
Received 8 May 2024, accepted 25 June 2024, date of publication 1 July 2024, date of current version 15 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3421338

A Software Defined Vehicular Network Using
Cooperative Intelligent Transport
System Messages
DUARTE DIAS 1, MIGUEL LUÍS 1,2, PEDRO RITO 1, (Member, IEEE),
AND SUSANA SARGENTO 1,3, (Member, IEEE)
1Instituto de Telecomunicações, 3810-193 Aveiro, Portugal
2Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
3Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Corresponding author: Miguel Luís (nmal@av.it.pt)

This work was supported in part by the European Union/Next Generation EU, through Programa de Recuperação e Resiliência (PRR)
[Project Nr. 29: Route 25], in part by the European Regional Development Fund (FEDER), through the Competitiveness and
Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project IMMINENCE with
Nr. 112314 (POCI-01-0247-FEDER-112314)] and by the Fundação para Ciência e a Tecnologia (FCT)/Ministério da Educação,
Ciência e Inovação (MECI) through national funds under the project Multihomed Software Defined Vehicular Networks
(MH-SDVanet) (PTDC/EEI-COM/5284/2020).

ABSTRACT The increasing need for smarter means of transportation has brought a greater focus on
Vehicular Ad-Hoc Networks (VANETs). VANETs are characterized by frequent topology changes due
to the high node mobility, and most of the existing network protocols for mobility management are not
well prepared for persistent horizontal handovers. This work studies the integration of Software-Defined
Networking (SDN) in the Intelligent Transportation Systems (ITS) universe for the mobility management of
VANETs. The idea is to explore the Cooperative Intelligent Transport Systems (C-ITS) messages in the SDN
universe allowing the SDN controller to have a deeper view of the topology state. This global view gives
the controller proactiveness, anticipating handovers even before they happen, reducing handover delays,
and thus, improving the user experience. To evaluate the proposed approach, two types of environments
were considered, laboratory and real-world at city scale with connected vehicles and infrastructure. The
performance results have shown great improvements compared with a non-proactive approach: exploring the
benefits of integrating the ITS and SDN universes, we obtained an almost zero packet loss rate, a reduction
in the average delay and an increase in the connectivity time.

INDEX TERMS Vehicular ad-hoc networks, software-defined networks, intelligent transport systems,
horizontal handovers, performance evaluation.

I. INTRODUCTION
Smart and connected mobility can be used to improve
safety, automation or even pollution consumption in the
roads, building new Intelligent Transportation Systems (ITS).
Vehicular Ad-Hoc Networks (VANETs), a key part of the
ITS framework, are mobile networks that allow vehicles to
communicate with each other as well as with roadside base
stations, called Road-Side Units (RSUs), located at critical
points of the road. VANETs are characterized by frequent

The associate editor coordinating the review of this manuscript and

approving it for publication was Binit Lukose .

topology changes due to the high node mobility, with a node
being a vehicle equipped with an On-Board Unit (OBU).
In this type of networks, horizontal handovers are much more
frequent than in traditional Wireless Local Area Networks
(WLANs), mainly because of the velocity associated with the
mobile nodes.

To make this type of networks a reality, new IP network
protocols for mobility management emerged. Solutions
based on extensions of Mobile IP (MIP) [1], Network
Mobility (NEMO) [2], Proxy Mobile IPv6 (PMIPv6) [3] and
NEMO-enabled Proxy Mobile IPv6 (N-PMIPv6) [4] were
introduced to solve the frequent topology changes where each

93152


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-8820-2373
https://orcid.org/0000-0003-3488-2462
https://orcid.org/0000-0002-1151-9268
https://orcid.org/0000-0001-8761-8281
https://orcid.org/0000-0002-2109-7871


D. Dias et al.: SDVN Using C-ITS

mobile node changes its Point-of-Attachment (PoA) very
often. Although they were promising solutions, they suffered
from a lack of flexibility and abstraction level. For these
reasons, these solutions had an excess of signalling overhead
and service delay. More recently, with the appearance
of SDN, solutions applied to the vehicular environment
have emerged, thus creating the Software-Defined Vehicular
Network (SDVN) paradigm [5], [6].

The advantages of SDN, such as its flexibility and
programmability, made it possible to create solutions with
lower complexity and, consequently, lower overhead and less
delay in services. However, existing solutions exploring the
use of SDN in VANETs were designed to operate only when
there is IP traffic upload, i.e. they require IP traffic originated
from the OBUs side for handovers to be detected by the
controller (if there is no IP traffic uplink, the network does not
know which OBUs are reachable from each RSU) [7]. These
solutions, denoted as reactive approaches for the remaining of
this work, do not oversee the state of the network and cannot
predict imminent network changes.

Our proposed approach brings the idea of merging
vehicular information with SDN control, taking advantage of
the existing vehicular messages in the ITS universe, called
C-ITS messages. These messages, categorized into several
types, allow vehicles, infrastructure, and other road users
to exchange information in real-time, enabling applications
like collision warnings, traffic management, and navigation
assistance. Specifically, Cooperative Awareness Messages
(CAMs) are of great interest here. CAMs are exchanged
between ITS Stations (ITS-Ss), RSUs, and OBUs to establish
and maintain awareness, sharing multiple data like IDs and
GPS coordinates [8]. Using these messages together with
SDN, it is possible to offer a continuous notion of both the
location of the OBUs and their connectivity with neighboring
RSUs, thus making it possible to predict the next RSU that a
given OBU will connect to. The proposed solution allows to
run multiple types of services such as entertainment, traffic
management, or road safety, since the network knows how
to reach the vehicles regardless of whether the OBUs have
initiated prior communication, thus being crucial for the
solution to have an accurate and up-to-date notion of the
network’s topology [9].
The main contributions of this article are the following:
• A network management solution integrating the use of
C-ITS messages in an SDN environment;

• A proactive SDVN solution capable of managing flows
and initiating downlink L3 communication with a
specific OBU even if there is no L3 uplink traffic;

• An exhaustive analysis of horizontal handovers in a
proactive SDN enabled vehicular network;

• Performance comparison between the proposed SDN
architecture and an existing one (reactive);

• Evaluation tests using real vehicle communication
equipment (OBUs and RSUs) in both laboratory
and city environments, with connected vehicles and
infrastructure.

The remaining of the article is organized as follows.
Section II discusses the related work. Section III details the
proposed solution design. Section IV details the proactive
operating mode of the proposed approach. Section V
evaluates the performance of the solution by comparing it
with a previous state of the art reactive SDN solution. Finally,
Section VI enumerates the conclusions and introduces
directions for the future.

II. RELATED WORK
In the last decade, VANETs have received significant
attention from the academic and industrial communities. Due
to the volatility of the wireless medium, VANETs face several
challenges. The concept of Software-Defined Networking
(SDN) applied to vehicular networks emerged as a possible
solution to mitigate these challenges [10].

In the realm of SDVN, numerous research works have
emerged focused on several key areas, such as Secu-
rity/Privacy and Quality-of-Service/Routing Management.
For instance, [11] exemplifies advancements in these areas
by introducing a hybrid SDN-VANET architecture. This
architecture prioritizes privacy and security while concur-
rently ensuring good performance in terms of message loss
rate, packet delivery rate and delay reduction. Notably, the
study integrates the dynamic positioning management of
SDN controllers within the network based on road traffic
fluctuations. Other research works, such as [12] and [13],
delve deeper into the realm of data dissemination and QoS,
with their solutions based on network metrics like throughput
during solution evaluation.

Recent advances on the 5G network architecture enabled
SDN to manage vertical handovers and boost the func-
tionalities of VANETs. This allowed for an increase in
the radio access coverage and provided complementary
communication paths with the Internet. The work in [14]
proposed an optimization strategy to balance the SDN control
plane through different communication technologies (5G
cellular and ad-hoc). This strategy balances the low latency
of 5G cellular with the low cost of ad-hoc networks to obtain
an intelligent solution. Experimental results have shown that
this strategy can provide smaller latency than other control
plane structures. However, these results were obtained using a
network simulator, not knowing the feasibility of the solution
in a real environment.

Regarding the horizontal handover in VANETs, some
recent works exploring SDN technologies have been pro-
posed. The work in [15] proposed a fast handover scheme
based on the mobility prediction of vehicles. In this work,
a single architecture is considered, and RSUs are not part
of the SDN domain. In this solution, two different network
domains, with two SDN controllers, are considered. The SDN
controllers of the scheme predict movement of vehicles by
detecting port status of SDN switches, proceeding to the
addition of flows proactively. The performance evaluation is
accomplished using a network simulator, and only one metric
is discussed which is the handover delay.

VOLUME 12, 2024 93153



D. Dias et al.: SDVN Using C-ITS

The work in [16] follows a different approach, since it
combines SDNwith the network-basedmobilitymanagement
standard, PMIPv6. In this work, both management entities
are present, the LMA of the PMIPv6 architecture, and
the SDN controller of the SDVN. This can be seen as a
duplication of services and introduces one additional step
in the handover management which increases the network
overhead. Additionally, the performance analysis is very
limited, since only one metric is considered, which is the
latency associated with the handover process.

In [17] the authors propose an advanced handover process
based on SDN to manage data transmissions in VANETs.
The solution consists of a set of SDN enabled vehicles
divided into clusters. Each cluster has a cluster head (CH)
that relays information from other vehicles via LTE. The
handover process is managed by the controller that monitors
the vehicles movement and decides when each vehicle needs
to handover. Experimental results showed that the proposed
approach significantly improves the network performance in
scenarios with frequent topology changes.

The work in [7] considers two different SDN architectures
that vary in depth in the SDN domain, evaluating the impact
of the depth of the softwarization environment. In the first
one, designated as reactive, the RSUs are not part of the
SDN domain, whereas, in the second one, designated as
proactive, they are. Results showed that the lower complexity
of the SDN solution allows for a better performance during
handovers. The work is quite complete, having realistic
traffic profiles and a large set of metrics. Another positive
point is that performance evaluation is accomplished using
real vehicle equipment and emulated mobility scenarios.
However, both solutions are dependent on prior uplink traffic
for the solutions to work, which limits the applicability of the
solution.

The use of C-ITS messages in a vehicular domain has been
standard for a long time. These messages allow applications
such as active road safety and traffic efficiency. However,
the combination of these messages with an SDN domain is
something that has been less explored.

The work in [18] proposes an architecture with a dis-
tributed control plane that employs a hierarchy of controllers
that can dynamically adjust to environment and network
conditions. RSUs are part of the SDN domain as they also
contain controllers. The goal of the solution is to enable
C-ITS messages dissemination in a dynamically distributed
network. This solution combines the use of C-ITS messages
with the SDN domain; however, the messages are not aimed
to help on the management of the vehicular network.

The work in [19] proposes a hierarchical SDN-based
vehicular architecture that aims to improve performance
in situations of loss of connection with the central SDN
controller. This solution explores the use of periodic beacon
messages (C-ITS messages) to let the controller know where
the mobile nodes are. This information is used to create
routes between different SDN domains when a node needs
to transmit information. The solution exploits the use of

C-ITS messages in an SDN domain, however, its use does
not allow the creation of proactive flows, that is, prior to the
occurrence of traffic. Additionally, the solution is only tested
on a network simulator.

The work here presented will focus on the use of C-ITS
messages in the SDN management process of horizontal
handovers. In the proposed architecture, RSUs are inside
the SDN domain, and the solution is evaluated using real
vehicular hardware in both laboratory and city environment,
which is a rare evaluation setup found in the literature.
Realistic traffic profiles will be considered for the testing.
Furthermore, a large set of evaluation metrics will be
considered and the proposed proactive solution will be
compared to a reactive SDVN solution.

III. PROACTIVE SDVN SOLUTION DESIGN
The new proposed approach joins the SDN concept with
the use of C-ITS messages to improve the proactiveness
of vehicular handovers. The base architecture, depicted in
Figure 1, comprises a control plane with a single controller,
and a data plane that includes a main SDN switch and
RSUs that are also SDN switches, being also part of the
SDN topology. The main SDN switch is responsible for
interconnecting the vehicle infrastructure (RSUs, OBUs and
end-users) and the gateway that connects to the Internet.
The switches communicate with the controller using the
OpenFlow communication protocol [20] to create the flow
table, which dictates what should happen to packets arriving
at the switches. The connection between RSUs and OBUs
is established using ITS-G5 communication technology,
a standard used in vehicular environments where handover
processes are recurrent.

A. ITS MESSAGES IN THE SDN DOMAIN
To offer proactiveness to the proposed approach, we consider
the use of control ITS messages that are disseminated over
the network in broadcast between ITS-Stations (ITS-S). In the
case of the proposed architecture, these ITS-Ss are RSUs and
OBUs. For this solution, the most suitable class of messages
are CAMs because they carry signalling information such as
location, heading, speed and type of vehicle. This information
is relevant to the controller because it allows it to have an idea
of the movement of the OBUs, thus allowing the prediction
of handovers even before they happen.

In this solution, the creation of flows related with the
handover occurs in a proactive manner, that is, the logical
handover is prepared even before the physical handover
occurs. This is possible because of the C-ITS messages
(CAMs) that, together with RSSI (between RSUs and OBUs)
observed in the transmission of such messages, make it
possible to characterize the OBUs’ movement and predict the
next positions, and consequently, the time when handovers
will occur. The choice of the RSU to which the OBU should
connect will be discussed in greater detail in Section V.
Regarding the security aspect of this solution, any mali-

cious modification on CAMs will impact the performance of

93154 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

FIGURE 1. Single main switch SDVN architecture.

the management solution. For example, if the location and
speed fields in a CAM are modified, the SDN controller
will consider the vehicle as being in a different place, and
the communication flows would be installed in the wrong
RSU. This means that the proactiveness of the proposed
solution would be affected, and the solution would operate
as a reactive SDN solution.

B. SINGLE SWITCH AND MULTIPLE SWITCH LEVEL
ARCHITECTURE
Two approaches representing different complexities of the
vehicular SDN infrastructure are considered: the single
switch level includes a main SDN switch (only one level) and
RSUs that are also SDN switches, being also part of the SDN
topology (depicted in Figure 1); the multiple switch levels
includes a hierarchy of SDN switches with multiple levels
(depicted in Figure 2).
In the multiple switch levels architecture, the top level

switch, in this case ‘‘level 0’’ switch, makes the interconnec-
tion between the gateway that gives access to the Internet, the
sub-level switch and one RSU. In the lowest level, ‘‘level 1’’,
the switch is responsible for interconnecting the remaining
vehicle infrastructure (RSUs, OBUs and end-users) with the
level above it, ‘‘level 0’’. This sub-solution allows both RSUs
and switches to be linked to levels that are not necessarily
the level just above them. In this solution the switches
also communicate with the controller using the OpenFlow
communication protocol. This approach aims to distribute the
traffic across different switch levels to reduce the probability
of a bottleneck, which can happen when there is a higher
number of RSUs with only one switch connecting them to
the rest of the network.

FIGURE 2. Multiple switch levels SDVN architecture (two level
configuration).

C. SDN CONTROLLER DECISION
An SDN controller is an application in the SDN architecture
that manages the various flows of an SDN switch. Usually, the
controller application runs on a server and uses switch man-
agement protocols such as OpenFlow [20] or OVSBD [21]
to communicate with the switches, giving information on the
rules to the packets.

In this architecture, the controller application proactively
detects the handover by the CAMs information and RSSI
of the OBUs. Based on this information that reaches the
controller, this one starts to be aware of several parameters
referring to OBUs, such as location, speed, heading, altitude
and signal strength (RSSI) towards other RSUs, which will
allow the controller to decide which is the optimal RSU for
a given OBU at a particular moment. If the current RSU of a
given OBU remains optimal, there is no change; otherwise,
the controller proceeds to change, taking all necessary
actions, including changing the flows on the switches.

It is important to mention that, although the solution
does not need IP traffic for handovers to be detected, it is
necessary for the controller to know which IP network the
RSUs communicate with the OBUs. The controller is able to
know the OBU ID through the CAMs information, and this
ID corresponds to the 4th byte of the IPv4 address.

D. ROAD SIDE UNIT (RSU) INTERFACES
In this solution, the RSUs are part of the SDN topology,
these being SDN switches. Here, one of the RSU’s wired

VOLUME 12, 2024 93155



D. Dias et al.: SDVN Using C-ITS

ports are part of the Open vSwitch (OVS),1 and all traffic
that arrives at the RSU via the wireless interface is redirected
to a bridge, also in the OVS domain. This bridge makes the
interconnection between the wireless interface and the OVS
ports. Figure 3 illustrates the RSU interfaces.

FIGURE 3. RSU Interfaces.

The RSU, being an ITS-S, is constantly transmitting C-ITS
CAM messages. The sending frequency depends on the type
of station but the RSU, being a fixed station, sends with
a frequency of 1 Hz. These messages are broadcast on the
network so that other stations and vehicles can receive them
if in range.

E. ON BOARD UNIT (OBU) DECISIONS
Unlike RSUs, OBUs do not belong to the SDN domain,
and the controller does not affect their behaviour. Therefore,
decisions regarding the gateway change are made internally
by the OBU’s connection manager, which is based on CAM
messages coming from the various RSUs spread across the
city. Like the RSU, the OBU is also constantly broadcasting
CAMs. This information is shared both with other vehicles
on the road as well as with the infrastructure so that they can
make intelligent decisions.

IV. PROACTIVE SDVN OPERATION AND ALGORITHMS
The solution outlined here consists of two primary compo-
nents: an SDN controller and the OBU’s connection manager.
These components implement a shared algorithm responsible
for managing horizontal handovers on both the infrastructure
and vehicle sides.

The following sections will first explore the algorithm
behind the management of horizontal handovers, which
is integrated into both modules. Subsequently, a detailed
examination of the SDN controller and the OBU connection
manager will be provided, covering their respective specifics,
algorithms, and challenges.

A. MANAGING HORIZONTAL HANDOVERS
A very important part of the solution is the decision logic,
which deals with the decision of which RSU a given OBU
should connect to at a given instant of time. This decision
logic is shared by both decision makers, the SDN controller
and theOBU’s connectionmanager, as amethod that executes
within its own thread, which is depicted in Algorithm 1.

1https://www.openvswitch.org

Algorithm 1 Selecting the RSU to Be the Point-of-
Attachment
1 Function SelectingRSU(OBUs):

Input: list of OBUs
Output: ∅

2 while True do
/* Applicable to Controller */

3 for each OBU do
4 if connected to RSU then
5 if RSSI exists then

/* Search for RSU that
matches OBU’s
heading */

6 for r in listOfRSUs do
7 if OBU heading matches r

then
/* Comparing r’s

RSSI with
current RSU’s
RSSI */

8 if r_RSSI > act_RSSI
then

9 change current RSU to
r
/* Applicable

to
Controller

*/
10 change flows in

switches
/* Applicable

to CM */
11 change default gateway

12 else
13 if RSUs in reach then

/* Search for RSU that
matches OBU’s
heading */

14 for r in listOfRSUs do
15 if OBU heading matches r

then
16 OBU associated with r

/* Applicable to
Controller */

17 add flows to switches
/* Applicable to

CM */
18 set default gateway

19 wait 500ms

This method has slight variations depending on whether
it is being executed in the SDN controller or the OBU’s

93156 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

connection manager (simply denoted hereafter as CM). In the
case of the controller, the method performs a loop cycle
that iterates over the various OBUs that are registered in the
controller. For each of the OBUs, the decision is made to
find out which RSU is most suitable to be the OBU’s default
gateway proceeding with the addition of flows in the RSU.
In the case of the CM, it consists of an infinite loop that
also checks which is the best RSU to be the OBU’s default
gateway, changing only the default IP gateway.

Regarding the method’s common core, this one is divided
into two parts, the first one represents the case where the OBU
is not currently associated with any RSU, therefore there is no
logical link between the two. The second part deals with the
case where there is already a logical link.

Concerning the case where there is still no RSU associated
with the OBU (line 12), an analysis is made to the list of RSUs
that are in reach of the OBU (line 13). For each of the RSUs
present in the list, a check is made to see if the location of
the RSU matches with the OBU’s heading (line 15). There
is a match if the RSU is within a certain angle, as shown in
Figure 4. In case of a match, this RSU becomes associated
with the OBU, thus creating a logical link between the two
(line 16). If there is no match between the two, it proceeds to
the next RSU on the list. If the list of RSUs is empty or the
RSUs present do not satisfy the condition mentioned above,
then the process for this OBU is over, thus proceeding to the
next OBU.2

FIGURE 4. OBU heading matching with RSU.

Assuming that there is already a logical link between an
OBU and an RSU (line 4), a check is performed to assess
if there is an RSSI associated with the linked RSU (line 5).
In the positive case, an iteration will be made on the list of
RSUs that are in reach of the OBU (line 6). For each RSU,
if the location matches with the OBU’s heading (line 7),
then it proceeds to the next phase, otherwise it proceeds to
the next RSU. The next phase consists on the comparison
between RSSI of the current RSU with the next RSU’s RSSI
that satisfied the precondition (line 8). If the RSU’s RSSI

2It is important to highlight that this heuristic, based on the RSSI and
heading, is one possible approach for the selection of the RSU as Point-of-
Attachment. Our goal is not to discuss the best heuristic to be used in the
handover process. Themain contribution of this work lies on themanagement
of the vehicular network through ITSmessages but, to showcase the potential
of such solution, a heuristic for this process must be used. This was the one
selected, which can be further replaced by many other strategies.

is greater than the current RSU’s RSSI including a certain
threshold, which has a value of 2, then a handover will occur
(line 9); otherwise, it will continue with the next RSU. When
the handover occurs, there is the destruction of the existing
logical link between the OBU and the old RSU, and then a
new link is created between the OBU and the new RSU.3

The two methods that have been described before address
the common trunk regarding the selection of the RSU as a
Point-of-Attachment. However, there is still another method
that is common to both components, the timeout block,
which is responsible for defining the maximum validity
of the content of a CAM message. This method, like the
ones discussed above, runs on a dedicated thread and is
independent of the others. This method aims to update the
list of RSUs in reach, associated with the OBU, keeping
it up to date. This is achieved by eliminating RSUs where
the last CAM received is longer than 3 seconds. In the case
where the list is empty and the OBU is still connected, if it
exceeds 10 seconds, the association between RSU and the
OBU, called logical link, is destroyed. This way, there will
be no disturbance in the decision logic caused by outdated
information. This is a very important method for the proper
operation of both components.

The timeout value for the CAM validity (3 secs) was
defined based on the element (SDN controller or OBU’s
CM) with the lowest arrival frequency of CAMs. Since the
OBU’s CM receives CAMs every 1 second (ideally), it makes
no sense to opt for a period shorter than that. Since there
are obstacles/interference in the way, it is natural that the
period between the arrival of CAMs increases. The chosen
value takes into account these factors and was tested in a city
environment to prove the feasibility of such value.

Although the decision logic of both elements (controller
and OBU’s CM) is the same, it does not necessarily mean
that both elements behave similarly at all times. The fact
that the messages that reach both elements are not the
same means that the decisions taken may not be the same.
The controller receives messages from the OBUs with a
(theoretical) frequency of 10 Hz, while the OBU’s connection
manager receives messages from the RSUs with a frequency
of 1 Hz. Thus, decisions may not be synchronous between
both elements; however, the controller, which has the most
frequently updated information, will update the flows on
the switches even before the connection manager makes the
decision. Therefore, the uplink may not be synchronous with
the downlink, but there will always be connectivity.

B. CONTROLLER APPLICATION
The controller application is the main component of the
proposed approach, since it is responsible for controlling
the flows of the several SDN switches in the architecture.
It is based on the RYU SDN framework,4 which is an

3The threshold value used in this work (2) was selected based on tests
carried out in a city environment, whose setup is shown in Section V.

4https://ryu-sdn.org

VOLUME 12, 2024 93157



D. Dias et al.: SDVN Using C-ITS

Open-Source Software (OSS) system that supports the
OpenFlow protocol. The proposed solution can be divided
into two major parts. These two run in parallel and are central
to the correct operation of the architecture. The first part
is responsible for the packet handling, and the second is
responsible for the logical association of a given OBU to an
RSU.

1) PACKET HANDLING
The packet handler is responsible for handling all packets that
arrive at the controller from the SDN switches. This method is
executed asynchronously whenever an SDN switch does not
have a flow that matches the given packet, encapsulating the
packet and sending it to the controller. Algorithm 2 describes
this process.

Algorithm 2 Packet-In Handler Algorithm

1 Function PacketHandler(packet):
Input: packet to be processed
Output: ∅
/* Extract packet protocol */

2 protocol ← packetProtocol
3 if protocol is OBUInfo then
4 if packet from registered OBU then
5 update OBU info
6 drop packet

7 else if protocol is ARP then
8 if request to OBU then
9 create ARP reply
10 drop packet

11 else
12 send out original packet
13 add flow to switch

14 else if protocol is IP then
/* Extract packet IP protocol

*/
15 ipProtocol ← packetIpProtocol
16 if ipProtocol in [ICMP,UDP,TCP] then
17 send out original packet
18 add flow to switch

19 else
/* All other IP protocols

are not processed */
20 drop packet

21 else
/* All other protocols are not

processed */
22 drop packet

When receiving a packet, the relevant information, such as
the source and destination addresses, as well as the protocols,
are extracted (line 2). From the collection of this information,

processing is done, initially, based on the packet protocol. The
solution can process the following protocols: ARP, IP and a
custom one called OBUInfo discussed in the next paragraph.
All other protocols are not processed at this stage and are thus
dropped (line 22).

The OBUInfo protocol is a custom protocol whose
ethertype number is 0xBBBB (which is not assigned by the
IEEE 802 standard). The protocol was developed to be able to
differentiate between custom OBUInfo messages (containing
the contents of CAM messages plus the RSSI), representing
control traffic, from IP packets that represent data traffic.
Therefore, the controller can separate both, so there is no need
to send control messages within data traffic.

Regarding the supported protocols, each one of them
will be explained in greater detail. Whenever the controller
receives a OBUInfo packet (line 3), the packet’s payload is
extracted to obtain the relevant information. Then, a verifica-
tion occurs to check if the latter came from a registered OBU.
If so, the extracted information is used to update the object
referring to the OBU present in the controller (line 5). The
extracted information includes the OBU ID, GPS coordinates
(longitude and latitude), heading, speed, RSSI (betweenOBU
and RSU that received the CAM) and the timestamp. The
RSSI is associated with a given RSU, and internally, there
is a list of RSUs with its associated RSSI, which represents
the RSUs that are within reach of the OBU. In the end, the
OBUInfo packet is dropped because it has already fulfilled its
purpose and is not reinserted into the network (line 6). If the
packet does not come from a registered OBU, it is simply
dropped.

When an ARP packet is received (line 7), a verification
occurs to see if it is an ARP Request for any of the OBUs
that are registered with the controller. If so, the controller
creates and sends an ARP Reply to the node that created
the message (line 9). The message that will be created will
have as source MAC address the RSU to which the OBU is
currently connected. This way, the messages coming from the
requesting node with the OBU as destination will necessarily
be sent via the RSU connected to the OBU. In the end,
the ARP Request packet is dropped because it has already
fulfilled its purpose and is not reinserted into the network
again (line 10). In cases where it is an ARP Reply packet
or even an ARP Request with an unregistered OBU as
destination, the packet is reinserted into the network and its
associated flows are added to the switch (lines 12 and 13),
thus ending its processing.

Finally, in the case where the controller receives an IP
packet (line 14), the IP protocol of the packet is extracted.
If the IP protocol is one of the following ICMP, UDP or
TCP, then the packet is reinserted into the network and its
associated flows are added to the switch (lines 17 and 18).
Otherwise, the packet is dropped (line 20).

2) OBU ASSOCIATION
Regarding the association of an OBU to an RSU, it is done
based on the decision logic discussed in the Section IV-A.

93158 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

Taking such logic into account, a choice is made with which
RSU the OBU will create a logical link. The association
process will diverge into two parts depending on whether
there is an association beforehand.

The first part addresses the case where a first connection
is being established for both single switch and multiple
switch levels architectures. As far as the single switch level
solution is concerned, after creating the logical link between
the OBU and the RSU, flows are added proactively to the
SDN switches (RSUs and main switches). Figure 5 illustrates
the flows on the various switches. When adding flows,
firstly, uplink and downlink flows are added to the RSU
associated with the OBU, in this case RSU 1. These flows
are not reactive, they are very generalist and are only based
on pre-known data and only on the IP protocol, making
no distinction between the various types of higher layer
protocols. The output ports are also pre-known since the
controller knows where the OBU is connected, being aware
of the topology. In the case of the downlink, this is only based
on the RSU’s MAC and the OBU’s IP, and in the case of
the uplink it is even more general based only on the entry
port. Secondly, we have the addition of the downlink flow at
the main switch level. As for the RSU, the controller holds
information about the OBU and the port to get there, which
is also only based on the IP protocol and has no higher layer
protocol. The uplink flow that is missing at the main switch
level is only added when IP traffic occurs (reactive) because
there is no pre-known information to be able to create it
proactively, at least at the first time. However, during the
handover process (changing the RSU to which the OBU is
connected), which will be discussed next, this flow will be
added proactively. At the end of the addition of the flows, the
list of RSUs that are in reach of the OBU is reset so that there
is no old RSSI values for RSUs that are no longer within the
OBU’s reach.

FIGURE 5. Flows related to first connection in the single switch level
architecture.

Figure 6 illustrates the flows for a multiple switch levels
configuration with two switch levels and three RSUs, two
RSUs in level 1 (RSUs 1 and 2) and one in level 0 (RSU 3).
Here, all the switch levels (levels 0 and 1, in this case) behave
the same way, so they follow the same reasoning as the main

switch in the previous version. Being independent switches,
the ports referring to the flows can differ between switches.
The controller, with knowledge of the topology, identifies the
ports associated with each of the RSUs, enabling proactive
addition of flows. Thus, downlink flows are proactively added
as there is pre-known information to create them. Uplink
flows, on the other hand, are only added when there is IP
traffic. In this scenario, as RSU 2 initiates traffic, flows are
added to both RSU2 itself and the level 1 and level 2 switches.
However, if the traffic had been initiated by RSU 3, flows
would only be added to the RSU 3 and the level 0 switch.

FIGURE 6. Flows related to first connection in the multiple switch levels
architecture.

The second part addresses the case where there is already
a previous association beforehand for both single switch and
multiple switch levels architectures. In the context of the
single switch architecture, this scenario depicts an initial
connection to RSU 1 followed by a handover to RSU 2,
as depicted in Figure 7. In this case, downlink flows are also
generated in the SDN switches, mirroring the process of the
initial connection. However, in this case, a few extra steps
are needed. Initially, as flows are being added, a ‘‘gratuitous
ARP’’ carrying the OBU IP is sent to inform the sender
that the MAC has been changed, so that it starts sending
new packets through the new RSU (RSU 2). Then, the
previously mentioned reactive flow (Main SW) is replicated
and established on the main switch, with only the input port
and theMAC source corresponding to the new RSU 2. Lastly,
the outdated downlink flows are removed.

In the context of multiple switch levels architecture,
the scenario depicts an initial connection to RSU 2 (level
1 switch) followed by a handover to RSU 3 (level 0 switch),
as depicted in Figure 8. In this setup, the top-level switch
(level 0) takes charge of sending the ‘‘gratuitous ARP’’
containing the OBU IP, signaling the sender about the MAC
change. Subsequently, on the same switch, the existing
reactive flow is duplicated, with modifications limited to
the MAC and input ports, thereby creating a new flow.
Concerning the lower-level switches (level 1), the previously

VOLUME 12, 2024 93159



D. Dias et al.: SDVN Using C-ITS

FIGURE 7. Flow modifications during handover in the single switch level
architecture.

established reactive flow underwent a similar duplication
process on the switch associated with the new RSU 3. If the
RSU is directly linked to a higher-level switch (level 0, as in
this case), flow duplication is unnecessary since a suitable
flow already exists.

FIGURE 8. Flows modifications during handover in the multiple switch
levels architecture.

C. OBU’S CONNECTION MANAGER
The OBU’s connection manager (CM) is an essential element
for the correct testing of the controller. It shares with the
latter the decision logic for the horizontal handover: it is
responsible for choosing the best RSU to which the OBU
should connect at a given moment. The CM can be, as for the
controller, divided into two main parts, working in parallel.
The first part is responsible for the CAMmessages handling,
and the second is responsible for the association of the OBU
to an RSU.

Concerning the first case, when a CAM message is
received, its information is extracted, which contains the
station ID, GPS coordinates (longitude and latitude), station
type, RSSI (between OBU and RSU) and the timestamp. If it
corresponds to an RSU that has not yet been registered, which
means that no CAM message has been received from this
RSU, an object is created for that RSU, associating all the
above information with it. If the RSU already exists, the RSSI
and the timestamp are updated.

In parallel, and regarding the association, when associating
to an RSU, the CM only changes the IP of the default gateway
to the IP corresponding to the RSU to which it wants to
connect. This IP, although does not come in CAM messages,
it is easily obtainable since the norm that is followed in this
architecture, and already mentioned before, is that the last
octet of the IPv4 address is based on the RSU ID.

V. PERFORMANCE EVALUATION
This section presents the lab and city setup scenarios,
and the obtained results of the proposed approach. The
following sections explain in greater detail the two types of
environment used for the evaluation of the proposed solution.
Section V-A focuses on a laboratory, controlled, environment
while Section V-B focuses on a real-world city scenario. Both
in the laboratory and city environments, a comparison will
be made between the proposed solution and a pre-existing
SDVN solution called reactive, which is based on L3 traffic
triggered handovers [7].

A. LABORATORY ENVIRONMENT
This subsection addresses the setup used in the laboratory
environment, the emulation scripts needed to test the solution,
the scenarios used to illustrate specific use cases, as well as
both the functional and application tests carried out in this
environment.

1) SETUP
In this work, the system elements used to evaluate the
proactive approach are the ones represented in Figure 1. The
components used in this setup are the following:
• SDN controller: it is implemented on a machine
running Ubuntu operating system. The controller appli-
cation is based on the SDN framework RYU,5 and it
was chosen because it is an Open-Source framework that
supports the OpenFlow protocol [20].

• Main Switch / RSU / OBU: it is implemented on
PC Engines APU3 platforms (SBCs). Regarding the
RSUs/OBUs, their boards contain an ITS-G5 (IEEE
802.11p) interface.

• End user: it is implemented using a Raspberry Pi
running Ubuntu. It is directly connected to the OBU via
an Ethernet interface.

Table 1 presents the specifications of the equipment used in
laboratory environment.

2) EMULATION SCRIPTS
Evaluating solutions in laboratory environments has advan-
tages and disadvantages. On one hand, it is possible to
have a highly controlled environment in which it is possible
to minimize external factors. On the other hand, this
environment brings limitations regarding the movement of
devices used in the solution. Since the proposed approach
is based on the movement of an OBU along a given

5https://ryu-sdn.org

93160 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

TABLE 1. Laboratory environment: equipment specifications.

path, which will imply changes in the GPS data (latitude,
longitude, heading, etc.), in the RSSI and consequently in the
throughput, scripts were created to emulate the displacement
of the OBU along the path.

To support the controller, scripts are placed at the RSU
level, which send emulated OBUInfo messages (CAMs
plus RSSI) to the controller via OVS as if they were
CAMs/RSSI coming from the OBU. Emulatedmessages vary
their location (latitude, longitude, heading, etc.) and RSSI
values over time to match a given scenario. Regarding the
CM present in the OBU, it also needs emulated data to work,
so there is also a script in the OBU that supports the CM.

To efficiently run the tests, it is necessary that the
multiple scripts present onmultiple machines can be executed
synchronously. The synchronization of the various scripts
is highly important for the information to reach both the
controller and the CM in a synchronized manner - just
like in a real-world scenario -, and guaranteeing that the
intended route is correctly emulated. For this, an extra script
is developed that remotely executes the several scripts on
each machine. Figure 9 shows the emulation setup with the
emulation scripts and their role on the setup.

FIGURE 9. Emulation scripts architecture.

3) SCENARIOS
In this work, a VANET architecture is developed based
on the concepts of SDN and ITS messages. For a proper

evaluation of the proposed solution, several scenarios are
created, emulating distinct and specific situations that may
occur in a vehicular environment.

a: SCENARIO 1 – SMOOTH TRANSITION OF CAM
MESSAGES BETWEEN RSUS
The first scenario focuses on testing how the controller/CM
would react if a vehicle passes three RSUs with cover-
age intersection between them without signal obstruction.
Therefore, the transition of CAMs between RSUs is accom-
plished with RSSI values varying smoothly as the vehicle
approaches/departs from the RSUs. Figure 10 illustrates this
scenario.

FIGURE 10. Scenario 1 – Smooth transition of CAM messages between
RSUs. P1, P2 and P3 represent RSUs and colored circles represent their
wireless coverage.

This scenario is aimed to show the perfect case where
there is continuous coverage by RSUs. However, it is
unrepresentative of the real-world, as it does not consider
the obstacles present in the urban environment, such as
buildings. The next two scenarios will consider some of the
characteristics of the urban environment.

b: SCENARIO 2 – UNEVEN TRANSITION OF CAM MESSAGES
BETWEEN RSUS
This scenario considers the signal degradation caused by
buildings, other vehicles and others. Thus, this second
scenario focuses on observing the behaviour of the solution
in the case where an OBU passes through two RSUs with
coverage intersection. However, in this scenario, there is
signal obstruction along the way. Signal obstruction will
cause fewer CAMs to reach the controller, which will cause
the variation of RSSI values along the path to be non-
continuous. Figure 11 shows this scenario.

c: SCENARIO 3 – LOSS OF CAMS RECEPTION
This scenario considers that not all zones are covered by
RSUs, which translates into zones without connectivity. This
third scenario consists on the analysis of the behaviour of
the controller when it stops receiving CAMs from OBUs.
Only two RSUs will be considered, each one at its end, and
there is no wireless coverage intersection between the two
(Figure 12).

VOLUME 12, 2024 93161



D. Dias et al.: SDVN Using C-ITS

FIGURE 11. Scenario 2 – Uneven transition of CAM messages between
RSUs. P1 and P2 represent RSUs, green points represent wireless
coverage from either P1 or P2, and the red point is a location without
wireless coverage due to obstacles.

FIGURE 12. Scenario 3 – Loss of CAMs reception. P1 and P3 represent
RSUs.

4) FUNCTIONAL TESTS
To analyze and evaluate the behaviour of the proposed
solution, it is necessary to resort to a set of functional tests.
This section will discuss the results of such tests when
considering the three scenarios presented before.

a: SCENARIO 1
Several RSSI (dBm) values were defined that represent the
signal strength between RSUs (P1, P2, P3) and the OBU
over time, as shown in Table 2. The test lasts 1 minute and
the period of connectivity with P1 and P3 is 24 seconds,
and 30 seconds with P2. For every 12 seconds, it is possible
to observe which RSU the OBU is connected to (logical
link exists), as well as if there is connectivity with the
infrastructure.

As can be seen in Table 2, the OBU starts connected to
P1. After t = 12 s, the OBU begins to be within reach of P2
(confirmed by the reception of CAMmessages transmitted by
P2). A handover occurs at t = 18 s because the P2’s RSSI is
higher than that of P1’s (P2RSSI ≥ P1RSSI + threshold), with
a threshold value of 2, and the direction of the OBU matches
with P2’s location. Likewise, there is also a handover at t =
36 s from P2 to P3. In this scenario, the OBU has always
connectivity to the infrastructure, so there is no interruption
in services.

Table 3 shows the performance results (average values and
standard deviation) in the single switch architecture. These
tests were executed without services running in parallel,
so they only revealed metrics regarding the control part of
the solution.

TABLE 2. Scenario 1 - Connection status for different values of RSSI (*
handover took place).

TABLE 3. Scenario 1 in the single switch architecture - controller
performance without application traffic.

As far as the handover delay is concerned, this corresponds
to the duration needed to update the switches with the correct
flows. This operation is ideally done before there is a gateway
change in the OBU, that is before there is the handover
itself. Thus, although the value is high, it does not reflect
communication interruption time.

Regarding overhead, this represents the control packets
(OpenFlow) that circulate in the network. The overhead
value can be obtained analytically based on the pre-known
information. Knowing the period of connectivity with each
RSU and the frequency of CAMs for this scenario, it is
possible to calculate the average number of CAMs arriving
at the controller, given by

(P1conn_time + P2conn_time + P3conn_time)× CAM freq

test_dur
.

Replacing the several variables by their respective values we
obtain

(24+ 30+ 24)× 10
60

= 13 pkts/s,

which represents the number of CAMs arriving at the
controller per second. Now, adding to this value the remaining
control packets used in the SDN domain, such as the keep
alive, it results on 15 pkts/s.

Regarding the multiple switch levels architecture, the
results for the Scenario 1 are presented in Table 4.

TABLE 4. Scenario 1 in the multiple switch levels architecture - controller
performance without application traffic.

This version gets a higher handover delay than the previous
one as the addition of a new level of switches creates the need
to add flows to different levels to guarantee connectivity to the

93162 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

outside of the vehicular domain. As the addition of flows is
done sequentially, it increases the total duration of handover
preparation. The overhead suffers only a slight increase due
to the keep alivemessages that circulate in the network, since
this is essentially composed of CAM messages.

To better evaluate the behaviour of the proposed proactive
solution, functional comparative tests were carried out
between this version and the reactive SDVN solution [7].
These tests aim to analyze the OBU’s RSSI of the logical
link over time. Knowing that the reactive version relies on
uplink traffic towork, tests were performedwith uplink traffic
with a very small packet size with the following periodicity:
1 every 5, 2, 1 and 0.1 (named as highly frequent) seconds.
The results obtained are shown in Figure 13.

FIGURE 13. Scenario 1 – RSSI of the OBU’s logical link.

In the proactive version, the RSSI values range between
−65 and −50 dBm. As can be seen, at t = 16 s and t = 35 s,
the RSSI increases abruptly, which indicates the occurrence
of handovers. The transition is not entirely smooth because
the controller only proceeds with the handover if this value
exceeds a given threshold. In the reactive version, as the time
between uplink traffic increases, the period of connection
between the OBU and the previous RSU also increases. For
this reason, the signal degrades, thus obtaining lower RSSI
values. The abrupt changes in RSSI indicate the occurrence
of handovers. It leads to the conclusion that, in the reactive
version, handovers occur faster if the uplink traffic is more
frequent. In case the uplink traffic is highly frequent, the
behaviour becomes similar to the proactive case.

These tests have shown that the reactive version is uplink
traffic-dependent for handovers to happen, and the longer the
period between traffic, the greater the handover delay. It is
also possible to conclude that the proactive version always
obtains the best RSSI in the logical link, independent of the
existence of uplink traffic.

b: SCENARIO 2
The analysis of this scenario is done in the same way as
in the previous scenario, with RSSI and direction values
being defined for various time points. The emulation lasts
for 1 minute, and the period of connectivity with P1 and P2
is 30 seconds. As can be seen in Table 5, the OBU starts
at P1 and, at t = 24 s, P2 starts to receive CAM messages
from the OBU, as it was the last time the OBU had coverage
from P1. Still, at t = 36s there is the handover to P2, not

because the RSSI of P2 is greater than the last recorded by
P1, but because the period since the last CAM received by
P1 is higher than the CAM timeout (in these tests this value
was set to 3 seconds). This timeout guarantees that the list
of CAMs received is not out-of-date, so information with a
duration longer than this timeout is not considered. Thus,
the information related to P1 is no longer considered from
that moment on, triggering a handover to P2 at t = 33 s.
After the handover, it remains connected to P2. The proactive
solution, although discarding outdated information after a
certain timeout, does not guarantee that connectivity exists
at all times. At t = 30 s, the OBU will still have a logical link
associated with P1 but, as it is already out of reach, it turns
out that there will be no connectivity to the infrastructure
although it is already within P2’s reach.

TABLE 5. Scenario 2 - Connection status for different values of RSSI
(* handover took place).

Table 6 shows the controller related results obtained for this
scenario considering a single switch architecture. These tests
are also executed without application traffic.

TABLE 6. Scenario 2 in the single switch architecture - controller
performance without application traffic.

Again, the overhead measures control packets (OpenFlow)
circulating in the network, and its value is given by

(P1conn_time + P2conn_time)× CAM freq

test_dur
,

which results in
(30+ 30)× 10

60
= 10 pkts/s.

Taking into account that this second scenario contains fewer
intersection coverage zones, it is normal that this number
is lower than that obtained in the first scenario. To match
with the value presented in Table 6, one must consider the
remaining control packets inherent in the SDN domain.

Concerning the multiple switch levels architecture, the
results are shown in Table 7. This version has also a higher
handover delay than the previous one due to the addition of
a new level of switches. The overhead suffers only a slight
increase due to the keep alive messages circulating in the
network.

VOLUME 12, 2024 93163



D. Dias et al.: SDVN Using C-ITS

TABLE 7. Scenario 2 in the multiple switch levels architecture - controller
performance without application traffic.

c: SCENARIO 3
In this scenario the emulation lasts for 1 minute, and the
period of connectivity with the RSU P1 and P3 is 24 seconds.
As can be seen in Table 8, the OBU starts connected with P1,
with connectivity until t = 24 s. At t = 30 s, P3 starts to
receive CAM messages from the OBU. Between t = 24 s
and t = 30 s there are no CAMs to be received so there is
no connectivity during this period. However, the logical link
with P1 was maintained.

TABLE 8. Scenario 3 - Connection status for different values of RSSI
(* handover took place).

Table 9 shows the controller related results obtained for this
scenario considering a single switch architecture. These tests,
just like the ones performed in the previous scenarios, were
executed without application traffic.

TABLE 9. Scenario 3 in the single switch architecture - controller
performance without application traffic.

The overhead value obtained is given by

(P1conn_time + P3conn_time)× CAM freq

test_dur
,

which results in
(24+ 24)× 10

60
= 8 pkts/s.

Concerning the multiple switch levels architecture, the
results are illustrated in Table 10. This version also has
a higher handover delay than the previous one due to the
addition of a new level of switches. Once again the overhead
suffers a slight increase due to the keep alive messages that
circulate in the network.

5) APPLICATION TESTS
For the application tests, two use cases are considered.
The first one replicates a video streaming service, through

TABLE 10. Scenario 3 in the multiple switch levels architecture -
controller performance without application traffic.

UDP, and the second one simulates a file transfer through
TCP. In both use cases, the OBU is the source of traffic,
which means that the uplink direction encompasses the
majority of the traffic exchanged between the OBU and
the infrastructure. The services are created by the D-ITG
tool,6 a platform capable of generating traffic at packet level
accurately replicating appropriate stochastic processes. Video
streaming follows the set of parameters defined in [22] of
24 packets/s and packet size with a normal distribution of
mean 27791 bytes and standard deviation of 6254 bytes. The
file transfer is set to 700 packets/s and a constant packet size
of 1000 bytes.

These two uses cases are performed for each of the
three scenarios discussed in V-A3, evaluating the proactive
SDVN solution presented in this work, considering the single
switch architecture, against the reactive SDVN version for
comparison purposes.

a: HANDOVER DELAY
Table 11 presents the handover delay observed during
the tests. The SDVN reactive version consistently has
significantly lower handover delay values than the proactive
version, for all scenarios, regardless of the application. This is
because the handover process in the proactive version is more
complex, and therefore more time-consuming. However, the
increase in handover delay does not translate into an increase
in packet delay, as will be observed in sub-section c). The
change of flows is done in advance, so that, when the
handover happens, there is no delay between the instant of
handover and the instant when the new flow is defined. Thus,
the difference between the two versions is not significant, nor
it represents a worse user experience.

TABLE 11. Handover delay [ms/handover].

b: CONTROL PACKET OVERHEAD
Table 12 presents the overhead in terms of the number of
control packets observed during the tests. Similarly, Table 13

6http://traffic.comics.unina.it/software/ITG/

93164 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

presents the same results but in terms of number of bytes of
control packets. The results obtained show a clear difference
both in the number of packets as well as in the number of
bytes between the proactive and reactive versions. As can
be seen, the proactive version has higher values compared
to the reactive version regardless of the use case. While the
variation of values in the reactive version is relatively low,
in the proactive version, the variation is highly influenced
by the scenario. This increased overhead is explained by
the fact that the proposed solution depends on the content
of ITS messages to work. When CAM messages reach the
RSUs, they are transformed into OpenFlow messages so that
their information reaches the controller. Since each scenario
presents different characteristics, both in the number of
handovers/RSUs and in the number of signal intersections
between RSUs, this value will vary. The first scenario, with
two handovers and two signal intersection periods, will have
a higher number of CAM messages reaching the controller,
thus increasing the overhead. From the results, we can also
conclude that the size of these OpenFlow messages is smaller
than the rest of the OpenFlow control overhead because the
relation between size and number of packets is smaller for the
proactive version than for the reactive version.

TABLE 12. Control packet overhead [pkts/s].

TABLE 13. Control packet overhead [kbytes/s].

The advantages of the proactive version come at a cost:
the increased control packet overhead. However, there may
be ways to reduce this difference. The default value of CAMs
transmission rate in the OBU is 10 Hz, a value that greatly
influences the overhead value. By decreasing the amount
of CAM messages that goes to the controller, it is possible
to decrease the control overhead without compromising the
solution’s performance.

c: DELAY
Figure 14 presents the average delay observed during the
tests. As can be seen from the results, in use case 2 (file
transfer through TCP), the proactive SDVNversion had lower
average delay values than the reactive SDVN version, about
15% lower. Such reduction is common to the three scenarios
and is in the same proportion for each of them. In use
case 1 (video streaming through UDP), the proactive version
obtained lower values, although the difference is no longer so
noticeable.

FIGURE 14. Average delay [ms].

This improvement is because, in the proactive version,
flows are added to upcoming switches before there is an
actual handover, i.e., as there is already a flow, no additional
time is wasted in that process. These results further reinforce
the idea that the increase in handover delay in the proactive
version does not translate into an increase in average delay.
The average delay decreases, showing that there is no
connection between the two metrics.

d: JITTER
Figure 15 presents the jitter observed during the tests. As can
be seen from the results, regardless of the scenarios, the
values are very similar between the two controller versions.
The values vary between use cases, but not between scenarios
and versions. The similarity between versions is because both
solutions share a common trunk: both solutions process a
packet equally. Thus, neither version of the controller is at
an advantage over the other regarding this metric.

FIGURE 15. Average jitter [ms].

VOLUME 12, 2024 93165



D. Dias et al.: SDVN Using C-ITS

B. CITY ENVIRONMENT
This section describes the scenario, the vehicular setup,
the tests and the performance results in a real-world city
environment.

1) AVEIRO TECH CITY LIVING LAB
The Aveiro Tech City Living Lab (ATCLL) [23], deployed
in Aveiro, Portugal, is an initiative created by the city and
Instituto de Telecomunicações, that combines an advanced
communications infrastructure with an urban platform for
data management and innovative analytics. This infrastruc-
ture, illustrated in Figure 16, comprises 44 nodes strategically
spread across the city, and are connected through fiber link
technology to a data processing center.

FIGURE 16. Aveiro Tech City Living Lab infrastructure.

Each one of the ATCLL node is a multi-technology
communication access point (with 5G, 4G, ITS-G5, WiFi,
and LoRaWAN/LoRa) also equipped with a Multi-access
Edge Computing device (NVIDIA Jetson Nano, NVIDIA
Jetson Xavier and Raspberry Pi 4). This platform will be used
to run the city environment tests.

2) SETUP
The system elements used in the city environment setup are
the same used in the laboratory environment, represented
in Figure 1. For the real world environment, these are the
components used:
• SDN controller: identical to the one used in the
laboratory environment.

• Main Switch / RSU / OBU: implemented on PC
Engines APU3 platforms (SBCs). For both RSUs and

OBUs, their boards contain an ITS-G5 (IEEE 802.11p)
interface. Regarding the RSUs, the SBCs were placed
in 5 nodes of the ATCLL. As for the OBU, it contains
a GPS antenna to obtain the current location, and it
contains a ITS-G5 antenna more powerful than those
used in the laboratory. The SBC is located inside a
vehicle that travels a given path (Figure 17).

• End user: identical to the one used in the laboratory
environment.

FIGURE 17. OBU Setup.

Table 14 presents the specifications of the equipment used
in the city environment.

TABLE 14. City environment: equipment specifications.

3) SCENARIO
The scenario consists of five RSUs (placed on P3, P5, P6,
P19 and P26 of ATCLL) with coverage intersection between
P3, P5 and P6. The wireless coverage of the RSUs placed on
P19 and P26 do not intersect with any other RSU’s wireless
coverage. In this scenario, the vehicle travels along the path
defined in Figure 18, thus passing through the referred RSUs,
triggering horizontal handovers as it travels. The vehicle’s
average speed is about 25 km/h.

4) PERFORMANCE RESULTS
The use case is a file transfer (UDP) from the Cloud to the
OBU, which means that it represents a downlink service. The
file transfer is set to 10 Mb/s of bandwidth and a block size
of 1448 bytes. A set of performance metrics are obtained
with a frequency of 10 Hz. The route trip, as described in the
previous section, covered a distance of around 2000 m, and
the duration corresponds to the time required to cover such

93166 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

FIGURE 18. City environment: scenario.

distance. This duration varies between tests due to the fact that
vehicular traffic conditions slightly changed between tests.

This use case is performed using two versions of the
SDVN solution, the proactive version (in the single switch
architecture) and the reactive version. The SDVN reactive
version is tested with two uplink traffic rates, 1 packet every
second (simply denoted as 1 s) and 1 packet every 5 seconds
(denoted as 5 s). The reactive version is dependent on the
uplink traffic to work, so an uplink traffic with very small
packet size and duration is generated.

a: RECEIVED SIGNAL STRENGTH INDICATION
Figure 19 presents the RSSI over distance observed during
the route for all versions. These values are obtained by
the infrastructure which captures the CAMs that circulate
in it. As a result, the frequency of values obtained in the
figure changes along the way. The vertical lines represent the
occurrence of handovers, as these are associated by colour
with a given RSU. The existence of a line implies that a
handover has occurred.

As can be observed, the proactive versionmakes handovers
through all RSUs traversed by the OBU (P3, P19, P6, P5
and P26). Regarding the reactive SDVN 1 s version, it is
already possible to observe that it does not perform horizontal
handovers on all RSUs (e.g. on P5). In the reactive SDVN
5 s version, the same behavior happens more often which
indicates that the OBU is missing better logical links with
the infrastructure.

These results can be explained by the reaction time of
each version. The more responsive the solution, the more
intelligent the choice of the ideal RSU will be. Likewise,
if there is an RSU with reduced coverage, the controller may
not detect it, so the higher the responsiveness, the greater the
number of RSUs detected. With a reduced range of the RSU
P5, the responsiveness of the solution to the RSU detection
becomes more crucial, especially if the vehicle speed is high.

b: THROUGHPUT
Figure 20 presents the throughput over distance observed
during the route for all SDVN solutions. As can be seen from

FIGURE 19. RSSI of the OBU’s logical link over distance.

the results, the proactive version is the one that has the longest
periods of logical connectivity with the infrastructure, since
it is the one with the shortest periods of null throughput (no
connectivity). Regarding the reactive SDVN 1 s version, the
periods without connectivity are higher at 800 m, 1000 m
and 1300 m. In the reactive SDVN 5 s version, these periods
last even longer, with new periods of lack of connectivity
around 25 m.
Table 15 summarizes the results of Figure 20. The

proactive version obtains logical connectivity with the
infrastructure (non-null throughput) during about 69% of
the journey, while the reactive SDVN 1 s version obtains
logical connectivity during 62% and the reactive SDVN 5 s
is only able to achieve logical connectivity during 56% of the
journey.

TABLE 15. Logical connectivity [%].

These results show the strong dependence of all SDVN
versions on uplink traffic, which is always present in the

VOLUME 12, 2024 93167



D. Dias et al.: SDVN Using C-ITS

FIGURE 20. Throughput over distance.

proactive version, since it corresponds to the CAMs that
circulate through the network; in the reactive version, the
traffic corresponds to the generated IP traffic. Regardless of
the type of traffic, whether L2 or L3, its rate is the key to a
quick network adaptation to the vehicle’s movement.

Figure 21 presents a comparison of all SDVN versions
concerning throughput over distance observed during the
route. Each curve represents a moving average, with a sliding
window of 50, of all the points associated with each version
(null values included). This figure allows the simplification
of Figure 20 by joining the three previous sub-figures into
one. It is possible to observe the periods of non-connectivity
of some versions previously reported, in which the solutions,
due to the lack of responsiveness, delay the handover to a new
RSU.

Figure 22 shows the non-conditional average throughput
for each of the versions, which take into account all values
(with and without connectivity). It is possible to observe
different throughput values for each SDVN version. The
proactive version achieves the highest average with 3.5Mbps
of throughput, against 3.2 Mbps and 2.7 Mbps achieved by
the reactive SDVN 1 s and reactive SDVN 5 s, respectively.
These results are explained by the fact that, as mentioned

before, the proactive SDVN version obtains more extended

FIGURE 21. Throughput over distance comparison.

FIGURE 22. Average throughput comparison (considering null and
non-null samples).

periods of connectivity with the infrastructure, so it gets fewer
values of zero (without connectivity). Another factor that also
influences the throughput is the long delay of handovers in the
reactive versions, although its impact is lower.

Figure 23 shows the conditional average throughput for
each SDVN version. These values only take into account
the connectivity periods. By removing the null throughput
values, the three versions get very similar values around
5 Mbps, with the proactive version getting 5.2 Mbps, the
reactive 1 s 5.1 Mbps and the reactive 5 s getting the worst
result with 4.9Mbps.7

FIGURE 23. Average throughput comparison (considering only non-null
samples).

In a city environment, there is not such a smooth variation
of RSSI, and consequently of throughput, as seen in a
laboratory environment. It is possible to move from zones

7It should be noted that such throughput values are justified by the use
of IEEE 802.11p/ITS G5, antenna gains, and many other elements, for
the connection between the infrastructure (RSUs) and the moving vehicles
(OBUs). Still, it is not the scope of this work to assess the performance of
such wireless links.

93168 VOLUME 12, 2024



D. Dias et al.: SDVN Using C-ITS

with connectivity to zones without it very quickly. As a
result, the reactive SDVN versions get longer periods without
connectivity compared to the proactive version, resulting in a
lower value of average throughput, still very close to the one
achieved by the proactive SDVN version.

c: PACKET LOSS
Figure 24 presents the packet loss over distance observed
during the route. As we can observe, between 100 m and
1600 m, the proactive version has shorter periods with total
packet loss when compared to the same time period for the
reactive versions. This time period matches with the period
already discussed during the throughput analysis, which is
null for a longer distance. In this way, it is possible to observe
the relationship between throughput and packet loss since the
two are inversely interconnected. Once again, these results
show the great importance of the responsiveness of solutions
to RSU changes.

FIGURE 24. Packet loss over distance.

VI. CONCLUSION
This article researched an approach to combine the use of
C-ITS messages (CAMs) with an SDN architecture in a
vehicular environment, to improve awareness of the vehicular
nodes and the network disruptions. To achieve this, it was
necessary to bring the SDN domain to the RSUs level, thus
passing them to the controller’s control. The addition of

C-ITSmessages in this solution allowed the controller to offer
a deeper view of the status of each OBU, which includes
GPS, RSSI, and other parameters, thus being able to make
necessary changes in advance.

Through lab and real city testing, we have show that
the proposed solution reduces the average delay, which
contributed to a better user experience. The increase in
connectivity time is a big advantage, which allows for higher
stability in the use of the network. The results obtained
allowed not only to evaluate the correct operation of the
proposed approach, but also to compare it over a state of the
art approach and observe its advantages.

Future improvements of this work include the increase
in the number of SDN-capable entities. Bringing the SDN
domain down to the OBU level would allow the OBU to
be controlled by the controller. Such an approach could
eventually eliminate the need for ITS messages. Other topics
of future research include the integration of new commu-
nication technologies. Currently, the solution only exploits
ITS-G5 (802.11p) technology, which has its advantages but
also its disadvantages. The use of other technologies such as
cellular, including C-V2X, would make it possible to offer
multihoming to the solution, making it more versatile and
robust. Finally, the addition of a more complex mobility path
prediction based on machine learning algorithms is also a
topic of future research.

REFERENCES
[1] C. Perkins, IP Mobility Support for IPv4, Revised, document RFC 5944,

Internet Requests for Comments, RFC Editor, Nov. 2010. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc5944

[2] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, Net-
work Mobility (NEMO) Basic Support Protocol, document RFC 3963,
RFC Editor, Jan. 2005. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc3963

[3] S. Gundavelli, Proxy Mobile IPv6, document RFC 5213, RFC
Editor, Aug. 2008. [Online]. Available: https://datatracker.ietf.org/
doc/html/rfc5213

[4] I. Soto, C. J. Bernardos, M. Calderon, A. Banchs, and A. Azcorra, ‘‘Nemo-
enabled localized mobility support for internet access in automotive
scenarios,’’ IEEE Commun. Mag., vol. 47, no. 5, pp. 152–159, May 2009.
[Online]. Available: https://ieeexplore.ieee.org/document/4939291

[5] Z. He, J. Cao, and X. Liu, ‘‘SDVN: Enabling rapid network innovation
for heterogeneous vehicular communication,’’ IEEE Netw., vol. 30,
no. 4, pp. 10–15, Jul. 2016. [Online]. Available: https://ieeexplore.
ieee.org/document/7513858

[6] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, ‘‘Software
defined networking-based vehicular Adhoc network with fog
computing,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag.
(IM), May 2015, pp. 1202–1207. [Online]. Available: https://ieeexplore.
ieee.org/document/7140467

[7] M. Silva, P. Teixeira, C. Gomes, D. Dias, M. Luís, and S. Sargento,
‘‘Exploring software defined networks for seamless handovers
in vehicular networks,’’ Veh. Commun., vol. 31, Oct. 2021,
Art. no. 100372. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2214209621000413

[8] Final Draft ETSI EN 302 637-2 V1.3.1, European Standard EN 302
637-2, ETSI, Sep. 2014. [Online]. Available: https://www.etsi.org/deliver/
etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.
pdf

[9] D. Dias, ‘‘A software defined vehicular network using cooperative intelli-
gent transport system messages,’’ M.S. thesis, Dept. de Eletrónica, Tele-
comunicações e Informática, Univ. Aveiro, Aveiro, Portugal, Dec. 2021.
[Online]. Available: https://ria.ua.pt/handle/10773/34072

VOLUME 12, 2024 93169



D. Dias et al.: SDVN Using C-ITS

[10] N. Cardona, E. Coronado, S. Latré, R. Riggio, and J. M. Marquez-Barja,
‘‘Software-defined vehicular networking: Opportunities and challenges,’’
IEEE Access, vol. 8, pp. 219971–219995, 2020.

[11] B. Alaya and L. Sellami, ‘‘Toward the design of an efficient and secure
system based on the software-defined network paradigm for vehicular
networks,’’ IEEE Access, vol. 11, pp. 43333–43348, 2023.

[12] W. Quan, N. Cheng, M. Qin, H. Zhang, H. A. Chan, and X. Shen,
‘‘Adaptive transmission control for software defined vehicular networks,’’
IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 653–656, Jun. 2019.

[13] L. Nkenyereye, L. Nkenyereye, S. M. R. Islam, C. A. Kerrache,
M. Abdullah-Al-Wadud, and A. Alamri, ‘‘Software defined network-based
multi-access edge framework for vehicular networks,’’ IEEEAccess, vol. 8,
pp. 4220–4234, 2020.

[14] H. Li, M. Dong, and K. Ota, ‘‘Control plane optimization in software-
defined vehicular ad hoc networks,’’ IEEE Trans. Veh. Technol., vol. 65,
no. 10, pp. 7895–7904, Oct. 2016.

[15] X. Yin and L. Wang, ‘‘A fast handover scheme for SDN based vehicular
network,’’ in Mobile Ad-Hoc and Sensor Networks, vol. 747. Singapore:
Springer, 2018, pp. 293–302.

[16] S. M. Raza, D. S. Kim, and H. Choo, ‘‘Leveraging PMIPv6 with SDN,’’
in Proc. 8th Int. Conf. Ubiquitous Inf. Manage. Commun. New York,
NY, USA: Association for Computing Machinery, Jan. 2014, pp. 1–8, doi:
10.1145/2557977.2558056.

[17] R. Duo, C. Wu, T. Yoshinaga, and Y. Ji, ‘‘SDN-based handover approach
in IEEE 802.11p and LTE hybrid vehicular networks,’’ in Proc. IEEE
SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable
Comput. Commun., Cloud Big Data Comput., Internet People Smart City
Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Oct. 2018,
pp. 1870–1875.

[18] A. Kaul, K. Obraczka, M. A. S. Santos, C. E. Rothenberg, and T. Turletti,
‘‘Dynamically distributed network control for message dissemination in
ITS,’’ in Proc. IEEE/ACM 21st Int. Symp. Distrib. Simul. Real Time Appl.
(DS-RT), Oct. 2017, pp. 1–9.

[19] S. Correia, A. Boukerche, and R. I. Meneguette, ‘‘An architecture
for hierarchical software-defined vehicular networks,’’ IEEE Commun.
Mag., vol. 55, no. 7, pp. 80–86, Jul. 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7981530

[20] OpenFlow Switch Specification. Accessed: Nov. 2021. [Online]. Avail-
able: https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf

[21] B. Pfaff and B. Davie, The Open vSwitch Database Management Protocol,
document RFC 7047, RFC Editor, Dec. 2013. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7047.txt

[22] M. W. Garrett and W. Willinger, ‘‘Analysis, modeling and generation of
self-similar VBR video traffic,’’ in Proc. Conf. Commun. Archit., Protocols
Appl., Oct. 1994, pp. 269–280.

[23] P. Rito, A. Almeida, A. Figueiredo, C. Gomes, P. Teixeira, R. Rosmaninho,
R. Lopes, D. Dias, G. Vítor, G. Perna, M. Silva, C. Senna, D. Raposo,
M. Luís, S. Sargento, A. Oliveira, and N. B. de Carvalho, ‘‘Aveiro tech
city living lab: A communication, sensing and computing platform for city
environments,’’ IEEE Internet Things J., vol. 10, no. 15, pp. 13489–13510,
Mar. 2023.

DUARTE DIAS received the M.Sc. degree in
computer and telematics engineering from the
University of Aveiro, Portugal, in 2021. Since
2020, he has been a Researcher with the Insti-
tuto de Telecomunicações (IT), Aveiro, Portugal,
exploring areas, such as software defined vehicular
networks, machine learning in vehicular networks,
and quality-of-service. Currently, he is associated
with research projects, such as IMMINENCE
(Celtic-NEXT Program) and Route 25 (PRR

Agenda). His current research interests include vehicular communications,
network management, virtualization, and smart cities.

MIGUEL LUÍS received the M.Sc. and Ph.D.
degrees in electrical and computer engineering
from the Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa, Portugal, in 2009 and
2015, respectively. He is currently an Assis-
tant Professor with the Instituto Superior Téc-
nico/Universidade de Lisboa (IST/UL) and a
Researcher with the Instituto de Telecomuni-
cações. He has been involved in several national
and European research projects targeting new

communications for mobile networks. Currently, he is the Coordinator
of ‘‘MH-SDVanet: Multihomed Software Defined Vehicular Networks,’’
a national funded research project, and he contributes to several other
research projects, such as POWER (P2020 Program), and Route 25 and
New Space (PRR Agenda), to name a few. He has published more than
100 scientific works, including three book chapters and 48 publications in
peer-reviewed international journals. His research interests include medium
access control for wireless systems, routing and dissemination mechanisms
for mobile networks and management, orchestration, and softwarization of
future networks.

PEDRO RITO (Member, IEEE) received the
M.Sc. degree in electronics and telecommunica-
tions engineering from the University of Aveiro,
Portugal, and the Ph.D. degree in electrical
engineering from Technische Universität Berlin,
Germany, in 2011 and 2019, respectively. In 2012,
he joined IHP GmbH, Frankfurt (Oder), Germany,
as a Researcher. In 2018, he joined Cisco Optical
GmbH, Nürnberg, Germany, as a Research and
Development Engineer, investigating and devel-

oping state-of-the-art high-efficient and high-bandwidth electro-optical
interconnects for datacenters, metro, and long-haul communications. Since
2020, he has been with the Network Architectures and Protocols Group,
Instituto de Telecomunicações (IT), Aveiro, Portugal, as an Assistant
Researcher. During his research activity, he has published more than
50 publications (20 of which in peer-reviewed journals) and he holds one
U.S./EU patent. His current research interests include radio access networks,
software-defined networking, vehicular communications, edge computing,
and smart cities.

SUSANA SARGENTO (Member, IEEE) is cur-
rently a Full Professor with the University of
Aveiro and a Senior Researcher with the Instituto
de Telecomunicações, where she is also leading the
Network Architectures and Protocols Group. She
was a Visiting Ph.D. Student with Rice University
(2000–2001) and a Guest Faculty Member of
Carnegie Mellon University, in 2008. She has
been leading and involved in several European
projects, CMU and MIT-Portugal projects and in

several PRR agendas on autonomous mobility, space, two-wheels vehicles,
tourism, and different testbeds. Her main research interests include self-
organized networks, intelligent transportation systems, 5G, and beyond
networks and services, with more than 450 publications, with two large-scale
communication and sensing platforms, in Porto and Aveiro, with Aveiro
TechCity Living Laboratory. She has co-founded a vehicular networking
company, in 2012, Veniam (www.veniam.com). She is the Winner of
the 2016 EU Prize for Women Innovators, the Winner of Femina 2020 Prize
in Science, and one of the nominated of Prize ACTIVA Inspiring Women,
in 2021. She was the Co-Coordinator of the National Initiative of Digital
Competences in the Research Axis INCoDe.2030, belonged to the evaluation
committee of the Fundo200M (www.200m.pt) and is one of the Scientific
Director of CMU-Portugal Programme. She regularly acts as an Expert of
European Research Programmes.

93170 VOLUME 12, 2024

http://dx.doi.org/10.1145/2557977.2558056

