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ABSTRACT Energy conservation is crucial in wireless ad hoc sensor network design to increase network
lifetime. Since communication consumes a major part of the energy used by a sensor node, efficient
communication is important. Topology control aims at achieving more efficient communication by dropping
links and reducing interference among simultaneous transmissions by adjusting the nodes’ transmission
power. Since dropping links make a network more susceptible to node failure, a fundamental problem in
wireless sensor networks is to find a communication graph with minimum interference and minimum power
assignment aiming at an induced topology that can satisfy fault-tolerant properties. In this paper, we examine
and propose linear integer programming formulations and a hybrid meta-heuristic GRASP/VNS (Greedy
Randomized Adaptive Search Procedure/Variable Neighborhood Search) to determine the transmission
power of each node while maintaining a fault-tolerant network and simultaneously minimize the interference
and the total power consumption. Optimal biconnected topologies for moderately sized networks with
minimum interference andminimum power are obtained using a commercial solver.We report computational
simulations comparing the integer programming formulations and the GRASP/VNS, and evaluate the
effectiveness of threemeta-heuristics in terms of the tradeoffs between computation time and solution quality.
We show that the proposed meta-heuristics are able to find good solutions for sensor networks with up to
400 nodes and that the GRASP/VNS was able to systematically find the best lower bounds and optimal
solutions.

INDEX TERMS Wireless sensor networks, network design, fault-tolerant topology control, wireless
interference, power control, integer programming, meta-heuristics.

ACRONYMS
BVNS Basic variant of VNS.
CPLEX IBM ILOG CPLEX Optimization Studio.
D Relative degradation.
fea Feasibility.
FIP Incremental Power formulation.
FMMI Mathematical formulation to solve the MMI

problem.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Fang .

FMMITP Mathematical formulation to solve the
MMITP problem .

FMTI Mathematical formulation to solve the MTI
problem.

FMTITP Mathematical formulation to solve the
MTITP problem.

GRASP Greedy Randomized Adaptive Search Pro-
cedure.

L Aaverage relative linear relaxation gap.
M Average relative MIP gap.
MaxI Average maximum interference.
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MInt Average minimum maximum interference.
MS Minimum Spanning Tree.
MMI Minimum Maximum Interference.
MMITP MinimumMaximum Interference withMin-

imum Total Power.
MTI Minimum Total Interference.
MTITP Minimum Total Interference with Minimum

Total Power.
opt Optimality.
TInt Average minimum total interference.
TotalI Average total interference.
VNS Variable Neighborhood Search.
WSN Wireless Sensor Networks.

I. INTRODUCTION
A wireless sensor node is a micro-computer featuring func-
tionalities in combination with a wireless communication
device used to connect with other wireless sensor nodes.
Wireless networks of such sensor nodes have many potential
applications such as surveillance, environmental monitoring,
and biological detection [1].

There are various constraints in the design of wireless
sensor nodes. For instance, nodes are most of the time not
connected to the communication infrastructure, and they
should be small, low-priced and last as long as possible with-
out recharging. Therefore, setting wireless sensor networks
(WSN) must aim to conserve as much energy as possible.
Since communication consumes a major part of the energy
used by a sensor node, efficient communication is important.
The aim of topology control is to determine the transmission
power of each node to compute a subset of all possible
communication links that allow efficient communication and
energy conservation [2], [3].
Topology control in sensor networks is important to main-

tain reliable communication links between base stations and
nodes and tomaximize the battery life. Instead of transmitting
with maximal power, each node adjusts its transmission
power to define the proper network topology. The power
settings are given by the topology control algorithm. When
using lower transmission power, topology control algorithms
decrease the number of links in the network, reducing the
number of possible routing paths. A link between two nodes
is established when the received powers are equal to or
greater than their sensitivities. Dropping links in the network
makes it more susceptible to failure. A large number of link
failures, provided by critical application domains, fading,
or obstructions [4], may be disastrous, especially in the case
of sensor networks. This problem can be mitigated if an
adequate level of routing redundancy can be properly figured
into the topology [5], [6], [7], [8], [9], [10], [11], [12], [13].

Topology control can avoid extra resource consumption in
data transmission, which can maintain network connectivity
while reducing energy consumption and minimizing radio
interference [14]. A message packet transmitted by a sensor
device is often received by many nodes in the vicinity of the

receiver node. This property is known as wireless multicast
advantage [15]. The wireless multicast advantage generates
interference, reducing communication efficiency since it
causes message collisions and retransmissions. Minimizing
interference through topology control in wireless sensor
networks is a well-known open algorithmic problem [16],
[17]. Reducing interference may increase throughput, reduce
energy consumption, and increase network lifetime. Thus,
developing interference-aware topology control algorithms is
a necessity for such networks.

Several graph-based topology control models for inter-
ference have been proposed in the literature. Topology
control under graph-based interference models can employ
classic graph-theoretical tools, such as graph coloring, for
algorithm design and analysis. Two different graph-based
interference models exist, named sender-centric and receiver-
centric [18]. In the sender-centric model, the interference
is considered to be an issue on the sender side, where
interference is based on the number of nodes affected by
communication over a given link. On the other hand, in the
receiver-centric model, the interference is considered at
the receiver side, where message collisions prevent proper
reception. In addition, there are two different approaches
for computing the interference of a network, known as
maximum and total (or average) interference. The maximum
interference approach computes the interference of a network
considering the maximum interference of a link or a node
in a network [19], [20], [21], whereas the total interference
approach computes the interference of a network considering
total interference of whole links or nodes in a network [22].
In recent years, there was a substantial amount of research
on interference-aware topology control for wireless ad hoc
networks using graph-based interference models [11], [16],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35]. Works in [36] and [37] also consider topology
control algorithms to minimizing both power consumption as
well as interference.

A. CONTRIBUTIONS
It is evident from the aforementioned literature that the
main goals of topology control include reductions in power
usage and network interference. While many solutions focus
on minimizing energy or interference individually, few
address both drawbacks simultaneously. Thus, the algorithms
proposed in this paper include:
• problem formulations taking into account only the
interference issue;

• new problem formulations in which both interference
and total power consumption are concurrently consid-
ered.

To this aim, we use mathematical programming, meta-
heuristics and a hybrid meta-heuristic to solve the problems.
Hence, we propose integer programming formulations and
algorithms to solve four interference minimization problems
named Minimum Maximum Interference (MMI), Minimum
Total Interference (MTI), Minimum Maximum Interference

VOLUME 12, 2024 120199



R. E. N. de Moraes et al.: Joint Interference and Power Minimization

with Minimum Total Power (MMITP), and Minimum Total
Interference with Minimum Total Power (MTITP). The first
two problems, MMI and MTI, minimize the interference in
a sensor network such that the network topology becomes
fault-tolerant. The MMITP and MTITP problems also
create a fault-tolerant network topology. However, they
simultaneously minimize the interference and the total power
consumption.

Moreover, in this paper, we compare the hardness of
the proposed formulations to obtain a biconnected optimal
solution using CPLEX for moderately sized networks with
up to 50 sensors for the four studied problems. We show that
the simultaneous minimization approach, problems MMITP
and MTITP, can find the same interference optimal solution
value with smaller total power value when compared with the
optimal solution values found for problems MMI and MTI.
We also implement and compare three meta-heuristics: one
GRASP, one VNS, and a hybrid GRASP/VNS. We show that
the hybrid GRASP/VNS can find all known optimal solutions
for all problems with biconnectivity requirements. It also
provides the best solutions for real-sized networks with up
to 400 sensors.

The remainder of the paper is organized as follows.We first
introduce the related works in Section II. The WSN model
and the optimization problems are presented in Section III.
In Section IV, we define the k-connected minimum wireless
ad hoc interference problem, its variants, as well as the
integer programming formulations used to solve problems
in moderately sized networks. A GRASP/VNS heuristic
used to approximately solve large problem instances with
biconnectivity requirements is proposed in Section V. Com-
putational results are reported and discussed in Section VI,
and concluding remarks are made in Section VII.

II. RELATED WORKS
Reference [19] first raised a fundamental question ‘‘Does
topology control reduce interference?’’. They showed that
traditional topology control methods with implicit interfer-
ence reduction can fail to effectively achieve interference
minimization. Since then, several explicit definitions of
interference were proposed in literature. Researchers often
use graph-based models in which the transmission range of
each device is modeled as a circle with a certain radius.
Two devices can exchange messages only if they are within
each other’s transmission range. In this case, the two most
relevant models, among those measuring interference at
devices, are the sender interference model and the receiver
interference model. In the first model, the interference is
viewed as an issue of a transmitting device and is measured
as the cardinality of the set of devices to whom it can send
messages in one-hop. In the second model, the interference
is viewed as an issue of a receiving node and is measured
as the cardinality of the set of devices from which it
can receive messages directly. Graphs can also be used to
represent interference models considering communication
irregularities [38]. Reference [39] show how a graph-based

problem instance can be built to solve multi-rate and variable-
rate scheduling problems in wireless ad-hoc networks where
signal-to-interference-plus-noise ratios are kept above a
certain threshold.

In this paper, we focus on the receiver interference model
since it seems to better reflect the intuition of the real
world [21], [25], when compared with the sender interference
model. Further, polynomial time algorithms for computing
an optimal solution for many connectivity predicates, like
strong connectivity and spanner, are known for the sender
interference model [19], [25], [37]. On the other hand,
considering the receiver interference model, [40] proved
that minimizing the maximum node interference is hard to
approximate, while [32] showed that the problem of assigning
powers to get a connected graph minimizing the maximum
node interference is NP-complete for the 2-dimensional case.

Researchers studied the graph-based interference problem
in two widely accepted models: minimizing the maximum
interference and minimizing the total (or average) inter-
ference. Considering the minimization of the maximum
node interference, [19] proposed several methods to build
topologies whose maximum link interference is minimized
while the topology is connected or is a spanner for Euclidean
length. Reference [21] described an 4

√
δ-approximation of

the optimal connectivity-preserving topology in the general
highway model, where δ is the maximum node degree.
In [27], the authors generalized the highway one-dimensional
(1D) case from [21] to the two-dimensional (2D) one.

When considering the problem of computing the minimum
total interference [31] developed an asymptotically optimal
algorithm with an approximation ratio of O(log n) for min-
imizing total interference in 2D networks. References [22]
and [41] provided central and local algorithms to minimize
the maximum and total interference of a network by
constructing interference-based single-hop local Minimum
Spanning Tree. Reference [17] studied the minimization of
the total and the maximum receiver-centric interference for
the highway model. Among other results, they proposed
a polynomial-time exact algorithm that can construct a
connected topology with minimum total interference. Ref-
erence [16] improved the results given in [17] for the
minimization of total interference problem. Other topol-
ogy control algorithms using the graph-based interference
model can be found in [20], [24], [26], [28], [34], [35], [37],
[42], and [43].
Fault-tolerant topology control is also a critical prob-

lem in wireless sensor networks [6]. Several fault-tolerant
topology control algorithms have been proposed to create
a power-efficient network topology in WSN [6], [10], [12],
[44], [45], [46]. However, most of the existing proposed
fault-tolerant topology control algorithms do not take the
interference issues into consideration. Some fault-tolerant
interference-aware topology control algorithms were pre-
sented in [7], [11], [13], and [47]. Reference [7] formulated
the problem of constructing minimum interference path
preserving and fault-tolerant wireless ad hoc networks and
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then provide centralized and distributed algorithms to solve
the problem. Reference [47] introduced the fault-tolerant
multi-constrained spanning tree problem and proposed a
2K -approximation algorithm to solve it, where K is the
number of non-negative real-value edge weights. Refer-
ence [13] proposed and proved that their algorithms could
induce a k-fault resistant energy spanner and furthermore
the interference is minimized. Reference [11] proposed
four integer programming formulations for the k-connected
minimum wireless ad hoc interference problem, which
consists in a topology control technique to find a power
assignment to the nodes of an ad hoc wireless network such
that the resulting network topology is k-vertex connected and
the radio interference is minimum. They showed that the
proposed formulations give solutions in reasonable compu-
tational time with low transmission powers and minimum
interference, considering continuous and noncontinuous
interference models.

Someworks deal withmixed integer programmingmodels,
optimization, andmanagement of wireless (sensor) networks.
In [48], the authors present a novel approach to optimize the
number of simultaneous transmissions in wireless networks,
focusing on satisfying the signal-to-noise-and-interference
ratio (SINR) at the receivers. Traditionally, this task is tackled
using an integer programming model with explicit SINR
constraints. However, [48] presents a new exact algorithm for
maximum link activation: an integer programming algorithm
that provides a more efficient representation of the SINR
constraints. To evaluate the performance of their proposed
algorithm, the authors used six network groups with 50 to
100 nodes transmitting with uniformly set power. The
time required to reach optimality is compared, and results
show that their proposed algorithm based on inequalities
from SINR cover outperforms the conventional approach
in proving and approaching the global optimum. Such
improvement is more significant for smaller-sized networks.

A study on minimization of the average and the maximum
interference for the highway model, where all the nodes are
stationary and arbitrarily distributed along a line, is presented
in [17]. The authors prove that there is always an optimal
planar topology with minimum interference, and present two
exact algorithms: one to minimize the average interference
in polynomial time, and another to minimize the maximum
interference in sub-exponential time. The optimal topologies
constructed by their methods are planar. The authors also
state that the question of whether it is NP-hard to minimize
the maximum interference for the highway model is still
open. By its turn, [49] focuses on the design of body
area networks, a topic related to healthcare applications of
wireless sensor networks. They propose a robust optimization
graph-based model for jointly optimizing the topology
and the routing in (body area) wireless sensor networks
under traffic uncertainty. The authors propose a fast hybrid
exact-heuristic optimization algorithm that exploits suitable
linear relaxations and present experiments that show that their

algorithm performs better than a solver like CPLEX in the
vast majority of cases.

The two main objectives of a topology control problem are
to minimize power consumption and the network’s interfer-
ence. Several works have been proposed for minimizing the
energy and interference separately, and only some algorithms
are available in literature that address these two problems
simultaneously. Reference [36] present an interference and
energy-aware topology control protocol based on Minimum
Spanning Tree (MST). Reference [37] proposed a local
search-based heuristic for the problem of assigning transmis-
sion power to each network sensor, such that the total power
consumption and interference are minimum along with the
constraint that the resulting topology consisting of bidirec-
tional links is strongly connected. Reference [50] studied a
localized construction protocol that simultaneously satisfies
many design goals, among them power and interference. Ref-
erence [47] studied the interference and power-constrained
broadcast/multicast and the delay-bounded interference and
power-constrained broadcast/multicast routing problems in
wireless ad hoc networks using directional antennas. They
proposed approximation and heuristic algorithms for the two
problems. Reference [51] described a localized topology
control algorithm to design a strongly connected topology
that is very efficient in terms of interferencewhileminimizing
energy.

The authors of [52] proposed a distributed optimization
model using Game Theory tomaximize energy efficiency and
connectivity in multi-radio WSN. An allocation algorithm
was developed to optimize power and channels, achieving
a Nash Equilibrium with low complexity. The simulation
results demonstrate that the proposed approach reduces
network interference and transmission errors, enhancing
energy efficiency and data transmission. A dual interference
model optimization algorithm was formulated in [53] for
efficient routing in WSN, minimizing total link interference
while maximizing interference at the receiver node. The
optimized results were obtained with minimal interference,
transmission cost, and hop counts.

Related to the energy-aware cluster-based routing problem,
[54] and [55] addressed the problem of energy-efficient data
collection in roboticWSN using anUnmannedAerial Vehicle
(UAV). The study introduces the role of Cluster Head (CH)
robots responsible for task assignment and data collection
within their respective clusters. The UAV, which has a limited
battery capacity, visits these CH robots in an optimal manner
to minimize battery energy consumption. Considering its
battery constraints, the paper presents an analytical approach
to determine the optimal subset of CH robots for the UAV
to visit. The work considers the UAV’s constant battery
capacity, contrary to previous studies that assumed variable
or sufficient energy availability.

In this paper, we develop integer programming formu-
lations and heuristics to solve the fault-tolerant topology
control variants of the MMI, MTI, MMITP and MTITP
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problems, considering the receiver interference model. These
optimization problems are able to minimize only the inter-
ference, as well as to minimize the interference and the
total power consumption simultaneously. Figure 1 shows a
flowchart of the general topology control method used to
solve the biconnected variant.

III. WSN MODEL AND OPTIMIZATION PROBLEMS
This section describes the WSN model and the set of
minimization problems we focus on. We consider stationary
WSN located in the Euclidean plane with omnidirectional
transceivers. The parameters used in the modeling are
described in Table 1.

TABLE 1. Mathematical notation defined in the system model.

AWSN can be modeled by a set V of transceivers (nodes),
numbered 0, 1, . . . , |V | − 1, together with their locations
or distances between them. A transmission power pu is
associated with each node u ∈ V . A transmitter-receiver pair
(or link) is defined as the ordered pair (u, v) : u, v ∈ V , where
u and v denote a transmitting terminal and its corresponding
receiving terminal, respectively. We assume that each node
can adjust its transmission power depending on the position
of the immediate receiver up to a maximum fixed for every
node.

In the most common power attenuation model [56], the
signal power falls with 1/dε, where d is the distance from
the transmitter and ε is the path loss exponent (e.g. ε = 2 for
the free space model and ε = 4 for the two-ray ground
model). Under this model, the power requirement at node u
for supporting the transmission through a link from u to v (i.e.,
node u can send packets to node v that is duv away, without
consideration of interference) is given by

pu ≥ dε
uv.qv, (1)

where qv is the receiver’s power threshold for signal
detection, which is usually normalized to 1. Assuming a
deterministic path loss model and qv = 1, we have pu ≥ dε

uv.
For each ordered pair (u, v) of transceivers, with u, v ∈ V ,

we are given a non-negative arc weight equal to dε
uv such

that a signal transmitted by the transceiver u can be received
at node v, if and only if, the transmission power of u is at
least equal to dε

uv, i.e. if pu ≥ dε
uv. Therefore, the directed

communication graph of a network is represented by a graph
G(p) = (V ,A(p)), where A(p) = {(u, v) : u ∈ V , v ∈ V , pu ≥
dε
uv}. However, in order to simplify routing protocols, it is

desirable to have bidirectional links, thus only the set of
undirected edges E(p) = {[u, v] : u ∈ V , v ∈ V , pu ≥
dε
uv, pv ≥ dε

vu}, such that E(p) ⊆ A(p), is considered to
enforce the k-connectivity constraint. Nevertheless, a direct
arc (u, v) ∈ A(p) can cause interference.
Given a communication graph G(p), a signal can be

successfully received and decoded only if the interference
constraints are satisfied. We define the receiver interference
model [21] of a node v as the number of terminals whose
transmissions disturb reception at v (see Figure 2). Formally,
given a directed communication graph G(p) = (V ,A(p)), the
interference value of a single node is formally defined as

I(v) = |{u ∈ V \ {v} : (u, v) ∈ A(p)}|. (2)

Adopting the receiver interference model, we formally
define the set of minimization problems for the sensor
networks we focus on. The common input for all includes
the node set V , the arc weights dε

uv for any u, v ∈ V , and the
k-connectivity property. The output is a transmission power
assignment pu : u ∈ V , such that the set of undirected edges
E(p) ⊆ A(p) established from the directed communication
graph G(p) = (V ,A(p)) satisfies the given k-connectivity
property. The interference minimization problems are listed
below.

1) The Minimum Maximum Interference (MMI): the
objective function is the maximum interference
[maxv∈V I(v)] experienced by any node.

2) The Minimum Total Interference (MTI): the objective
function is the total interference experienced by any
of the nodes, which is mathematically defined as∑

v∈V I(v).
3) The Minimum Maximum Interference with Minimum

Total Power (MMITP): the objective function is the
maximum interference [maxv∈V I(v)] experienced by
any of the nodes, and the total power defined as∑

u∈V pu.
4) The Minimum Total Interference with Minimum Total

Power (MTITP): the objective function is the total
interference [

∑
v∈V I(v)] experienced by any of the

nodes, and the total power denoted as
∑

u∈V pu.
Similarly to widely studied interference-related prob-

lems, the nodes considered in the problem proposed
here are located at fixed positions in the 2D plane,
and the main task is to select the transmission range
of each node to achieve minimum interference. How-
ever, unlike our proposal, the theoretic works regarding
receiver interference minimization require a k-connected
resulting network where k = 1, while in our prob-
lem, the resulting communication graph must satisfy
a k-connectivity property such that k ≥ 2.

Considering the 1-connected property in both the sym-
metric (dε

uv = dε
vu) and asymmetric (dε

uv ̸= dε
vu)

models, minimizing the maximum receiver interference
(MMI problem) is NP-hard [40], [57]. Taking into account
the minimization of the total interference (MTI problem) to
obtain a 1-connected communication graph, Lam et al. [58]
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FIGURE 1. General flowchart of the proposed topology control method.

prove that the symmetric network model case is NP-hard and
Abu-Affash et al. [59] prove that the asymmetric network
model case is also NP-hard. Although the complexity of the
k-connectivity property such that k ≥ 2 is under investi-
gation, we conjecture that, for any positive integer k , the
k-connected interference problems addressed in this work
are NP-hard as well. Thus, polynomial-time approximation
algorithms are expected, as in, for example, the proposal
described in [60], in which approximation algorithms are
employed to the k-connected interference minimization
problem such the maximum interference at any node is
minimized.

Different transmission power values can be used with-
out changing the interference minimization value in the
aforementioned interference context. Moreover, it should be
stressed that a node can use a higher power without increasing
the number of receiving nodes and, consequently, without
affecting the maximum or total interference value. The pro-
posed solutions (see Section IV) for the problems that jointly
address interference minimization and power minimization
seek the lowest possible power allocation without changing
the original interference problem. In other words, it is a
specific (lowest) power assignment among several existing
ones for the same minimum interference solution.Hence, it is
worth commenting that all formulated problems have the
same computational complexity. Furthermore, the topology
control problem of minimizing total transmission power is
shown to be NP-complete [10] as well.

IV. INTEGER PROGRAMMING FORMULATIONS
An efficient way to formulate the k-connectivity constraints
consists in defining a set C of ⌈k|V |/2⌉ commodities with

FIGURE 2. Receiver interference model. Node v suffers interference from
u and u′ , I(v ) = 2.

a demand of one unit [10]. For each commodity c ∈ C ,
we represent by o(c) its origin and by d(c) its destination. For
any node i ∈ V and any commodity c ∈ C , let Dc(i) = −k
if i = o(c), Dc(i) = +k if i = d(c) and Dc(i) = 0 otherwise.
The discrete variable f cij represents the flow of commodity
c through arc (i, j). The binary variable f cij is equal to one
if the arc (i, j) is used by commodity c for communication
from node i to j. Otherwise, it is equal to zero. Table 2 shows
the notation and description of the parameters used in the
formulations.

Let Qi = [q1i , . . . , q
φ(i)
i ] be a finite list of successive

cumulative increments in the power setting that can be
assigned to node i, for any i ∈ V . Furthermore, φ(i) ≤
|V |−1 and for any ℓ = 1, . . . , φ(i) we define T ℓ

i as the set of
new nodes reachable from node i if an additional increment
qℓ
i is added to its current power assignment, as illustrated in
Figure 3.
The binary variable xℓ

i takes the value one if there is
a node j ∈ T ℓ

i such that a directional arc (i, j) is used
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TABLE 2. Mathematical notation defined in the integer programming
formulations.

FIGURE 3. List of successive cumulative increments: Qa = [2, 1, 2, 3] and
T 1

a = {b}, T 2
a = {c, d }, T 3

a = {e}, T 4
a = {f }.

for communication from i to j, otherwise it is equal to
zero. We also define ℓ̄(i) ∈ {1, . . . , φ(i)} considering that∑ℓ̄(i)−1

ℓ=1 |T
ℓ
i | < k and

∑ℓ̄(i)
ℓ=1 |T

ℓ
i | ≥ k . Then, for any node i,∑ℓ̄(i)

ℓ=1 |T
ℓ
i | gives the minimum number of nodes needed to

establish the k-connectivity requirement from node i.
The integer program formulation FMMI defined by the

objective function (3) and constraints (4)–(13), presented in
Figure 4, is a valid formulation for the k-connected MMI
problem using the receiver interference model.

Constraints (5) and (4) give, respectively, the receiver
interference I (i) of each node i, and the maximum interfer-
ence INT which is minimized by the objective function (3).
Constraint (6) represent the flow conservation equations,
which means that for k = 2, Dc(i) = −2 if node i is origin
of the flow c, Dc(j) = 2 if node j is the destination of the
flow c, and for all node u ∈ V \ {i, j}, Dc(u) = 0. These
constraints algebraically state that the sum of the flow through
arcs directed toward a node plus that node’s supply (if any)

FIGURE 4. Integer program formulation FMMI to minimize the maximum
interference with k-connectivity constraints.

equals the sum of the flow through arcs directed away from
that node plus that node’s demand (if any).

Inequality (7) ensures node-disjointness and, to illustrate
its benefit, suppose a scenario in which k = 2 units of
flow are transmitted from node u to node v. In this case, the
formulation forces the flow transmission on 2 node-disjoint
paths between these nodes. Then, inequality (7) ensures that
at most one unit of a commodity flows into [and out of due to
flow balance constraint (6)] any node that is not the source
or destination of the commodity. This strategy assures the
required number of node-disjoint paths in the network.

Inequality (8) states that xℓ
i must be set to one if there

is a node j ∈ T ℓ
i such that arc (i, j) or arc (j, i) is used

for communication from node i to j by commodity c. This
restriction forces the setting of the transmission range of node
i, if there is a flow through the directed arc (i, j), or through
the directed arc (j, i). That is, Inequality (8) ensures that a
bidirectional edge [i, j] is used if there is flow from i to j or
from j to i. For the inequality (8) to be valid, we also have to
prove that both f cij and f

c
ji cannot be simultaneously equal to

one. This cannot be true because otherwise, there would be a
cycle of commodity c through nodes i and j.
Constraint (9) enforces xℓ+1

i to be equal to zero if the
previous increment was not used, i.e., if xℓ

i = 0. It imposes
the successive cumulative increments in the power setting.
Constraint (10) sets to one the incremental powers necessary
to reach at least the k closest nodes of each node i, because,
in order to be k-connected, any solution requires at least k
incident edges to any node. Constraints (11), (12), and (13)
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express the integrality and bounds requirements on the
variables.

The objective function (3) gives an integer value INT
corresponding to the minimum maximum interference, with-
out considering power values nor the number of nodes with
maximum interference. Therefore, getting different power
settings that does not affect the maximum interference is
possible. To find the lowest power setting simultaneously
with the interference minimization given by the objective
function (3), we propose the addition of a normalized total
power consumption in the interval [0.0, 1.0) to the integer
value corresponding to the minimum maximum interference.

Let Pmax =
∑

i∈V max(pi) be the maximum total power
consumption of the network when all nodes are transmitting
with its maximum power. It can be verified from the
FMMI formulation that the power setting assigned to each
node i can be calculated as

∑φ(i)
ℓ=1 q

ℓ
i · x

ℓ
i and, consequently,

the total power consumption can be normalized in the interval
[0.0, 1.0) by Equation (14):

Pnorm =

∑
i∈V

∑φ(i)
ℓ=1 q

ℓ
i · x

ℓ
i

Pmax
. (14)

Since the objective function (4) gives an integer value,
we can add the normalized total power consumption to
it without affecting the minimum interference calculation.
The normalized total power penalizes the objective function
with high power settings. Thus, if we replace Equation (4)
with Equation (15) we have the integer program formulation
FMMITP for the k-connected MMITP problem using the
receiver interference model

minimize Z2 = INT + Pnorm. (15)

The receiver interference of each node i is given by
I (i) calculated in Equation (5), and the network total
interference can be calculated as

∑
i∈V I(i). As a result,

to solve the k-connected MTI problem using the receiver
interference model, we propose the FMTI integer program
formulation defined by the objective function (16), and by
the constraints (5)–(13) presented in Figure 4

minimize Z3 =
∑
i∈V

I(i). (16)

Similar to the FMMI formulation, different power settings
can result in the same value of the objective function in the
FMTI formulation. Again, we propose the addition of the
normalized total power consumption to find the objective
function with the lowest power settings. Since the objective
function (16) gives an integer value, the normalized total
power consumption do not affect its calculation. Therefore,
if we replace Equation (16) with Equation (17) we have the
integer program formulation FMTITP for the k-connected
MTITP problem using the receiver interference model

minimize Z4 =
∑
i∈V

I(i)+ Pnorm. (17)

In Section VI-A, we compare the proposed formulations
using results obtained by a commercial solver. We focus our
analysis on the biconnected case (k = 2) since it gives
the most useful fault-tolerant property. With biconnectivity
requirements, at least two node-disjoint paths exist between
any pair of nodes. Biconnected communication graphs are
important to ensure fault tolerance since ad hoc networks are
used in critical application domains where failures are likely
to occur.

V. GRASP/VNS HEURISTIC
A Greedy Randomized Adaptive Search Procedure
(GRASP) [61], [62] is a multi-start meta-heuristic. Each of
its iterations consists of two phases: a construction phase,
in which a feasible solution is built, and a local search
phase, in which a local optimum in the neighborhood of the
current solution is sought. These two phases are then repeated
until a certain termination criterion is met and the best
overall solution is returned. The greedy randomized solutions
are generated by adding elements to the problem solution
set from a list of elements ranked by a greedy function,
according to the quality of the solution they will achieve. The
combination of greediness and randomness in the generation
of solutions is achieved by means of restricted candidate
lists (RCL) of variable sizes that control both features. Since
GRASP was first introduced in [63] it has been successfully
applied to a variety of optimization problems [61], [62].

A Variable Neighborhood Search (VNS) [64], [65] is
another meta-heuristic for solving combinatorial optimiza-
tion problems. VNS applies a strategy addressed to searching
for optimal solutions by using a finite set of different
neighborhood structures. The basic VNS (BVNS) variant
explores the search space by doing systematic changes
between the given neighborhood structures. This strategy
makes the search more flexible when compared to single-
neighborhood-based local search algorithms.

The BVNS consists of three phases: shake, local search,
and neighborhood change. During the shake phase, a new
solution is randomly selected from the neighborhood of
the current solution, helping the algorithm to escape from
the local optimum. Local search phase tries to improve the
current solution by exploring one or more neighborhood
structures. In the neighborhood change phase, the new
solution given by local search phase is compared. If the new
solution performs better than the previous best, it is chosen as
the new optimum, and the current neighborhood structure is
updated. These three phases are repeated until a termination
criterion is satisfied. The adaptability of the methodology has
resulted in several variants in recent years (see [64] for a
recent survey on the methodology).

This paper proposes the implementation of a hybrid
GRASP/VNS algorithm to provide solutions to the four
interference minimization problems. The proposed hybrid
algorithm incorporates two powerful features, the effective
constructive and improving ability of GRASP and the
flexibility of VNS to explore different search spaces for the
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problem. The hybridization consists of generating solutions
using four phases: construction, shake, local search, and
neighborhood change. In the remainder of this section,
we customize the four hybrid heuristic phases for the
interference minimization problems (MMI, MMITP, MTI,
MTITP)with asymmetric input and bidirectional biconnected
communication graph.

In SectionVI, we compare the results of our proposed strat-
egy with the optimal solutions provided by the mathematical
formulations described in Section IV for moderately sized
networks.

A. CONSTRUCTION PHASE
In the construction phase, a feasible solution is iteratively
constructed, one element at a time. At each construction
iteration, the choice of the next element to be added is
determined by ordering all candidate elements (i.e. those
that can be added to the solution) in a candidate list L with
respect to a real-valued greedy function g(.). This function
measures the benefit of selecting each element. In a purely
greedy implementation, the top candidate is always selected.
The probabilistic component of a GRASP is characterized by
randomly choosing one of the best candidates in the list, but
not necessarily the top candidate. The list of best candidates
is called the restricted candidate list.

We propose a construction phase algorithm based on
the constructive procedure for the bidirectional biconnected
minimum power consumption problem developed by [66].
The mathematical notation, as well as important descriptions,
are shown in Table 3.

TABLE 3. Mathematical notation defined in Heuristics.

Our proposed algorithm for solving minimum interference
problems requires the same inputs as [66]: the node set V ,
the non-negative arc weights dε

uv for any u, v ∈ V
and α, which controls the greediness/randomness of the
constructive procedure and the same constructive steps. The
only difference between both algorithms is the greedy cost
function defined in our procedure as g(u, v) = max{dε

uv, d
ε
vu},

for any u, v ∈ V . Since we have asymmetric inputs, then
dε
uv ̸= dε

vu.
The algorithm begins by setting up pu = 0 for all u ∈

V , and initializing a working graph H (p) = (V ′,E(p)) with

V ′ = {r} and E(p) = {[u, v] : u ∈ V ′, v ∈ V ′, pu ≥ dε
uv, pv ≥

dε
vu} = ∅, where r ∈ V is any randomly selected initial node.
The first stage of our construction phase builds a

bidirectional connected graph, one node at a time. For
every node u /∈ V ′, let g(u) = minv∈V ′{g(u, v)} be the
minimum computed greedy cost. Let g = minu∈V\V ′{g(u)}
and g = maxu∈V\V ′{g(u)} be, respectively, the minimum
and maximum computed greedy cost over all candidate
nodes (i.e., those not in the current solution). The RCL
is formed by all nodes u ∈ V \ V ′ such that g(u) ≤
g + α(g − g), with 0.0 ≤ α ≤ 1.0. The case α =

0.0 corresponds to a pure greedy algorithm, while α = 1.0 is
equivalent to a completely random construction. A node u
is randomly selected from RCL and inserted into V ′. The
power assignments of the nodes u ∈ V \ V ′ and v ∈ V ′

such that g(u) = g(u, v) are updated to max{pu, dε
uv} and

max{pv, dε
vu}, respectively, for example, if pu ≥ dε

uv, then
the unidirectional communication between u and v is already
set up. Consequently, the bidirectional edge [u, v] is inserted
into E(p). This stage finishes when V ′ = V , ensuring that a
connected graph H (p) = (V ,E(p)) is obtained.

The second construction stage produces a biconnected
graph G(p) = (V ,B(p)) using the Tarjan’s algorithm [67]
to compute the biconnected components and the articulation
points of the current solution and, in the following, connect-
ing two nodes which are not articulation points. Connecting
nodes that are not articulation points of the current solution
progressively reduces the number of biconnected components
until a biconnected graph is obtained [66]. The algorithm
stops when a biconnected graph is built.

B. SHAKE PHASE
In the shake phase, a solution is randomly generated by
applying the corresponding neighborhood structure, i.e., the
w-th neighborhood structure, with wmax representing the
total number of neighborhood structures. The sequence of
neighborhood structures has been chosen following the ideas
described by [66] where the definition of the neighborhoods
makes use of two basic operations for decreasing and
increasing the power assignments.

Applied to a node i ∈ V (see Figure 5(a) and 5(b)), the
first operation decreases its current power assignment pi = pℓ

i
(with ℓ ≥ 2) to pi = pℓ′

i , where ℓ′ is the highest level that
supports a bidirectional edge. Consequently, the decreasing
operation removes links (arcs and edges) between nodes and
reduces total power assignment.

Applied to a node i ∈ V (see Figure 5(c)), the second
operation increases its current power pi = pℓ

i (with ℓ ≤

φ(i) − 1) to pi = pℓ+1
i . The power increase operation must

ensure the insertion of the bidirectional edge [i, j]. Thus,
the operation can also increase the current power pj to plj ,
l = 1, . . . , φ(j), such that pj < plj and i ∈ T lj and the
objective function is increased by (pℓ+1

i − pℓ
i ) + (plj − pj).

Otherwise, if there exists a node j ∈ T ℓ+1
i and a power level
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FIGURE 5. Example of a complete local search move [66].

l = 1, . . . , φ(j) so that i ∈ T lj and pj ≥ plj , then the objective
function is increased only by (pℓ+1

i − pℓ
i ).

TheShake(p,w) procedure used in line 5 of Algorithm 3
and line 7 of Algorithm 4 (explained in Section V-F)
generates a solution p′ at random from thew-th neighborhood
of the current solution p in which neighborhoodw = 1 means
apply a decrease operation in one node at random assuring
that biconnectivitiy of current solution p is not broken. For
neighborhood w = 2, an increase operation is applied in one
node at random of the current solution p.

C. LOCAL SEARCH PHASE
The local search phase explores the neighborhood of the
current solution, attempting to reduce the total power
consumption, and it is based on the local search procedure
proposed by [66]. The proposed local search method follows
a first-improvement strategy. In particular, the method visits
neighbor solutions by following a non-increasing order of
power decrease (i.e., start by largest power decrease), and
replaces the incumbent solution with the first neighbor
solution that has a better objective function value; the search
is subsequently restarted in the neighborhood of the updated
solution. The search stops when a local optimum is reached,
i.e., no better solution can be found in the neighborhood.

A move starts (see Figure 5(b)) by decreasing the
power assignment of as many nodes as needed to break
biconnectivity, followed by a sequence of as many power
increases as necessary to restore biconnectivity. Decrease
operations are performed in non-increasing order of power
decrease (i.e., start by largest power decrease). Increase
operations are performed in a non-decreasing order of power
increase (i.e., start by smallest power increase). To get more

effective moves, increase operations are applied only to
nodes not affected by previous power decrease operations.
The first improvement move is accepted, and the search
moves to the new neighbor. The procedure continues until
no further improvement move exists. An improvement is
achieved if f (p′) < f (p), where p is the current solution,
p′ its neighbor and f (.) the function which gives the
objective function value depending on the problem being
solved (Equations (3), (15), (16) and (17)). The proposed
local search method, named Local_Search(p), is used
in line 4 of Algorithm 2 (see Section V-E), in line 6 of
Algorithm 3, and line 8 of Algorithm 4.

D. NEIGHBORHOOD CHANGE PHASE
The neighborhood change phase is executed in order
to evaluate the new solution given by local search
phase and to select the subsequent neighborhood to be
explored. Algorithm 1 (see Algorithm 5 for further details)
implements neighborhood change phase as a function
named Neighborhood_Change(p,p′′,w). This func-
tion requires three inputs: the incumbent solution p, the solu-
tion given by local search phase p′′, and the current neighbor-
hood w. Function Neighborhood_Change(p,p′′,w)
compares the incumbent value f (p) with the new value f (p′′)
obtained from the w-th neighborhood (line 1). The function
f (.) gives the objective function value depending on the
problem being solved (Equations (3), (15), (16) and (17)).
If an improvement is obtained, the incumbent is updated
(line 2), and w is returned to its initial value (line 3).
Otherwise, the next neighborhood is considered (line 5).
The current incumbent solution p and the updated current
neighborhood w are returned in line 7.
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Algorithm1FunctionNeighborhood_Change(p,p′′,w)
Require: Incumbent solution p, local search solution p′′ and

the current neighborhood w.
Ensure: Updated incumbent solution p and current neigh-

borhood w.
1: if f (p′′) < f (p) then
2: p← p′′;
3: w← 1;
4: else
5: w← w+ 1;
6: end if
7: return p,w;

E. GRASP HEURISTIC
Algorithm 2 (see Algorithm 6 for further details) presents the
pseudo-code for the GRASP algorithm proposed in this work
to solve the four interference minimization problems.

Algorithm 2 Pseudo-Code of GRASP
Require: Node set V , arc weights dε

uv for any u, v ∈ V ,
Stop_Condition and parameter α.

Ensure: Best known solution p∗

1: p∗← ∅ ;f (p∗)←∞;
2: while Stop_Condition is not met do
3: p ← Greedy_Randomized_Construction

(V,dε
uv,α);

4: p′← Local_Search(p);
5: if f (p′) < f (p∗) then
6: p∗← p′;
7: end if
8: end while
9: return p∗;

Algorithm 2 requires the node set V and arc weights dε
uv

for any u, v ∈ V , and two parameters: Stop_Condition, that
indicates the stopping condition of the algorithm, and α,
that controls the greediness/randomness of the constructive
procedure. In line 1, the best-known solution and its objective
function value are initialized. The function f (.) gives the
objective function value depending on the problem being
solved (Equations (3), (15), (16) and (17)). Each iteration of
the loop in lines 2 to 8 finds a new solution to the problem
until the stopping condition is reached. The procedure in
line 3 finds a greedy randomized solution, as discussed in
Section V-A, which is submitted to the local search procedure
in line 4 as discussed in Section V-C. If the solution found
by local search improves upon the best previously found
solution, then the best solution is updated in line 6. The best
power assignment p∗ is returned in line 9.

F. VNS HEURISTIC
Algorithm 3 (see Algorithm 7 for further details) depicts
the pseudo-code of the BVNS algorithm to solve the four
interference minimization problems.

Algorithm 3 Pseudo-Code of VNS
Require: Node set V , arc weights dε

uv for any u, v ∈ V ,
Stop_Condition, maximum neighborhood wmax to be
explored during the search.

Ensure: Best known solution p
1: p ← Greedy_Randomized_Construction
(V,dε

uv,α = 0.0);
2: while Stop_Condition is not met do
3: w← 1;
4: repeat
5: p′← Shake(p,w);
6: p′′← Local_Search(p′);
7: p,w ← Neighborhood_Change(p, p′′,

w);
8: until w = wmax
9: end while
10: return p;

Algorithm 3 requires the node set V and arc weights dε
uv

for any u, v ∈ V , as well as two parameters: Stop_Condition,
that indicates the stopping condition of the algorithm and
wmax , that indicates the maximum neighborhood to be
explored during the search. An initial solution p is created
in line 1 by applying the construction phase, as described
in Section V-A, with parameter α fixed in 0.0. Thus,
the function Greedy_Randomized_Construction
(α = 0.0) returns the pure greedy solution without
randomness.

The neighborhood size parameter w is initialized to 1
(line 3). The search explores a sequence of increasing-
order neighborhoods. Starting from the initial solution p, the
loop (lines 4 to 8) is repeated until the neighborhood size
parameter exceeds the maximum size wmax , in that case,
all neighborhoods have been explored without finding any
improving solution. To do this, a solution p′ belonging to
the w-th order neighborhood of p is randomly generated
in line 5 by procedure Shake(p,w), as described in
Section V-B. In line 6, the Local_Search(p′) pro-
cedure is applied to p′, and a local optimum p′′ is
found, as described in Section V-C. In line 7, the func-
tion Neighborhood_Change(p, p′′, w) executes the
neighborhood change stage, as described in Section V-D,
in order to select the subsequent neighborhood to be explored
and to update the best-known solution p. The best power
assignment p is returned in line 10.

G. HYBRID GRASP/VNS HEURISTIC
The proposed hybrid algorithm incorporates the powerful
features of the algorithms: the effective constructive and the
improving ability of GRASP, and the flexibility of VNS to
explore different search spaces for the problem. Algorithm 4
(see Algorithm 8 for further details) shows the pseudo-code
of the hybrid GRASP/VNS. It solves the four interference
minimization problems (MMI, MMITP, MTI, MTITP) for
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Algorithm 4 Pseudo-Code of Hybrid GRASP/VNS
Require: Node set V , arc weights dε

uv for any u, v ∈ V ,
Stop_Condition, maximum neighborhood wmax to be
explored during the search and parameter α.

Ensure: Best known solution p∗

1: p∗← ∅ ;f (p∗)←∞;
2: while Stop_Condition is not met do
3: p ← Greedy_Randomized_Construction

(V,dε
uv,α);

4: repeat
5: w← 1;
6: repeat
7: p′← Shake(p,w);
8: p′′← Local_Search(p′);
9: p,w ← Neighborhood_Change(p, p′′,

w);
10: until w = wmax
11: until no improvement
12: if f (p) < f (p∗) then
13: p∗← p;
14: end if
15: end while
16: return p∗;

asymmetric input graphs and bidirectional biconnected com-
munication graphs. It requires the node set V and arc weights
dε
uv for any u, v ∈ V , and three parameters: Stop_Condition,
wmax and α. In line 1, the best-known solution and its
objective function value are initialized. Each iteration of the
loop in lines 2 to 15 finds a new solution until the stopping
condition is reached. In line 3, the procedure Greedy_
Randomized_Construction(V,dε

uv,α) finds a
greedy randomized solution that is submitted to a VNS
procedure in lines 4 to 11 until no improvement is achieved,
as described in Section V-F. If the solution found by the VNS
procedure improves upon the best previously found solution,
then the best solution is updated in line 13. The best power
assignment p∗ is returned in line 16.

VI. RESULTS AND DISCUSSION
The analysis of the obtained results is divided into two
parts: optimal solutions and heuristics solutions. The former
is devoted to exactly solving a set of very moderately
sized problems using a commercial solver and the integer
programming formulations proposed in Section IV, while
the latter was generated by the heuristics used to solve
real-life sized problems. We also report computational
simulations in which we compare the formulations and the
interference models. Moreover, we evaluate the effectiveness
of the heuristics variants in terms of the trade-offs between
computation time and solution quality. We focus our analysis
on the biconnected case (k = 2), since it gives the most useful
fault tolerant property.

A. OPTIMAL SOLUTIONS
Numerical simulations, aiming for optimal solutions, have
been carried out on a set of random moderately sized
asymmetric Euclidean Instances with |V | ∈ [10, 50] nodes
uniformly distributed in the unit square grid. The asymmetric
weight of the arc between nodes u and v is set as Fdε

u,v, where
du,v is the Euclidean distance between nodes u and v, the
path loss exponent ε is set at 2, and F ∈ [0.8, 1.2] is a
random uniform perturbation. The set of instances used in this
work is the same set generated by [11] and [66], consisting of
fifteen random instances for each considered size (problem
dimension).

A computational cluster with an Intel Xeon with a
2.40 GHz clock and 8 Gbytes of RAM memory running
under GNU/Linux 2.6.24 was used in the simulations.
ILOG CPLEX 12.4 was used as both a linear and integer
programming solver with parallel features disabled. We have
created fifteen random instances for each problem dimension.
The simulations consist of one run of each formulation
in CPLEX, over the fifteen randomly generated Euclidean
Instances of the same size.

We also used the optimal minimum power in the com-
parisons. The optimal minimum power is calculated by
the Incremental Power formulation (FIP) proposed by [10]
to solve the k-connected minimum power consumption
problem, which consists of finding a power assignment to
the nodes of a wireless network such that the resulting
network topology is k-vertex connected and the total power
consumption is minimum.

For each problem dimension |V | ∈ {10, 15, 20, 25,
30, 35, 40, 45, 50} and each formulation, Table 4 shows
the total number of instances solved to optimality and
feasibility, i.e., a feasible solution for the model has been
proven to exist, but the model has been not solved to
optimality by CPLEX in less than six hours of CPU time. All
formulations found the fifteen optimal solutions for |V | ≤
25 and feasible solutions for |V | ≤ 50, within six hours.
Although the number of constraints and variables is given
by O(|V |3) in all formulations, model FIP found the most
optimal solutions since it has no interference constraints, i.e.,
the addition of interference constraints makes the models
harder to solve. Although the interference models require
a greater computational effort, all interference formulations
had similar performance, independently of the objective
function.

Table 5 shows, for each problem dimension |V | ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50} and each formulation, the
average time results in seconds over the optimal solutions
found by all formulations within six hours of computations.
The instances that did not find an optimal solution by a given
formulation within six hours of computations were discarded.
The first column of Table 5 displays, in parentheses, the
number of instances used to calculate the averages. Cells
in blank correspond to formulations with the lower number
of instances solved to optimality, as shown in Table 4.
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TABLE 4. Number of instances solved to optimality and feasibility in six
hours of running time for all formulations.

The results presented in Table 5 also show that the model
FIP has the lowest computational time, which reflects the
same behavior described by the results shown in Table 4.
Table 5 also shows that, as the size of the problem dimension
increases, the FMMITP and FMTITP become faster than the
models with no power minimization (FMMI and FMTI).

TABLE 5. Average running time (in seconds) to find optimal solutions for
all formulations. The first column displays, in parentheses, the number of
instances used to calculate the averages.

In Tables 6 and 7, we consider the instances solved to
feasibility (instead of optimality) by CPLEXwithin six hours
of computation time. Since the interference formulations
give a few feasible solutions for |V | ≥ 45, we consider
the problem dimension |V | ∈ {10, 15, 20, 25, 30, 35, 40}.
Table 6 shows the average relative primal-dual gap D in
percentage between the primal and the dual feasible solutions
found by all formulations within six hours of computations.
The optimal solution was found in all instances when D =
0.00%. All values are averaged over at least 8 integer feasible
solutions for each problem dimension and each formulation.
For large instance size, results show that, when formulations
do not reach the optimality, the dual bound can be very large
when the total interference is minimized in the FMTI and
FMTITP models. The largest average gap remains 80.98%
after six hours of computation.

Table 7 presents the average relative linear relaxation gap
(column L) in percentage between the primal solution and
that of the linear relaxation bound, as well as the average
relative MIP gap (columnM ) in percentage between the first
integer solutions found, and the linear relaxation bound at
that time. Regardless of the instance sizes, Table 7 shows
that the FIP, FMMI and FMMITP formulations keep the
optimum linear relaxation solutions close to the optimum

TABLE 6. Average relative primal-dual gap D(%) for all formulations.

FIGURE 6. Average relative degradation for power and interference
values.

integer solutions and also keep a constant MIP gap for the
tested problems. For the FMTI and FMTITP formulations,
Table 7 shows that the total interferenceminimization leads to
an increase in the optimum linear relaxation solutions and in
the objective function value of the first integral solution found
and, consequently, to an increase in the relative gap L and
M , respectively. These results, together with Tables 4 and 6,
allow us to conclude that the interference formulations FMTI
and FMTITP are, on average, the best methods at finding
feasible integer solutions. However, these solutions can be
far from the optimal that requires larger computing effort.
Formulations FMMI and FMMITP have greater difficulty
in finding feasible solutions, but when they find them, the
feasible solutions are closer to the optimum.

The results presented in Table 8 show the average solution
quality given by all formulations. Table 8 and Figure 6 show
the average power and interference values and its percentage
degradationwith respect to the best average (in bold), for each
formulation. The average values are shown for the instances
with |V | ≤ 25 since all formulations find the fifteen optimal
solutions for |V | ≤ 25.
Table 8 and Figure 6 show that the minimum total

interference formulation FMTI has its total power values
close to the optimal with at most 7.23% from the optimal.
On the other hand, the FMMI formulation minimizes the
maximum interference and gives solutions with total power
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TABLE 7. Average relative linear gap L(%) and MIP gap M(%) for all formulations.

TABLE 8. Average power and interference values and relative degradation for each formulation.

up to 50.73% greater than the optimum. Both FMMITP and
FMTITP formulations gave low power settings with, at most,
5.88% from the optimal. They found the minimum power for
the optimal interference.

Table 8 and Figure 6 also show that the FMMI and
FMMITPmodels found the same optimal interference values.
They show that the other models gave solutions close
to the optimal, even not solving the minimum maximum
interference explicitly. These results also show that the FMTI
and FMTITP models found the same optimal interference
values and show that the other models gave solutions close
to the optimal (except for the FMMI), even not solving the
minimum maximum interference explicitly.

These results allow us to conclude that the FIP formulation,
even not explicitly solving the interference, gives interference
values close to the optimum, regardless of the adopted
interference objective value. We also conclude that FMMI
formulation minimizes the maximum interference but gives
solutions with total power and total interference above
25.85% greater than the optimum. Thus, when considering
theminimization of themaximum interference, it is important
to minimize the total power simultaneously, as demonstrated

TABLE 9. The percentage difference between all nodes and the
interference-free nodes, i.e., I(v ) = k .

by the results obtained by the FMMITP formulation. In the
case of total interference minimization, FMTI formulation
finds solutions with low power settings, even not considering
the power reduction explicitly. Minimizing the total interfer-
ence gets optimal solutions with lower power settings when
compared with the objective of minimizing the maximum
interference. This happens because, when minimizing the
maximum interference, it is possible to increase the node
power to provide more links and, consequently, more con-
nectivity without an increase in the maximum interference.
On the other hand, when minimizing the total interference,
increasing node power always causes increases in the total
interference.
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Table 9 presents the average relative difference between
all nodes and the interference-free nodes. The first column
displays, in parentheses, the number of instances used
to build the averages. We consider I (v) = k as the
interference-free condition to receiver v, i.e., receiver v is
covered by the minimum necessary communication links
needed to achieve the k-connectivity property. The biggest
difference for each instance size is in bold. Table 9 shows
that FMTI and FMTITP formulations have the largest relative
amount of nodes with no interference. For instance, with
|V | = 35, solutions given by FMTI formulation have,
on average, 42.29% of nodes with no interference. Table 9
also shows that FMMI formulation, although minimizing the
maximum interference, gives solutions that keep many nodes
with high interference. A comparison with results obtained
by formulations FMMI and FMMITP, confirms that the
minimization of the maximum interference, without consider
the power reduction simultaneously, can lead to networks
with high interference and power settings. The importance of
power reduction is also supported by the results from the FIP
formulation, which builds low interference networks while
minimizing the total power without explicitly considering
interference.

The difficulties faced by CPLEX in solving large instances
support the need for efficient heuristics capable of finding
good approximate solutions for large-size problems in
reasonable computation times.

B. HEURISTIC SOLUTIONS
The heuristics described in Section V were coded in Matlab,
version 4.1 2018a. An Intel Core i5-8265 machine with a
1.80 GHz clock and 8Gbytes of RAMmemory running under
Windows 10 Home was used in all heuristic simulations.
The value for the α parameter was set to 0.2 because it
often leads to good solutions in the presence of a relatively
large variance [62]. The Stop_Condition parameter varied
according to the simulations being performed.The wmax
parameter was set to 2 due to the two different neighborhood
structures, as described in Section V-B. It has been observed
that the best value for the parameter wmax is often 2 or
3 [64]. Computational simulations with optimal solutions
have been carried out on the same set of random moderately
sized asymmetric Euclidean Instances with |V | ∈ [10, 50]
extended to up to 400 nodes (|V | ∈ [10, 400]), also consisting
in fifteen randomly instances for each problem dimension.
We focus our analysis on the biconnected case (k = 2) of the
four interference minimization problems.

1) COMPARISON BETWEEN HEURISTICS AND THE OPTIMAL
VALUES
In the first simulations, each instance was solved once by
each heuristic, and the heuristics stopped when the optimal
solution was found or when the time limit of 30 seconds
was reached since the GRASP/VNS (GV ) heuristic found all
known optimal solutions in less than 30 seconds.

FIGURE 7. Progressive improvement in solution values along the running
time for all heuristics on instance with |V | = 100 nodes and problem
MMITP.

Table 10 shows, for each heuristic and for each moderately
sized problem dimension |V | ≤ 50, the average interference
values over the optimal solutions found by the formulations
FMMI, FMMITP, FMTI and FMTITP. This means that
the instances that do not reach an optimal solution by any
formulation within six hours of computations were discarded.
Columns ‘‘opt’’ of Table 10 display the number of instances
with the optimal solution found by each formulation. The
results in Table 10 show that the hybrid GV algorithm is
the most effective heuristic when compared to the standard
variants of GRASP (G) and VNS (V) algorithms since GV

was the only one able to find all optimal solutions in less than
30 seconds.

2) COMPARISON BETWEEN HEURISTICS ON LARGE
INSTANCES
The next set of simulation results presents the compari-
son between heuristics given real-sized instances with up
to 400 sensors for the MMITP and MTITP problems.
As described in previous Sections, the solutions of MMITP
and MTITP also guarantee power consumption reduction,
besides reducing the interference. On the other hand,
Table 8 and Figure 6 show that the solutions of the
variants MMI and MTI reduce the interference but can give
solutions with total power up to 50.73% greater than the
optimum.

For the instances with 100, 200, and 400 nodes, Tables 11
and 12 display the power and interference values of the best
solution found over five runs for one instance of each type,
as the running time limit increases from 30 to 1800 seconds
for the MMITP and MTITP problems, respectively. All
heuristics continue to improve their solutions as the time
limit increases. AlgorithmGV found the best average solution
values in most of the situations, as depicted in bold in
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TABLE 10. Number of optimal values found by each heuristic within 30 seconds.

FIGURE 8. Empirical distributions of the time to target-solution-value for heuristics on instances with 200 nodes.

TABLE 11. Average power and interference values for instances with 100,
200 and 400 nodes for problem MMITP.

Tables 11 and 12. Figure 7 illustrates, usingMMITP problem,
the behavior of each algorithm for one run and one instance
with |V | = 100 nodes. It shows that better locally
optimal solutions are continuously found as the running time
increases up to 1800 seconds.

We also compared the three heuristics on one selected
instance with |V | = 200 using the methodology proposed
by [68] and [69]. Two hundred independent runs have been

TABLE 12. Average power and interference values for instances with 100,
200 and 400 nodes for problem MTITP.

performed for each algorithm and for each instance. Each
run was terminated when a solution with a value less than or
equal to a given target was found. We use a sub-optimal value
chosen such that at least one run of the slowest variant could
find it in less than 10 min (600 seconds) of computation time.
The empirical probability distributions of the time observed
to find a solution value less than or equal to the target are
plotted in Figure 8. To plot the empirical distribution for each

VOLUME 12, 2024 120213



R. E. N. de Moraes et al.: Joint Interference and Power Minimization

TABLE 13. Average solution values when considering power consumption, maximum interference, and total interference for all problems (IP, MMI,
MMITP, MTI and MTITP) solved by GRASP/VNS heuristic.

Algorithm 5 High Level Pseudo-Code of Function Neighborhood_Change(p,p′′,w)
Require: Incumbent solution p, local search solution p′′ and the current neighborhood w.
Ensure: Updated incumbent solution p and current neighborhood w.
1: if an improvement in objective function value f (.) is obtained, f (p′′) < f (p) then
2: the incumbent solution is updated, p← p′′;
3: w is returned to its initial value, w← 1;
4: else
5: w is updated to the next neighborhood, w← w+ 1;
6: end if
7: return the current incumbent solution p and the updated current neighborhood w are returned, p,w;

Algorithm 6 High Level Pseudo-Code of GRASP
Require: Node set V , arc weights dε

uv for any u, v ∈ V , Stop_Condition and parameter α.
Ensure: Best known solution p∗

1: the set of transmission powers which stores the best known solution is initialized empty, p∗← ∅;
2: the objective function value of an empty set of transmission powers is initialized with a very large value, f (p∗)←∞;
3: while Stop_Condition is not met do
4: finds a greedy randomized solution p, p← Greedy_Randomized_Construction (V,dε

uv,α);
5: explores the neighborhood of the current solution p attempting to find a local optimum p′ with reduced total power

consumption, p′← Local_Search(p);
6: if the solution found by local search p′ improves upon the best previously found solution p∗, f (p′) < f (p∗) then
7: the best solution is updated, p∗← p′;
8: end if
9: end while

10: return best power assignment p∗ is returned;

algorithm, we associate a probability pi = (i − 1
2 )/200 with

the i-th smallest running time ti, and we plot the points
zi = (ti, pi), for i = 1, . . . , 200.

Figure 8 shows that GV heuristic is the fastest variant
for |V | = 200 with the given target solution value. The
combination of the GRASP and VNS strategies gives more
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Algorithm 7 High Level Pseudo-Code of VNS
Require: Node set V , arc weights dε

uv for any u, v ∈ V , Stop_Condition, maximum neighborhood wmax to be explored during
the search.

Ensure: Best known solution p
1: finds the greedy solution p, p← Greedy_Randomized_Construction (V,dε

uv,α = 0.0);
2: while Stop_Condition is not met do
3: the neighborhood size parameter w is initialized to 1, w← 1;
4: repeat
5: generates a solution p′ at random from the w-th neighborhood of the current solution p, p′← Shake(p,w);
6: explores the neighborhood of the current solution p′ attempting to find a local optimum p′′ with reduced total power

consumption, p′′← Local_Search(p′);
7: evaluates the new solution p′′ given by local search and selects the subsequent neighborhood to be explored or returns

w to its initial value if an improvement was obtained, p,w← Neighborhood_Change(p, p′′, w);
8: until eighborhood size parameter exceeds the maximum size, w = wmax
9: end while

10: return best power assignment p is returned;

Algorithm 8 High Level Pseudo-Code of Hybrid GRASP/VNS
Require: Node set V , arc weights dε

uv for any u, v ∈ V , Stop_Condition, maximum neighborhood wmax to be explored during
the search and parameter α.

Ensure: Best known solution p∗

1: the set of transmission powers which stores the best known solution is initialized empty, p∗← ∅;
2: the objective function value of an empty set of transmission powers is initialized with a very large value, f (p∗)←∞;
3: while Stop_Condition is not met do
4: randomly builds a biconnected graph G(p) = (V ,B(p)), p ← Greedy_Randomized_Construction

(V,dε
uv,α);

5: repeat
6: the neighborhood size parameter w is initialized to 1, w← 1;
7: repeat
8: generates a solution p′ at random from the w-th neighborhood of the current solution p, p′← Shake(p,w);
9: explores the neighborhood of the current solution p′ attempting to find a local optimum p′′ with reduced total power

consumption, p′′← Local_Search(p′);
10: evaluates the new solution p′′ given by local search and selects the subsequent neighborhood to be explored or

returns w to its initial value if an improvement was obtained, p,w← Neighborhood_Change(p, p′′, w);
11: until neighborhood size parameter exceeds the maximum size wmax , w = wmax
12: until submitted the VNS procedure to the current solution p until no improvement is achieved
13: if solution found by the VNS procedure improves upon the best previously found solution, f (p) < f (p∗) then
14: updated the best solution, p∗← p;
15: end if
16: end while
17: return best power assignment p∗ is returned;

diversity and intensification. Diversity and intensification
improve the probability of finding good solutions in less time.
Once the best heuristic was identified, it was applied in the
next evaluations.

3) PROBLEM COMPARISON USING THE GRASP/VNS
HEURISTIC
In this simulation, we assess the quality of the solutions in
terms of their power consumption, maximum interference,
and total interference produced by GRASP/VNS heuristic
when solving the five different problems (IP, MMI, MMITP,

MTI and MTITP). The set of instances with 25 ≤ |V | ≤ 400
considered in Table 13 was solved with GRASP/VNS using
a fixed amount of time. As the GRASP/VNS heuristic (see
Tables 11 and 12) finds better values as more time is given,
the time of 30 minutes was used to deal with the trade-off
between quality solution and the total test running time
(15 instances of each size for 5 different problems; and
for 30 minutes there are up to 187.5 hours of computation
time).

Table 13 shows the average power consumption, maximum
interference, and total interference degradation obtained by
each problem solution, with respect to the best average power
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consumption, maximum interference, and total interference,
respectively. The best average values are depicted in bold in
Table 13.

The approximate results given by the GRASP/VNS
presented in Table 13 behave similarly to the comparison
made with optimal solutions shown in Table 8. The solutions
of problem IP give minimum power consumption, while
solutions of theMMITP andMTITP problems give minimum
interference values with lower power consumption. This is
a strong indication that the GRASP/VNS heuristic is robust
and can be considered a good strategy to find approximate
solutions for large problems that cannot be tackled by
CPLEX.

Regarding the interference problems, we can observe that
the solution of the MMI problem leads to the highest values
of power consumption and total interference. In contrast,
it is sufficient to insert the power minimization (MMITP
problem) to achieve lower power and total interference than
MMI. The solution of the MTI and MTITP problems gives,
in most cases, low degradation in both power consumption
and maximum interference. When GRASP/VNS heuristic
solves the IP problem, where interference is not considered
explicitly in the objective function, solutions present low
interference degradations, regardless of how interference is
calculated. Therefore, solutions with minimum total power
consumption give low interference values.

VII. CONCLUDING REMARKS
In this paper, we studied the fundamental problem of joint
minimization of interference and power in wireless sensor
networks. We formulated it as a graph-based topology
control problem that aims to minimize a function of
receiver interference and total power subject to k-connectivity
constraints. Four interference-aware formulations and three
metaheuristics were proposed and compared through com-
prehensive and extensive computational simulations.

We showed that CPLEX expends similar computational
effort to solve all formulations. We also found that the
joint minimum interference (maximum or total) with mini-
mum power formulations provided solutions with minimum
interference values and low power consumption. When
considering only minimum interference, the formulation
that minimizes the maximum interference without power
minimization gives solutions with the highest node power.

The difficulties faced by CPLEX in solving large instances
support the need for efficient heuristics capable of finding
good approximate solutions for large-size problems in
reasonable computation times. Therefore, we evaluated the
effectiveness of three meta-heuristics in terms of the tradeoffs
between computation time and solution quality. They were
able to find good solutions for very large problem sizes with
up to 400 nodes. The combination of both GRASP and VNS
heuristics in a hybrid GRASP/VNS gives more diversity and
intensification, which increases the probability of finding
good solutions in less time. The GRASP/VNS systematically
found the best lower bounds and optimal solutions.

All optimal and approximate results show the importance
of considering power reduction along with interference when
minimizing interference. Thus, considering the application
of the type of WSN evaluated in this work in scenarios
with limited energy resources (the sensors are battery-based),
we are preparing an experimental proof-of-concept. Thus,
we are designing a network with connectivity based on
the Thread protocol, a promising low-rate and low-power
wireless protocol that allows the deployment of mesh
networks. With a leader router, this open-source technology
permits route configuration for communication between end-
device nodes, facilitating the deployment of certain scenarios
in a specific topology before tests with the optimization
provided by our proposal. It is worth mentioning that the
proposed strategy is off-line applicable, i.e., knowing the
environmental area, the network is optimally designed, con-
figured, and then applied. As future works, we also envision
the development of adaptive algorithms aiming at dynamic
network configuration adjustments, extending optimization
frameworks to incorporate additional constraints such as fault
tolerance and energy harvesting. The integration of machine
learning for predictive analysis and performance optimization
can be an added value.
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