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ABSTRACT This paper presents a Proportional-Integral observer (PIO) that allows simultaneous states and
unknown input estimation. The goal of this observer is to perform actuator fault estimation for a distillation
process by using a simplified mathematical model. This model describes the intrinsic physical characteristics
of the process through a descriptor Linear Parameter Varying (LPV) approach. The stability of the observer
is analyzed through a Lyapunov stability theory. The proposed scheme estimates a fault in a peristaltic pump
that feeds the distillation column. The main contribution is demonstrating the generalization of the descriptor
LPV approach, expanding the potential applications of modern control strategies for fault estimation in
nonlinear processes, especially in distillation plants.

INDEX TERMS Actuator fault estimation, distillation process, PI observer, descriptor LPV systems.

I. INTRODUCTION
Typically industrial plate distillation columns have large
dynamic models due to the great number of stages (N-plates,
a boiler, and a condenser). Even the simplest dynamic model
of distillation columns is complex because the nonlinear
differential equations must be at least equal to the number of
column stages. However, this complexity can be reduced by
considering a technique based on singular perturbation the-
ory, presented in [1], which generates a reduced-order model
by separating the fast and slow dynamics of the process.
This technique allows to approximating the compartment
dynamics by differential equations for a representative stage
with a holdup equivalent to the total compartment holdup.
In [2], this approach is applied to a high-purity air separation
process.

Descriptor dynamical systems are often used as an
alternative modeling approach to typical dynamical models
described only with differential equations. The advantage
of the descriptor approach is to represent a wider range of
practical processes, such as electrical [4], [5], electronic [6],
[7], chemical [8], [9], and mechatronic systems [10], [11].
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These systems can preserve the original system’s physical
structure while accounting for non-dynamic constraints and
impulsive behavior. The algebraic equations act as constraints
for the differential part of the system [3].

On the other hand, Linear Parameter Varying (LPV)
systems are a class of nonlinear systems represented in
a state-affine and control-affine form, but one or more
parameters are time-variant. LPV systems theory may have
many practical applications due to their special structure [12].
First, they can be treated as Linear Time-Invariant sys-
tems subject to a time-varying parameter vector ρ(t) =

[ρ1(t) ρ2(t), . . . , ρJ (t)]. Alternatively, LPV systems can
also be linear time-varying models resulting from linearizing
nonlinear plants along the parameter ρ trajectories. This
transformation is achieved without any loss of information
and produces a system with the same state trajectory as the
original system [13], [14], [15], [16].

The task of estimating state variables, system parameters
or unknown inputs is crucial in diagnostic systems. In order
to detect changes in the correlation between state variables,
researchers design model-based estimation algorithms [17],
[18], [19]. In particular, the observer design for descriptor
systems has received considerable attention because the
effectivity of the methods. These methods have been
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extended to nonlinear descriptor systems. For instance, some
works about full and reduced-order observers can be found
in [20], [21], [22]; a Proportional-Integral observer for
systems with unknown inputs can be read in [23], [24], [25],
whereas an Unknown Input Observer (UIO) for nonlinear
descriptor systems is presented in [26]. A Luenberger
observer with a parametric approach is used in [27], and an
adaptive fuzzy observer for nonlinear descriptor systems is
considered in [28].

Most existing Fault Detection and Diagnosis (FDD)
methods rely on designing appropriate observers. Some
researchers have proposed fault diagnosis systems for
descriptor systems, such as the one presented in [29], where
a UIO is used for detecting, isolating, and reconstructing
actuator and sensor faults, but not all at once. In [30],
a polytopic UIO is designed for descriptor LPV systems to
estimate the system states in the presence of unknown inputs.

The first step in fault accommodation is to perform a
Fault Detection and Isolation (FDI) process. This process
monitors the system and identifies the location of the fault.
In [31], an FDI scheme uses a linear sliding mode observer
for actuator and sensor faults. This scheme is applied to a
distillation column process. Online fault estimation is then
used to determine the magnitude of the fault. This enables
the implementation of an active Fault Tolerant Control
(FTC) system through either fault accommodation or system
reconfiguration [32].

The main contribution of this study involves developing
a descriptor LPV model to implement a fault estimation
technique utilizing a PI observer for the distillation process.
The LPV descriptor model obtained is then compared in
simulation with data from the nonlinear model of a five-tray
distillation column using an ethanol-water mixture. The
study combines local linear descriptor models, which are
interpolated using appropriate weight functions, to deter-
mine the influence of each local model on the overall
system behavior. Another contribution of this research is to
demonstrate the simplification of a nonlinear system into
a multi-linear system in polytopic form, using the model
reduction technique proposed by [8] to establish a descriptor
LPV model for distillation columns. This model could
be used for developing accurate actuator fault estimation
techniques. The efficacy of the approach is evaluated through
numerical simulations.

This work distinguishes itself through several key advance-
ments compared to prior research: (i) It extends the appli-
cability of the methodology to a broader class of nonlinear
processes affected by unknown inputs or disturbances,
facilitating the estimation of both process variables and
unknown inputs, (ii) by incorporating the descriptor LPV
approach into the design, the PI observer demonstrates
enhanced estimation performance, (iii) the simplicity of
computing observer gains, through solving a simple set
of LMIs, eliminating the necessity to solve additional
differential equations typically associated with Kalman
observers.

II. FAULT ESTIMATION BASED ON PROPORTIONAL
INTEGRAL OBSERVER DESIGN
A. PROPORTIONAL INTEGRAL OBSERVER DESIGN
An approach to achieving a multi-model structure involves a
collection of linear models scheduled by weighting functions
to represent polytopic LPV models, as outlined in [33].
Utilizing this representation, some authors have developed
fault diagnosis methods for nonlinear systems described by
Takagi-Sugeno models, such as the one presented in [34].
Furthermore, techniques like those demonstrated in [19]
utilize observer models for detecting and isolating actuator
faults in differential-algebraic LPV systems represented by a
polytopic form. Another interesting alternative is to consider
adjustable dimension observers as presented in [35] where
fault estimation is performed for switched fuzzy systems with
unmeasurable premise variables, or reduced-order observers
for finite-time fault estimation for switched systems and
time varying faults [36]. In [37], fault reconstruction and
fault-tolerant control of switched fuzzy systems with actuator
and sensor faults are addressed. Although these three last
approaches are effective methods for fault estimation, they
are designed specifically for switched systems.

In this work descriptor systems having the following (non-
switched) LPV form are considered:

Eẋ(t) =

2J∑
i=1

εi(ρ(t)) (Aix(t) + Biu(t) + Rid(t)) ,

y(t) = Cx(t), (1)

where x(t) ∈ Rm represents the semi-state vector, u(t) ∈ Rk

is the input vector, d ∈ Rl is an unknown input, and y ∈ Rp is
the output vector. E ∈ Rm×m is a matrix with rank(E) = r ≤

m. Ai ∈ Rm×m, Bi ∈ Rm×k , Ri ∈ Rm×l and C ∈ Rp×m are
known constant matrices. ρ(t) = [ρ1, . . . , ρJ ] is the vector of
J variant parameters. Furthermore, it is assumed that ρ(t) is
available (i.e., perfectly measurable) for the observer, which
will be proposed.

In this paper, the polytopic case is treated, where a polytope
is a geometric object in a hypercube with 2J dimensions.
It has several vertices, edges, and faces. In this scenario, the
vertices of the polytope are obtained by combining different
weighting functions. These functions assign a weight to each
parameter or variable in a dataset, which creates a linear
combination. This linear combination serves as the basis for
the global model that can be used to analyze the dataset.
Under this consideration the weighted functions εi(ρ(t)) have
the following properties:

2J∑
i=1

εi(ρ(t)) = 1, 0 ≤ εi(ρ(t)) ≤ 1. (2)

Definition 1 [46]: Consider that system (1) has the
following slow and fast subsystems

ẋa(t) =

2J∑
i=1

εi(ρ(t)) (Aiaxa(t) + Biau(t) + Riad(t)) ,
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ya(t) = Caxa(t), (3)

and

N ẋb(t) =

2J∑
i=1

εi(ρ(t)) (xb(t) + Bibu(t) + Ribd(t)) ,

yb(t) = Cbxb(t), (4)

where xa(t) ∈ Rma , xb(t) ∈ Rmb , ma + mb = m, the matrix
N ∈ Rmb×mb is nilpotent.

1) The slow system (3) is observable if and only if, from
system (1)

rank
[
sE − A
C

]
= n, ∀s ∈ C, s finite. (5)

2) The fast subsystem (4) is observable if and only if, from
system (1)

rank
[
E
C

]
= n. (6)

3) System (3) is observable if and only if conditions (5)-(6)
and (1) hold, or

rank
[
αE − βA

C

]
= n, ∀(α, β) ∈ C2

\{(0, 0)}. (7)

Assumption 1 The system (1) is called observable if con-
ditions of Definition 1 are verified, which reflects the
reconstruction ability of the whole state x(t) from measured
output together with the control input.

Assumption 2 The system (1) is regular; this property
guarantees the existence and uniqueness of solutions if there
exists a constant scalar γ ∈ C such that

det(γE − Ai) ̸= 0, (8)

or equivalently, the polynomial det(sE−Ai) is not identically
zero.

Assumption 3 It is assumed that the rank(CRi) = rank(Ri).
This Assumption implies that p ≥ l, the number of
measurable outputs must be greater than or equal to the
number of faults [45].

Consider the following LPV PI Observer for system (1):

Ż (t) =

2J∑
i=1

εi(ρ(t))
[
NiZ (t) + Giu(t) + Liy(t) + Hid̂(t)

]
,

(9)

˙̂d(t) =

2J∑
i=1

εi(ρ(t))8i(y(t) − ŷ(t)), (10)

x̂(t) = Z (t) +My(t). (11)

In the PI observer there are three vectors: Z (t) ∈ Rm,
d̂(t) ∈ Rl , and x̂(t) ∈ Rm, which belong to the set of real
numbersRp. These are the state of the observer, the estimated
unknown input, and the estimated state vector. The matrices:
Ni ∈ Rm×m,Gi ∈ Rm×k , Li ∈ Rm×p,Hi ∈ Rm×l ,M ∈ Rm×p,

and 8i ∈ Rl×p, are unknown and need to be calculated for
the PI observer. The estimation error is defined as:

e(t) = x(t) − x̂(t). (12)

By replacing x̂(t) from (11):

e(t) = x(t) − Z (t) −MCx(t) = (In −MC)x(t) − Z (t),

(13)

where In is an identity matrix of dimension n. A real matrix
U ∈ Rn×n is defined such that:

UE = In −MC, (14)

which can be written as[
U M

]
=

[
E
C

]+

, (15)

the superscript + represents the inverse generalized matrix.
From (15) the particular solution for matrices U and M is:

U =

[
E
C

]+ [
In
0

]
, (16)

M =

[
E
C

]+ [
0
Ip

]
. (17)

Suppose that the unknown inputs are bounded, and their
dynamics are relatively slow, meaning that their time
derivatives are approximately zero, i.e., ḋ(t) ≃ 0. It is
important to note that we are not considering sensor bias
faults in this scenario. Now, define δ(t) as:

δ(t) = d(t) − d̂(t), (18)

With this definition, the derivative of δ(t) is:

δ̇(t) = −
˙̂d(t) =

2J∑
i=1

εi(ρ(t))(−8iC)e(t). (19)

The estimation error (13) can be rewritten as:

e(t) = UEx(t) − Z (t). (20)

The dynamic estimation error can be written by using (1), (9),
and (18) as follows:

ė(t) =

2J∑
i=1

εi(ρ(t))
(
Nie(t) + (UAi − NiUE − LiC)x(t)+

(UBi − Gi)u(t) + (URi − Hi)d(t) + Hiδ(t)
)
, (21)

If the following conditions are verified

UAi − NiUE − LiC = 0, (22)

UBi − Gi = 0, (23)

URi − Hi = 0, (24)

then, the derivative of the error is simplified to:

ė(t) =

2J∑
i=1

εi(ρ(t))(Nie(t) + Hiδ(t)). (25)
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A matrix representation of (19) and (25) is:[
ė(t)
δ̇(t)

]
=

2J∑
i=1

εi(ρ(t))
[

Ni Hi
−8iC 0

] [
e(t)
δ(t)

]
. (26)

If Reλi

[
Ni Hi

−8iC 0

]
< 0, the state estimation error and the

unknown input dynamic error established in (26) converge
asymptotically to zero.

Matrices Gi and Hi can be determined from equations (23)
and (24) as:

Gi = UBi, (27)

Hi = URi, (28)

where matrixU is defined in (16), and matrices Bi and Ri can
be obtained from the model (1).

From (22), and condition (14), matrix Ni can be defined as:

Ni = UAi − KiC, (29)

where Ki = Li − NiM .
By replacing (29) in (26), the state estimation error (26)

can be rewritten as:[
ė(t)
δ̇(t)

]
︸ ︷︷ ︸

β̇(t)

=

2J∑
i=1

εi(ρ(t))(Āi − K̄iC̄)
[
e(t)
δ(t)

]
︸ ︷︷ ︸

β(t)

, (30)

where Āi =

[
UAi Hi
0 0

]
, K̄i =

[
Ki
8i

]
, and C̄ = [C 0].

In order to implement the PI observer for a descriptor
LPV system with unknown inputs, it is necessary to ensure
that the pairs (Āi, C̄) are detectable for all i = 1, 2, . . . , 2J .
If this condition is verified, then the observer exists, and the
estimation error of the system converges asymptotically to
zero.

B. STABILITY ANALYSIS
For stability analysis, consider the following Lyapunov
function:

V (β(t)) = βT (t)Pβ(t) < 0, (31)

where P ∈ R(n+l)×(n+l) is a positive definite matrix.
The derivative of V (β(t) is given by

V̇ (β(t)) = β̇T (t)Pβ(t) + βT (t)Pβ̇(t), (32)

= βT (t)(ĀTi P+ PĀi − C̄T K̄T
i P− PK̄iC̄)β(t),

(33)

the condition V̇ (β(t)) < 0 is verified if

(ĀTi P+ PĀi − C̄T K̄T
i P− PK̄iC̄) < 0, (34)

which can be written as:

(ĀTi P+ PĀi − C̄TW T
i −WiC̄) < 0, (35)

whereWi = PK̄i.

The observer is asymptotically stable if there exists a
positive definite symmetric matrix P, and matricesWi = PK̄i
such that the Linear Matrix Inequality (LMI’s) presented
in (35) holds.

The observer gains can be calculated by using the
expression K̄i = P−1Wi. This calculation is important for
ensuring the stability and convergence of the observation
error. In order to guarantee these properties, a bounded area
S can be defined in the left part of the complex plane. This
area is defined by a line of abscissa (−σ ), where σ is a
positive real number. To satisfy the stability and convergence
requirements, the LMI’s defined in (35) can be written as:

(ĀTi P+ PĀi − C̄TW T
i −WiC̄) + 2σP < 0,

∀i ∈ 1, 2, . . . , 2J . (36)

consequently x̂(t) will asymptotically converge to x(t) and
d̂(t) to d(t).

C. DISTILLATION COLUMN MODEL.
In order to ensure the efficient operation of a distillation
column, it is essential to have a thorough understanding of
its dynamic properties. This requires a deep comprehension
of the steady-state behavior of the column.Moreover, to carry
out the distillation process successfully, it is crucial to have
knowledge about the correlations between vapor and liquid
equilibrium or to estimate them accurately. These correlations
play a vital role in determining the behavior of the distillation
column since they are non-linear functions of temperature,
pressure, and composition. Therefore, to model the behavior
of the distillation column accurately, it is necessary to
consider these assumptions when formulating the model [39],
[40]:

(A1) The process is an isobaric system.
(A2) There exists an ideal liquid-vapor equilibrium.
(A3) Non-linear mixture behavior of liquids is consid-

ered.
(A4) The molar vapor holdup is negligible with respect

to the molar liquid holdup.
(A5) The boiler is a theoretical tray.
(A6) The condenser is total.
(A7) The liquid volumetric hold-up is constant.

The non-ideality of the liquid phase, known as the nonlin-
ear characteristic, is a prevalent phenomenon in chemical
systems operating at low pressure. Hence, specific models
are employed to represent these non-idealities accurately.
The vapor composition yi of the desired component can be
expressed by an equation that is suitable for low-pressure
systems:

yi(t)PT8i = Psati xi(t)γi (i = 1, 2, . . . , N ), (37)

where PT is the total pressure, 8i is the fugacity coefficient,
Psati is the vapor partial pressure, xi is the liquid composition,
the subscript i denotes the component number in the mixture
and γi is the activity coefficient of the component in
each stage. This correction factor is highly dependent on
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the concentration and can be determined using any of
the six popular expressions: Margules, Van Laar, Wilson,
NRTL, UNIFAC, and UNIQUAC. In this work, the vapor
composition is calculated as a function of the light component
(ethanol) using the Van Laar equation:

lnγEOH = A12

(
A21(1 − x(t))

A12x(t) + A21(1 − x(t))

)2

,

lnγH2O = A21

(
A12x(t)

A12x(t) + A21(1 − x(t))

)2

, (38)

whereA12, andA21 are two interaction parameters established
for a binary mixture. These values depend on the mixture and
can be found in [41], A12 = 1.6798, and A21 = 0.9227;
the subscripts EOH and H2O denote ethanol and water,
respectively.

The model of the distillation column is divided into
four basic models: the condenser x1, a tray xp, the feeding
tray xF , and the boiler xN . Column stages are labeled
using an ascendant numeration from the condenser to the
boiler; p denotes the tray index. By taking into account the
assumptions (A1) to (A7), a set of differential equations can
be derived from the balance equation on each tray for one
component:

M1
d(x1(t))
dt

= VRy2 − LRx1 − Dx1,

Mp
d(xp(t))
dt

= VR(yp+1 − yp) + LR(xp−1 − xp),

with p = 2, . . . ,F − 1,

MF
d(xF (t))

dt
= VR(yF+1 − yF ) + LR(xF−1 − xF ) + F(zF ),

Mp
d(xp(t))
dt

= VS (yp+1 − yp) + LS (xp−1 − xp),

with p = F + 1, . . . ,N − 1,

MN
d(xN (t))

dt
= LSxN−1 − VSyN − BxN ,

(39)

The molar feeding flow and composition are represented
by F , and zF , respectively, the perturbation variables. The
distilled and bottom products are denoted by D, and B. VR,
LR, VS , and LS refer to the vapor and liquid molar flow on the
rectifying and the stripping sections. Each tray has a molar
holdup, denoted byMp, with a total of N trays.

D. MOLAR FLOW RATES
In the distillation column exist six molar flow rates, vapor and
liquid (VS , VR, LS , LR, B, and D). The vapor molar flow can
be divided in VS and VR, depending on the stage:

VS (t) =
Qb(t)

λEOHxN (t) + λH2O(1 − xN (t))
, (40)

VR(t) = VS (t) + (1 − qF )F(t), (41)

where Qb is the heating power on the boiler, λ is the
vaporization enthalpy. The molar flow of the feed F is
calculated by:

F(t) = FV [ρEOHωEOH + ρH2O(1 − ωEOH )]

×

(
zF (t)

MWEOH
+

1 − zF (t)
MWH2O

)
. (42)

FV is the volumetric flow of the feeding stream, ρEOH , ρH2O
are densities for each component, and MWEOH , MWH2O are
molecular weights. ωEOH is the weight fraction of the light
component given by:

ωEOH =
zF (t)ρEOH

zF (t)ρEOH + (1 − zF (t))ρH2O
. (43)

The liquid molar flow can be calculated as:

LR(t) = (1 − rv(t))VR(t),

LS (t) = LR(t) + qFF(t), (44)

where

qF = 1 +
Cp(Tb − TF )

λ
, (45)

qF describes the feeding condition according to its vaporiza-
tion degree. In (45), Cp is the specific heat, Tb is the boiling
temperature, TF is the feeding temperature, and λ is the
vaporization enthalpy (in this case it is considered constant).

The rv is a binary variable representing the reflux valve
position (a three-way ON-OFF solenoid valve), i.e., rv =

0 means that LR = VR, and if rv = 1, then LR = 0.
For this reason, the reflux R is considered as a variable

percentage, and it is obtained from the relation between the
opening and closing time of valve rv (a modulation of reflux
signal as a function of time).

The distilled and bottom product flow rates are:

D(t) = rv(t)VR(t),

B(t) = (LS (t) − VS (t))bv, (46)

where bv is a binary variable representing the bottom valve
opening, i.e., bv = 0 means that a batch distillation is
performed, and if bv = 1, then the bottom product B is
withdrawn from the boiler.

Fig. 1 depicts a distillation column consisting of five plates.
The liquid compositions are denoted from x1 to x5, starting
from the condenser to the boiler, respectively. The feed plate,
x3, is positioned at the center of the column, where the feed
flowF and the liquid feed composition zF are introduced. The
feed flow is derived from the feed tank FT and is pumped
by the feed pump FP. Before entering the column, F passes
through the electric preheating resistance J1, which has a
power of 500W . Finally, F is admitted into the column by
activating the valve V1.
The condenser is located at the top of the column. The

solenoid reflux valve rv opens periodically to obtain the
distillate D and the reflux R. The ethanol-water mixture is
placed in the boiler, heated by the electric resistance J2 with
a heating power on the boiler Qb of 2500W . The bottom
product B is extracted by actuating the valve bv.
The dynamic model of industrial columns is typically

very large, and even the simplest dynamic model for a
distillation column is complex due to the high number of
nonlinear differential equations that must match the number
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FIGURE 1. Scheme of a distillation column of five trays. The principal
parts are the condenser, generic trays in the rectifying zone, generic trays
in the stripping zone, feed tray, distillate product, boiler, and bottom
product.

TABLE 1. Variables and initial conditions of the distillation column
process.

of column plates. However, the complexity can be reduced
by considering the time scales. This paper simplifies the
nonlinear model of a binary distillation column, preserving
the dynamics and physical properties as a descriptor model.

E. BINARY DISTILLATION COLUMN SINGULAR MODEL
Fault diagnosis and control strategies can be achieved using
descriptor models, such as the works presented in [42]
and [43]. The proposed simplified representation of a binary
distillation column preserves the physical properties and
dynamics of the plant. By considering the assumptions (A1)
to (A7) mentioned before and analyzing the dynamics of

the plant depicted in Fig. 1, the equations that describe the
balance for each component can be obtained, as is shown
in (39).

Consider the descriptor system:

Eẋ(t) = Ax(t) + Bu(t) + Rd(t),

y(t) = Cx(t), (47)

where E ∈ Rm×m is a singular matrix with rank(E) =

r < n, x(t) ∈ Rm is the descriptor state vector; u(t) ∈

Rk , and y(t) ∈ Rp are the control input and measurement
output vectors, respectively; d(t) ∈ Rl is a bounded vector
representing process disturbances that act as unknown inputs
for the observer; A, B, R, and C are matrices with appropriate
dimensions.

For the distillation column model x = [x1, x2, . . . , xN ]T

is the state vector that represents the liquid concentrations of
the light component, u(t) = [L(t) V (t)]T is the input vector.
Typically, F(t) and zF (t) are considered as disturbances in
a distillation process, then d(t) = [F(t) zF (t)]T . By taking
into account the dynamics of the plant, the system (39) can
be rewritten as x = f (x, L, V , F, zF ). According to [8], f is
linear with respect to L, V , F , and zF , so it is assumed that
L, V , F , and zF are continuous in time, i.e., t ∈ [0, +∞)
s.t. ∀t , L(t) < V (t) < (L(t) + F(t)). Therefore, it is
possible to establish that for each L, V , F , and zF there exits
a unique steady-state x̄(t) ∈ [0, 1] namely a unique solution
of f (x̄, L, V , F, zF ) = 0. Moreover, if L, V , F , and zF are
assumed to be constant, and if x(0) ∈ [0, 1], then the system
is Lyapunov stable and its solution converges to the unique
steady state associated to L, V , F , and zF .
According to this, the model in (39) can be reduced by time

scale considerations, described by the differential-algebraic
system as:

M̃1ẋ1 = Vk(x2) − Vx1,

0 = Lxp−1 + Vk(xp+1) − Lxp − Vk(xp),

p = 2, . . . , jR−1,

M̃pR ẋpR = LxpR−1 + Vk(xpR+1) − LxpR − Vk(xpR ),

0 = Lxp−1 + Vk(xp+1) − Lxp − Vk(xp),

p = pR+1, . . . , pF−1,

M̃pF ẋpF = LxpF−1 + Vk(xpF+1) − (L + F)xpF
− Vk(xpF ) + F(zF ),

0 = (L + F)xp−1 + Vk(xp+1) − (L + F)xp
− Vk(xp),

p = pF+1, . . . , pS−1,

M̃pS ẋpS = (L + F)xpS−1 + Vk(xpS+1 ) − (L + F)xpS
− Vk(xpS ),

0 = (L + F)xp−1 + Vk(xp+1) − (L + F)xp
− Vk(xp),

p = pS+1, . . . ,N − 1,

M̃N ẋN = (L + F)xN−1 − (L + F − V )xN − Vk(xN ).

(48)
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The molar holdups of the reduced model (48), are defined as
follows:

M̃1 = M1, M̃pR =

pR∑
2

Mp, M̃pF =

pS−1∑
pR+1

Mp,

M̃pS =

N−1∑
pS

Mp, M̃N = MN . (49)

The equilibrium function k is obtained by linearizing the
Vapour-liquid Equilibrium (VLE) on each stage, calculated
as ki = △yi/△xi. The descriptor model obtained through the
linearization of the process is depicted in matrices (50). The
substitution of the algebraic equations into the differential
equations preserves the tridiagonal structure of the original
system and gives a reduced-order model.

E =


M̃ 0 0 0 0
0 0 0 0 0
0 0 M̃pF 0 0
0 0 0 0 0
0 0 0 0 M̃N

 , x =


x1
x2
x3
x4
x5

 ,

u =

[
L
V

]
, d =

[
F
zF

]
,C =

[
0 1 0 0 0
0 0 0 1 0

]
,

A =
−LR − D VRk2 0 0

LR −LR − (VRk2) VRk3 0
0 LR −LS − (VRk3) VSk4
0 0 LS −LS − (VSk4)
0 0 0 LS

0
0
0

VSk5
−LS − (VSk5) + VS − B

 ,

B =


0 0

x1 − x2 k3x3 − k2x2
x2 − x3 k4x4 − k3x3
x3 − x4 k5x5 − k4x4
x4 − x5 x5 − k5x5

 , R =


0 0
0 0

zF − x3 F
x3 − x4 0
x4 − x5 0

 , (50)

After this, the descriptor model is described as a
multi-linear descriptor system in which the system matrices
are set by known operation points. In this case, the
system (47) is represented as a descriptor LPV system with
a polytopic form when the parameters evolve in a polytopic
domain:

Eẋ(t) =

2J∑
i=1

εi(ρ(t))[Aix(t) + Biu(t) + Rid(t)],

y(t) = Cx(t), (51)

where Ai ∈ Rm×m, Bi ∈ Rm×k , Ri ∈ Rm×l , and C ∈ Rp×m

are known constants matrices.
The parameter vector ρ(t) = [ρ1(t), . . . , ρJ (t)] varies in a

convex polytope with 2J vertices, J denotes the total number

of parameters. The polytope is a hypercube of dimension 2J

whose vertices or submodels are combined by the εi(ρ(t))
weighting functions to yield a global model, with i =

1, 2, . . . , 2J . These functions are defined by:

ε1(ρ(t)) =
(ρ1 − ρ

1
)

(ρ1 − ρ
1
)

(ρ2 − ρ
2
)

(ρ2 − ρ
2
)
,

ε2(ρ(t)) =
(ρ1 − ρ

1
)

(ρ1 − ρ
1
)
(ρ2 − ρ2)
(ρ2 − ρ

2
)
,

ε3(ρ(t)) =
(ρ1 − ρ1)
(ρ1 − ρ

1
)

(ρ2 − ρ
2
)

(ρ2 − ρ
2
)
,

ε4(ρ(t)) =
(ρ1 − ρ1)
(ρ1 − ρ

1
)
(ρ2 − ρ2)
(ρ2 − ρ

2
)
, (52)

where εi(ρ(t)) = ε(ρ, ρ, ρ(t), t) with ρ and ρ representing
the maximum and the minimum value of ρ(t), respectively.
These functions lie in the convex set as follows:

2 =


εi(ρ(t)) ∈ R2J , εi(ρ) = [ε1(ρ), . . . , ε2J (ρ)]

T ,

εi(ρ) ≥ 0, ∀i,
2J∑
i=1

εi(ρ(t)) = 1,

 .

(53)

The expression in (51) defines a system that can be
represented as a continuous-time polytopic descriptor LPV
system, as outlined in (1), with the parameter ρ(t) varying
within a convex polytope characterized by vertices 2J . In this
context, the model can be regarded as a multi-linear system,
with the system matrices being determined by the known
operating points, as described in [42].

III. SIMULATIONS RESULTS
The general scheme of a distillation column is illustrated
in Fig. 1. The simulation is conducted using a five-tray
distillation column. Temperature sensors are positioned
within the main body of the column, specifically on plates
2 and 4. The liquid compositions can be obtained using these
measurements and considering the liquid-vapor equilibrium
relation. The mixture used in these simulations is ethanol
(EOH ) and water (H2O) which is considered a non-ideal
mixture. The physical specifications of the components of
the binary mixture are presented in Table 1.

The simulation of the model given in (51) is done
considering: EOH volume of 2000ml, H2O volume of
2000ml and process total pressure of 105.86 kPa. The
distillation column is operated under LV configuration; this
implies that inputs or manipulated variables are the reflux
(R) and the heating power on the boiler (Qb). The reflux R is
considered a variable percentage, and it is obtained from the
relation between the opening and closing time of valve rv (a
modulation of reflux signal as a function of time). The outputs
or controlled variables are the top product composition (x1)
and the bottom product composition (xN ).

The model for the binary distillation column considers four
operational points reached by adjusting the reflux valve rv and
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FIGURE 2. The convex polytope is represented by 2J vertices or
submodels at the corners and designated from 1 to 4. The green middle
point denotes the initial operation point, and the black arrows indicate
the trajectory of the parameters within the polytope.

the heating power on the boiler Qb. This adjustment leads to
changes in the molar flows, which, in turn, produces different
concentrations of ethanol that can be obtained during the
distillation process.

Fig. 2 displays the convex polytope generated by consid-
ering J = 2 parameters. The first parameter is the liquid
flow on the rectifying section (mol/s), denoted as ρ1(t) = LR,
is in the range of 0.9468 mol/min and 1.3154 mol/min. It is
determined by controlling the reflux valve rv. The minimum
value is obtained when rv is turned off, while the maximum
value is obtained when rv is a pulse width modulated flow
signal (turned on for tON = 6s and turned off for tOFF = 6s).
The second parameter is the vapor flow on the stripping
section (mol/s), denoted as ρ2(t) = VS , is in the range
of 1.5668 mol/min and 1.9354 mol/min. It is manipulated
by adjusting the heating power on the boiler Qb, which is
controlled by the electric resistance J2. Theminimumheating
power is 650W, whereas the maximum is 2500W.

An observer is designed to determine the ethanol
composition in each tray by using a model that describes
the VLE of the binary mixture of ethanol and water,
the initial conditions of the observer are x̂0(t) =

[0.5, 0.4, 0.3, 0.2, 0.1]T . A five-plate distillation col-
umn is considered. The initial conditions of states are
x0(t) = [0.7058, 0.6199, 0.4053, 0.3711, 0.2565]T . Tem-
perature sensors are placed on plates 2 and 4; the liquid
compositions can be obtained using these measurements and
considering the equilibrium relation.

The nonlinear dynamic system is represented in a descrip-
tor LPV form by a set of matrices, by considering four
operation points based on the minimum and maximum values
of parameters ρ1(t) and ρ2(t) as follows:

E =


0.073 0 0 0 0
0 0 0 0 0
0 0 2.08 0 0
0 0 0 0 0
0 0 0 0 189.48

 , C =

[
0 1 0 0 0
0 0 0 1 0

]
,

A1 =


−1.9354 2.2216 0 0 0
0.9468 −3.1684 2.4797 0 0

0 0.9468 −4.4265 2.7913 0
0 0 1.9468 −4.7381 4.2455
0 0 0 1.9468 −4.2569

 ,

B1 =


0 0

0.0903 −0.0442
0.0980 −0.0261
0.0753 −0.0757
0.1842 −0.3018

 , R1 =


0 0
0 0

−0.0424 1
0.0753 0
0.1842 0

 ,

A2 =


−1.5668 1.7686 0 0 0
0.9468 −2.7154 1.9655 0 0

0 0.9468 −3.9123 2.1737 0
0 0 1.9468 −4.1205 3.4688
0 0 0 1.9468 −3.8488

 ,

B2 =


0 0

0.0812 −0.0491
0.1023 −0.0247
0.0684 −0.0850
0.2100 −0.3032

 , R2 =


0 0
0 0

−0.0582 1
0.0684 0
0.2100 0

 ,

A3 =


−1.5668 1.7225 0 0 0
1.3154 −3.0379 1.8830 0 0

0 1.3154 −4.1984 2.0484 0
0 0 2.3154 −4.3638 3.4532
0 0 0 2.3154 −4.2018

 ,

B3 =


0 0

0.0663 −0.0557
0.1032 −0.0266
0.0659 −0.0974
0.2468 −0.3025

 , R3 =


0 0
0 0

−0.0940 1
0.0659 0
0.2468 0

 ,

A4 =


−1.9354 2.1583 0 0 0
1.3154 −3.4737 2.3722 0 0

0 1.3154 −4.6876 2.6292 0
0 0 2.3154 −4.9446 4.2669
0 0 0 2.3154 −4.6469

 ,

B4 =


0 0

0.0745 −0.0506
0.0996 −0.0280
0.0740 −0.0986
0.2217 −0.3026

 , R4 =


0 0
0 0

−0.0769 1
0.0740 0
0.2217 0

 .

The matrices Ni, Li, Gi, and Hi in (22) - (24) are computed
by using the Yalmip Toolbox [44]:

N1 =


−1.9354 0.4211 0 −0.7609 0

0 −2.6432 0 −1.4938 0
0 −0.2336 −4.4265 1.2331 0
0 −1.3979 0 −2.5324 0
0 −0.7589 0 0.5997 −4.2569

 ,

N2 =


−1.5668 0.0053 0 −0.7601 0

0 −2.6091 0 −1.4882 0
0 −0.2365 −3.9123 0.6418 0
0 −1.4055 0 −2.5020 0
0 −0.7620 0 0.6094 −3.8488

 ,
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N3 =


−1.5668 −0.0542 0 −0.7699 0

0 −2.6338 0 −1.5022 0
0 0.1093 −4.1984 0.5119 0
0 −1.4241 0 −2.5254 0
0 −0.7688 0 0.9613 −4.2018

 ,

N4 =


−1.9354 0.3621 0 −0.7758 0

0 −2.6484 0 −1.5112 0
0 0.1135 −4.6876 1.0789 0
0 −1.4222 0 −2.5306 0
0 −0.7688 0 0.9647 −4.6469

 ,

L1 =


2.2216 0

0 0
0.9468 2.7913

0 0
0 1.9468

 , L2 =


1.7686 0

0 0
0.9468 2.1737

0 0
0 1.9468

 ,

L3 =


1.7225 0

0 0
1.3154 2.0484

0 0
0 2.3154

 , L4 =


2.1583 0

0 0
1.3154 2.6292

0 0
0 2.3154

 ,

G1 =


0 0
0 0

0.0980 −0.0261
0 0

0.1842 −0.3018

 , G2 =


0 0
0 0

0.1023 −0.0247
0 0

0.2100 −0.3032

 ,

G3 =


0 0
0 0

0.1032 −0.0266
0 0

0.2468 −0.3025

 , G4 =


0 0
0 0

0.0996 −0.0280
0 0

0.2217 −0.3026

 ,

H1 =


0 0
0 0

−0.0424 1.0000
0 0

0.1842 0

 , H2 =


0 0
0 0

−0.0582 1.0000
0 0

0.2100 0

 ,

H3 =


0 0
0 0

−0.0940 1.0000
0 0

0.2468 0

 , H4 =


0 0
0 0

−0.0769 1.0000
0 0

0.2217 0

 ,

K1 =


1.8005 0.7609
2.6432 1.4938
1.1804 1.5582
1.3979 2.5324
0.7589 1.3471

 , K2 =


1.7633 0.7601
2.6091 1.4882
1.1833 1.5319
1.4055 2.5020
0.7620 1.3374

 ,

K3 =


1.7767 0.7699
2.6338 1.5022
1.2061 1.5365
1.4241 2.5254
0.7688 1.3541

 , K4 =


1.7962 0.7758
2.6484 1.5112
1.2019 1.5503
1.4222 2.5306
0.7688 1.3507

 .

Fig. 3 (top) displays the inputs in terms of molar flows
L and V. The operating point is changed at three different
times: 50, 100, and 170 min. The dynamic behavior of the

FIGURE 3. Inputs and weighting functions. Operating point changes in
the molar flows L and V (top) and the weighting functions for the LPV
descriptor model (bottom).

nonlinear system, including its evolution, is determined by
the weighting functions εi(ρ(t)), as shown in Fig. 3 (bottom).
The weighting functions vary based on the parameter

changes. A comparison of Fig. 2 and Fig. 3 reveals that the
initial operating point, achieved during the stable state of the
process, lies at the center of the convex polytope (indicated by
the green point). The conditions of this initial operating point
persist until the 50th minute, at which point the weighting
functions demonstrate contributions from the four submodels
or vertices of the polytope.

During the time frame of minutes 50 to 100, an adjustment
in the operating point is executed, reaching the submodel 4
(identified as a red dot in the top-right section of Fig. 2).
At this juncture, the complete contribution of 100% from
ε4(ρ(t)) is evident, as depicted by a black dotted line in Fig. 3.

In the analysis, it is essential to note that the third operating
point, shown as a blue point and located in the middle part
of the polytope between minutes 100 and 170, contributes
to the four submodels of the polytope. Additionally, the
fourth operating point, where the values of two parameters
are at a minimum, corresponds to the location of submodel
one. This point is represented as a red dot in the lower left
part of the polytope and has a 100% contribution for the
weighting function ε1(ρ(t)), from minute 170 to the end of
the simulation.

The proposed multi-model representation is compared
with the nonlinear model. Fig. 4 shows the dynamics of
the liquid compositions in the condenser, feed tray, and
boiler of both models. It can be verified that both models
reproduce the same process dynamics. This comparison helps
in understanding the effectiveness of the modeling method
used in the study and its potential applications in various
fields.

Fig. 5 displays the dynamics of the process variables
x1, . . . , x5 (green lines) and their estimation x̂1, . . . , x̂5 (red
dotted lines), where the higher concentration corresponds to
the liquid composition of the distillate product x1 and the
lower concentration corresponds to the liquid composition
of the bottom product x5. The performance of the observer
is evaluated by using the Euclidean norm of the error given
in (12). The corresponding estimation errors are shown in
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FIGURE 4. Comparison of liquid compositions for the nonlinear system
and the LPV singular model, condenser x1 (top), feed tray x3 (middle),
and boiler x5 (bottom).

FIGURE 5. States of LPV descriptor model (green) and estimated states
with the PI Observer (red).

FIGURE 6. Euclidean norm of the error e =| x − x̂ | for states estimation
corresponding to liquid compositions in condenser x1 (top), feed tray x3
(middle), and boiler x5 (bottom).

Fig. 6. It is worth noting that the observer performs well in
adequately estimating the simulated process variables.

As described in subsection II-E, typically, F(t) and zF (t)
are considered as disturbances in a distillation process. F(t),
is controlled by a peristaltic pumpwith a stepper motor (FP in
Fig. 1) and in normal process operation, it should be constant.
A variation of F is considered as an abnormal operation of the
plant. This variation can be caused by a fault in the peristaltic
pump, a leak in the feed lines of the distillation column or
an abnormal operation of the valve V1 (see Fig. 1). In order

FIGURE 7. Unknown input Molar Flow F (red) and corresponding
estimated (green).

to simulate an existing fault in the feeding subsystem (the
peristaltic pump, a leak on the feeding lines or an abnormal
opening of V1), F varies as shown in Fig. 7, beginning with
a value of F = 1 mol/min and after that, an abnormal
decreasing to F = 0.9 mol/min at t = 100 min and to
F = 0.85 mol/min at t = 170 min. The estimation of F is
illustrated in Fig. 7. It can be concluded that the PI observer
has the ability to detect/estimate abnormal changes in the
liquid flow rate of the feed.

IV. CONCLUSION
In this work, the nonlinear system of a binary distillation
column is simplified to obtain a model that adequately
represents the system. This simplified model is ideal for the
development of state estimators.

To assess the observer’s performance, the nonlinear model
of the binary distillation column is considered as a descriptor
LPV system. The observer is designed to estimate both the
states and the unknown input of the system. The efficiency of
the observer design algorithm is evaluated through simulation
experiments using the Yalmip Toolbox. Specifically, the
LMI’s of (36) are solved using the Yalmip Toolbox.

The observer design approach is then applied to a
nonlinear model of a five-tray binary distillation column. The
observer is used to estimate the tray compositions for non-
ideal mixtures. The simulation experiments demonstrate the
effectiveness of the observer design approach.

Implementing the proposed method in a real-time distil-
lation column process depends on accurately determining
the polytope vertices. This method involves utilizing two
parameters derived from liquid-vapor relations, which are
computed based on temperature measurements from sensors
positioned on plates 2 and 4 within the column. It is worth
noting that the column may have a variable number of trays,
and temperature data may not be accessible for every tray.
Therefore, selecting trays with slow dynamics is crucial,
as indicated by the modified model in (48), where the liquid
molar holdups M̃ are multiplied by the state variables.
It is recommended that multiple experiments be carried out

to determine the vertices of the polytope and to establish the
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trajectories that will conform to the parameters within the
polytope.

The descriptor LPV representation involves four linear
models with two parameters. The proposed model is imple-
mented for a five-tray distillation column to approximate the
nonlinear behavior of the column using simple linear models.
One potential challenge of this method is determining the
operating points and selecting the parameters, as they need
to encompass the entire operating range of the process.
This study suggests an alternative representation to the
conventional model through the use of descriptor LPV
systems. This model will enable the development of strategies
focused on control and design for fault-tolerant control
system schemes.

Future work involves developing a fault-tolerant control
system specifically to address actuator faults. The objective is
to implement a system that demonstrates robust and reliable
performance in the management of real-world distillation
column processes.
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