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ABSTRACT Robotic manipulators play a crucial role in providing support for automation and intelligence
in various fields. The inverse kinematics problem becomes a significant challenge for modern robotic
manipulator systems. This work proposes an enhanced Golden Jackal Optimization (β-FGJO) to solve the
inverse kinematics problem in multi-degree-of-freedom (multi-DOF) robotic manipulators. In β-FGJO, the
Fuch chaotic map is utilized to generate an efficient initial population to enhance search efficiency. Individual
behavior is regulated by the adaptive β-distribution to improve both global exploration and local exploitation
capabilities at different stages. Meanwhile, predators and prey in the population dynamically explore and
exploit based on their energy level and hunger rate. Simulation results demonstrate that β-FGJO has shorter
computation time, higher numerical precision and greater robustness. Compared to the best-performing
method on PUMA560, β-FGJO improved time performance by 24.57%, while maintaining the same level
of accuracy.

INDEX TERMS Adaptive β-distribution, enhanced golden jackal optimization, manipulator, metaheuristic,
robot kinematics.

I. INTRODUCTION
The application of robotic manipulators spans diverse
domains, solidifying them as indispensable instruments
within contemporary industrial and scientific research.
Robotic manipulators serve as pivotal components within
the realm of industrial automation, capable of executing
multifarious intricate production tasks [1]. Simultaneously,
they assume a paramount role in high-precision applications
such as microelectronic manufacturing [2], space science
research [3], and surgical procedures [4]. Accurate and
effective inverse kinematics solutions are required to achieve
precise control of robotic manipulators. Solving the inverse
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kinematics problem entails the computation of the robot
joints’ configuration according to the intended position
or posture of the end effector. Traditional methods rely
on complex algebraic or differential equation systems [5],
[6], [7]. The analytical solution can be computed only
when satisfying the Pieper criterion [8]. The complexity
of analytical methods becomes evident when applied to
robotic manipulators with multiple degrees of freedom or
configured in parallel arrangements. In certain cases of
specific robotic structures and configurations, traditional
analytical methods may even lead to numerical instability or
singularity problem [9].

In contemporary research, the inverse kinematics problem
is commonly approached as a nonlinear single objective
optimization problem, where the objective function is
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conceived as a representation of position and orientation
errors of the end effector. The main objective of opti-
mization is to minimize these errors and achieve precise
control of the end effector. An effective method is to
transform the inverse kinematics problem into a nonlinear
single objective optimization problem, which exhibits obvi-
ous advantages in adaptability, universality, and numerical
stability. Consequently, it is particularly well-suited for
modern complex robotic systems. Traditional optimization
methods [10], [11], [12] often show poor performance
in intricate systems. They are susceptible to converge
towards local optima, limiting their effectiveness. With the
development of evolutionary computation, the ascendance
of meta-heuristic algorithms is notable, primarily due to
their robust performance. Meta-heuristic algorithms [13] are
capable of searching through large and complex solution
spaces to find optimal or near-optimal solutions and do
not require smooth and continuous objective functions,
making them suitable for problems with non-linearity,
multi-modality, and discontinuities. Notable instances of
meta-heuristic algorithms encompass Particle Swarm Opti-
mization (PSO) [14], Grey Wolf Optimizer (GWO) [15],
Ant Colony Optimization (ACO) [16], Whale Optimization
Algorithm (WAO) [17], as well as recently introduced
methods such as the Golden Jackal Optimization (GJO),
Artificial Gorilla Troops Optimizer (GTO) [18] and African
Vulture Optimization Algorithm (AVOA) [19]. Although
meta-heuristic algorithms have good performance, there are
still challenges in terms of optimization accuracy and solution
time, especially in complex and high-dimensional robot
systems. Existing methods often struggle with achieving a
balance between global exploration and local exploitation,
leading to suboptimal solutions or longer convergence times.
More efficient and accurate metaheuristic algorithm for
solving inverse kinematics problems is required in complex
robot systems.

This study proposes the β-FGJO which is based on the
framework of Golden Jackal Optimization (GJO). β-FGJO
enhances the optimization accuracy and efficiency of solv-
ing inverse kinematics problems for robotic manipulators.
By introducing the Fuch Chaotic Map and the adaptive
β-distribution, β-FGJO improves the distribution of the
initial population and regulates the search space dynamically,
enhancing both global exploration and local exploitation at
different stages of the optimization process. This leads to
more reliable and faster convergence to optimal or near-
optimal solutions.

The following sections outline the work as follows:
Section II reviews the state and the main contributions of
meta-heuristic algorithm for inverse kinematics problems.
Section III analyzes the kinematics of robotic manipulators
and optimization model of inverse Kinematics. Section IV
introduces β-FGJO. Section V describes the experimental
design, parameter settings and provides results analysis of
experiments. In Section VI, β-FGJO is compared to methods

that have demonstrated good performance in the literature.
Section VII provides the conclusion and prospects for future
work.

II. RELATED WORK
Meta-heuristic algorithms have been applied in numerous
research endeavors. Particle Swarm Optimization (PSO),
a widely acclaimed meta-heuristic algorithm, has been
extensively employed to solve the inverse kinematics problem
for a long time. The use of PSO in inverse kinematics
can be traced back to Rokbani and Alimi’s research [20].
Notably, the comparative analysis of PSO variants revealed
that PSO-VG exhibits rapid convergence compared to other
PSO variants. Reyes andGardini [21] introduced an improved
PSO with inertia weight and acceleration coefficients, which
demonstrated superior performance compared to conven-
tional algorithms. Ram et al. [22] employed bidirectional
particle swarm optimization for mobile manipulator inverse
kinematics, facilitating bidirectional search capabilities.
Deng and Xie [23] explored the application of adaptive
PSO (APSO) with an inertia weight strategy, which can
achieve accurate joint configurations for the desired position
and orientation of a 6-DOF robotic manipulator. Dereli and
Köker [24] employed two PSO variants for the inverse
kinematics of a novel 7-revolute jointed robotic manipulator,
highlighting the enhanced effectiveness of PSOvariables over
standard PSO. The utilization of Quantum Behaved Particle
Swarm Optimization (QPSO) [25] on the inverse kinematics
of a 7-DOF serial manipulator demonstrated its compu-
tational efficiency with shorter computation time, fewer
iterations, and fewer particles. Ayyıldız and Cetinkaya [26]
compared optimization algorithms on a 4-DOF serial robotic
manipulator and QPSO’s performance was proved to be
superior to GA, GSA and PSO. Meanwhile, a spectrum
of other meta-heuristic algorithms has been applied to
solve the inverse kinematics of robotic manipulators too.
Firefly Algorithm (FA) [27] and Artificial Bee Colony
(ABC) [28] also exhibited efficacy for the inverse kinematics
of a 7-DOF redundant robotic manipulator. However, the
Strengthened PSO, inspired by new techniques, outperforms
FA and ABC in the Dereli and Köker’s [29] reasearch.
Çavdar et al. [30] introduced a modified ABC for solving
inverse kinematics problems in robotic manipulators. The
modified ABC demonstrated improved performance in both
position accuracy and solution time. Sui et al. [31] proposed
an inverse kinematics algorithm based on Multiple Popula-
tion Genetic Algorithm (MPGA), capable of calculating all
globally optimal solutions for a general geometric structure
with pose errors up to two decimal places. In subsequent
research, Köker andÇavdar [32] also presented a hybrid intel-
ligent solution system integrating neural networks, genetic
algorithms and simulated annealing for robotic manipu-
lator inverse kinematics, achieving micrometer-level error.
Rokbani et al. [33] introduced a novel inverse kinematics
solver based on beta distributed Salp Swarm Algorithm
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TABLE 1. Well-performing methods proposed in the related work.

FIGURE 1. Structure of the Multi-DOF Generic Robotic Manipulator
(MDOF-GRM).

(β-SSA) which outperformed classical SSA, QPSO, Bi-PSO,
K-ABC, and FA on the 8-DOF robotic manipulator and Kr05
industrial robot. Zhao et al. [34] used an improved particle
swarm algorithm for robot inverse kinematics on PUMA560,
ensuring higher position and orientation accuracy of the
robotic arm end effector. In Table 1, well-performingmethods
in the current related work are listed in with the average error
and average time which are given in their paper.

III. MODELING AND KINEMATICS ANALYSIS
Robotic manipulators are widely used in current research
as they are popular types in the field of robotics. These
manipulators have many advantages, such as ease of avoiding
obstacles, flexible movement, and a larger workspace.
Despite all these advantages, their structure is very com-
plex. According to research [22], [25], [30], [33], we use
the multi-DOF generic robotic manipulator (MDOF-GRM)
through simulation and verify on the PUMA560.

A. THE MULTI-DOF GENERIC ROBOTIC MANIPULATOR
The multi-DOF generic robotic manipulator (MDOF-GRM)
serves as a standardized test platform that offers a consistent
and well-defined test environment across various degrees
of freedom. In Fig.1, each link of the MDOF-GRM has a
uniform length of 1m and the joint angles vary from −180◦

to 180◦. The DOF of the MDOF-GRM can expand with
a range spanning from 2 to n, depending on the specific
operational configuration. The spatial coordinates of the end
effector can be calculated using Eq.(1), which is derived from

geometric relationships.

pnx =

n∑
i=2

li cos
 i∑
j=2

θj

 × cos θ1

pny =

n∑
i=2

li cos
 i∑
j=2

θj

 × sin θ1

pnz = l1 +

n∑
i=2

li sin
 i∑
j=2

θj


(1)

In Eq.(1), Px , Py, Pz are the relative positions of end
effector on n DOF, according to the frame axes (o, x, y, z),
θj is the angle of the joint j.

B. THE PUMA560
The PUMA560 [35] was designed and manufactured by
Unimation in 1981 which is a 6-DOF robotic manipulator and
has been widely used in the manufacture industry. DH param-
eters were developed by Denavit and Hartenberg [36]. These
parameters widely used in the field of robotics modeling. The
DH coordinate system of the PUMA560 is shown in Fig.2
and DH parameters are given in the Table 2, where a2 =

0.4318m, a3 = 0.15005m, d2 = 0.15005m, d4 = 0.4318m,
d6 = 0.05625m.

T0
1 =


c1 0 −s1 0
s1 0 c1 0
0 −1 0 0
0 0 0 1

 (2)

T1
2 =


c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 d2
0 0 0 1

 (3)

T2
3 =


c3 0 −s3 a3c3
s3 0 c3 a3s3
0 −1 0 0
0 0 0 1

 (4)

T3
4 =


c4 0 s4 0
s4 0 −c4 0
0 1 0 d4
0 0 0 1

 (5)

T4
5 =


c5 0 −s5 0
s5 0 c5 0
0 −1 0 0
0 0 0 1

 (6)

T5
6 =


c6 −s6 0 0
s6 c6 0 0
0 0 1 d6
0 0 0 1

 (7)

T0
6 = T0

1T
1
2T

2
3T

3
4T

4
5T

5
6 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (8)
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FIGURE 2. The PUMA560 with DH coordinate system.

TABLE 2. DH parameters of the PUMA560.

Then the conversion matrix can be obtained by Eqs.(2)-(8),
where Px , Py, Pz are the relative positions of end effector,
according to the frame axes (Oo, x, y, z), is detailed in Eq.(9)
and Eq.(10).

px = a2c1c2 − d4c1s23 − d2s1
−d6 (s5 (s1s4 + c4c1c23) + c5c1s23) + a3c1c23

py = d6 (s5 (c1s4 − c4s1c23) − c5s1s23)
−d4s1s23 + d2c1 + a2c2s1 + a3s1c23

pz = −d4c23 − a2s3 − d6 (c5c23 − c4s5s23) − a3s23
(9){

si = sin(θi), ci = cos(θi)
sij = sin(θi + θj), cij = cos(θi + θj)

(10)

C. OPTIMIZATION MODEL FOR SOLVING INVERSE
KINEMATICS
The joint angles determine the relative position and orien-
tation of each link, thereby influencing the overall position
and orientation of the end effector. These factors ultimately
serve as constraints on joint angles in the inverse kinematics
problem. However, related works [20], [22], [24], [25],
[26], [27], [28], [29], [30], [31], [33] used position errors
as the optimization objective function without considering
other constraints. The study focus on the performance
of relevant metaheuristic algorithms in solving inverse
kinematics, particularly in improving optimization accuracy
and solution time. Based on this, our research also simplifies
the orientation constraint. Additionally, employing the same
objective function facilitates consistent comparison of results
across different methods or algorithms. This uniformity in
evaluation criteria ensures a fair and objective assessment

FIGURE 3. Position error.

of different approach’s performance on solving the inverse
kinematics problem.

As is shown in Fig.3, the position error is the distance
between Pactual and Pdesired . Pactual represents the actual
position of the end effector and Pdesired is the desired position
that the robotic manipulator aims to reach. The primary goal
is to determine the joint angles that minimize the position
error between Pactual and Pdesired . The position error can be
calculated using Eq.(11). Therefore, Eq.(11) serves as the
objective function to be optimized.

Error =

√
(Px − x)2 +

(
Py − y

)2
+ (Pz − z)2 (11)

In Eq.(11), (Px , Py, Pz) is the position of Pactual and (x, y,
z) is the position of Pdesired .

IV. THE β-FGJO ALGORITHM
In this section, we first provide motivation and a detailed
explanation of β-FGJO, followed by a thorough introduction
of the β-FGJO algorithm. In subsection B, we explaine the
initialization based on the Fuch chaotic map. Subsequently,
in subsection C, we introduce a three-stage strategy to update
the population in β-FGJO. Additionally, subsection D covers
the Elite Strategy, while subsection E provides a detailed
explanation of the principles behind the Adaptive Search
Strategy.

A. INSPIRATION
Chopra and Ansari [37] proposed the Golden Jackal Opti-
mization (GJO) by simulating hunting behavior of golden
jackals. The nominal GJO typically has few control param-
eters, a simple structure and efficient convergence, making it
easier to implement and tune for specific problems. However,
the performance of GJO is suboptimal when dealing with the
inverse kinematics problem. The position update mechanism
of GJO is too simple and depends on the jackal pair positions
which reduces the diversity of the prey population. This
constrains the search ability of GJO and make it easy to
trap in local optimum. The optimizing effectiveness of GJO
for inverse kinematics solving optimization deserves further
discussion.

The original GJO algorithm conducts global and local
searches in two separate stages and requires fewer param-
eters, but it has poor accuracy. The β-FGJO extends
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FIGURE 4. The flowchart of β-FGJO.

the original GJO into a three-stage search and redesigns
the population update methods for each stage. In these
strategies, some effective schemes from other algorithms
are incorporated. Additionally, new strategies are introduced,
such as the Fuch chaoticmap to generate the initial population
in the initialization phase and using an adaptive β-distribution
to enhance the search ability. Fig.4 is the flowchart ofβ-FGJO
which shows the main process.

B. INITIALIZATION BASED ON FUCH CHAOTIC MAP
1) FUCH CHAOTIC MAP
Chaotic maps generate sequences with high unpredictability
and randomness, effectively preventing the initial population
from converging prematurely to local optima. By using
chaotic maps for initialization, the population diversity is
maintained, which enhances the global search capability
and reduces the risk of premature convergence. Fu and
Ling [38] proposed the Fuch chaotic map in 2013 to improve
the optimal results generated from the existing chaotic
optimization methods. The Fuch chaotic map is an adaptive
iterative chaos optimization technique known for its high
search effectiveness, and the results generated by the Fuch
chaotic map are independent of the initial values. Fu’s
research pointed out that The Fuch chaotic map shows better
performance compared with the Logistic chaotic map and
the Tent chaotic map. Therefore, the Fuch chaotic map is
employed for the initializing the prey population. Eq.(12)

provides the definition of the Fuch chaotic map.

xn+1 = cos
1
xn2

, xn ̸= 0 and n ∈ Z+ (12)

In Eq.(12), xn is an array of random numbers generated
based on fuch chaotic map, the value of xn+1 is calculated
from xn. The initial value x1 is typically a random number
between 0 and 1.

2) SEARCH SPACE FORMULATION
The initial solution of β-FGJO is uniformly distributed over
the search space with Eq.(13).

Prey(0) = (lb − ub) × X + lb (13)

In Eq.(13), Prey(0) represents the initial matrix of prey
population. ub and lb denote the upper and lower bounds for
variables, and X is the vector of random numbers generated
using the Fuchs chaotic map. The fittest individual and
second fittest individual in Prey are deigned as jackal pair.
Especially, The fittest individual is Male Jackal and the
second fittest individual is Female Jackal.

C. STAGES OF GOLDEN JACKAL PAIR HUNTING
The main stages of golden jackal pair hunting are as follows:

• Searching the prey.
• Enclosing the prey.
• Pouncing towards the prey.
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The stage is determined by the prey’s energy levels E which
is assessed using the following formula:

E = 1.5 × (2 × rand − 1) ×

(
1 −

t
MaxIt

)
(14)

In Eq.(14), rand represents a random value between
0 and 1, following a uniform distribution. t represents the
current iteration, and MaxIt is the maximum number of
iterations. The stages are controlled by p and q, which are
preset to 0.15 and 0.35.

1) SEARCHING PREY
When |E| > q, the prey has a high energy level which can not
be easily caught. Jackals perceive and follow potential targets.
There are two ways to search prey, which are determined by
the random variable rand . rand is a random value between
0 and 1, following the uniform distribution.

If rand > 0.8, jackals randomly search preys. Eq.(15)
simulates this process:{

MP(t) = (rand − E) × Preyr (t)
FP(t) = (rand − E) × Preyr (t)

(15)

In Eq.(15), t is the current iteration. MP(t) and FP(t)
are updated positions of male and female jackals. rand is a
random value in the range 0 to 1. E is the energy calculated
with Eq.(14). Preyr (t) corresponds to the r th prey in the
Prey, where r is a random number ranging from 0 to the
number of prey.

If rand ≤ 0.8, Jackals are led by the Male Jackal and
Female Jackal. Eq.(16) simulates this process:{

MP(t) = MJP−E × (MJP − Preyr (t))
FP(t) = FJP−E × (FJP − Preyr (t))

(16)

In Eq.(16), t is the current iteration. MP(t) and FP(t) are
updated positions of male and female jackals corresponding
to the prey.MJP and FJP are the position of Male Jackal and
Female Jackal, respectively. Preyr (t) corresponds to the r th
prey in the Prey, where r is a random number ranging from
0 to the number of prey.

2) ENCLOSING THE PREY
When p < |E| and |E| ≤ q, jackals are led by Male Jackal
and Female Jackal to enclose the target prey. There are two
ways to enclose prey, which are determined by rand too.

If rand < 0.3, the energy decreases when the prey is
chased by jackals. Meanwhile, jackals enclose the prey and
become hungry. In theAVOA,F is used to evaluate the hunger
rate of vulture. The hunger rate of jackals here is calculated
using the improved computation of F which is defined as
follows:

F = z× h×
(
sinωa+ cos a− 1

)
+ z× (2 × rand + 1) ×

(
1 −

t
MaxIt

)
(17)

In Eq.(17), F is the hunger rate, h is a random number
between−2 and 2, a is calculated using Eq.(18). z is a random
value between −1 and 1, ω is set to 2.5.

a =
π

2
×

t
MaxIt

(18)

Eq.(19) simulate the first way that jackals enclose the prey:
MP(t) = MJP −

MJP × Prey(t)

MJP − Prey(t)2
× F

FP(t) = FJP −
FJP × Prey(t)

FJP − Prey(t)2
× F

(19)

In Eq.(19), t is the current iteration. MP(t) and FP(t) are
updated positions of male and female jackals corresponding
to the prey. Prey(t) is the matrix of prey population. F is the
hunger rate calculated with Eq.(17).

If rand ≥ 0.3, jackals follow the male and female jackal
and randomly select prey with low energy levels. The Lévy
flight strategy simulates the random chasing behavior of
jackals in nature. Mantegna [39] proposed an accurate and
fast algorithm for generating a Lévy stable distribution for
arbitrary values. This study uses an improved version based
on it, which is defined as follows:

LF =
u× σ

|v|1/βL
(20)

In Eq.(20), u and v are random values that follow a normal
distribution within the range (0,1). The constant βL is set to a
default value of 1.5. σ is calculated as follows:

σ =

 0(1 + βL) × sin(πβL
2 )

0
(
1+βL
2

)
× βL × 2

βL−1
2


1

βL

(21)

In Eq.(21), 0 is the standard Gamma function and βL is a
default constant set to 1.5.

Eq.(22) models this process:{
MP(t) = MJP−E × Levy × (MJP − Prey (t))
FP(t) = FJP−E × Levy × (FJP − Prey (t))

(22)

In Eq.(22), t is the current iteration. MP(t) and FP(t) are
updated positions of male and female jackal corresponding
to the prey. Prey (t) is the matrix of prey population. E is
the energy level calculated with Eq.(14). Levy is a vector of
random values obeying the Levy distribution which is define
in Eq.(20).

3) POUNCING TOWARDS THE PREY
When |E| ≤ p, the jackal pair captures the prey. After
enclosing the prey, they pounce on prey and devour it. Eq.(23)
simulates this behavior.{

MP(t) = MJP−E × (2 × rand × MJP − Prey (t))
FP(t) = MJP−E × (2 × rand × FJP − Prey (t))

(23)
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FIGURE 5. β density function with different α and β.

In Eq.(23), t is the current iteration. MP(t) and FP(t) are
updated positions of male and female jackals corresponding
to the prey. Prey (t) is the matrix of prey population. E is
the energy level calculated with Eq.(14). The variable rand
is a random value between 0 and 1, following the uniform
distribution.

Finally, the prey positions are updated using Eq.(24).

Pos(t + 1) =
MP(t) + FP (t)

2
(24)

D. ELITE STRATEGY
The elite strategy helps the algorithm focus on exploiting
the best solutions discovered so far, preventing premature
convergence to suboptimal solutions. By preserving the elite
individuals, the algorithm ensures that highly fit individual is
not lost, providing a mechanism to guide the search toward
better solutions.

At the end of hunting, the fitness of all solutions in
Pos(t + 1) is calculated and the prey positions are updated
based on the elite strategy. If Pos(t + 1) has a fitness value
less than that of Prey(t), then Pos(t + 1) is used as the
updated solution for Prey(t + 1). Otherwise, Prey(t + 1)
retains its original solution in Prey(t). Following this update,
a new Male Jackal and Female Jackal are selected from the
Prey(t + 1) population.

E. ADAPTIVE SEARCH STRATEGY
1) β-DISTRIBUTION
The β-distribution [40] is versatile and finds applications in
various fields, including finance, biology, engineering, and
machine learning. It is a continuous probability distribution
defined on the interval [0, 1] and characterized by two shape
parameters commonly denoted as α and β. The probability
density function of the β-distribution is given by:

Beta(α, β) : prob(x|α, β) =
xα−1(1 − x)β−1∫ 1

0 t
α−1(1 − t)β−1dt

(25)

The β-distribution is commonly used to model the
distribution of random variables representing proportions or
probabilities. It has a flexible shape that can be skewed left,
right, or be symmetric, depending on the values of α and β.
Fig.5 shows the β density function when α and β are set to
different values.

FIGURE 6. Search space and probability density distribution based on
adaptive β-distribution.

2) ENHANCED SEARCH BASED ON ADAPTIVE
β-DISTRIBUTION
Maintaining prey diversity during exploration and accel-
erating convergence during exploitation are necessary to
enhance search effectiveness. This dynamic process can be
effectively modeled using β-distribution. β-distribution can
help individuals to a better control of their behaviors. Rokbani
employs β-distributions with different shapes for exploration
in the beta salp swarm algorithm for inverse kinematics and
optimization, demonstrating robust search capabilities. Fig.6
shows the search space with different probability densities
around the search point. It is notable that the probability
density of the β-distribution varies as the parameters β

change. By introducing an adaptive factor, dynamic variation
in the β1-distribution can be obtained. In the early stages,
it controls a broad search range, while in the later stages, the
search range becomes narrower, thereby achieving a balance
between global and local search. The probability density
function of the adaptive β-distribution is defined as follows:

betarand = Beta
(
1, 1 +

t
200

)
(26)

In Eq.(26), t is the current iteration and 1 +
t

200 is the
adaptive factor, α is set to 1. betarand is a random value
generated using Eq.(25).
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Therefore, the dynamic process is modeled as follow:

Pos(t + 1)

=

{
(ub−lb) × rand+lb, rand<0.03
MJP × (F+1)+(Prey(t) −MJP) × BR, rand≥0.03

(27)

In Eq.(27), t is the current iteration. Pos(t + 1) is updated
positions of prey and Prey(t) is current prey positions. ub
and lb are the upper and lower bounds for variables. BR is
the vector of random value obeying adaptive β-distribution,
Each element in the BR is generated by computing random
numbers betarand with Eq.(26). MJP is the position of
Male Jackal and F is the hunger rate calculated using
Eq.(17).

The prey position still use the elite strategy to update
according to Pos(t + 1). The pseudocode of the β-FGJO
algorithm is as follow:

Algorithm 1 β-FGJO
1: Input: Population size: N , maximum number of

iterations:MaxIt
2: Output: MJP, the fitness ofMJP
3: Initialization the prey position Prey(0) using Eq.(13)
4: while t ≤ MaxIt do
5: for i = 1 to N do
6: Calculate E using Eq.(14), F with Eq.(17)
7: if |E| > q then
8: if rand > 0.8 then
9: Update MP and FP with Eq.(15)

10: else
11: Update MP and FP with Eq.(16)
12: end if
13: end if
14: if p < |E| and |E| ≤ q then
15: if rand < 0.3 then
16: Update MP and FP with Eq.(19)
17: else
18: Update MP and FP with Eq.(22)
19: end if
20: end if
21: if |E| ≤ p then
22: Update MP and FP with Eq.(23)
23: end if
24: Update Pos with Eq.(24)
25: end for
26: Update Prey with elite strategy, updateMJP.
27: for i = 1 to N do
28: Update Pos with Eq.(27)
29: end for
30: Update Prey with elite strategy, updateMJP
31: t = t + 1
32: end while
33: ReturnMJP

TABLE 3. Algorithm parameters setting.

V. SIMULATION EXPERIMENTS AND ANALYSIS
In this section, we investigated the performance of
β-FGJO in addressing the inverse kinematics problem for a
general multi-degree-of-freedom robotic manipulator model
and the industrial manipulator PUMA560. Two experiments
were designed to assess the performance and stability of
single-point and multi-point solutions generated by the
algorithm. The next sectionwill provide detailed explanations
of the experimental setup, parameter settings, and analysis of
the comparison results.

A. EXPERIMENT AND PARAMETER SETTING
Two experiments were designed to evaluate the performance
of the algorithm. Experiment 1 aims to compare the
solution accuracy of all algorithms at a single point with
the population size set to 50. The maximum number of
iterations is set to 1000. The Wilcoxon analysis is conducted
based on 20 repeated experiments, with the target point
randomly selected within the workspace of the robotic
arm. Experiment 2 involves tracking a set of 50 randomly
generated end effector target positions. The performance
and stability of each algorithm are then assessed based on
the average accuracy and average time to solution, with
the population size set to 50 and the maximum number of
iterations set to 1000.

The algorithm is tested on both the Multi-DOF Generic
Robotic Manipulator and PUMA560, compared with Arti-
ficial Gorilla Troops Optimizer (GTO), African Vulture
Optimization Algorithm (AVOA), Golden Jackal Optimiza-
tion (GJO), Grey Wolf Optimizer (GWO), Particle Swarm
Optimization (PSO), Differential Evolution (DE) [41] and
Improved Multi-operator Differential Evolution Algorithm
(IMODE) [42]. Table 3 gives the parameter settings of test
algorithms. The degrees of freedom of MDOF-GRM covers
a range from 2 to 10. Each experiment is implemented in
Matlab and executed on the computer equipped with an Intel
Core i7-12700H processor and 32GB of RAM.

B. RESULT OBTAINED FOR MULTI-DOF GENERIC ROBOTIC
MANIPULATOR
1) RESULT ANALYSIS OF EXPERIMENT 1
Table 5 provides the comparative results from Experiment 1,
including the best, worst, average, and standard deviation
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TABLE 4. Comparative results of experiment 1 for MDOF-GRM.

values computed over 20 times. Additionally, the table
includes the ρ value. It is evident thatβ-FGJO achieves a level
of accuracy similar to that of GTO and IMODE, with error
reaching as low as 10−16. This is corroborated by the ρ value,
which confirms the similarity between β-FGJO and GTO.
In contrast, AVOA, GJO, GWO, PSO and DE exhibit poor

performance on the MDOF-GRM, characterized by lower
accuracy and unstable results.

Fig.7 displays the average convergence curve for MDOF-
GRM (2-10 DOF). When compared to the other 7 algorithms,
β-FGJO demonstrates competitiveness in terms of conver-
gence, achieving convergence within just 200 iterations.
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FIGURE 7. Average convergence curves of experiment 1 for MDOF-GRM.

Consequently, β-FGJO requires less time to reach the optimal
value.

Fig.8 illustrates the trend of computational time. As antic-
ipated, the average computational time required for conver-
gence increases as the degrees of freedom range from 2 to 10.

β-FGJO demonstrates an average computational time rang-
ing from 0.05s to 0.09s within the 2 to 10 DOF range.
In comparison to GTO, AVOA, GJO, DE and IMODE,
β-FGJO exhibits a clear advantage in terms of computational
efficiency.
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TABLE 5. Comparative results of experiment 2 for MDOF-GRM.

FIGURE 8. Average solution time of experiment 1 for MDOF-GRM.

2) RESULTS ANALYSIS OF EXPERIMENT 2
Table 5 presents the comparative results of Experiment 2,
including the average error, standard deviation of error,
average time, and iterations required for convergence. The
error levels observed in Experiment 2 align with those
from Experiment 1. It is apparent that β-FGJO attains an
exceptionally low error level of 10−16, comparable to that
of GTO and IMODE, yet with superior stability. In contrast,
AVOA, GJO, GWO, PSO and DE continue to exhibit poor
performance with error levels around 10−3.
Similarly, the average computational time required for

convergence of each algorithm increases as the degrees of

FIGURE 9. Average solution time of experiment 2 for MDOF-GRM.

freedom range from 2 to 10 as is shown in Fig.9. In the
case of β-FGJO, the average computational time ranges from
0.04s to 0.08s within the 2 to 10 DOF range, which is in
close proximity to PSO, GWO and DE. In comparison to
GTO, AVOA, GJO and IMODE, β-FGJO maintains a clear
advantage in terms of computational efficiency too.

Overall,β-FGJO doeswell in solving the inverse kinematic
problem of MDOF-GRM, which has competitive perfor-
mance compared with other 7 algorithms. Compared to the
best-performing GTO, β-FGJO improved time performance
by 19.91%, 8.69%, 22.32%, 27.17%, 33.66%, 31.42%,
34.99%, 27.22%, and 28.95% for each degree of freedom,
respectively, while maintaining the same level of accuracy.
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TABLE 6. Comparative results of experiment 1 for PUMA560.

TABLE 7. Best obtained solution configuration.

FIGURE 10. Average convergence curve of experiment 1 for PUMA560.

C. RESULT OBTAINED FOR PUMA560
This section conducted two experiments on PUMA560 to
validate the algorithm’s performance and the effectiveness of
MDOF-GRM for test.

1) RESULTS ANALYSIS OF EXPERIMENT 1
The desired position is set toPdesired (0.3978, 0.0981, 0.5477)
which is randomly selected in the workspace. Comparative
results of Experiment 1 are given in Table 6 which shows the
best, worst, average, standard deviation value, the average
time and average iteration computed over 20 times when
converge.

On PUMA560, it is evident that β-FGJO has the same
level of accuracy as GTO, which can reach the level of
10−17. The value of ρ prove this too. AVOA reach a better
level of accuracy 10−10. GJO, GWO, PSO and DE still have
poor performance whose level of error is around 10−3 too.
Meanwhile, The average computational time of β-FGJO is
0.08s which is comparable to PSO and GWO. In comparisons

FIGURE 11. Convergence curve of best obtained solution from
experiment 1 for PUMA560.

with GTO, AVOA, GJO, DE and IMODE, β-FGJO exhibits
a huge advantage on time consumption.

Fig.10 displays the average convergence curve of
Experiment 1 on PUMA560. β-FGJO demonstrates high
competitiveness in terms of convergence, typically converg-
ing within around 100 iterations, while GTO converges to
the optimal value within 400 iterations and IMODE within
500 iterations. AVOA,GJO,GWO, PSO, andDE, on the other
hand, converge at 1000 iterations.

To validate the algorithm’s performance on the actual
model, an optimization result is randomly selected from
Experiment 1. The convergence curve is shown in Fig.11 and
best obtained solution configurations are list in the Table 7.
Then, different optimal configurations obtained from test
algorithms are input into the objective function to measure
the error. Fig.12 shows the 3D representations of selected
solutions from 6 test algorithms. The actual position of end
effector and actual error between the actual position and
desired position are calculated and listed on it.
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TABLE 8. Comparative results of experiment 2 for PUMA560.

FIGURE 12. 3D representation of solution configuration.

The actual error for β-FGJO reaches the level of 10−16,
while GTO also achieves 10−16. AVOA is at 10−12, GJO
at 10−4, GWO at 10−4, PSO at 10−13, DE at 10−4,
and IMODE at 10−15. Considering both the precision of

FIGURE 13. 50 points selected from workspace.

FIGURE 14. Position error obtained for randomly selected points.

variables, as determined by the significant digits and potential
computational errors inherent in the calculation process, the
actual error are considered consistent with the error listed in
Table 7 and Table 8. The results obtained for each algorithm in
the experiment are demonstrated to be accurate and effective.

2) RESULTS ANALYSIS OF EXPERIMENT 2
Fig.13 shows fifty test points randomly selected from the
workspace. In Fig.14, the most stable results are β-FGJO,
GTO, and IMODE. The level of error is around 10−17, which
is even better than the result of MDOF-GRM on 6DOF. PSO
and AVOA are unstable, while GJO, GWO, and DE exhibit
poor accuracy levels.

The detailed comparison results of the test methods are
given in Table 8. The error of β-FGJO is 2.8800 × 10−17.
GTO has similar accuracy, with an error of 3.1900 × 10−17,
but with longer computation time. β-FGJO is more stable.
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FIGURE 15. Comparison of algorithms for PUMA560.

FIGURE 16. Comparison of methods proposed in the literature.

A more detailed comparison is provided in Fig.15. It is
evident that the best results are obtained with β-FGJO
both in terms of error and computation time. Overall,
the test results on the PUMA560 are consistent with
those on the MDOF-GRM with 6DOF, demonstrating the
effectiveness of MDOF-GRM for evaluating optimization
methods. Compared to the best-performing GTO, β-FGJO
improved time performance by 24.57%.

D. ACCURACY ANALYSIS
In MATLAB, the precision of numerical calculations is
typically constrained by double precision floating-point
numbers which is used in this study. Double precision
floating-point numbers use a 64-bit representation, with
52 bits dedicated to the mantissa, 11 bits for the exponent,
and 1 bit for the sign. It means that double precision
floating-point numbers can represent precision in the range of
approximately 15 to 17 significant digits, which is consistent
with results in Experiment 1 and 2.

VI. COMPARISON WITH PROPOSED METHODS
In this section, a comparison is made between β-FGJO and
the well-performing methods proposed in the cited refer-
ences. Detailed information about these selected methods
are shown in Table 1 with method, average position error
and average solution time. Compared to the best-performing

IW-PSO and QPSO, β-FGJO improved time performance
by 88.18% and 66.88%, respectively in Fig.16, while
maintaining the same level of accuracy on 7DOF.

VII. CONCLUSION AND PROSPECT
Solving inverse kinematics problem is significant to the con-
trol of robotic manipulator. In this study, inverse kinematics
problem is transformed into a nonlinear single objective
optimization problem. Meanwhile, this paper proposes the
β-FGJO algorithm to solve the problem. In β-FGJO, the
Fuch chaotic map is used to initialize the prey population
which can ensure uniform distribution of the population
and increase randomness of the population. The enhanced
search strategy based on adaptive β-distribution helps keep
diversity of the population when exploration and accelerate
convergence speed when exploitation. Adaptive factors
in β-distribution helps control the search range. In the early
stages, β-FGJO searches in a broad search range, while in
the later stages, the search range becomes narrower, thereby
achieving a balance between global and local search. Mean-
while, β-FGJO use new position update mechanisms based
on energy and hungry level to enhance the search capability.
Then β-FGJO is tested on themulti-DOF robotic manipulator
with 2-10 DOF and PUMA560 for two experiments. The
result verifies the excellent solution accuracy, convergence,
and stability of β-FGJO.
The results of experiments show that β-FGJO can effec-

tively solve the inverse kinematics problem in the form
of optimization problem. Compared with GTO, AVOA,
GJO, GWO and PSO, β-FGJO has higher coverage. the
precision level of error obtained by β-FGJO in experiments
is 10−16 and the solution time ranges from 0.05s to 0.08s.
On PUMA560, the level of error obtained by β-FGJO in
experiments is 10−17 and the solution time is around 0.07s.
The β-FGJO algorithm is far superior in terms of iteration
speed and convergence accuracy in dealing with inverse
kinematics problem. In addition, the Wilcoxon signed-rank
test of β-FGJO with the other five algorithms for has shown
that the results of β-FGJO are significantly different from the
other algorithms. Overall, the β-FGJO is much more efficient
and robust in terms of accuracy and solution time.

The algorithm proposed in this study achieved a testing
accuracy in the range of approximately 15 to 17 significant
digits. Such high precision is not necessary for practical
applications, and reducing the required precision can further
decrease the algorithm’s solution time. In this study, the test-
ingwas conducted under ideal conditionswithout considering
various constraints present in real-world scenarios, leading
to some discrepancies in practical applications. In real-world
scenarios, multiple constraints need to be considered, and
multi-objective solutions may also be required. This will be a
focus of future research.
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