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ABSTRACT Advances in automatic speaker verification (ASV) promote research into the formulation of
spoofing detection systems for real-world applications. The performance of ASV systems can be degraded
severely by multiple types of spoofing attacks, namely, synthetic speech (SS), voice conversion (VC), replay,
twins and impersonation, especially in the case of unseen synthetic spoofing attacks. A reliable and robust
spoofing detection system can act as a security gate to filter out spoofing attacks instead of having them
reach the ASV system. A weighted additive angular margin loss is proposed to address the data imbalance
issue, and different margins has been assigned to improve generalization to unseen spoofing attacks in
this study. Meanwhile, we incorporate a meta-learning loss function to optimize differences between the
embeddings of support versus query set in order to learn a spoofing-category-independent embedding
space for utterances. Furthermore, we craft adversarial examples by adding imperceptible perturbations
to spoofing speech as a data augmentation strategy, then we use an auxiliary batch normalization (BN) to
guarantee that corresponding normalization statistics are performed exclusively on the adversarial examples.
Additionally, A simple attention module is integrated into the residual block to refine the feature extraction
process. Evaluation results on the Logical Access (LA) track of the ASVspoof 2019 corpus provides
confirmation of our proposed approaches’ effectiveness in terms of a pooled EER of 0.87%, and a min
t-DCF of 0.0277. These advancements offer effective options to reduce the impact of spoofing attacks on
voice recognition/authentication systems.

INDEX TERMS Audio spoofing detection, simple attention module, additive angular margin loss, relation
network, meta-learning, disentangled training, adversarial examples.

I. INTRODUCTION
In recent years, ASV has been used extensively for personal
biometric authentication. An ASV system aims to verify an
identity claim of an individual from their voice character-
istics [1]. Spoofed voice attacks involve an attacker who
masquerades as the target speaker to gain access into the
ASV system [2], [3] for use of resources, services or devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

In most cases, the zero-effort imposters can be easily caught
by a general ASV system, but more sophisticated spoofing
attacks pose a significant threat to system robustness and
credibility [4]. With easy access to biometric information of
personal voices, spoofing attacks are inevitable [5]. Such a
potential system security breach represents a key reliability
concern of ASV systems. To address this, an audio spoofing
detection system generates countermeasure scores for each
audio sample to distinguish between genuine (bona-fide)
and spoofed speech, which allows for deployment of the
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ASV system into real-world situations where diverse audio
spoofing attacks could occur.

Since 2015 [6], [7], [8], [9], the ASVspoof community
has been at the forefront of anti-spoofing research with
a series of biannual challenges. Their aims are to foster
progress in development of audio spoofing detection to
protect ASV systems from manipulation. Existing audio
spoofing detection systems have been proposed to address
two different mainstream use case scenarios: logical access
(LA) and physical access (PA), which involves three major
forms of spoofing attack, namely synthetic, converted, and
replayed speech. Spoofing attacks on the physical access
track are direct attacks at the transmission stage, where
genuine audio samples are represented by a replay device to
microphone input of the ASV system [10]. With continuous
progress in speech synthesis [11] and voice conversion [12],
such advanced techniques are able to impersonate a target
speaker’s voice, compromising ASV reliability. Logical
access attacks, generated by the latest speech synthesis and
voice conversion technologies, can be more challenging and
perceptually indistinguishable from genuine speech.

Such spoofed speech generated by different attacking
algorithms contains artefacts, which reside in specific
sub-bands or temporal segments [13], [14], [15], [16],
[17], [18], [19]. Specifically, artefacts serve as indicative
cues to distinguish genuine speech from spoofed speech.
Additionally, artefacts present in different attacks tend to
be heterogeneous, which depend on the specific spoofing
algorithm employed. Reliable detection often relies upon the
ensemble system with multiple subsystems tuned to capture
specific forms of artefacts. Here, we seek to develop a single
system that delivers reliable detection performances across a
spectrum of diverse spoofing attacks.

As in many related fields of speech processing, a grow-
ing number of researchers are adopting end-to-end model
architectures that operate directly upon raw speech wave-
forms [20], [21], [22], [23], which bypass limitations intro-
duced by the utilization of knowledge-based, hand-crafted
acoustic features, (e.g., Mel-frequency cepstral coefficients,
and Melfilterbank energy features [24], [25], [26], [27]). Fol-
lowing this trend, RawNet2 [28], combined with the merits
of RawNet1 [29], takes in raw waveforms and tends to yield
more discriminative representations compared to traditional
spoofing detection solutions. To learn ameaningful filterbank
structure, the first layer of RawNet2 is the same as that
of SincNet [23], [30], which implements band-pass filters
based on parametrized sinc functions. The upper layers are
comprised of residual blocks [31] to extract frame-level
representations, and the GRU [32] layer serves to aggregate
utterance-level representations. Here, filter-wise feature map
scaling (FMS) [28] is employed as an attention mechanism to
derive more discriminative representations.

To further enhance the model’s representation ability to
construct informative features, the Squeeze-and-Excitation
(SE) component has been extensively used in residual

blocks, which recalibrates channel-wise feature maps by
modelling the inter-dependencies between each channel [33].
Given an intermediate feature map in a residual block,
the convolutional block attention module (CBAM) [34]
sequentially infers attention maps along the channel and
spectral-temporal dimensions, and then attention maps are
used to refine the input features. In contrast to channel-wise
and spatial-wise attention modules, a simple attention
module (SimAM) [35] infers 3-dimensional attentionweights
for adaptive feature refinement. Inspired by neuroscience
theories, they propose to optimize an energy function to
attain the importance of each neuron. Attention modules
noted here represent general plug-and-play modules, which
can be injected into each residual block of any feed-forward
convolutional neural network (CNN) architecture seamlessly
with negligible additional parameters and is also end-to-end
trainable along with CNNs.

In most cases, the spoofing detection classifier is trained
using a cross-entropy loss with softmax (denoted by
CE-Softmax loss). A reliable spoofing detection model
should aggregate embeddings from the same identity and
separate clusters for different identities. However, the
spoofing detection model optimized by Softmax loss is
not generalizable enough, and performance degradation is
observed when evaluated on unseen spoofing attacks. As in
some speaker verification tasks [36], [37], [38], [39], the end-
to-end system is able to learn discriminative representations
directly, however, it is time-consuming for training and
requires complex data preparation (e.g., semi-hard example
mining). To address this issue with negligible computational
overhead, margin-based losses such as angular softmax loss
(denoted by A-Softmax loss) [40], additive margin softmax
loss (denoted byAM-Softmax loss) [41], and additive angular
margin loss (denoted by AAM-Softmax loss) [42], can
be considered to encourage intra-class compactness and
inter-class segregation. Previous research has investigated
the impact of margin-based losses for speaker embedding
learning [43], [44], [45], It has been proven that margin serves
as a vital factor in discriminative embeddings learning and
leads to a significant overall performance improvement [46].

Due to the continuing evolution of voice conversion and
speech synthesis techniques, a growing number of emerging
unseen spoofing attacks poses a great threat to the reliability
of spoofing detection systems. The generalization capability
of existing solutions could be subject to a limited variety of
known attacks. Meta-learning has recently become one
research hotspot in deep-learning-based approaches. Several
novel meta-learning approaches [47], [48], [49] propose to
learn a shared metric space between the embeddings of
unseen examples from a test set, and known classes in the
training set. Ko et al. [47] employed prototypical networks
(PN), a typical meta-learning architecture, to enhance the
discriminative power of the speaker embedding extractor.
While episodic optimization could be insufficient to obtain
the optimal embedding distribution for unseen classes,
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Kye et al. [48] perform global classification for each sample
within every episode. By combining two learning schemes,
significant improvement is observed for short-duration
utterance speaker recognition. With consideration of unseen
samples in the test set during the training phase, the model
achieves a consistent framework across train and test, which
boosts discriminative power for unseen samples.

Deep-learning-based approaches always require a large
amount of data to tune model parameters during training,
where the spoofing detection accuracy and model robustness
can be subject to training data size. Data augmentation is
a commonly-used method to obtain additional synthetically
modified data. Adversarial examples can also be obtained
by attacking model vulnerability, which has been adopted
as a free resource for model training in different tasks [50],
[51], [52]. Adversaries are crafted by adding imperceptible
perturbations to original training data, and the modified data
is used to mislead a well-trained model [53]. Adversarial
examples are commonly viewed as a threat to neural network
models, which behave in a similarmanner to spoofing attacks.
Inspired by this, adversaries can be treated as additional
training examples to boost spoofing detection performance
if harnessed in the proper manner. Although there probably
exists a trade-off between model accuracy and robustness
to adversarial perturbations [54]. Unexpected benefits can
be observed when adversarial examples are involved in the
model training (e.g., interpretable feature representations
that align well with salient data characteristics [54] and
improved robustness to corruptions concentrated in the
high-frequency domain [55]). Considering different data
distributions between original training data and adversaries,
Xie et al. proposed an auxiliary batch normalization
(BN) to disentangle model training for accurate statistics
estimation [56].
In this study, we begin with a variant of RawNet2 [28] as

our backbone model architecture. We develop an end-to-end
robust spoofing detection system to reliably detect spoofing
attacks on the LA track of the ASVspoof2019 corpus without
score-level ensembles. We inject three different attention
modules (e.g., SE, CBAM, SimAM) into each residual
block, respectively, to enhance model representation ability.
Zhang et al [57] proposed a one-class learning to improve
detection performance on unknown synthetic spoofing
attacks, which results from over-fitting of known attacks.
Based on the AAM-Softmax loss [42], we assign different
weights and margins to each class (e.g., genuine and spoofed)
for alleviating the unbalanced data and over-fitting problem.
To mitigating the adverse impact of unseen spoofing attacks,
we further adopt the meta-learning loss to adaptively learn
a shared metric space between unseen samples and known
attacks. The relation network [58] is employed to compare
samples in the support and query sets, where an additional
neural network serves to parameterize the comparison metric.
Previous research has explored taking adversarial examples
as augmentation data to improve an attention-based keyword

spotting system [59]. Here, Our interest lands on disentangled
learning with adversarial examples to enhance system robust-
ness, such that the complementarity across original training
data and adversaries could be fully exploited.We hypothesize
that the AAM-Softmax loss for global classification, the
meta-learning episodic loss, and the loss from adversarial
examples exhibit specific unexpected benefits during model
training, thus bringing out an overall joint optimization as a
powerful ensemble method for discriminative representations
learning. The main contributions of this research study are:

1. Investigated three extensions to the RawNet2-based
model, and analyzed the effectiveness of each attention
module in improving model performance.

2. A weighted AAM-Softmax loss is employed for binary
classification to encourage intra-class compactness and inter-
class separability in the embedding space.

3. proposed a meta-learning framework to enhance model
generalization capability to unseen spoofing attacks, and
integrated episodic and global classification to encourage
discriminative embedding learning.

4. Adversarial examples are treated as additional training
samples, with an auxiliary BN used for adversaries to perform
disentangled training.

5. Joint optimization with weighted AAM-Softmax loss,
meta-learning loss, and adversarial loss are performed to
boost the entire spoofing detection system performance for
detection of LA-based spoofing attacks.

The rest of the paper is organized as follows. Sec. II inves-
tigates conventional and existing state-of-the-art spoofing
detection approaches. Sec. III details each component of the
proposed spoofing detection framework. Sec. IV comprises
the specifics of data, evaluation metrics, and experimental
configurations. Sec. V presents experimental results and
corresponding analysis of observations. Lastly, conclusions
are drawn in Sec. VI. The overview of this study is presented
in Fig. 1.

II. RELATED WORK
This section presents a detailed investigation of existing
state-of-the-art countermeasures for audio synthetic spoof-
ing detection. The countermeasures are broadly classified
into three categories: conventional handcrafted features
with machine learning classifiers, enhanced deep learning
approaches, and state-of-the-art end-to-end approaches.

A. CONVENTIONAL APPROACHES
Researchers in the spoofing detection community have
worked on finding handcrafted features that reflect artefacts
based on phase spectrum, magnitude spectrum, pitch, group
delay, etc., to distinguish between spoofed and genuine
speech [60], [61], [62], [63], [64], [65]. Since feature extrac-
tion and classifiers are two main components of spoofing
detection systems, the Gaussian mixture model (GMM), its
variants, and support vector machine (SVM) classifiers [60],
[62], [66], [67], [68] have been extensively explored for

99896 VOLUME 12, 2024



Z. Wang, J. H. L. Hansen: Toward Improving Synthetic Audio Spoofing Detection Robustness

FIGURE 1. Study overview.

synthetic spoofing detection. However, it has been shown
that efforts on complex machine-learning-based classifiers
are less effective than crafting informative features [69].
The Constant-Q Cepstral Coefficients (CQCC) [61] are

extracted with the constant-Q transform (CQT), which
captures manipulation artefacts that are indicative of spoofing
attacks. Patel et al. proposed a combination of cochlear filter
cepstral coefficients (CFCC) and change in instantaneous
frequency (IF) (i.e., CFCCIF) to detect genuine versus
spoofed speech [70]. Additionally, improved classification
performance was observed when CFCCIF was combined
with Mel frequency cepstral coefficients (MFCC) [71]
features. For other effective features, the high-dimensional
magnitude-based features (i.e., log magnitude spectrum, and
residual log magnitude spectrum) and phase-based features
(i.e., group delay function, modified group delay function,
baseband phase difference, pitch synchronous phase, instan-
taneous frequency derivative) have been introduced in [72].

Artefacts from synthetic speech reside in different sub-
bands, therefore, subband processing is explored to extract
discriminative features such as linear frequency cepstral
coefficients (LFCC) [14], energy separation algorithm instan-
taneous frequency cepstral coefficients (ESA-IFCC) [69],
and constant-Q statistics-plus-principal information coeffi-
cient (CQSPIC) [73]. Sriskandarajaet al. proposed another
subband processing approach to perform a hierarchical
scattering decomposition through a wavelet filterbank, then

the absolute values of the filter outputs are used to yield a
scalogram [74].

Previous studies in image processing have extensively
explored the concept of texture. It has been found that texture
descriptors such as local binary patterns (LBP) and local
ternary patterns (LTP) are effective for image classification
tasks. Next, a novel countermeasure based on the analysis
of sequential acoustic feature vectors using Local Binary
Patterns (LBPs) was presented to detect LA attacks [67].
Reference [65] also employed relative phase shift features
and MGDF-based features to detect synthesized/converted
speech. LBPs and MGDF [66] are less successful at
differentiating between genuine and spoofed samples because
they are susceptible to noise, which generates patterns that are
similar for both classes.

B. DEEP-LEARNING-BASED APPROACHES
Recent efforts have witnessed a rise in utilization of
deep-learning-basedmethods to detect synthesized/converted
spoofing attacks. Alzantot et al. [75] built three variants of
ResNet [31] that ingested different feature representations,
namely, MFCC, log-magnitude STFT, and CQCC. The
fusion of three variants of ResNet (i.e., MFCC-ResNet,
CQCC-ResNet, and Spec-ResNet) has outperformed the
spoofing detection baseline methods (i.e., LFCC-GMM,
CQCC-GMM). Wang et al. [59] used a 135-layer deep
dense convolutional network to detect voice transformation
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spoofing. Similarly, Lai et al. [76] adopted two low-level
acoustic features, namely, log power magnitude spectra
(logspec) and CQCC as input, where the DNNmodels hinged
on variants of all the Squeeze-Excitation (SE) network and
residual networks were trained to detect spoofed speech.
In [77], spectral log-filter-bank and relative phase shift
features were taken as input to train DNN classifiers for
synthetic spoofing detection. A five-layer DNN classifier
with a novel human log-likelihoods (HLL) scoring method
was proposed, which was mathematically proven to be more
suitable for synthetic spoofing detection than the classical
LLR scoring method [78].

Concerning feature engineering, it was found that utilizing
the DNN-based model as a pattern classifier was less
effective than using it for representation learning followed by
traditional machine learning classifiers (i.e., GMM or SVM
as the classifier). In [79], a spoofing-discriminant network
was used to extract the representative spoofing vector
(s-vector) at the utterance level. Next, the Mahalanobis
distance, along with normalization, was applied to the
computed s-vector for LA attack detection. In [80], bottleneck
features with frame-level posteriors were extracted by the
DNN-based model, followed by a standard GMM classifier
built with acoustic-level features and bottleneck features.
In [81], a light convolutional gated recurrent neural network
was used to extract utterance-level representations, later
with extracted deep features, back-end classifiers (i.e. linear
discriminant analysis (LDA), and its probabilistic version
(PLDA), and SVM) performed the final genuine/spoofed
classification). A similar approach has been proposed to
learn spoofing identity representations [82], where DNN-
based frame-level features and RNN-based sequence-level
features were incorporated in model training (i.e. LDA,
gaussian density function (GDF), and SVM) for spoofing
detection. Despite the extra computation costs introduced
by feature engineering, deep-learning-based methods deliver
better classification performances than traditional methods.

C. END-TO-END APPROACHES
Today, end-to-end approaches have achieved state-of-the-
art performance in a variety of audio processing applica-
tions [83], [84]. Bypassing complex feature engineering, the
end-to-end framework takes raw waveforms as input for
representation learning and yields corresponding classifica-
tion decisions, which encapsulate pre-processing and post-
processing components within a single network [85], [86].
Muckenhirn developed a convolutional neural network-based
approach to learn features and then built a classifier in an
end-to-end manner [87]. A joint architecture called convo-
lutional Long-Short Term Memory (LSTM) neural network
(CLDNN) with raw waveform front-ends was proposed for
spoofing detection [88], [89]. In the literature [90], an end-
to-end system based on a variant of RawNet2 encoder [28]
and spectro-temporal graph attention networks [91] was used
to learn the relationship between cues spanning different

sub-bands and temporal segments. Jung et al. developed
an end-to-end architecture incorporated with a novel het-
erogeneous stacking graph attention layer, followed by a
new max graph operation and readout scheme, to facili-
tate the concurrent modelling of temporal-spectral graph
attention for improved spoofing detection [92]. Following
previous work [93] based on a variant [94] of differentiable
architecture search [95], Ge et al. explored how to learn
automatically the network architecture towards a spoofing
detection solution [96]. End-to-end approaches represent a
new direction of anti-spoofing study.

III. METHODOLOGY
This section describes each of the relevant components for
building our proposed synthetic spoofing detection architec-
ture. This comprises the encoder for general representation
learning, attention modules for feature enhancement, and
three specific optimization/training schemes to improve
model accuracy, generalization ability to unseen attacks, and
robustness.

A. RAWNET2-BASED ENCODER
Instead of using hand-crafted features as inputs [97], the
Rawnet2-based model operates directly upon the raw wave-
form without preprocessing techniques [90], [98]. A variant
of the RawNet2 model was introduced in [29] for the speaker
embedding learning and applied subsequently for building
spoofing detection systems [90], [99]. Here, we adopt that
model to extract high-level representations F ∈ RC×S×T

(C, S, and T are the number of channels, spectral bins,
and the temporal sequence length, respectively) from raw
waveforms. According to the literature [29], [30], [99],
approaches equipped with a bank of sinc filters show superior
effectiveness in terms of both convergence stability and
performance. Therefore, a sinc convolution layer is employed
for front-end feature learning. The sinc layer transforms the
rawwaveform in the time domain using a set of parameterized
sinc functions that are analogous to rectangular band-
pass filters [100], [101]. Each filter within the filterbank
possesses its center frequencies based on a mel-scale. Cut-
in and cutoff frequencies are fixed to alleviate over-fitting to
training data due to training data sparsity or rather limited
genres of different spoofing attacks (only 6 for the training
and development partitions from the ASVspoof 2019 LA
database).

The output of each filter is treated as a spectral bin,
subsequently, the output of the sinc layer is transformed
into a 2-dim time-frequency representation by adding a
channel dimension. The result is fed into stacked 2-dim
residual blocks [31] with pre-activation [102] for high-level
feature learning. Each residual block is comprised of a
batch normalization layer [103], a 2-dim convolution layer,
scaled exponential linear units (SeLU) [104], and a max
pooling layer for down-sampling. The specifics of our model
configuration are summarized in Tab. 1.
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TABLE 1. Model configuration.

B. ATTENTION MODULES
The fundamental building block of convolutional neural
networks (CNNs) serve as the convolution operator, allowing
networks to learn informative features by combining spatial
and channel-wise informationwithin the local receptive fields
at each layer. Plug-and-play attention modules [33], [34],
[105] as an effective component can refine the intermediate
feature maps within a CNN block, so as to boost the model
capacity. Researchers are of interest to formulate effective
attention modules for feature enhancement, which enable
networks to improve the quality of channel-wise or spatial
encoding throughout the feature hierarchy.

1) SQUEEZE-AND-EXCITATION
Squeeze-and-Excitation (SE) module can be integrated into
residual blocks for learning informative representations by
the insertion after a non-linearity following a convolu-
tion [33]. The module as a computational unit is comprised
of two fully connected layers to learn the importance of each
channel, which is built on transforming by first compressing
and then expanding the full average channel vector. Given the
intermediate feature map x ∈ RC×S×T of the Residual block
as input, the SE module first calculates the channel-wise
mean statistics e ∈ RC . Here, the c-th element of e is

ec =
1

S × T

S∑
i=1

T∑
j=1

xc,i,j, (1)

where C, S, and T represent channel, frequency, and time
dimensions. The SE module then scales this channel-wise
mean by two fully connected layers to obtain the
channel-wise attention weights s of the various channels:

s = σ (W2f (W1e + b1) + b2), (2)

where W and b denote the weight and bias of a linear layer.
Also, f (·) is the activate function of the rectified linear unit
(ReLU), and σ (·) is the sigmoid function.

2) CONVOLUTIONAL BLOCK ATTENTION MODULE
The convolutional block attention module (CBAM) [34]
extends channel-wise attention into two separate dimensions,
referred to as the channel and spatial (frequency-temporal)
attentionmodules. Next, the input featuremaps aremultiplied
by attention maps for adaptive feature refinement. With
the merits of a lightweight and effective module, the
CBAM can be integrated into any CNN-based architecture,
which has previously been successfully applied for speaker
verification [106]. Given the input feature map x ∈ RC×S×T ,
the overall attention process sequentially infers a 1-dim
channel attention mapMc ∈ RC×1×1 and a 2-dim frequency-
temporal attention map Mft ∈ R1×S×T . The feature
refinement process is formulated as,

x′
= Mc(x) ⊗ x,

x′′
= Mft(x′) ⊗ x′, (3)

where ⊗ denotes element-wise multiplication. The final
refined output x′′ is obtained by broadcasting the attention
values (i.e., Mc and Mft) along with the frequency-temporal
and channel dimensions accordingly.

3) SIMPLE ATTENTION MODULE (SIMAM)
Inspired by attention mechanisms in the human brain based
on certain well-known neuroscience theories [107], the
simple attention module (SimAM) [35] is proposed to
optimize an energy function for encapsulating the relevance
of each neuron. The parameter-free simple attention module
(SimAM) has proven to be flexible and effective in enhancing
the learning capabilities of convolution networks with negli-
gible computational costs [35], and subsequently applied in
speaker verification [108]. By optimizing an energy function
to capture the significance of each neuron, it generates 3-dim
attention weights for the feature map in a convolution layer.

et (Wt , bt , y, xi) = (yt − t̂)2 +
1

M − 1

M−1∑
i=1

(yo − x̂i)2. (4)

Given the feature map x ∈ RC×S×T in a single channel,
t denotes the target neuron. xi is other neurons, where i is the
index over the frequency-temporal domain andM = S×T is
the number of neurons for each channel. Here, t̂ = Wt t + bt
and x̂i = Wtxi + bt are linear transforms for t and xi.
Eq. 4 obtains its minimal value when t̂ = yo and x̂i = yt .
Considering yo and yt as two distinct values, for simplicity,
binary labels (i.e., 1 and −1) are assigned to yo and yt in the
final energy function with a regularizer,

et (Wt , bt , y, xi) =
1

M − 1

M−1∑
i=1

(−1 − (Wtxi + bt ))2

+ (1 − (Wt t + bt ))2 + λWt
2. (5)

There are extensive computational resources needed to
optimize each of the neuron’s attention weights using a
general optimizer such as SGD. Fortunately, a closed-form
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solution can be leveraged to derive the transform’s weight
Wt and bias bt with optimal energy. Specifically, the minimal
energy of a neuron x in an input feature map x ∈ RC×H×W

is formulated as:

e∗x =
4(σ̂ 2

+ λ)
(x − û)2 + 2σ̂ 2 + 2λ

, (6)

where µ̂ =
1

H×W

∑H×W
i=1 xi, σ̂ 2

=
1

H×W

∑H×W
i=1 (xi − µ̂)2,

and λ is a hyper parameter. Each neuron within a channel
shares the statisticsµ and σ , which hence significantly lowers
computation costs. Given that research in neuroscience
demonstrates an inverse relationship between the energy of
e∗x and the significance of each neuron x [109], the refinement
process of a feature map can be written as,

x̂ = σ (
1
E
) ⊗ x, (7)

whereE groups all energy values of e∗x , with σ (·) denoting the
sigmoid function. In this study, we inserted a SimAM after
the first convolution layer in each residual block of the base
model.

C. BINARY CLASSIFICATION LOSS
In this section, the fundamental cross-entropy loss with
softmax and angular margin-based losses are discussed, and
the weighted additive angular margin loss is proposed for
our binary classification. During training, each mini-batch
contains N utterances from either spoofed or genuine speech,
whose feature embedding vectors are xi ∈ RD, with the
corresponding spoofing identity labels being yi, where 1 ≤

i ≤ N and y ∈ {0, 1} (i.e., 0 denotes spoofed speech and
1 represents the genuine).

1) REVISITING CE-SOFTMAX LOSS
The Softmax loss is comprised of a softmax function
integrated with a multi-class cross-entropy loss, which is
formulated as,

LS = −
1
N

N∑
i=1

wyi log
eW

T
yi
xi

eW
T
yi
xi

+ eW
T
1−yi

xi

=
1
N

N∑
i=1

log(1 + e(W1−yi−Wyi )
T xi ), (8)

where W represents the weight vector of the last layer of the
encoder trunk, and W0, W1 ∈ RD are the weight vectors of
the spoofed class and genuine class, respectively. wyi is the
weight of the i-th sample with label yi. This loss function
merely computes penalties for classification error and does
not explicitly encourage intra-class compactness or inter-
class separation.

2) ANGULAR MARGIN-BASED LOSS
The softmax loss can be reformulated so that the posterior
probability only hinges on the cosine value of the angle
between the weights and input vectors. With normalized unit
vectors of Ŵ and x̂, the loss function termed as Normalized

Softmax Loss (NSL), is written as,

LN = −
1
N

N∑
i=1

log×
e|Ŵ

T
yi

||x̂i|cos(θyi,i)

e|Ŵ
T
yi

||x̂i|cos(θyi,i) + e|Ŵ
T
1−yi

||x̂i|cos(θ1−yi,i)

=
1
N

N∑
i=1

log(1 + e(cos(θ1−yi,i)−cos(θyi,i))), (9)

where cos(θyi,i) denotes the dot product of normalized vector
Ŵ (| Ŵ |= 1) and x̂i (| x̂i |= 1). Next, xo = W T

yi xi + byi
describes the final linear transformation, where xi ∈ RD is
the penultimate linear layer’s output (i.e., D-dim embedding)
of the i-th sample with label yi and xo ∈ R2 is the last linear
layer’s output. Finally, Wyi ∈ RD denotes the yi-th column
of the weight W ∈ RD×2 and byi is the bias term. This bias
term byi is set to 0 here, therefore, the linear transformation is
reformulated asW T

yi xi =| Wyi || xi | cosθyi,i, where θyi,i is the
angle between the weights and the input feature. Likewise,
this loss function has the same issue as the Softmax loss in
that it only computes penalties based on classification error.
This results in embeddings which are learned by the NSL
as not being sufficiently discriminative. Modifications are
proposed here to mitigate this issue, where an additive margin
is introduced with the AM-Softmax to make the embedding
space of the two classes close to their weightsW0 −W1 and
W1 − W0. The formula for the AM-Softmax (CosFace) can
now be written as,

LC = −
1
N

N∑
i=1

log

×
es(|Ŵ

T
yi

||x̂i|cos(θyi,i)−m)

es(|Ŵ
T
yi

||x̂i|cos(θyi,i)−m) + es|Ŵ
T
1−yi

||x̂i|cos(θ1−yi,i)

=
1
N

N∑
i=1

log(1 + es(m−cos(θyi,i)+cos(θ1−yi,i))), (10)

where s denotes a hyper-parameter that rescales up the
gradient instead of the numerical values becoming too
small within the training phase, which helps to expedite
optimization. Feature maps are rescaled by s, where they are
accordingly projected onto a hypersphere with radius s.

Furthermore, an additive angular margin penalty m
between Wyi and xi is also incorporated into the equation in
order to simultaneously enhance the intra-class compactness
and inter-class separability, termed as the AAM-Softmax
(ArcFace) loss [42], formulated as,

LA = −
1
N

N∑
i=1

log

×
es(|Ŵ

T
yi

||x̂i|cos(θyi,i+m))

es(|Ŵ
T
yi

||x̂i|cos(θyi,i+m)) + es|Ŵ
T
1−yi

||x̂i|cos(θ1−yi,i)

=
1
N

N∑
i=1

log(1 + es(cos(θ1−yi,i)−cos(θyi,i+m))). (11)
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FIGURE 2. Joint optimization scheme. All spoofing samples and embeddings are color-coded to
represent different types of spoofing attacks, while genuine speech is gray. The similarity score in
green denotes a match: ri,j = 1, likewise, those in red are unmatched: ri,j = 0.

3) WEIGHTED ADDITIVE ANGULAR MARGIN LOSS FOR
BINARY CLASSIFICATION
Since the dataset employed in this study is unbalanced (e.g.,
genuine versus spoofed), different classes are expected to
possess individual weights for loss calculation. Here, wyi
denotes a manual rescaling weight assigned to class yi.
By adding this weight factor into the equation, a benefit is
possible for the scenario when the training set is unbalanced
(e.g., more spoofing samples are included versus genuine
samples). Inspired by earlier research [57], the different
additive angular margin penalty myi can be injected into
the corresponding target angle, which prevents the model
from overfitting unseen spoofing attacks to known attacks.
Specifically, there exists a distribution mismatch for spoofing
attacks in the training and evaluation partition. Two different
margins are therefore assigned to the bona-fide speech and
spoofing attacks, which encourages better compactness for
bona-fide samples, and at the same time greater isolation of
the spoofing attacks. The AAM-softmax (see Eq. 11) is hence
reformulated as,

LW = −
1
N

N∑
i=1

log
wyi e

s(cos(θyi,i+myi ))

es(cos(θyi,i+myi )) + es cosθ(1−yi,i)

=
1
N

N∑
i=1

log wyi (1 + es(cos(θ1−yi,i)−cos(θyi,i+myi ))). (12)

D. META-LEARNING EPISODIC OPTIMIZATION
Meta-learning is focused on developing a task-orientedmodel
to enhance the learning ability by conducting optimization
within each subtask (i.e., an episode or a mini-batch), instead
of overall engagement for a given problem. A meta-subtask

is composed of a support set and a query set. Examples in
the support set are used for learning how to directly solve a
subtask, while the query set is used for subtask performance
assessment. At each step in meta-learning, model parameters
are updated based on a randomly selected subtask. Since the
network is presented with various tasks at each iteration, this
enforces learning to distinguish inhomogeneous examples in
general, rather than a specific subset of examples. In realistic
settings of the spoofing detection, training data would
contain N different types of spoofing attacks manipulated by
various spoofing techniques (e.g. A01-A06 in the ASVspoof
2019 logical access (LA) dataset [8], [110]), but the unseen
attacks could still occur in the evaluation phase. To simulate
this situation during training, we first randomly select K
spoofing examples xs from each spoofing type respectively,
along with 2K bona-fide examples xb. Next, one spoofing
type is randomly included in the query set while keeping
all other types in the support set within each subtask. Here,
2K bona-fide examples are equally distributed between the
query and support set. As a result, we obtain the following
support set S = {xsi }

(N−1)×K
i=1 ∪ {xbi }

K
i=1 and query set Q =

{xsj }
K
j=1∪{xbj }

K
j=1. Given this formulation of support and query

pairs in each episode, with a finite number of spoofing types
of spoofing attacks enrolled into the model, the spoofing
attack types in the query set can now vary in each subtask.

To compare samples in the support set and query set,
we use the relation network [58], which parameterizes
the non-linear similarity metric using a neural network.
Specifically, the relation network simultaneously models the
feature representation and metric over a set of subtasks in
order to generalize to unseen spoofing attacks. Given the
input sample and its corresponding label in terms of (x, y),
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samples from the support set S and query set Q are fed
through the encoder fθ (see Sec. III-A). Next, an embedding
fθ (xi) from the support set and an embedding fθ (xj) from the
query set are concatenated to formulate one pair. Considering
the number of samples in S (|S| = NK ) and Q (|Q| = 2K ),
each subtask/mini-batch is comprised of 2NK 2 permutations
as a set P of pairs for metric-based meta-learning. Finally,
each pair is processed by the relation module fφ , which yields
a scalar relation output score representing the similarity
between the feature representation pair,

ri,j = fφ([fθ (xi), fθ (xj)]), (13)

where [., .] denotes the concatenation operation, the network
fφ treats the relation score as a similarity measure [58],
therefore ri,j is defined as,

ri,j =

{
1, if yi = yj,
0, otherwise.

(14)

The network fθ and fφ are jointly optimized using mean
square error (MSE) objective as in [58], where the relation
network output is treated as the output of a linear regression
model. The MSE loss for meta-learning here is written as,

LM =
1

2NK 2

NK∑
i=1

2K∑
j=1

(ri,j − 1(yi == yj))2. (15)

Additionally, we enforce the model to classify samples in
both the support and query sets against the entire set of classes
in the training set. The entire meta-learning scheme with
global classification is depicted in Fig. 2. A hyper-parameter
λ balances theweightedAAM loss (Eq. 12) and theMSE loss,
where the fusion loss is hereby written as,

LF = LW + λLM . (16)

E. DISENTANGLED ADVERSARIAL TRAINING
1) ADVERSARIAL EXAMPLES
Next, adversarial examples can be obtained by adding
imperceptible but malicious perturbations to the original
training data, which can compromise the accuracy of a
well-trained neural network [111]. Adversarial examples are
commonly treated as a threat to neural networks. Here,
we leverage both original training data and corresponding
adversarial examples to train networks for enhanced system
performance. Consider the default adversary generation
method, the Fast Gradient Sign Method (FGSM), which has
random perturbation and has been used for maximizing the
inner part of the saddle point formulation [112]. A more
powerful multi-step attacker based on the projected gradient
descent (PGD) (see Eq. 17) is adopted here to produce
adversaries on the fly [51]. Given an input training sample
x ∈ D with a corresponding ground-truth label y, adversary
generation is conducted in an iterative manner as follows,

xadvt = 5x+S(xadvt−1 + α sgn(∇xL(θ, x, y))), (17)

where 5 denotes a projection operator, S represents the
allowed perturbation size that formalizes the manipulative
power of the adversary, α is the step size, L(·, ·, ·) stands
for the loss function, and θ indicates the model parameters.
Eq. 17 then illustrates one step of a multi-step attacker to
generate adversaries.

The adversarial training framework proposed in [51] only
used maliciously perturbed samples to train networks. Here,
the robust optimization objective illustrates a saddle point
problem composed of an inner maximization problem and an
outer minimization problem written as,

argmin
θ

E(x,y)∼D(max
δ∈S

L(θ, x + δ, y)). (18)

For each training data sample x ∈ D, a set of allowed
perturbations δ ∈ S are introduced to formalize adversaries.
Such a training framework has merits as described in [54],
[55], and [113], but cannot generalize well to original training
data [51], [114].

To encourage full exploitation of the complementarity
nature between original training data and corresponding
adversarial examples, adversarial examples are treated as
augmented data, and incorporated with the original data for
model training. The learning objective is formulated as,

argmin
θ,φ

E(x,y)∼D(LF (θ, φ, x, y))

+ argmin
θ

E(x,y)∼D(max
δ∈S

LW (θ, x + δ, y), (19)

where LF and LW is referred to as Eq. 16 and Eq. 12,
respectively.

2) DISENTANGLING VIA AN AUXILIARY BN
Earlier studies on adversarial attacks have demonstrated that
training using adversarial examples can cause label leaking
(i.e., the neural network overfits to the specific adversary
distribution), which leads to compromised model perfor-
mance [50], [111]. Under the assumption that adversarial
examples and original data come from different underlying
distributions, Xie et al. proposed disentangled training via an
auxiliary batch norm (BN) to decouple the batch statistics
between original and adversarial data in the normalization
layers during model training [56]. This approach would
allow for better exploitation of the regularization power of
adversarial data. For the original mini-batch training data
and corresponding adversarial data at each training step,
we hereby utilize two BNs (i.e., one main BN and one
auxiliary BN) for specific data partitions while the remaining
model parameters are jointly tuned. Corresponding data flows
in different architectures (i.e., with conventional BN and with
Auxiliary BN) are illustrated in Fig. 3. At the evaluation
phase, we maintain only the main BN for data distribution
normalization while bypassing the auxiliary one.

3) ADVERSARIAL TRAINING SCHEME
Compared to adversarial training [50], [111], disentan-
gled learning can fully exploit the complementarity nature
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FIGURE 3. Alternate data flow options between architectures with
conventional BN (a) and with auxiliary BN (b).

between original training data and corresponding adversarial
examples. Adversarial examples are generated during model
training. In each training iteration, we treat the original
data mini-batch as adversarial examples at the initial step
(i.e., t = 0). Multiple steps for attacking are performed
using the auxiliary BNs. We then derive the adversaries
for the current mini-batch. The objective of incorporating
adversarial examples into training is to improve the model
generalization ability to unseen spoofing attacks. We thereby
substitute adversaries corresponding to the bona-fide label
(i.e., yadv = 1) with original training samples to maintain
an identical data distribution of genuine samples in the
adversarial mini-batch. Subsequently, we submit the original
mini-batch and adversarial mini-batch to the same network,
while calculating the loss via main BNs and auxiliary BNs
for specific mini-batches, respectively. Finally, we minimize
the total loss for the network parameter updates (Eq. 19).
We present the complete training scheme with adversarial
examples in Algorithm 1.

Algorithm 1 Adversarial Training Scheme
Input: Original training data with labels {xorg, yorg} ∼ R
Output: Encoder parameter θ ; relation module parameter φ

1: Given S training iterations, T attacking steps, and batch size N
2: for s in 1 : S do
3: sample mini-batch {xorgi , yorgi }

m
i=1

4: Suppose {xadvi,0 , yadvi,0 }
m
i=1 = {xorgi , yorgi }

m
i=1

5: for t in 1 : T do
6: Generate adversarial examples {xadvi,t , yadvi,t }

m
i=1 ∼ R ∪ S at

current time step t using auxiliary BNs w/ Eq. 17
7: end for
8: for n in 1 : N do
9: if yadvn = 1 then ▷ label 1 represents the bona-fide
10: xadvn = xorgn ▷ maintain original data for genuine samples
11: end if
12: end for
13: Compute LF (xorg, y) w/ Eq. 16
14: Compute LW (xadv, y) w/ Eq. 12
15: Update θ and φ w/ Eq. 19
16: end for

IV. EXPERIMENT
A. DATASET AND EVALUATION METRICS
The ASVspoof 2019 corpus on the Logical Access (LA)
track [8], [110] is adopted in this work to train and test

models. The corpus consists of three partitions, namely,
training, development, and evaluation subsets, with each
subset containing genuine and spoofed samples. Different
spoofing methods (i.e., voice conversion and speech syn-
thesis) are employed to create spoofing attacks [115]. The
evaluation partition features 13 different attacking genres
(A07-A19); the training and development subsets contain
6 different spoofing attacks (A01-A06). Model selection
and gauging emergence of the over-fitting are dependent on
the development subset. Given the 13 algorithms used for
generating evaluation data, 2 algorithms are also used in
training and development subsets, while the other 11 algo-
rithms are unseen/uninvolved for train and development data.
Bona-fide samples are collected from 107 speakers. The
number of audio samples in each subset are 25,380, 24,986,
71933 for training, development, and evaluation, respectively.
The durations of each speech sample ranges from 1-
2 sec, with all audio samples in each subset stored in flac
format.

We adopt the equal error rate (EER) and the minimum
normalized tandem detection cost function (min t-DCF)
[116], [117] as the metrics for assessing system performance.
Wang et al. [118] found that spoofing detection systems
initialized with different random seeds can deliver different
results by a substantial margin. As such, all results reported
here are the best results from three runs with different random
seeds.

B. IMPLEMENTATION DETAILS
The currently proposed spoofing detection system is imple-
mented using Pytorch toolkit. Each input segment is approxi-
mately 4 sec in duration, and processed by a RawNet2-based
encoder [28]. The RawNet2-based encoder consists of a
sinc-convolution layer [30] and six stacked residual blocks
with pre-activation [102]. The sinc-convolution layer is
initialized with a bank of 70 mel-scaled filters. Each residual
block is stacked with a batch normalization layer [103],
a scaled exponential linear unit (SeLU) activation [104], a
2D convolution layer, and a max pooling layer. The first
two residual blocks are equipped with 32 filters, while the
remaining four have 64 filters. After the encoder, there is
an adaptive average pooling layer to aggregate frequency-
wise information. Next, a gated recurrent unit (GRU) with
64 hidden units is used to aggregate sequential features
within the temporal domain. The intermediate features are
then processed using a fully connected layer with 64 units.
The 64-dim embeddings extracted at the final layer are
subsequently used for calculating similarity scores and
estimating classification loss. The relation network has two
fully connected layers with 64 units each. Additionally,
we employ Projected Gradient Descent (PGD) [51] under
an L∞ norm as the default attacker for crafting adversarial
examples on-the-fly. The perturbation size δ (see Eq. 18) is
set to 0.002. The number of attacking iterations is set to 12.
The attack step size (see Eq. 17) is fixed to α = 0.0001, and
the balance hyper-parameter λ in Eq. 16 is set to 0.8.
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We conducted extensive experiments using multiple setup
combinations with loss functions, attention modules, and
disentangled trainingwith adversarial examples. The baseline
system employs the RawNet2-based encoder to learn the
spoofing identity, which minimizes a cross-entropy loss w.r.t
the network parameters for gradient updates. The ASVspoof
2019 corpus is data-unbalanced with a 1:9 ratio of genuine
samples to spoofing samples, thereby assigning specific
weights to genuine and spoofing classes with 0.1 and
0.9, respectively. Likewise, category-wise weights wyi in
Eq. 12 are designated in the same way. Also, there are two
hyper-parameters in Eq. 12, where the scale s is fixed to 32,
while the margin m0,m1 are set to 0.2 and 0.9, respectively.
The batch size in each experiment is set to 16. During the
meta-learning sampling phase in one episode/mini-batch,
we randomly select 2 (K = 2, see Sec. III-D) samples from
each attacking type (A01-A06) and 4 samples from genuine
samples (4 genuine samples are equally split into the support
and query sets). With regard to our model optimization
strategy, we utilize the Adam optimizer [119] with a learning
rate of 0.0001 using a cosine annealing learning rate decay.
The model in each experiment was trained for 100 epochs.
For the SimAM attention module (see Sec. III-B3), the hyper-
parameter λ in Eq. 6 is set to 0.0001.

V. RESULT AND ANALYSIS
To thoroughly evaluate our proposed methods, we assess
the feature enhancement effectiveness for different attention
modules, then search for a rational perturbation size to craft
adversarial examples, and present an ablation study on loss
functions, and a comparison of our results to the state-of-the-
art systems in this section.

A. ATTENTION MODULE SELECTION
The RawNet2-based encoder model learns high-level rep-
resentations for spoofing identities, while there are several
attention modules that can be leveraged to refine the
intermediate featuremaps. As noted in Sec. IV-B, the baseline
system uses a RawNet2-based encoder, which is trained with
a cross-entropy (CE) loss (see Sec. III-C1). We compare
spoofing detection system performances derived from the
encoder (see Sec. III-A) equipped with different attention
modules. The results are presented in terms of min t-DCF and
EER in Tab. 2.
As results shown in Tab. 2, the baseline system achieves

acceptable results in terms of min t-DCF and pooled EER,
which is probably owing to the interpretation of single-
channel 2-dim feature map generated by the sin-convolution
layer, thereby enhancing the feature representation ability.
Each attention module improves system performance to
varying degrees, which means they contribute to refining the
intermediate feature maps. The system with CBAM yields
a lower EER, but the SE module outperforms CBAM in
terms of min t-DCF. The system with CBAM delivers a better
spoofing detection performance than that with SE while
resulting in a higher expected detection cost. Compared to

TABLE 2. The effectiveness for different attention modules.

TABLE 3. The effectiveness for different perturbation size.

the previous two attention modules, the SimAM encourages
learning the informative feature maps along with superior
system performance.

We found that different insertion positions of each attention
module can result in varied spoofing detection performances.
Inserting the attention module right after/before the BN
in the residual block improves distinctive feature learning.
In each residual block, either the SE or CBAM encourages
feature refinement more significantly, while inserted right
after BN, and SimAM conducts the more effective feature
enhancement while inserted after the first convolutional layer
and before the BN. The best result in this section is delivered
with the RawNet2-based encoder equipped with SimAM,
while the module is inserted before the BN in each residual
block. The EER is reduced to 1.41% with + 15.57% relative
reduction compared to the result of the baseline system, and
min t-DCF improves to 0.0406 with a + 28.27% relative
reduction.

B. SEARCH FOR OPTIMAL PERTURBATION SIZE
During adversaries generation, a set of allowed perturbations
δ ∈ S (see Eq. 18) formalize the manipulative power
of adversarial examples. We investigate multiple orders
of magnitude of perturbation size on the effectiveness of
enhancing model robustness/accuracy.

As shown in Tab. 3, spoofing detection performances are
compromised while training with slightly larger perturbation
(i.e., δ = 0.1/0.01), potentially due to the fact that
excessive perturbations could in fact blur the distinctive
original identity pattern, causing misclassification. In con-
trast, a slightly small perturbation size (i.e., δ = 0.0001)
is trivial to generate strong enough adversaries in order to
improve robustness. Additionally, [51] found that increasing
the capacity of the network when training using only original
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TABLE 4. Breakdown EER performance of 13 attacks in the ASVspoof 2019 LA evaluation partition, pooled min t-DCF, and pooled EER,The best
performance for each column is marked in boldface.

training data improves robustness against adversaries, and
this effect is greater when considering adversaries with
small perturbations. Moreover, performance on the original
training samples can be degraded by the small capacity
of the network, providing some form of robustness against
adversaries [51]. We observe that adversarial examples with
a spectrum of perturbation sizes (i.e., δ ∈ [0.001, 0.004])
are exerting varying degrees of influence on boosting system
performance. This is especially the case for adversaries
generated with perturbation size δ = 0.002, which maximize
contributions to system performance improvement.

C. ABLATION STUDY ON LOSS FUNCTIONS
We perform an ablation study on diverse loss functions
based on the RawNet2-based architecture. An ablation study
serves to understand the contribution of each component
to overall system performance. The base model (see Sec.
III-A) equipped with SimAM (see Sec. III-B3) exhibits a
satisfying encoding ability to absorb distinctive information
from input features. Firstly, we minimize a cross-entropy
(CE) loss (see Eq. 8) w.r.t. the network parameter for gradient
updates. To encourage better binary classification, we replace
the CE loss with the weighted additive angular margin
(WAAM) loss (see Eq. 12). Subsequently, we incorporate the
meta-learning mean square error (MSE) loss (see Eq. 15)
into a fused total loss function (see Eq. 16). Additionally,
to leverage the regularization power of adversarial examples,
we conduct disentangled training (see Sec. III-E) with
a mixture of original training data and corresponding
spoofing adversaries under a combined learning objective
(see Eq. 19).

A breakdown of the results on the evaluation partition
with unknown attacks is illustrated in Tab. 4. Each proposed
loss function boosts system performance with incremental
improvement. The WAAM loss outperforms cross-entropy
loss, specifically, the relative reduction in EER is up to +

8.5%, and+ 4.2% on min t-DCF. Additionally, the parameter
wyi in Eq. 12 is beneficial to the system performance
improvement, which is designed to alleviate the impact by
data imbalance. The joint optimization of theWAAM loss and
meta-learning MSE loss promotes better generalization to
unseen spoofing attacks, yielding a better spoofing detection
result. In addition, disentangled learning further facilitates
distinctive embedding learning, leading to enhanced system
accuracy/robustness. Revisiting the baseline system (also see

FIGURE 4. Distribution of ASV scores and countermeasure scores.

FIGURE 5. Normalised ASV-constrained t-DCFs plot for the baseline CM
system and proposed CM system on ASVspoof 2019 LA track.

in Tab. 2), the best solution outperforms the baseline system
by + 47.9% relative EER reduction, and + 51.1% relative
min t-DCF reduction.

D. VISUALIZATION OF IMPROVEMENT BY PROPOSED
APPROACH
Aligning with the definition of a tandem system as a cascade
of countermeasure (CM) and ASV systems in [117], the CM

VOLUME 12, 2024 99905



Z. Wang, J. H. L. Hansen: Toward Improving Synthetic Audio Spoofing Detection Robustness

FIGURE 6. t-SNE visualization of feature embedding for the baseline CM system and proposed CM system on ASVspoof 2019 LA track (genuine samples
are color-coded as green, spoofed samples are present in purple).

acts as a gate to filter out spoofing attacks before reaching
the ASV system. The tandem system can encounter three
types of trials: (i) target, (ii) non-target and (iii) spoof. Only
the target trials should be accepted while both non-target
and spoof trials should be rejected. Fig. 4 presents score
density distributions, which comprises ASV scores (on the
left panel) and CM scores (on the right panel) for both
baseline CM system and proposed CM system. In Fig. 4,
‘‘Bona’’ and ‘‘Spoof’’ ‘‘Spoof’’ mean bona fide speech and
spoofing attacks, respectively. The proposed CM system
tends to yield a wider score consistent with the idea of better
generalization by potentially encompassing scores from
unseen samples. Additionally, a larger margin is observed
between the genuine speech space and the spoofing space
in the proposed approach, which further forces inter-class
separability.

Fig. 5 shows the t-DCFs plot which provides insight
into the observation made from Fig. 4. The tandem
detection cost function (t-DCF) [116] metric reflects the
overall performance of a combined ASV and CM system.
Here, the ASV-constrained normalised t-DCF curves are
shown for the baseline CM system and proposed CM
system, while evaluated on the ASVspoof 2019 LA track,
when varying the CM threshold. The proposed CM sys-
tem reached a lower minimum t-DCF than the baseline
CM system, indicating a better overall spoofing detection
performance.

In order to further prove effectiveness of the proposed
approach, the dimension-reduced feature embedding of the
baseline CM and proposed CM are visualized in Fig. 6.
We utilize t-distributed Stochastic Neighbor Embedding
(t-SNE) [120] to visualize feature embedding for the
evaluation partition on ASVspoof 2019 LA track. As shown
in Fig. 6, the proposed CM system can distinguish genuine
speech and spoof attacks better than the baseline CM system

with fewer misclassified spoofed samples, which indicates
a better generalization ability to unseen spoofing attacks is
present in the proposed CM system.

E. PERFORMANCE COMPARISON AGAINST EXISTING
SYSTEMS
As illustrated in Tab. 5, a comparison of system performance
between our proposed CM system and competing single
state-of-the-art systems is also presented. The classical
machine-learning-based method uses a common GMM
back-endwith LFCC as the front-end, which shows satisfying
classification performance [19]. Comprehensive results show
that our introduced simple attention module outperforms
alternative approaches from previous works such as Convolu-
tional Block AttentionModule (CBAM) [121]; Squeeze-and-
Excitation (SE) [122], [123]; and Dual attention module with
pooling and convolution operations [121]. The WAAM loss
employed in this work inherited the merits of cross-entropy
loss and one-class softmax loss in [57]. Subsequently, the
system trained withWAAM loss for binary classification out-
performs the OC-Softmax, and AM-Softmax losses proposed
in [57]. Both RawGAT-ST system [90] and Raw PC-DARTS
system [96] operate directly on the raw speech data, while
the former system is based upon graph attention networks, the
latter system suggests an interesting approach to learn the
network architecture automatically. Recent works [124],
[125], [126] employed pre-trained Wav2Ves 2.0 as the
front-end to extract speech embedding which are already
learned from another task [127], embeddings are thenmapped
to the latent feature via proposed networks. More recently,
the Rawformer [128] is proposed to leverage positional-
related local-global dependency for synthetic audio spoofing
detection. Those approaches with pre-trained embedding
extractor show good performance in low-resource and
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TABLE 5. Performance on the ASVspoof 2019 LA evaluation partition in
terms of min t-DCF and pooled EER for state-of-the-art systems and our
proposed best system.

cross-dataset settings. An interesting research work has been
done in [129], they found that the attacker could also benefit
from self-supervised learning (SSL) models (i.e., wav2vec
2.0 [127], HuBERT [130], and WavLM [131]), thereby
eliminating most of the benefits the defender gains from
them. Overall, our proposed system delivers the competitive
results of all systems evaluated on the ASVspoof 2019 LA
track.

VI. CONCLUSION
This study has considered the formulation of an effective
approach to improve robustness of synthetic audio spoof-
ing detection. We employed the RawNet2-based encoder,
equipped with a simple attention module for feature refine-
ment, to strengthen the distinctive feature representation
power. Subsequently, we extensively explored multiple loss
functions and their fusion to calibrate an embedding space
for enhanced generalization to unseen spoofing attacks. First,
we put forward the weighted additive angular margin loss,
which served to alleviate any data imbalance and refine the
embedding distribution. Next, we proposed a meta-learning
episodic optimization scheme to adaptively learn a shared
metric space between unseen samples and known attacks.
Next, we developed a disentangled adversarial learning via an
auxiliary batch norm to leverage both original training data
and corresponding adversarial examples to train networks.
Finally, the best-performing system updates the network
parameters according to an integrated learning objective.
Performance evaluation on the ASVspoof 2019 LA dataset
confirms that our proposed approach effectively improves
robustness/accuracy for spoofing detection system operation,
which delivers results in terms of a pooled EER of 0.87%,
and a min t-DCF of 0.0277.
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