with a number of filters, but
only a pooling kernel size. This complicates layer by layer
hybridization of solutions since the semantics of the encoding
are different for each layer type.

To deal with the layer incompatibility issue, this work
uses an integrated binary encoding scheme, where only
convolutional layers are represented explicitly; the existence
and properties of a pooling layer are included in the encoding
of the previous convolutional layer. More specifically, each
convolutional layer is represented by a binary string of 14 bits.
Eight bits are used to encode the number of convolutional
filters, three bits are used to encode the convolutional kernel
size, one bit to encode the existence of a pooling layer after
the convolutional layer, one bit is used to control the type of
pooling layer (max or average pooling), and one bit to control
the kernel size of the pooling layer (2 x 2, or 3 x 3). The
definitions and ranges of these parameters are summarized in
Table 1.

B. VELOCITY AND POSITION UPDATE

Each particle’s position is a variable-length array of binary
strings. As such, the formulas for the BPSO algorithm can be
applied to each bit of the binary strings. However, issues arise
in the hybridization of particles due to the variable length
of the encoded networks. As such, a “Remove” indicator
is defined and used whenever the network lengths of the
hybridized particles are not equal.

Fig. 2 shows how two positions are hybridized during the
calculation of velocity. Briefly, if both positions have an equal
number of layers, then the result is calculated based on the
BPSO formula. If the current position is longer than the best
position, a “Remove’ indicator is added. If the best position
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Current ‘ Ll | L2 | L3. | L4 ’ L5,
position
Best ‘ Ll, | L2 | L3, | L4, ‘
pOSlthn

L4 |Remove

Result ‘ L1

FIGURE 2. Hybridization of positions. Hybridization occurs when the
current position is combined with the (personal or global) best position,
resulting in the creation of the (personal or global) influence terms.

Personal best
Remove

Ll’LZ’LB

influence

' ' ' ' rnd > k
Resulting R
velocity
F}lobal best L1 L2 L3 L4
influence

FIGURE 3. Calculation of velocity from the personal and global influence
terms. For layers where both the personal and global terms are present
the velocity is calculated based on the standard BPSO formula. If one of
the terms is “Remove”, a random number is used to select one of the two
layers.

is longer than the current position, zero is assumed for the
value of the current position and calculations proceed as
normal. The hybridization of the particle’s current position
with the personal and global best positions results in the
personal and global influence terms, which are then used to
calculate the velocity as follows (Fig. 3).

Firstly, “Remove” indicators are added to ensure that the
sizes of the two terms are equal. Subsequently, the BPSO
formula is applied to the layers for which both terms have
values. Alternatively, if one of the two terms has a ‘““Remove”’
indicator, then a random number is used to select the layer
from either the personal or global term, with equal probability
for either (parameter defined as k).

Once the velocity has been calculated, the position of a
particle is updated as follows (Fig. 4). For each layer of the
position and velocity, a Boolean xor operation is used (as per
the standard BPSO formula). However, if the velocity layer
is a “Remove” operator no layer is added/calculated.

V. EXPERIMENTAL SETUP

A. ALGORITHM DESCRIPTION

The pseudo-code of the evobpso algorithm is shown in
Algorithm 1, while a flowchart is illustrated in Fig 5. Firstly,
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Velocity L1, ’ L2, ’ L3, ’ L4, |Remove

A D N I Wl I S
N N AN AN N Y

Current

position L1 L2, L3, L4, L5,
New L1 L2 L3 L4 ‘
position

FIGURE 4. Calculation of a particle’s updated position based on the
velocity and current position. For all layers, an xor operation is used,
unless the velocity layer is a “Remove” indicator, in which case no layer is
added.

the population is initialized randomly within the search space
and the global best particle is identified. Before evaluation,
the encoded position of each particle is converted to a deep
learning model and the generated model is subsequently
trained and evaluated. Ten percent of the training dataset
was held out in order to be used as the validation dataset
during model training. The fitness value of a particle was
calculated as the validation cross-entropy loss. Subsequently,
the algorithm evolves the generated architectures by updating
the velocities and positions of the particles at each iteration
according to the BPSO formula. Once the optimization has
reached the maximum number of iterations, the best model
found is trained from scratch for a larger number of epochs
and evaluated in the unseen test dataset to get the final test
accuracy rate. Following, the various parameters used in this
work are described:

1) BPSO PARAMETERS

In this work, a population size of 25 was used. The number
of iterations was set to 10. Both ¢, and ¢, were set to 0.5,
which places equal importance on the personal and global
best solutions. k was also set to 0.5. The momentum term was
set to zero.

2) ARCHITECTURE PROPERTIES

A maximum number of 18 convolutional layers was set. The
maximum number of pooling layers was restricted to two. For
all networks, the convolution stride was set to one, and the
activation function was set to ReLU. Padding was ‘““same”.
Each layer besides the first one was preceded by a dropout
layer, with a dropout rate of 0.5 [39]. Batch normalization
layers were also utilized [40]. The 12 regularization rate was
set to 0.01. For all pooling layers, the stride was set equal to
the kernel size.

3) MODEL TRAINING

For all trained models, the batch size was set to 64 and Adam
was used as the optimizer [41]. Categorical cross entropy was
used as the loss function. The use of early stopping criteria in
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I
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FIGURE 5. Flowchart of the evobpso algorithm. Notice the use of
different splits of the datasets for training, validation, and testing.

the optimization and evaluation phases was different. During
the optimization phase, each model was trained for up to
a maximum of 10 epochs, with two early stopping criteria.
Firstly, if the model did not improve for a certain number
of consecutive epochs, termed patience, training would stop.
Patience was set to two. Secondly, an early stopping criterion
based on a population reference curve, originally proposed
by Suganuma et al. in [42], was also implemented. In the
evaluation phase, the models were trained for a maximum of
150 epochs, with patience set to 30.

4) EQUIPMENT AND SOFTWARE
Experiments were conducted in a cluster environment
equipped with Nvidia A100 GPUs. Tensorflow 2 was used
as the deep learning library [43].

B. DATASETS

A total of 10 common image classification datasets are used
in this work. These are the MNIST [1], MNIST-RD, MNIST-
BI, MNIST-RB, MNIST-RD+BI, Rectangles, Rectangles-I,
Convex [33], as well as MNIST-Fashion [44] and CIFAR-
10 [45] datasets. A summary of these datasets and their
properties is given in Table 2. The selected datasets were used
on several PSO-related NAS studies that are discussed here.
As aresult, it was considered appropriate to use these datasets
in order to test the proposed algorithm. All datasets were
retrieved online,! besides CIFAR-10 which was retrieved
from Tensorflow.”

The MNIST dataset was originally created by LeCun et al.
[1], containing images of handwritten digits, and is frequently
used as a benchmark in image classification studies. The
MNIST dataset contains a total of 70,000 images, with 60,000

1http://www—labs.iro.umontreal.ca/ lisa/icm12007data/
2https://Www.tensorﬂow.org/ datasets
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used for training and 10,000 used for testing. The images are
black and white with a size of 28 x 28 pixels.

Based on the original MNIST dataset, the additional
variations (MNIST-RD, MNIST-BI, MNIST-RB, MNIST-
RD+BI) pose significantly more difficult challenges to
image classification algorithms. More specifically, MNIST-
RD contains the MNIST images with digits randomly
rotated. MNIST-BI contains the MNIST digits with various
background images, while MNIST-RB contains the MNIST
digits with random background. Lastly, MNIST-RD+BI
contains both rotated digits and background images. These
datasets are composed of 12,000 training and 50,000 test
images.

The Rectangles dataset contains black and white images
of rectangles, of variable sizes. Note, in these images, only
the outline is white; the inside of the rectangle is the same
color as the background. The Rectangles-I dataset is similar
to the Rectangles dataset but with images replacing either the
background or the inside of the rectangle. For both Rectangles
datasets, the output of the classification model represents
which side is longer, the width or the height. Both datasets
contain 12,000 training images and 50,000 test images.

The Convex dataset contains images of random geometric
shapes, classified as either convex or not. The Convex dataset
contains 8,000 training samples and 50,000 test samples. The
MNIST-Fashion dataset contains different types of apparel,
including dresses, sandals, bags, and t-shirts. The images
are 28 x 28 pixels, grayscale, with a total of 10 classes.
This dataset is commonly used for benchmarking computer
vision algorithms, as it is more challenging than MNIST. For
example, a random forest classifier can achieve up to 97%
test accuracy in the MNIST dataset, but only about 87% test
accuracy in the MNIST-Fashion dataset [44].

Lastly, the CIFAR-10 dataset contains 50,000 training and
10,000 test color images. The resolution of the images in the
CIFAR-10 dataset is 32 x 32 pixels. The CIFAR-10 dataset
is a well-accepted benchmark for image classification.

C. PEER COMPETITORS’ MODELS

The performance of the proposed algorithm was compared
to a total of 12 peer competitors’ models, including both
hand-crafted and evolved neural networks. The evolved
models include methods where the search strategy is based on
PSO as well as methods based on genetic algorithms. Thus,
both evolutionary and swarm intelligence-based approaches
have been considered when comparing the performance of
evobpso to state-of-the-art algorithms.

LeNet-5 is a hand-crafted architecture, and a variant of the
LeNet model, proposed by LeCun [1]. LeNet-5 is composed
of 22 convolutional layers, two average pooling layers, and
three fully connected layers. SVMrbf and SVMpoly are based
on Support Vector Machines with Gaussian and polynomial
kernels respectively [33]. RandNet-2 and LDANet-2 are
simple deep learning networks utilizing random cascaded
filters or linear discriminant analysis [46].
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Algorithm 1 The Devised Neural Architecture Search Model

Input: Swarm size (N), number of iterations (ifery,y ), training data (X), testing data (Z), epochs for training during
optimization (es4in), epochs for training during final evaluation (e ), hyper-parameters (hparams).

Output: The best model found together with its test accuracy.

S ={Py, P2, ..., Py} < InitializeSwarm(N , hparams)
/+ Find and initialize global best
gbest < InitializeGbest(S)
for iter < 1 to itery,,, do
fori < 1t N do
Pi velocity < UpdateVelocity(P;, gbest, hparams)
P; position < UpdatePosition(P;, hparams)
Pi,ﬁtness < ComputeLoss(P;, X, etrain)
/* Update personal best
if P; finess < Ppbest fimess then
P pbest fitness < P i.fitness
Ppbest,position <~ Pi,position
end
/* Update global best
if Pi fimess < gbestfimess then
gbesrﬂmess <~ Pi,ﬂtness
gbesrposition <~ Pi,position
end

end

end

*/

*/

*/

/* Train and evaluate best model on test dataset */

gbestiesi_accuracy < EvaluateGbest(gbest, X, Z, ejes1)
return gbest, gbestiess _accuracy

TABLE 2. Datasets used in this study. Ten percent of the training data was
held-out during training as validation split.

Dataset name Image size | Number of classes | Training/Test size
MNIST 28x28x1 10 60,000/10,000
MNIST-RD 28x28x1 10 12,000/50,000
MNIST-BI 28x28x1 10 12,000/50,000
MNIST-RB 28x28x1 10 12,000/50,000
MNIST-RD+BI | 28x28x1 10 12,000/50,000
Rectangles 28x28x1 2 12,000/50,000
Rectangles-I 28x28x1 2 12,000/50,000
Convex 28x28x1 2 8,000/50,000
MNIST-Fashion | 28x28x1 10 60,000/10,000
CIFAR-10 32x32x3 10 50,000/10,000
IPPSO [32], psoCNN [16], PSO-based [17],

pswvCNN [18], and IntelliSwAS [35] are all swarm
intelligence algorithms based on PSO and are described in
detail in section II-B. On the other hand, evoCNN [22]
and SEECNN [47] are evolutionary NAS methods based on
genetic algorithms.

For the MNIST-Fashion dataset, additional models are
utilized, such as SqueezeNet-200 [48], VGG16 [49],
and GoogleNet [5]. From the population-based algo-
rithms, evoCNN [22], psoCNN [16], sosCNN [50], and
pswvCNN [18] report results for the MNIST-Fashion dataset
and as such they are included here as well.
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VI. RESULTS

A. COMPARISON AGAINST EXISTING ALGORITHMS
Firstly, the test error rates of the models produced by the
PSO-based algorithm (termed evobpso) were compared to
12 competitor algorithms and models from the literature. The
statistics shown in Table 3 are based on 10 independent runs,
which is equal or lower to the number of runs used in the
alternative approaches, ensuring a fair comparison [16], [17],
[18], [32], [35]. In addition, the population size was set to 25,
which is in the middle of the 20-30 range commonly used in
the literature [16], [17], [18], [32].

In the MNIST dataset, the best model produced by the
proposed algorithm exhibited a test error rate of 0.36%,
which is very close to the best value among all competing
approaches (0.30%, obtained by pswvCNN). The resulting
model surpassed evoCNN (1.18%), IntelliSwAS (0.38%),
as well as SEECNN (0.79%).

In the MNIST-BI dataset, the best model produced
by evobpso had a test error rate of 2.33%. This
places it fourth, behind pswvCNN (2.27%), PSO-based
(2.20%), and psoCNN (1.90%). Although this is not
the best result among the competitor approaches, the
proposed algorithm produced a model with a lower test
error rate than seven of the 12 alternative approaches,
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TABLE 3. Test error rates of evobpso compared to alternative approaches and models. Statistics are calculated based on 10 independent executions. The

results of the evobpso algorithm are shown in bold.

Model/Dataset MNIST MNIST-BI MNIST-RD+BI | MNIST-RD | MNIST-RB | Convex Rectangles-1 | Rectangles
LeNet-5 [1] 0.95% (+) | - - - - - - -

SVMrbf [33] 3.03% (+) | 22.61% (+) | 32.62% (+) 10.38% (+) 14.58% (+) | 19.13% (+) | 2.15% (+) 24.04% (+)
SVMpoly [33] 3.69% (+) | 24.01% (+) | 37.59% (+) 13.61% (+) 16.62% (+) | 19.82% (+) | 2.15% (+) 24.05% (+)
RandNet-2 [46] 0.63% (+) | 11.65% (+) | 43.69% (+) 8.47% (+) 13.47% (+) | 5.45% (+) 17.00% (+) 0.09% (+)
LDANet-2 [46] 0.62% (+) | 12.42% (+) | 38.54% (+) 7.52% (+) 6.81% (+) 7.22% (+) 16.20% (+) 0.14% (+)
IPPSO [32] 1.13% (+) | - 34.50% (+) - - 8.48% (+) - -

evoCNN [22] 1.18% (+) | 4.53% (+) 35.03% (+) 5.22% (+) 2.80% (+) 4.82% (+) 5.03% (+) 0.01% (-)
psoCNN [16] 0.32% (-) 1.90% (-) 14.28% (+) 3.58% (+) 1.79% (+) 1.70% (+) 2.22% (+) 0.03% (-)
PSO-based [17] 0.35% (-) | 2.20% (-) 11.61% (+) 3.23% (+) 1.80% (+) 1.36% (-) 1.01% (+) 0% (-)
IntelliSWAS [35] | 0.38% (+) | 3.53% (+) 15.74% (+) 4.46% (+) 2.55% (+) 1.20% (-) 2.22% (+) 0% (-)
SEECNN [47] 0.79% (+) | 4.06% (+) 17.92% (+) 4.33% (+) 2.44% (+) 3.79% (+) 2.18% (+) 0% (-)
pswvCNN [18] 0.30% (-) | 2.27% (-) 11.47% (+) 2.74% (-) 1.67% (+) 1.35% (-) 0.72% (-) 0.01% (-)
evobpso (best) 0.36% 2.33% 10.84% 3.03% 1.62% 1.52% 0.89 % 0.07 %
evobpso (mean) | 0.46% 2.79% 13.72% 3.74% 2.08% 3.58% 1.55% 0.60%
evobpso (std) 0.08 % 0.26 % 1.62% 0.54% 0.26 % 2.73% 0.72% 0.65%

which ranged from 3.53%
(SVMpoly).

Subsequently, evobpso produced the best model for the
MNIST-RD+BI dataset, with a test error rate of 10.84%.
This result is by far the best result obtained in this dataset,
with the next best model having a test error rate of 11.47%
(pswvCNN). The PSO-based model had a test error rate of
11.61%, while the rest of the models had test error rates
higher than 14%. The variability in the test errors and overall
lower performance compared to the base MNIST dataset is
not surprising, given that the MNIST-RD+-BI dataset is the
most challenging among the MNIST-based group.

In the MNIST-RD dataset the proposed algorithm came
second with a test error rate of 3.03%. The best error rate
among all models compared was produced by pswvCNN
(2.74%). The rest of the models did not perform as well, with
evoCNN producing a model with a test error rate of 5.22%,
and IntelliSWAS a model with a test error rate of 4.46%.

In the MNIST-RB dataset, evobpso produced the best
model among all compared approaches, with a test error
rate of 1.62%. On the contrary, pswvCNN produced the
second-best model with a test error rate of 1.67%, psoCNN
had a test error rate of 1.79%, while IntelliSWAS had a test
error rate of 2.55%.

In the Convex dataset, the proposed algorithm came fourth,
with a test error rate of 1.52%. The best test error was
obtained by IntelliSWAS (1.20%), while pswvCNN came
second, with a test error rate of 1.35%. In the Rectangles-
I dataset, the proposed algorithm came second, with a
test error rate of 0.89%, just behind pswvCNN (0.72%).
Lastly, in the Rectangles dataset, the proposed algorithm
exhibited an almost perfect test error rate of 0.07%. However,
many alternative algorithms also performed very well in
this dataset, with IntelliSwAS, PSO-based, and SEECNN
achieving 0%.

Table 4 shows the performance of the proposed algorithm
against 10 alternative algorithms and models in the
MNIST-Fashion dataset. It can be seen that the proposed
algorithm produced the model with the lowest error rate

(IntelliSWAS) to 24.01%
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TABLE 4. Test error rates of evobpso for the MNIST-Fashion dataset.
Statistics are calculated on a total of 10 independent executions. The
results of the evobpso algorithm are shown in bold. Data were collected
from [18].

Model Test error (%) | # Parameters
2C1P2F+Dropout [22] | 8.4% (+) 3.27TM
2CI1P [22] 7.5% (+) 100K
SqueezeNet-200 [48] 10.0% (+) 500K
AlexNet [2] 10.01%(+) 62.3M
VGG16 [49] 6.5%(+) 26M
GoogleNet [5] 6.3%(+) 23M
evoCNN [22] 5.47%(+) 6.68M
psoCNN [16] 5.53%(+) 2.32M
sosCNN [50] 5.68%(+) 2.30M
pswvCNN [18] 5.44%(=) 5.15M
evobpso (best) 5.44 % 3.17M
evobpso (mean) 6.23% 5.71M

among all competitive approaches, with only pswvCNN
being able to match the final result (5.44%). However, the
model produced by evobpso has about 2 million parameters
fewer than the model found by pswvCNN (3.17M vs 5.15M).

B. COMPARISON TO RANDOM SEARCH

The NAS algorithm presented in this work is composed
of various components, including the search space, the
search space encoding, and the PSO-based search strategy.
Each of these factors has contributed, to a certain extent,
to the performance of the algorithm in the benchmark tests.
Therefore, to evaluate specifically the impact of the proposed
search strategy, a fair comparison to random search was
conducted.

The comparison to random search was conducted by
replacing the position update formula with random ini-
tialization, while keeping all other parameters unchanged.
Further, to evaluate the generalization capabilities of the
algorithm in a wide variety of datasets while considering
time constraints, the base MNIST dataset was replaced with
the CIFAR-10 dataset. In addition, to allow for a proper
statistical comparison, each algorithm was run for a total of
30 executions.
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FIGURE 6. Convergence of the evobpso algorithm and random search in the MNIST-Fashion dataset for the first 10 runs. Each line shows the fitness value

of the global best particle for each iteration.
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FIGURE 7. Evolution of particle size (network length, left axis) and
population diversity (right axis) for evobpso and random search, for the
MNIST-RD+BI dataset. Particle size is shown as boxplots, while the
diversity is shown as the thick black line.

Besides analyzing the accuracy rates, the behavior of
evobpso in relation to random search was also investigated.
The motivation for this analysis was to evidence the potential
of evobpso as an evolutionary algorithm and identify any
shortcomings, as lack of convergence or fitness improvement
may indicate an inefficient algorithm. The subsequent
sections present the algorithm behavior first followed by the
performance analysis.
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FIGURE 8. Evolution of mean population fitness for evobpso and random
search, for the CIFAR-10 dataset. Shaded areas represent the 95%
confidence intervals.
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FIGURE 9. Slope of the mean population fitness evolution curves for all
datasets. The slope was calculated based on a linear regression to the
mean population fitness per iteration.

1) ALGORITHM BEHAVIOR

Fig. 6 shows the convergence of the global best solution for
the first 10 runs in the MNIST-Fashion dataset for evobpso
and random search. It can be seen that evobpso manages to
reduce the validation loss, quickly in the first iterations and
more slowly later on. On the contrary, random search exhibits

91237



IEEE Access

K. Deligkaris: PSO and Random Search for Convolutional NAS

TABLE 5. Test error rates of the evobpso algorithm compared to random search. Performance improvement is calculated as the difference of the evobpso
and random search means. Statistics are based on a total of 30 executions. Bold letters highlight the best model.

Algorithm/Dataset MNIST-BI | MNIST-RD+BI | MNIST-RD | MNIST-RB | Convex | Rectangles-I | Rectangles | MNIST-Fashion | CIFAR-10
evobpso (best) 2.16% 9.63% 3.03% 1.62% 1.45% 0.80% 0.07% 5.44% 12.79%
evobpso (mean) 2.77% 13.91% 3.89% 2.01% 3.44% 1.70% 0.68% 6.37% 15.20%
evobpso (std) 0.33% 2.39% 0.50% 0.22% 1.92% 0.70% 0.55% 0.56% 1.66%
random search (best) 2.33% 10.81% 3.44% 1.68% 1.81% 0.96% 0.14% 5.71% 12.85%
random search (mean) 3.06% 15.81% 4.06% 2.12% 3.46% 2.59% 1.55% 6.42% 15.40%
random search (std) 0.47% 3.21% 0.41% 0.22% 1.52% 0.98% 4.89% 0.43% 1.91%
performance improvement | 0.29% 1.9% 0.17% 0.11% 0.02% 0.89% 0.87% 0.05% 0.20%
statistic value 107.50 88.50 160.00 140.00 231.50 | 80.50 217.00 194.00 224.00
p-value 0.009 0.002 0.140 0.094 1.0 0.001 0.761 0.611 0.871
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FIGURE 10. Test accuracy rates of evobpso and random search in a set of nine benchmark datasets. Individual points in each boxplot mark

the accuracy rate of each of the 30 runs.

only sporadic improvements in the validation loss during the
optimization phase.

Fig. 7 shows the evolution of the particle size (boxplots)
and diversity of the population (thick black line) during one
individual execution. The size of each particle is the number
of convolutional layers of the model, while the diversity
represents the normalized cumulative Hamming distance
among all pairs of particles. It can be seen that the evobpso
algorithm can converge to a few optimum configurations,
while random search exhibits more exploratory behavior,
as expected.

Fig. 8 shows the mean population fitness during optimiza-
tion of the CIFAR-10 dataset (for one specific execution). The
behavior of evobpso is drastically different to that of random
search. More specifically, evobpso is able to gradually reduce
the mean population fitness, indicating the potential of the
approach as a NAS optimization algorithm.

Lastly, to gain a more complete understanding of the
behavior of evobpso in all different datasets, linear regression
of the mean population fitness was conducted and the
slope value was retrieved. A negative slope would indi-
cate progressive reduction of the mean population fitness,
evidencing the algorithm’s consistent performance in a
variety of datasets.
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Fig. 9 shows the slope values for the mean population
fitness linear regression, for the first 10 executions (runs).
Firstly, it can be seen that the slopes for random search are
mostly around zero. For evobpso, most of the slope values
were found to be negative (e.g., Rectangles-I, CIFAR-10),
but there were also cases where the algorithm struggled to
improve the mean fitness (e.g., MNIST-BI).

2) PERFORMANCE

The test error rates of evobpso and random search are shown
in Table 5, while Fig. 10 shows the accuracy rates graphically.
For all nine datasets, the best model generated by evobpso
had lower test error rates compared to the models created by
random search. For example, in the MNIST-RD+BI dataset,
evobpso obtained a model with a test error rate of 9.63%,
while the best model found by random search had a test error
rate of 10.81%, a difference of 1.18%. In addition, the average
error rate obtained from the models of the evobpso algorithm
was lower than random search for all datasets.

The performance improvement (PI) of the PSO-based
approach compared to random search was calculated as
the difference between the mean error rate of evobpso and
random search (Table 5). The largest PI was 1.9%, observed
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in the MNIST-RD+-BI dataset, while the second largest PI
was 0.89% in the Rectangles-I dataset. In the rest of the
datasets, the PI ranged from 0.02% (Convex) to 0.87%
(Rectangles).

To identify if the differences between the PSO-based
algorithm and random search were statistically significant,
a two-sided signed-rank Wilcoxon test was conducted
(Table 5). For three out of the nine datasets (MNIST-BI,
MNIST-RD+BI & Rectangles-1) the Wilcoxon test resulted
in p values smaller than 0.05, indicating that there was enough
evidence to reject the null hypothesis of the two algorithms
having equal performance. However, for the other six datasets
the test could not find statistically significant differences
between the two approaches.

VIi. CONCLUSION

This work investigated the performance of PSO as a
search strategy in NAS, applied to image classification with
chain-structured CNNs. Briefly, a PSO-based algorithm was
devised, composed of a new binary encoding (Table 1),
as well as a modified version of BPSO, and compared to
alternative approaches as well as random search. The binary
encoding used merges the representation of the pooling layers
to that of the convolutional layers, negating the need for
additional rules during position hybridization. The BPSO
algorithm was adapted in a way to ensure hybridization of
the personal and global terms, a feature that is not present in
competitor approaches [16], [18].

The results of this work indicate that, overall, evobpso
can create competitive models compared to the literature.
More specifically, evobpso generated architectures which had
the lowest test error rate in three out of the nine datasets
utilized (MNIST-RD+BI, MNIST-RB, MNIST-Fashion),
while ranking second in two other datasets (MNIST-RD,
Rectangles-1). For example, in the MNIST-RD+-BI dataset
evobpso had a test error rate of 10.84%, while the second best
test error rate was 11.47%, achieved by pswvCNN [18]. The
test error rate of evobpso in the MNIST-Fashion dataset was
5.44%, equal to that of pswvCNN.

An analysis of the population evolution indicates that
evobpso is able to converge to an optimum area of the search
space after a few iterations. As can be seen in Fig. 7, after
10 iterations the majority of the particles represent networks
with five to eight convolutional neural layers. This is in stark
contrast to random search, where the population consistently
covers the full search space between one and 18 convolutional
layers.

In order to critically evaluate the convergence and limi-
tations of the devised algorithm, the evolution of the mean
population fitness for all datasets was investigated (Fig. 8 and
Fig. 9). It can be seen that the algorithm has the capacity
to iteratively reduce the mean population fitness, indicated
by a negative slope in Fig. 9, although it struggles in some
datasets (e.g., MNIST-BI). This may explain why evobpso
did not produce the best result in all datasets in comparison to
the alternative approaches. Therefore, further optimizing the
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algorithm to achieve better results in a variety of datasets is
one of the future research directions of this work.

Replacing the search strategy with random search resulted
in relatively competitive models, frequently with very
similar average performance to that of evobpso. Statistically
significant differences were found in three out of the nine
datasets tested. On the other hand, the best model produced
by the evobpso algorithm was consistently better than the best
model produced by random search (Table 5).

Further investigation showed that evobpso offered a
performance improvement of up to about 1.9% compared to
random search (MNIST-RD+BI dataset), although for the
majority of the datasets the improvement rate was between
0.02% and 0.89% (Table 5). For the CIFAR-10 dataset,
a popular benchmark dataset for image classification, the
performance improvement was only 0.2%.

The results presented here highlight that differences in
the behavior of the population are not necessarily enough
evidence to prove the superiority of an evolutionary NAS
algorithm against random search. As shown in representative
examples in Fig. 7 and Fig. 8, the population in evobpso
successfully converges towards a few good parameter values,
with a gradually decreasing mean population fitness. Even
though random search does not exhibit any of these
properties, it still manages to find very competitive solutions.
Thus, for future studies, it is recommended that in addition
to the behavior of the algorithm, the final test accuracy rates
against baseline measures are reported.

Due to the stochastic nature of the algorithm and CNN
training process, the computational complexity cannot be
calculated analytically. However, it is expected that the
computational complexity of the evobpso algorithm is
similar to other, population-based NAS methods presented
here [16] [18], [21]. For all such stochastic evolutionary
NAS approaches, the computational complexity is dependent
on the sum of the computations for updating the particles’
positions and the computations for training the deep learning
model [51]. Thus, the major factors affecting the runtime are
the population size, the number of iterations, the complexity
of the deep learning models, and the number of epochs used
for training. On the contrary, the random search algorithm
does not involve calculations for updating the particles’
velocities or positions. As a result, the computational
complexity of random search is lower than that of an
evolutionary NAS algorithm.

The experimental runtime was also recorded to provide
an estimation of the computational cost of the algorithms.
In a total of 10 executions, the average running time of the
evobpso algorithm in the MNIST-BI dataset was 1.51 hours,
with each individual run duration ranging from 1.1 to
1.77 hours. On the contrary, random search had an average
running time of 1.44 hours, with a maximum run duration of
1.51 and a minimum of 1.33 hours. In the MNIST-RD+BI
dataset, the average run duration of evobpso was 1.31 hours,
while that of random search was 1.71 hours. In the current
implementation, the most computationally demanding part
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of the algorithm is the fitness function evaluation (i.e.,
model training). For a thorough comparative survey on more
computationally efficient approaches, the reader is referred
to [52].

Given that the implementation of the evolutionary search
strategies is time-consuming and increases the complex-
ity of the algorithm, knowing the expected performance
improvement compared to random search is an important
consideration for deep learning and NAS practitioners. The
current analysis concludes that evobpso, and potentially other
PSO-based algorithms, are able to create top architectures
for image classification. However, random search is also a
viable strategy in NAS due to its good performance and lower
complexity.

In this study, PSO was selected as representative of
swarm intelligence algorithms due to its good convergence
properties and popularity in the NAS field [16], [17], [18],
[21], [26], [53]. Besides PSO, other evolutionary and swarm
intelligence algorithms have been successfully applied in
NAS, such as genetic algorithms [22], [47] and ant colony
optimization [54]. However, due to the lack of comparative
studies it is currently unclear if any particular algorithm is a
better NAS strategy than others, and under what conditions.
A recent study found that PSO performs better than ant colony
optimization in image classification [53], although results for
other approaches are lacking. Therefore, more comparative
studies of the behavior and performance of evolutionary and
swarm intelligence algorithms in NAS are needed in order to
identify the most promising ones.

One limitation of the current study is that only a
single set of hyper-parameters was used. The motivation
for the selected hyper-parameters’ values was to be as
close as possible to the algorithms that evobpso was
compared with [16], [17], [18]. It is possible that different
hyper-parameter values will result in worse or better per-
formance of evobpso. A future research direction of this
work is the implementation of self-adaptive NAS algorithms,
which would negate the need to manually adjust the
hyper-parameters.

In addition, only a single-objective optimization problem
was considered, in terms of minimizing the accuracy of
image classification. A future research direction is the
exploration of multi-objective NAS algorithms aiming to
minimize the number of parameters of the model while
maximizing performance. Besides, there are various possible
search spaces that the current work was not able to cover and
will be explored in the future, such as cell-based architectures
and vision transformers.
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