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ABSTRACT Efficient bed management minimizes hospital costs and improves efficiency and patient
outcomes. This study presents a predictive hospital-ICU length of stay (LOS) framework at admission,
where it leverages hospital EHR. Our work utilizes supervised machine learning classification models to
predict ICU patients’ LOS in hospital clinical information systems (CIS). Our research marks the first known
instance of utilizing explainable artificial intelligence (xAI) for the purpose of explainable machine learning
applied to real data collected from hospital stays. We evaluated the predictive classification models using
a range of performance metrics (Accuracy, AUC, Sensitivity, Specificity, F1- score, Precision, Recall and
more) to predict short and long ICU lengths of stay upon hospital admission. XGBoost predicted short and
long LOSwith a 98%AUC. This study shows how hospitals and ICUsmight usemachine learning to forecast
patients on admission. Our study extends clinical information systems for hospitals to provide robust and
trustworthy LOS, predictive models by using xAI to explain predictive model outputs.

INDEX TERMS Healthcare decision support systems, explainable artificial intelligence, machine learning,
XGBOOST.

I. INTRODUCTION
The length of hospitalization serves as a common efficacy
indicator in hospitals [1]. It significantly affects resource
utilization and healthcare expenditures [2]. According to
a report by the Australian National Health Performance
Authority, shorter hospital stays are consideredmore efficient
as they allow for the rapid availability of beds for new
patients. However, unduly brief stays may compromise care
quality and lead to adverse patient outcomes. Conversely,
prolonged hospital stays, often resulting from complications,
can heighten the risk of adverse health events. Delays in
healthcare coordination, unrelated to the patient’s clinical
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condition, may extend hospitalization durations. The report
also noted that longer stays might result from delays in
transitioning patients to other care services, such as aged
care homes, community care services, or rehabilitation
facilities [3].

Managing hospital bed availability and efficiency is crucial
for addressing challenges in ICU, including patient overabun-
dance, infections, mortality risk, and medical complications.
To minimize these risks and improve resource utilization,
a shorter ICU length of stay with high-quality care is neces-
sary, especially in uncertain situations such as pandemics [4].
This not only lowers hospital charges but also ensures
better outcomes for patients. Consequently, the availability
of adequate bed spaces and timely patient transfers to other
wards are critical for maintaining healthcare quality. Effective
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management of ICU resources is necessary to address these
challenges and optimize healthcare delivery [5], [6], [7], [8].

ICU length-of-stay scores such as APACHE, SAPS, and
SOFA [9], [10], [11], [12] are commonly used to estimate
ICU resource utilization and predict mortality [13]. However,
these approaches have limitations in estimating LOS and they
are not disease-specific [14]. Therefore, research on accurate
and trustworthy ICU resource consumption prediction sys-
tems is crucial. AI-based prediction systems using electronic
health records (EHR) can provide more accurate and
disease-specific approaches than existing systems. Linking
database systems with clinical information systems (CISs)
in the ICU potentially shorten ICU length of stays without
affecting patient outcomes. Therefore, alternative ICU LOS
assessment systems must be researched to optimize ICU
resource utilization and improve patient outcomes [15], [16].

Clinical information systems (CISs) [15], including clini-
cal decision support systems (CDSS) utilize electronic health
record (EHR) data to improve healthcare delivery and control
costs [16]. CDSS, in particular, is cost-effective and allows
for effective use of EHR data [17], [18]. In recent years,
research in non-knowledge-based CDSS systems has been
initiated to utilize AI, machine learning (ML), and statistical
learning to derive insights and patterns from data, making
them a rapidly developing use case in hospital management
and medicine. However, these systems have limitations, such
as the ‘‘black-box’’ nature of the AI or ML used to make
recommendations, and are not yet effectively incorporated
into CDSS or CIS systems [19]. As the era of AI and
data continues to transform clinical information systems,
the future of personalized medicine (LDAPPM) appears to
be promising for more effective and efficient healthcare
delivery. Therefore, AI non-knowledge-based systems are not
yet adopted and implemented in CDSS and generally within
CIS systems [19], [20], [21], [22], [23], [24].
Our investigation builds on prior research that addressed

ICU length of stay (LOS) as a binary prediction task.
We review the most relevant studies in this area, including
Ma et al. [25], who developed a tailored model using extreme
learning machines (ELMs) and just-in-time learning methods
(JITL) to predict ICU stays for personalized patient care.
The combination of JITL and ELM achieved superior results
compared to one-class SVM for predicting LOS of 10 days or
more. However, the study did not examine the interpretability
of the predictions.

Su et al. [26] compared XGBoost, Logistic Regression
(LR), and Random Forest (RF) to SOFA for predicting
ICU-sepsis patients’ length of stay. They categorized LOS
as (Short LOS: ≤ 6days, or Long LOS >6 days). They
used the oversampling method SMOTE to treat imbalanced
data. RF outdid XGBoost (AUC = 75%), LR (AUC 66%),
and SOFA (AUC = 62%). The study was limited to the
data gathering center, which led skewed predictions due
to geographical characteristics. The study also focused on
Sepsis and did not test the proposed models on other diseases

in the dataset. Staziaki et al. [27] examined ANN and
SVM models to predict LOS intensive care unit admission
and extended LOS following torso trauma. They evaluated
CT imaging (radiology reports), clinical characteristics such
as (age, sex, vital signs, clinical scores, and laboratory
values), and CT plus clinical qualities to predict LOS.
Their findings reported that the combination of CT and
clinical data properties (all features) improved prediction
of both outcomes with ANN and SVM. The SVM model
(all characteristics) predicted ICU-LOS admissions with
(AUC = 87% ±0.03), whereas the ANN attained (AUC =
78% ±0.12). The study did not remove data noise and clean
non-trauma patients, which can bias anticipated outcomes.
The radiologist also adjudicates electronic radiological
reports, therefore, interpretation biases may affect trauma
patients’ LOS expected outcomes.

Alghatani et al. [28] experimented with six classifiers to
predict LOS (short: <2 days, long: >2 days). Using the
MIMIC-III (v1.4) database, six classifiers (LR, RF, SVM,
XGBoost, linear discriminant analysis: LDA,KNN: k-nearest
neighbor) were tested on eligible ICU admissions [29].
A total of 33 features were used to predict the short and long
LOS. Using quantiles, RF and XGboost outperformed other
models (AUC = 69.78%, 69.69%). However, their system
was limited to benchmarking the classifiers only on vital
signs. Further, they did not explain the prediction decisions
of the quantiles approach in an AI explainable approach.
Gentimis et al. [30] used the MIMIC III database to predict
length of stay (short LOS: < 5 days, long LOS: > 5 days)
using ANN. They extracted 25 features from MIMIC-III
tables that contained 25 features (admissions, CPT events,
ICU stays, services, procedures ICD, and diagnoses ICD).
ANN predicted LOS with 80% accuracy, however, the study
lacks important model performance metrics such as (AUC,
sensitivity, and specificity. These metrics are important to
differentiate the model’s performance in terms of accuracy
and how likely the model is to distinguish the decision
boundaries to effectively predict LOS short or LOS long.
LOS prediction was performed using seven predictive models
by Steele and Thompson [31]. In their work, the Bayesian
Network (BN) achieved the best result among other predictive
models with (AUC = 90%). However, the study suffered
from drawbacks. For example, it did not specify the nature of
clinical, laboratory, and vital signs collected to assess further
models performance on more admission features considered
a viable picture of the patient’s information to identify the
short from the long LOS.

Prior studies have examined different prediction models
and settings to determine the most efficient model for pre-
dicting the length of stay in hospital environments. Ensemble
learners are now widely used for predicting health outcomes
and distinguishing between short and long LOS. Machine
learning models, despite their predictive capabilities, often
suffer from transparency, hindering their integration into
clinical or administrative decision-making processes. There
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is a clear need for research that focuses on developing
explainable AI techniques that are specifically designed for
ICU systems in LOS-ICU contexts. Our study seeks to offer
a framework for assessing hospital healthcare that is both
predictive and explanatory. Our framework is specifically
designed to be readily comprehended by AI non-experts.
This versatility allows for more informed decision-making
in both clinical and administrative settings. The objective of
this framework is to enhance hospital workflow and resource
utilisation by improving the transparency and interpretability
of LOS predictions. In addition, it tackles a notable and
previously unaddressed research issue in CIS, thus offering
a valuable contribution to the progress of explainable AI
in healthcare environments. Therefore, this study aims to
contribute with the following:

• A proposed practical data-driven predictive framework
for inpatient length of stay prediction in the ICU.

• A proposed model benchmarking technique to enhance
LOS prediction and hospital resource utilization.

• A readily implementable framework for seamless inte-
gration into CIS prediction pipelines.

• A new, explainable prediction strategy for comprehensi-
ble outcomes for healthcare practitioners.

II. METHODS AND MATERIALS
A framework to predict the length of stay (LOS) for patients
during their hospital admission, specifically their admittance
into the ICU and discharge. This study use machine learning
methods to predict the length of stay (LOS) of hospital
inpatients using a real-world hospital dataset. Hence, this
procedure is essential for assessing and validating prediction
models using actual hospitalizations data. In this part, every
step involved in the predictive framework (Fig 1) is addressed
in detail. Therefore, the subsequent section describes each
stage of the framework in detail.

A. DATA DESCRIPTION AND FEATURES EXTRACTION
Our retrospective study utilized electronic health record
(EHR) data from Al-Ain hospital, encompassing all ICU
admissions between December 31, 2017 and April 3, 2020
[58]. The de-identified nature of the EHR removed all patient
details and identifiers in compliance with data protection
regulations in the UAE and Australia. Our study population
comprised 1045 distinct patients admitted to Al-Ain Hospital
during the aforementioned period. Ethics approval was
granted by the Al-Ain hospital and UAE University Ethics
Committee (AAHEC-09-20-027), as well as preexisting
amended ethics approval by Western Sydney University
(WSU) with the ethics number (H13511).

This research employed a comprehensive inclusion proto-
col that covered all ICU hospitalizations at Al-Ain Hospital.
Exclusion criteria involved expired hospitalizations and hos-
pitalizations with significant missing data (Fig. 1). The Inter-
national Classification of Diseases code ICD-10 [32] was
used to classify diseases. The research framework included

two experimental scenarios: a combined development set of
all eligible patients (N = 1045) that included information
from all four datasets, and a subset of patients’ profile
information in three separate sets. In total, 475 features were
selected from the extracted electronic medical records at Al-
Ain hospital. The inclusion criteria were jointly drafted by
authors with medical and computer science backgrounds.

B. DATA PRE-PROCESSING AND DISCRETISATION
Data preprocessing is an essential task in the data mining
process, particularly in Electronic Health Record (EHR)
datasets, which often suffer from missing values, outliers,
or raw data that require further processing and feature
redundancy [33]. This study aimed to process and extract
features that contributed to the patient’s stay at Al-Ain Hos-
pital. Several steps were performed during the preprocessing
stage, which is similar to those carried out in previous
works [34], [35].

One of the primary challenges in handling datasets
with many missing values, non-values (NaN), or blanks
is training machine learning models that can drastically
impact the machine learning quality, performance, and
predicted outcomes [36]. To address this challenge, data
imputation was used to handle the missing values or values
containing blanks in the four imported tables of the Al-
Ain dataset [36]. The null function from the Pandas library
in Python was used to replace any non-value with a zero
value (0) since the input was not available or possible due to
the non-applicable option. Furthermore, categorical variable
transformation is necessary, especially when dealing with
nominal or categorical variables, such as the Al-Ain dataset
with several nominal attributes that require further data
representation [36]. Therefore, the one-hot encoding method
was used to transform categorical attributes into nominal
and binary attributes, which improves the performance of
machine learning models [37].

Data discretization involves transferring numeric or contin-
uous variables into nominal or categorical variables withmin-
imal loss of information. Statistical studies have examined
the rationale behind data discretization and proposedmethods
to transfer continuous variables into nominal or categorical
variables [38], [39]. For example, in electronic health records
(EHR) and in clinical decision support systems (CDSS)
studies [38], [40] they binned the continuous variables into
nominal target variables. In hospital CIS systems, binning
the (continuous) length of stay into nominal and categorical
is accompanied by advantages for healthcare caregivers to
maximize hospital resource utilization [41], [42]. In this
study, the continuous variable length of stay (LOS) was
binned into a binary class LOS approach based on previous
studies, which grouped short LOS to (0-7 days) and long
LOS to (>7 days) [43], [44], [45]. Therefore, the LOS was
discretized into two labels: label zero (0) for a short length of
stay (0-7 days) and label one (1) for a long length of stay (7+
days), resulting in a predictive LOS task with a classification
problem.
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FIGURE 1. Predictive LOS framework on ICU hospitalisations from real hospital dataset.

C. MODELS SELECTION AND PERFORMANCE EVALUATION
This section evaluates the machine learning models [58] used
to assess the predictive LOS framework on ICU hospital-
izations using real hospital datasets. The implementation,
tuning, and performance evaluation models used Python and
the Sklearn.

1) MACHINE LEARNING ALGORITHMS
a: THE EXTREME GRADIENT BOOSTING (XGBOOST)
The eXtreme Gradient Boosting (XGBoost) algorithm [46] is
an ensemble-based learning (boosting) model. The XGBoost
implements gradient boosted decision trees [47] designed
for performance and speed. A recent implementation of
the gradient tree boosting machines involves combining the
predictions of many ‘‘weak learners’’ of decision trees into
a strong predictor. In addition, it uses more regularised
model formalization to control the overfitting and give
it better performance [46]. One of XGBoost’s significant
advantages is that it is designed for scalable datasets. We used
learning rates (0.01, 0.1, 1), the number of estimators (5,
50, 250), and the maximum depth of (1, 3, 4, 5,9) for
the hyperparameters in the cross-validation stage. Table 1
describes the hyperparameters’ values (All Dataset features,
G, C, L, and M).

b: RANDOM FOREST
random forests (RF) is an ensemble learning method
(bagging) for classification that operates by constructing a
multitude of decision trees at training time and outputting
the class that is the mode of the classes (classification). Each
time we build a model based on the decision tree trained
on row/features sampling with replacement. Every time we
build the decision tree model, we have new rows fed into the
new decision tree learners (bootstrapping). The bootstrapping
process occurs in parallel until we achieve (n) of models

trained on the decision tree. Eventually, we aggregate models
that are generated from bootstrapping using majority voting
to give the final predictive output. In the context of our
study, the voted majority of the RF is (0: Short LOS or 1:
Long LOS). We input the RF classifier with a decision tree
as the base learner, consisting of up to 250 trees with a
Gini index and a maximum depth of 21. Table 1 donates
all hyperparameters values (All Dataset features, G, C, L,
and M) using the RF classifier.

c: GRADIENT BOOSTING MACHINES
Gradient Boosting (GB) is a powerful ensemble learning
technique (boosting) for building predictive models [47].
It works by producing a prediction model from an ensemble
of weak prediction models like decision trees. It creates new
base learners to be maximally correlated with the negative
gradient of the loss function and associated with the whole
ensemble. Therefore, it builds the model (a weak learner),
and it improves model errors over time. It achieves its best
performance over a sequential process after training and
learning, and eventually, we get an improved model with
better predictive outcomes. We used learning rates of (0.01,
0.0, 1, 10,100) with a number of trees of (5, 50, 250, and
500) as well as the max depth of (1, 3, 5, 7, 9). We used
GirdSearch (cross 5-fold validation) and attained the GB’s
hyperparameters values and setups according to experimental
sets (All Dataset features, G, C, L, and M) as described
in Table 1.

d: LOGISTIC REGRESSION (LR)
logistic regression is a statistical method based on the use
of a logistic function (sigmoid function) to model the output
of binary values (0 or 1) [47]. The logistic regression model
used (L1, L2, and elasticnet) as the regularisation (penalty)
or no regularisation input. In addition, we used solvers
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TABLE 1. Hyperparameters of the predictive models.

(newton-cg, lbfgs, liblinear), and the inverse of regularisation
strength (C) as a positive float value. The GirdSearch with
cross 5-fold validation obtained the LR’s hyperparameter
values and setups per the experimental sets (All Dataset
features, G, C, L, and M) as described in Table 1.

Algorithm 1 Prediction Algorithm for Baselining Stage (1):
Cross-Validation With Hyperparameters
Require:

K : number of k-fold, K = [k1, k2, . . . , k5];
Target label: Short, OS, Long OS;
D: transformed dataset (e.g., EHR), containing input
features X , and output feature y;
H : set of hyperparameters H_sets with different values;
M : set of modelsM = [XGBoost,RF,GB,LR,MLP];

Ensure: Set of outperformed models matrix MP, perfor-
mance estimation on Vj,validate vs. Ej,test

0: procedure CrossValidationWithHyperparame-
ters(K ,D,H ,M )

0: for i = 1 to K do
0: SplitD intoDtrain,Dtest ,Dvalidate for the i-th split
0: for j = 1 to Dtrain,Dtest ,Dvalidate do
0: for each h in Hsets do
0: Train M on Dtrain with hyperparameter

set h
0: Compute test error Ej,test forM withDtest
0: end for
0: Select optimal hyperparameter set h from
Hsets

0: Train M with Dtrain using h
0: Compute test error Ej,test for M with Dtest
0: Compute validation error Vj,validate for M

with Dvalidate
0: end for
0: end for
0: return Set of outperformed models matrix MP,

performance estimation on Vj,validate vs. Ej,test
0: end procedure=0

e: MULTI-LAYER PERCEPTRON NEURAL NETWORK (MLP)
The MLP [48] is a machine learning predictive model that
mimics the neural networks stimulated by the biological
neural networks and solves challenging computational tasks
such as predictive modelling tasks. We used a feedforward,
multi-layer perceptron neural network comprising three
hidden layers with 10, 50, and 100 neurons. The activation
functions are Relu, Tanh, and Logistic. We trained the
network on three learning rates ( constant, invacaling, and
adaptive). All MLP’s hyperparameters values for the five
experimental sets (All Dataset features, G, C, L, and M) are
described in Table 1.

2) THE HYPERPARAMETERS OF THE PREDICTIVE MODELS
Hyperparameter selection was implemented as model-based.
A Grid-Search strategy with cross 5-fold cross-validation
was used to find the hyperparameters used to get good
predictive results in the binary approach. This step is essential
in practise and experimental settings to allow tailing the
behaviour of machine learning models, especially in the
context of this study (the electronic medical records dataset
‘‘Al-Ain hospital’’).Table 1 discusses each model with its
hyperparameter values and explanation.

Algorithm 1 details a cross-validation procedure for
baselining with hyperparameters, involving multiple models
and hyperparameter sets. The algorithm iteratively splits the
dataset, trains models with different hyperparameter config-
urations, and evaluates their performance. It identifies the
optimal hyperparameters for each model based on validation
errors, ensuring the selection of the best-performing models
for further analysis. Whereas, Algorithms 2 presents the steps
involved in the evaluation of the outperforming models from
stage (2).

3) MODELS EVALUATION METRICS
A set of evaluation metrics was utilized to evaluate classifiers
in the predictive LOS framework of ICU hospitalizations
from real hospital datasets. In the first stage (models’
benchmarking stage), cross-validation with k-fold = 5 was
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implemented to estimate the skills of proposed classifiers
on unseen data. The metrics used in this s metrics, such
as Accuracy, Precision Sensitivity, Specificity and AUC, are
used to assess the classifiers’ performance in predicting the
short and long LOS for actual admissions Al-Ain hospital
dataset. Also, we used the statistical measure (confidence
interval: CI). Therefore, the performance evaluation metrics
are donated as follows:

a: ACCURACY
donates the ratio of the correct predictions to the total of a
number of predictions:

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (1)

b: PRECISION
refers to the number of positive classifications that are
actually correct (or called ‘‘positive predicted value’’ or
‘‘PPR’’):

Precision = TP/(TP+ FP) (2)

c: SENSITIVITY (RECALL)
measures the proportion of actual positives that are well
classified (or called the true positive rate, or TPR, or Recall):

Sensitivity = TP/(TP+ FN ) (3)

d: SPECIFICITY
measures the proportion of actual negatives that is well
classified (true negative rate ‘TNR’).

e: F1-SCORE
It can be interpreted as the weighted average of precision and
recall. F1-Score = 1 is the best possible value, and F1-Score
close to 0 is the worst value.

F1− Score = 2 ∗
Preision ∗ Recall
Precision + Recall

(4)

f: AREA UNDER THE ROC CURVE (AUC)
The AUC measures the quality of the model’s predictions
regardless of what classification threshold is chosen. It rep-
resents the area under the ROC curve plots (TPR vs. FPR),
where TPR is the true positive rate, and FPR is the false
positive rate. The ROC plot visualizes the tradeoff between
the classifier’s sensitivity and specificity.

g: PR-AUC
The (area under the precision-recall curve) PR-AUC is a
curve that combines precision and recall in one plot (single
visualization). Thus, once we calculate precision and recall
for every threshold, the higher the y-axis curve is, the better
the model performance. Therefore, the optimal operating
point on PR curve n a PR curve is the upper right corner, and
the values of PR-AUC range from 0 to 1, with a note that
1 describes a perfect classifier [49].

h: K-FOLD ‘‘CROSS-VALIDATION’’
Cross-validation is a statistical method that is used to estimate
the skill of a machine learning model. We used the k-Fold
Cross-Validation procedure (resampling). The CV (k-Fold
Cross-Validation) is donated with the following equation:

CV (f̂ ) =
1
N

N∑
i=1

L
(
yi, f̂ −k(i)

(
xj

))
(5)

where i is the observation by randomization

f̂ −k (x)

is the fitted function which is computed with the kth part of
the data removed. K = N (leave-one-out) cross-validation,
ad k(i)= i for the ith observation and the fit is computed using
all data except the ith. Typically K choices are 5 or 10.

i: CONFIDENCE INTERVAL
The confidence interval quantifies the uncertainty of an
estimate for the predicted outcomes of the evaluated classi-
fiers. Therefore, the confidence interval is achieved [50] by
calculating the formula:

CI = x̄ ± z
s
√
n

(6)

where, CI = confidence interval x̄ = sample mean z =
confidence level value s = sample standard deviation n =
sample size

j: LEFT
We have also used the measures Log Loss [51] and
the Left-Curves (equation 9) for the models’ predictions’
explainability stage:

Left =
Predicted Rate
Average Rate

(7)

III. RESULTS
This section reports the proposed ICU predictive frame-
work results from a real-hospital dataset (Al-Ain Hospital).
We evaluate the predictive framework using Cross-Validation
(stage 1) and with two portions (training and testing) to put
the model into the practical aspect (stage 2). We explain the
LOS predicted results within the LOS framework for the best
performing model (stage 3).

A. CROSS-VALIDATION RESULTS (STAGE 1: BASELINING)
In this work, a k-Fold (k = 5) Cross-Validation was utilized
(k groups approach). It is a practical procedure, especially to
evaluate the classifier’s performance when we have limited
data. Hyperparameters optimization is used to assess the pre-
dictive framework using k-fold with the best model’s tuned
parameters. Experiment 1 in Table 2 reports the best results
in terms of (Accuracy, Precision Sensitivity, Specificity and
AUC) amongst all five experiments. In experiment 1, the
XGboost model showed relatively better results than other
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Algorithm 2 Outperforming Models Evaluation Stage With
Hyperparameters
Require:

EHRfeatures, fc = [fc1, fc2, . . . , fcn];
Dataset; Target label: Short, OS, Long OS;
MP: Outperformed models from Stage 1 with hyperpa-
rameters.
Winning_best_modelMB: Evaluated models on training
matrix and testing matrix.

Ensure: Split EHRfeatures into DTR (training matrix) and
DTS (testing matrix)

0: InitializeMTR andMTS as empty arrays.
0: for each m in MP do
0: Train model m using DTR.
0: Compute model performance AUC for m on MTR.
0: end for
0: for each n in MP do
0: Train model n using DTS.
0: Compute model performance AUC for n on MTS.
0: end for
0: MB ← Model from MP with highest AUC on MTR and
MTS.

0: returnWinning best modelMB.=0

models (RF, GB, MLP, and LR), particularly using the
AUC model’s measured outcomes (77.9% and 74.4%) for
validation (V) and testing (T) scores. In comparison, MLP
recorded an AUC of (59.4% and 57.5%) for V and T,
respectively.

Hence, experiment 1 produced the best predictive LOS
performance compared to the other experiments in Table 2.
We have selected Experiment 1 for a further look at the
estimated skill of a classification method using the calculated
confidence interval of 95% (95%CI). Table 3 indicates the
classification error of each model with metrics (Accuracy,
Precision Sensitivity, Specificity and AUC) with the CI of
95% or the true classification error of each model is likely
to be within the range of the +/- CI 95% values.
The calculated average overall models’ performance of

all experiments in Table 2 within scenario 1 revealed a
preference towards the XGboost Model. Therefore, XGboost
is evidenced to be a robust classifier. Hence, XGBoost is our
selection in the baselining stage (Fig 1).

B. OUTPERFORMING MODELS EVALUATION (STAGE 2:
PRACTICAL EXPERIMENTATION)
In this stage, we experimented with the fivemain experiments
(G+C+L+M, G, C, L, M) with the same tuned models’
parameters are used in the previous stage (baselining). For
this purpose, and based on the previous stage (baselining),
we pick the most outperforming models for a further
performance evaluation on a practical aspect to attest to the
candidate models’ performance. The result of this experimen-
tal procedure is the best performing model. The performance

measure is the ROC curves that display TPR on Y-axis and
FPR on the X-axis. For the practical experimentation step,
we have used two portions: the training set (66%) and the
testing (34%). The performances of the three models in the
practical experimentation stage were close to each other.
For example, when evaluating the ROC for the XGBoost
classifier, we can observe that the set of all of the features
experiments (G+C+L+M) achieved the best ROC (88%:
CI%95 [81.6%-94.4%]) for short LOS and Long LOS. The
second apparent results are with the Medication (M) ICU
features, where the XGBoost achieved (ROC= 84%: [76.8%-
91.2%]) for Short LOS and Long LOS classes. This confirms
the model’s ability to commence fewer prediction errors in
both classes (short and long LOS). The Gradient Boosting
achieved comparatively comparable results to the XGboost
in all features experiment (G+C+L+M), with ROC (88%:
CI%95 [81.6%-94.4%]) for short LOS and Long LOS.
However, Gradient Boosting obtained slightly better results
with Medication features (M) experiments, achieving ROC
(85%: CI%95[78%-92%]) for Short LOS and Long LOS,
respectively. At the same time, the XGboost results were
slightly better than GB in the general (G) and clinical (C)
experiments. However, the General ROC results attained
(XGboost 57% and Gradient Boosting 55% ), Clinical Short
and Long LOS managed to obtain (52%: CI%95[42.2%-
61.8%], and 51% CI%95[41.2%-60.8%]) for XGBoost, and
Gradient Boosting respectively as the least important ROC
results in the experimentation stage. Moreover, XGboost
attained ROC of (64%: CI%95[54.6%-73.4%]) and (62%:
CI%95[52.5%-71.5%]) for GB in the laboratory experiment.
Finally, the Random forest achieved steady ROC results
for both classes (Short and Long) LOS. In all features
(G+C+L+M), the RF obtained the highest ROC (88%:
CI%95 [81.6%-94.4%]) within the five experiments, then
Medication experiments with ROC of (85%: CI%95[78%-
92%]), and (64%: CI%95[54.6%-73.4%]) for laboratory,
(54%: CI%95[44.2%-63.8%]) (57%: CI%95[47.3%-66.7%])
for clinical and general experiments respectively.

C. EXPLAINING THE XGBOOST PREDICTIVE RESULTS
(STAGE 3)
This section explains the predictive results of the winning
model in the proposed framework. The winning model is
the most robust classifier based on the predicted outcomes
and ability to attain stable and reliable results based on
different experimentation setups from Al-Ain hospital data.
The XGboost achieved the desired outcomes; therefore, it is
our selection model for further result explanation. We aim to
reveal the black box of the predictive classification model
(XGboost) and make it more understandable and easy to
explain for non-machine learning people. This may include
healthcare workers in hospitals and healthcare givers such
as hospital managers, clinicians, hospital nurses, and health
insurance companies. The predictive outcomes are explained
from two perspectives. The first approach is the classification
outcomes (overall) classifier explainability using the whole
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TABLE 2. A comparison between features selection sets based on the patient’s information profile (Cross-validation and testing reported results). LOS
predictive framework on a real hospital data (Al-Ain hospital, UAE).

TABLE 3. Baselining predictive models on Al-Ain dataset (Experiments 1, ‘‘G+C+L+M’’) with hyperparameters and cross-validation (K-fold = 5)
approaches & 95%CI.

dataset. We refer to them as (predictive outcomes with the
model’s overall explainability) in the ICU dataset. The second
approach is where we put the patients in the perception of
the explanation. We refer to it as model’s patient-centred
prediction outcome explainability. For this purpose, we have
exploited the ExplainerDashboard prediction explainer [52]
as the explainable artificial intelligence (XAI) tool. The XAI
tool builds explainable interactive dashboards to analyze
the classification and prediction results. ExplainerDashboard
XAI libraries are compatible with Python. The dashboard is

running on the local server of the experimenting computing
instance. The XGboost classifier is used with hyperparame-
ters values per table (Table 1).

1) PREDICTIVE OUTCOMES OF XGBOOST OVERALL
CLASSIFIER EXPLAINABILITY
a: XGBOOST PERFORMANCE METRICS EXPLAINABILITY
The XGboost model’s performance metrics for Short and
Long Length of Stay (LOS) labels are reported in Table 4. The
achieved accuracy for both classes is 94.6%, with precision of
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FIGURE 2. Features importance by mean absolute SHAP value: XGboost.

TABLE 4. Model performance metrics for short LOS vs. Long LOS for
XGBoost classifier: the XAI tool.

91.4% and 96% for Short and Long LOS labels, respectively.
XGboost demonstrated robustness in differentiating between
the predicted Short and Long LOS classes, with a receiver
operating characteristic area under curve (ROC-AUC) of
98%. The model’s recall and F1-Score results were also
relatively close. These outcomes confirm XGboost’s ability
to attain desired predictions with negligible error rates (2%).

Fig 2 illustrates the average impact of features on the
predicted LOS labels (Short and Long) based on the mean
absolute SHAP value.Medication and laboratory information
contributed significantly to the XGboost model’s decision,
followed by general admission features, such as admission
mode (walking) and age (Young Adult).

Notably, clinical features did not appear in the features
importance plot. This could be due to the SHAP method,
which measures a feature’s global influence by comparing
model predictions with and without the feature. The SHAP
values provide information about each feature’s contribution
to individual predictions. Fig 3 shows the classification
plot of the Short and Long LOS labels. The cutoff for the
classification report is set at 80% per the XAI method. Of the
XGBoost classified Short LOS cases, 91.43% are above the

FIGURE 3. Percentage above and below cutoff(Short LOS & Long LOS).

cutoff (Fig 3.a), while 96% of the XGboost Long LOS cases
are above the cutoff (Fig 3.b). These findings demonstrate
XGboost’s effectiveness in differentiating between the two
labels.

The left curve (Fig 4) is an important measure that
helps with the predictive classification model’s effectiveness
(XGboost). For any given number of cases (percentage of
samples: Fig 4), it illustrates the expected number of positives
we would predict if we did not have a model but simply
selected random cases. The left curve provides a benchmark
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FIGURE 4. Left Curves for the XGBoost classification results (Short LOS &
Long LOS).

against which we can see the model’s performance [54].
For example, based on equation (9), the XGBoost model
gives us a left 3.1 for predicting the Short LOS class and
a lift of 1.4 for predicting the Long LOS class. A good
classifier will provide us with a high lift when we act on
only a few cases, and as we include more cases, the lift
will decrease. The left curve with the best classifier (that
commences fewer errors) would overlap with the existing
curve at the start, then continue with a slope of 1 until it (all
successes), then continue horizontally to the right [54]. This
is clearly projected in Fig 4 (a & b). Thus, left curves aid
beds’ managers or healthcare decision-makers to understand
the decision made by the classification model and how it
impacts the healthcare decisions and strategies for managing
resources utilization and beds availability. The predictive
outcomes overall classifier explainability approach is clearly
proven that the XGboost to be robust with high and desired
predictive outcomes (Short and Long LOS). Furthermore, the
XAI tool explained the XGBoost classifier’s inner workings
with ease andmade the decision predicted outcomes clear and
understandable to a non-data machine learning specialist.

2) PATIENT-CENTERED PREDICTION OUTCOMES
EXPLAINABILITY
We assess the ability and the inner workings to explain
the decision of the XGBoost. We selected a random patient
(de-identified) with the given data index (998). The index
values are the numerical order in the Pandas DataFrame in
Python. Therefore, the number 998 represents the patient’s
case (patient profile) or admitted information (General,
Clinical, Laboratory and Medication) in the dataset. The XAI
tool provides a range of explainable prediction components,
including individual prediction explainability. We have
utilized the individual prediction components, the (pdp) plot
of the feature, the contribution to prediction probability, the

dependents plot of the feature, and the prediction percentage
of each class label. In addition, we used the ‘‘UreaLvl’’
feature to evaluate the XGboost performance at a feature and
an individual patient level. The selection of the UreaLvl is
indiscriminate and only to explain XGboost evaluation at the
patient-centred level.

We evaluate each single feature in Fig 5 and how it
affects the XGboost prediction. The contribution of features
to the model’s outcomes shows the breakdown of every
single feature in the XGBoost and how it affected the final
prediction for patient 998. The breakdown shows how the
model thinks that patient 998 was predicted to be a short stay.

Fig 6 shows that the final contribution to the XGBoost
prediction is (91.96%), and this is because the features
contributed have a high predicted probability in the patient
case. This is justified by the electronic health records (Al-
Ain hospital) features present in the patient’s case. Therefore,
the more (General, Clinical, Laboratory and Medication)
features we input into the model, the more ability the
model has to provide a reliable prediction. The features per
Fig 6 (a & ’) represent how each feature adds up to the final
contribution of the Short LOS prediction. Partial Dependent
Plot (pdp) Fig 7 shows how the prediction changes based
on each feature input. For instance, Fig 7 (a) clearly shows
the partial feature contribution to the prediction of Short
LOS outcomes, but if we look at the same feature from
the perspective of the Long LOS label, we can see a weak
partial contribution to the predicted outcomes. Fig 8 (a &
b) epitomizes the dependence plot of UreaLvl according to
SHAP values in relation to dextrose5inwater. We can see
the relationship (random selection) between ‘‘UreaLvl and
dextrose5inwater’’ features and their impact on the XGBoost
prediction outcomes (Short and Long LOS). Finally, the XAI
tool provides an overall picture of the XGBoost predicted
outcomes or the prediction decision of each class label at
the patient level (Fig 5). For example, the XGboost results
designate that the patient is likely to stay (Short LOS) with
a probability of 92% and likelihood of not staying (Long
LOS) with 8%. Eventually, and after explaining the inner
workings of the XGboost from the features perspective and
their effect on the models’ prediction outcomes. Also, the
interaction between two features contributes to the overall
picture of the final prediction, the XAI tool provides the
ability for us to understand the inner details of the chosen or
the winning and outperforming model (XGBoost). Notably,
these explanations may guide the concerned person of
the AI model, such as the bed manager, clinicians, and
healthcare insurance companies, to investigate each feature
or features interactions on the model’s outcomes or find
unexplored relationships between interacted features and
their interactions impacting on themodel’s prediction classes.

IV. DISCUSSION
One of the most anticipated tasks in this study is to evaluate
the suggested LOS framework utilising cross-validation and
practical experimentation approaches with hyperparameters
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FIGURE 5. Prediction percentage by class labels (Short LOS and Long LOS).

FIGURE 6. Contribution to the prediction probability (Short and Long)
LOS classes.

tuning. The ICU-LOS prediction framework produced low
variance and low bias with both approaches in all studies
(stage 1). This validates the durability of using validation in a

FIGURE 7. Partial dependent plot (pdp) for UreaLvL feature (Short and
Long) LOS classes.

cross-validation technique to determine the optimum param-
eters of each model (model tuning) and produce improved
predicted outcomes. Furthermore, given these prevalent
challenges in the machine learning area, this technique
can assist to decrease overfitting and prevent underfitting.
This eventually leads to better predicted machine learning
performance.

During the cross-validation (baselining) stage of model
performance evaluation, we applied statistical inference
(Confidence Intervals ‘‘CI 95%’’). The CI%95 provides inter-
val estimators for the prediction error and is a more useful
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FIGURE 8. Dependence plot for UreaLvl: (Short and Long) LOS classes.

means of analysing and interpreting predictive outcomes.
As a result, the uncertainty estimate assists hospital bed
management in determining how well or poorly the LOS
classifiers function. Furthermore, it is beneficial to consider
which model is less complex and more interpretable. The
trials (stage 1) demonstrated that the proposed LOS predictive
framework could be a feasible method. For example, the AUC
of the XGBoost validation set is 77.9% (69.8% - 86%) with
CI%95, while the AUC of the testing set is 74.4% (65.8%
- 83%). This indicates that the XGboost can distinguish
between the two labels (Short LOS and Long LOS) on
the validation set with an AUC of 77.9%, while the true
classification error of the XGboost is likely between 69.8%
and 86%. Similarly, the AUC of the XGboost Model on the
testing set is 74.4%, and it is likely to correctly forecast the
LOS labels within 65.8%- 83%. Thus, the cross-validation
with hyperparameter optimization strategy (stage 1) was
advantageous and yielded the expected results for predicting
short and long LOS with low variation and bias.

The validation procedure consists of evaluating the model
fit on the training dataset while tuning the model hyperpa-
rameters. The second approach to model evaluation tests the
robustness of models during practical application in real-
world scenarios. To ensure reliable predictions for short and
long LOS in newly admitted ICU patients, it is essential to
validate the performance of the selected predictive model
before practical use. The predictive performance of the
three candidate models was reasonably comparable, with
a slight preference for XGBoost, which produced superior

results when using all dataset features (G+C+L+M). The
performance of the models improved as additional features
were added. The bagging and boosting approaches are
frequently used in ensemble learning as they generate
accurate and robust models that are suitable for two-class
classification problems.

The proposed LOS architecture was chosen based on
classifiers’ performance. Thus, we used XGboost to explain
artificial intelligence to non-specialists like hospital bed
administrators, healthcare workers, and CDSS workers.
In predictive classification tasks, this is referred to as
opening the black box (model explainability). This is
critical for clinical decision support systems (CDSS) help
clinicians make informed decisions and predict inpatient
health outcomes [55]. The requirements for CIS systems go
beyond the performance of the model [56]. The CDSSs are
established in clinical settings to exhibit proven safety [57].
Therefore, ensuring the interpretability and transparency of
machine learning (ML) models is crucial for their safe and
effective use in CDSS. To address this, we employed an XAI
tool to explain the predictions of our XGboost classifier and
provide insight into its inner workings.

This approach not only helps hospital decision-makers
and bed managers to understand the reasoning behind
the predictions but also enables non-ML professionals to
evaluate the model’s operational performance. At the micro-
level, it is essential to explain each patient’s prediction,
enabling healthcare workers to make informed decisions
about patient care and resource allocation. The XAI tool
used here provides a crucial indicator of whether individuals
understand the model’s limitations, allowing them to identify
any missing information and overrule the model if necessary.
By enhancing transparency and interpretability, XAI tools
can improve the trustworthiness and usefulness ofMLmodels
in healthcare decision-making.

The XGBoost classifier exhibited strong predictive ability,
with Accuracy, Precision, F1-score, Recall, ROCAUC, and
PR-AUC values for both Short and Long LOS greater than
90%. The model’s explainability through XAI techniques
enables healthcare workers to identify which patient charac-
teristics contribute to Short or Long LOS. This information
helps to allocate resources effectively and aids in the
development of safe and trustworthy clinical decision support
systems. The machine learning model’s capacity to provide
data-driven predictions supports evidence-based decision-
making in healthcare.

The study’s primary beneficiaries are hospital healthcare
workers, including bed managers, ICU clinicians, and nurses,
who can benefit from a comprehensive and explainable
predictive framework for predicting inpatient length of stay at
ICU admission or transfer. The framework provides advanced
patient health monitoring capabilities by leveraging artificial
intelligence advancements, enabling healthcare personnel
to make better judgments in a dynamic and demanding
health environment. The ICU-LOS framework can increase
patient flow in the ICU, optimize resource capacity (hospital
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beds, ventilators), and improve hospital resource allocation.
Effective bed management and resource management can
reduce healthcare spending, waste time, and improve service
quality. Incorporating the architecture into hospital CIS
systems can enhance productivity and operational efficiency.
Poor hospital administration can lead to overburdened
healthcare workers, an overabundance of patients, and a
drain on hospital resources, resulting in rejected admissions.
Therefore, implementing the presented framework can signif-
icantly benefit hospital healthcare professionals, health care
providers, and healthcare stakeholders in attaining the critical
goal of accommodating newly admitted patients, even during
uncertain times.

V. CONCLUSION AND FUTURE WORK
This study developed a predictive ICU framework using
real hospital data to predict patients’ length of stay at ICU
admission. This practical framework offers significant impli-
cations for ICU bed management and resource utilization,
achieving desired predictive results through its three-stage
LOS predictive process. Among the various models tested,
the XGBoost model emerged as the best performer due to its
ability to provide explainable results to non-AI professionals.
Notably, this study is the first to present an AI-explainable
framework for predicting ICU patients’ length of stay using a
data-driven approach. The proposed framework is versatile,
applicable across various diseases and health conditions,
making it valuable for clinical research and electronic health
records. It also has the potential to improve predictive
tasks such as identifying patients at risk of mortality.
Future research will focus on integrating user-centered
clinical predictive systems into daily hospital workflows and
thoroughly investigating the use of explainable AI in hospital,
emergency department, and ICU settings. This will help
establish genuine ML-xAI implementation and standardize
their use in electronic health records and healthcare systems.
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