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ABSTRACT Cardiovascular Diseases (CVDs) have emerged as a significant physiological condition, being
a primary contributor to mortality. Timely and precise diagnosis of heart disease is crucial to safeguard
patients from additional harm. Recent studies show that the usage of data driven approaches, such as Deep
Learning (DL) and Machine Learning (ML) techniques, in the field of medical science is highly useful in
accurately diagnosing heart disease in less time. However, statistical learning and traditional ML approaches
require feature engineering to generate robust and effective features from data, which are then used in the
prediction models. In the case of large complex data, both processes pose many challenges. Whereas, DL
techniques are capable of learning features automatically from the data and are effective at handling large
and intricate datasets while outperforming the ML models. This study focuses on the accurate prediction
of CVDs, considering the patient’s health and socio-economic conditions while mitigating the challenges
presented by imbalanced data. The Adaptive Synthetic Sampling Technique is used for data balancing,
while the Point Biserial Correlation Coefficient is used as a feature selection technique. In this study, two
DL models, Ensemble based Cardiovascular Disease Detection Network (EnsCVDD-Net) and Blending
based Cardiovascular Disease Detection Network (BICVDD-Net), are proposed for accurate prediction and
classification of CVDs. EnsCVDD-Net is made by applying an ensemble technique to LeNet and Gated
Recurrent Unit (GRU), and BICVDD-Net is made by blending LeNet, GRU and Multilayer Perceptron.
SHapley Additive exPlanations is used to provide a clear understanding of the influence different factors have
on CVD diagnosis. The network’s performance is evaluated on the basis of various performance metrics. The
results indicate that the EnsCVDD-Net outperforms all base models with 88% accuracy, 88% F1-score, 91%
precision, 85% recall, and 777s execution time. Similarly, with 91% accuracy, 91% F1-score, 96% precision,
86% recall, and 247s execution time, BICVDD-Net outperforms the state-of-the-art DL models. To validate
the model’s results, 10-Fold Cross Validation is employed. An eXplainable Artificial Intelligence technique,
SHapley Additive exPlanation is employed to know the features contribution in model’s predictions.

INDEX TERMS Cardiovascular disease detection, deep learning, heart disease, LeNet, gated recurrent unit,
multilayer perceptron, eXplainable artificial intelligence, SHapley additive exPlanation.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Cardiovascular Diseases (CVDs) are considered one of the
approving it for publication was Juan Wang . major causes of mortality around the world [1]. All conditions
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that affect the functioning of the heart and its vessels, and
the ways in which the blood is pumped and is compelled
to flow throughout the body come under the umbrella of
CVDs. The heart is one of the most important organs in
the human body. Hence, heart diseases are potentially fatal
or in some cases leave severe long-term impairments on its
patients [2]. During recent decades, CVDs have increasingly
afflicted the global population. According to the World
Health Organization’s (WHO) survey, heart diseases account
for 32% of the global deaths, of which 85% are because of
heart attacks and strokes [1]. The increase in the number of
heart disease patients is imposing a significant burden on
hospitals worldwide [3]. Therefore, early detection of CVDs
is critical so that the disease management through medication
and counseling can start as early as possible.

Many risk factors play an important role in causing CVDs.
These include unhealthy diets, a lack of physical activity,
obesity, diabetes, and the use of tobacco and alcohol [4].
These daily life choices can cause conditions like high
Blood Pressure (BP), high cholesterol, and insulin resistance,
which in turn increase the possibility of developing CVDs.
Late detection of CVDs results in invasive procedures like
angiography or bypass surgeries. These procedures not only
cause discomfort for patients but also create a burden on
healthcare facilities. Heart disease prediction is affected by
parameters including age, sex, family history of CVDs,
BP, cholesterol level and diabetes. Besides, it is a difficult
task for doctors to identify the early symptoms of heart
disease because several factors like hypertension, arrhythmia,
hyperlipidemia, etc. are involved [5].

This strong need for timely detection of CVDs and
reducing the death toll caused by heart diseases has led
to the use of intelligent CVD detection systems. Since the
introduction of Artificial Intelligence (Al), it has played a
significant role in improving the quality of life, especially by
helping in the early detection of diseases and saving human
lives [6]. The intelligent CVD detection systems not only
help with timely detection but also offer a better alternative
to the traditional orangemethods by reducing the chance
of human error. These systems perform CVD prediction
using patients’ health record attributes, by looking for the
correlations between these attributes [7].

In the recent years, Al models are becoming popular for
early and accurate disease prediction. The quality of a dataset
plays an important role in achieving better performance using
an Al model. The healthcare datasets are a collection of
features like age group, gender, BP, cholesterol levels, and
other health related features of different individuals. These
features are analyzed by the Al models for detecting patterns
that relate to higher chances of heart disease. The diversity
of a dataset affect the accuracy of a model. The more diverse
the dataset will be, the better the model will work on different
types of patients. However, as the datasets get diverse, they
increase in size and ML models may not perform well on big
data [8].
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This created the need for deeper Neural Networks (NNs)
that could handle large datasets. Deep Learning (DL) models
are the evolution of Machine Learning (ML) models which
can not only be trained on bigger datasets but also offer
other advantages like automated feature detection, handling
unorganized data, extensibility and improved performance
than ML models [9]. Deep Neural Networks (DNNs) are
designed such that they behave like the human brain’s NN,
and this makes it possible for it to learn complex data and
make accurate predictions for the healthcare industry. Owing
to the exceptional performance of DL models in disease
prediction, in this study, two DL models have been proposed
for the accurate prediction of CVDs.

Predicting heart disease is a challenging task. Medical
datasets are highly imbalanced which makes disease pre-
diction complicated. Also, with the increase in the size
of the medical datasets correct selection of model has
become crucial for timely successful disease prediction. Data
imbalance in disease prediction can significantly impact the
performance of predictive models. In the literature, this issue
is tackled using Synthetic Minority Oversampling TEchnique
(SMOTE). However, SMOTE, due to class overlapping, may
not effectively address the complex nature of disease data and
generates noisy synthetic data samples [10], [11], [12]. Data
augmentation techniques such as Mixup, and Time-series
Generative Adversarial Networks (TimeGAN) have also been
used for data balancing. However, Mixup and TimeGAN,
though effective in generating synthetic data, struggle to
replicate the intricate patterns and domain-specific charac-
teristics inherent in disease-related sequential data, resulting
in inadequate representations [13]. Model selection poses
challenges, such as the use of Convolutional Neural Network
(CNN) and Locally Weighted Random Forest (LWRF) for
disease prediction, being resource-intensive and sensitive
to hyper-parameters [14]. Bidirectional Long-Short Term
Memory (Bi-LSTM) introduces prediction delays unsuitable
for dynamic disease predictions [12]. Most of the studies
have utilized ML algorithms for disease prediction [11],
[15]. However, ML algorithms cannot handle noisy data
as effectively as DL methods do. Furthermore, there is a
lack of research that extends the prediction results beyond
performance metrics [16]. All the abbreviations are provided
in Table 15 (see Appendix).

A. MAIN CONTRIBUTIONS
In this paper, we have made the following key contributions.

« For precise CVD prediction, we have proposed a DL-
based model, Ensemble based Cardiovascular Disease
Detection Network (EnsCVDD-Net), which combines
the predictions of LeNet and Gated Recurrent Unit
(GRU) in an ensemble approach.

o We have proposed a blending-based model of LeNet,
GRU, and Multilayer Perceptron (MLP) called Blend-
ing based Cardiovascular Disease Detection Network
(BICVDD-Net) for effective CVD detection.
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o Adaptive Synthetic (ADASYN) Sampling Technique is
used for data balancing, to generate synthetic samples
that can more accurately represent the complex nature
of disease data.

« Point Biserial Correlation Coefficient (PBCC) is utilized
as a feature selection method to identify the most
significant features for heart disease prediction within
the dataset and enhance computational efficiency of the
proposed models.

« 10-Fold Cross Validation (10-FCV) has been applied to
verify the performance of the proposed EnsCVDD-Net
and BICVDD-Net models.

« To learn the contribution of features in predicting heart
disease, an eXplainable Al (XAI) technique, SHapley
Additive exPlanations(SHAP) has been employed on
EnsCVDD-Net and BICVDD-Net.

The remainder of this study is organized into the sub-
sequent sections: Section II provides a detailed discussion
of prior work conducted in the realm of heart disease
prediction. Section III outlines the methodology of the
proposed DL frameworks, encompassing specifics of the
dataset, pre-processing, and model development. Section IV
shows the experimental outcomes of the proposed models.
Lastly, Section V provides the conclusion and future research
direction of our study.

Il. RELATED WORK

CVD is a physiological illness and recently there has been
a lot of study on the use of ML and DL algorithms
to predict physiological disease. In [17], optimization of
Artificial Neural Networks (ANN) using Genetic Algorithm
(GA) has been investigated for CVD prediction. The dataset
contains 12 features of 70,000 instances collected from
medical records. Some other ML algorithms like Decision
Tree (DT), Random Forest (RF), Support Vector Machine
(SVM), and K-Nearest Neighbor (KNN) are also applied
to the dataset. GA-ANN outperforms other algorithms with
73.43% accuracy.

George et al. [18] utilize data assimilation methods,
such as the Kalman filter, to make predictions based on
sparse, non-stationary Electronic Health Record (EHR) data
in the Intensive Care Unit (ICU). The newly developed
Constrained Ensemble Kalman Filter (CEKF) is combined
with ML methods to enhance the accuracy of inference
with sparse clinical data. The paper also highlights the
limitations of Kalman filtering methods in clinical settings
and identifies new problems that need to be addressed to make
inference feasible using realistic clinical data. The proposed
methodology reduces the Mean Squared Error (MSE) on the
sparse clinical data.

In [19], the authors propose a stacking method for heart dis-
ease prediction. It utilize Gradient Boosting-based Sequential
Feature Selection (GBSFS) for feature selection from heart
disease dataset. Then the stacking model of various ML
algorithms, such as DT, RF, Multilayer Perceptron (MLP),
SVM, Extra Tree (ET), Gradient Boosting (GB), Linear
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Regression (LR), and KNN, are trained on the dataset with the
features selected from GBSFS. For the testing phase, unseen
data points are fed to the base learners, and their individual
predictions are made. Finally, the meta learner combined
these predictions and gave the final prediction of heart disease
for the new data points. By achieving a test accuracy of
98.78%, this study suggested that the combination of feature
selection and ensemble learning can be effective for heart
disease prediction.

In [20], the authors predicts death, heart failure, myocardial
infarction, or stroke within a variable prediction horizon
of 1 to 5 years. The paper employed a Recurrent Neural
Network (RNN) with binary cross-entropy of the 25 outputs
to analyze large datasets of administrative claims. Hyper-
parameter tuning has been performed in two steps using
the Adaptive Moment estimation (ADAM) algorithm. The
model is designed to minimize data preparation costs and
demonstrate satisfactory performance in predicting major
adverse cardiovascular events at all prediction horizons, with
Area under the Receiver Operating Characteristic Curve
(AUCROC) ranging from 0.812 to 0.792 and C-index ranging
from 0.802.

Hymavathi et al. [21] discuss the serious threat to
global health that heart disease poses, as it can take many
different forms that impact the cardiovascular system. The
authors provide a ML based ensemble model that uses
meta-features to diagnose cardiac disease. Weighted average
ensemble, adaptive boosting, RF with feature bagging,
negative correlation learning, and ensemble of small models
are the five strategies combined in the suggested study.
For comparison, traditional ML techniques are also used.
Experimental results demonstrate the improved performance
of the ensemble model for accurately predicting the heart
disease. The integration of meta-features enhanced the
model’s interpretability and adaptability, highlighting its
potential for practical healthcare applications.

In [22], the authors review the application of DL in
cardiology, focusing on diagnostic imaging, medical services,
and biological NNs. It has highlighted various DL models,
such as CNN, Auto-Encoders (AEs) using U-net architecture,
RNN with Long Short Term Memory (LSTM) and GRU.
The paper proposes that DNN with Rectified Linear Unit
(ReLU) as compared to logistic sigmoid and hyperbolic
tangent (tanh) function yielded better performance. To cater
the imbalance in the dataset, SMOTE has been studied.
The paper evaluates different DL models like convolutional,
DNNs and ANNs with hidden layers in cascading patterns
to process nonlinear datasets along with ML algorithms.
The hybrid model combining convolutional and RNNs has
yielded higher performance with an accuracy of 98.77%.

Zheng and Hu [24] proposed Disease Progression via
Longitudinal Data Fusion (DPLDF) method which has a
lower Mean Squared Error (MSE) as compared to LR
with Least Absolute Shrinkage Selection Operator (LASSO)
regularization models. The predictive performance of the
models is quantified by MSE where DPLDF has 3.212 MSE
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TABLE 1. Related Work Summary.

Methodology Limitations Evaluation Metrics
ANN with GA, an optimization strategy in Optimization of the performance of ANNs Accuracy

the NN is employed [17] for CVD prediction

Data assimilation (DA) with CEKF is pro- Data sparsity and physiological prediction MSE

posed [18]

with clinical data

GBSEFS to extract significant features from
a heart disease dataset to train DT, RF,
MLP, SVM, ET, GB, LR, KNN, and a
stacking model [19]

Difficulty in handling the complexity and
variability of medical datasets and lack of
a robust feature selection technique

Test accuracy, Cross-Validation score (CV
score), precision, recall, and F1-score

A RNN model is used to predict major
adverse cardiovascular events in diabetic
patients [20]

Accessing and processing large volumes
of data generated from the disease man-
agement processes of diabetic patients is
challenging

AUCROC, C-Index

Creation of end-to-end models that learn
from the data without requiring external
steps or prior knowledge [22]

Most segmentation methods are not
end-to-end and rely on preprocessing,
handcrafted features, or non-differentiable
methods

Accuracy, sensitivity, specificity, F1-score,
precision

Feature selection using X2 statistical
model and optimally configured DNN is
used [23]

Underfitting and overfitting problems in
heart disease prediction

Accuracy

Disease Progression via DPLDF formula-
tion is proposed [24]

Precise prediction of the potential disease
progression based on the knowledge in the
EHR data

Average Correlation Coefficient (R), MSE

Various ML algorithms including SVM,
NB, RF and KNN are used [25]

Address sentiment analysis challenges in
informal text, particularly due to mor-
phological complexities and dialectal vari-
ances

Precision, recall, F1-measure, accuracy

Advanced SSL technique is proposed for
working on two modalities corresponding
to time-series data, and spectrogram in
time-frequency domain [26]

Lack of exploitation of ECG characteris-
tics in frequency domain

AUCROC, accuracy, F1-score

Contextualized embeddings like BERT and
ELMo work better than traditional, non-
contextualized embeddings, in RNN archi-
tectures [27]

The majority of detection techniques con-
centrated on basic metadata like follow-
ers, post text, and account activity pat-
terns. Without taking into account posting
times, languages, or semantic coherence,
they were readily misled by keyword stuff-
ing.

Accuracy, precision, recall and F1-score

Pretrained Med-BERT on a large and di-
verse EHR dataset using Masked Lan-
guage Model (LM) and Prolonged Length
Of Stay (Prolonged LOS) tasks is proposed
[28]

Small and incomplete training data for DL
models

Average AUCROC values and Standard
Deviation (SD)

ImageCHD, the first dataset for CHD clas-
sification, is introduced along with a base-
line framework for automatic CHD classi-
fication using a cutting-edge segmentation
method [29]

Lack of dataset for Chronic Heart Disease
(CHD) classification

Accuracy

The deep CNN-LSTM model with wavelet
transform and median filtering is proposed
to capture and learn hierarchical and tem-
poral features for improved disease recog-
nition from time series data [30]

DL models lack in capturing and propa-
gating temporal dependencies among the
physiological signals

Accuracy, precision, recall, F1-score

C-BiLSTM algorithm is proposed to accu- Suboptimal accuracy of traditional heart Accuracy
rately predict heart diseases by capturing disease prediction methods

temporal patient data variations [32]

A hybrid CNN and LSTM method is pro- ML techniques fail to achieve high accu- Accuracy

posed and compared with various ML al-
gorithms [33]

racy for heart disease prediction

A BiLSTM-GRU model, a hybrid RNN
model hyper-parameter tuned using RSCV
technique is proposed predicting Coronary
Heart Disease [34]

Small data sets for classification, predom-
inant use of ML over potentially superior
DL, and incomplete evaluation metrics

Sensitivity, Specificity, Negative Predicted
Value, Positive Predicted Value, F1-score,
Accuracy

VOLUME 12, 2024

109233




IEEE Access

H. Khan et al.: Heart Disease Prediction Using Novel Ensemble and BICVDD-Nets

TABLE 1. (Continued.) Related Work Summary.

The study used embeddings from LLMs to
transform posts into vector representations.
Various ML models, including SVM, RF,
XGBoost, KNN, and NN, are used [37]

Previous works often encountered incon-
sistent results and limitations in handling
diverse linguistic expressions

Accuracy, precision, recall

Prediction of the occurrence of chronic
diseases by employing the ML technique,
KNN, DT, and DL employing with Adam
serving as an optimizer is proposed [38]

Poor accuracy of prior techniques

Accuracy

A new ensemble QMBC technique for
identifying patients diagnosed with heart
disease and those who are not diagnosed
is used [40]

Individual models suffer from overfitting,
biased predictions, or incomplete represen-
tation of the underlying patterns in the data

Accuracy, precision, specificity, recall, F1-
score

Development of CNN model supported by
TensorFlow Lite for micro-controllers and
optimizing the TinyCES for low-power,
resource-constrained environments in em-

The setup demands significant resources
for communication and computation,
which can be problematic in terms of
efficiency and resource usage

Accuracy, model size, network bandwidth
usage, size of recorded ECG data

bedded systems [42]

which is less than LR with LASSO regularization. However,
this methodology requires extensive data preprocessing to
handle inconsistencies and missing values, which can be a
significant limitation, particularly in cases where patient data
is sporadic or incomplete.

Alfreihat et al. [25] propose a framework for sentiment
analysis that considers both emojis and text features. Emoji
Sentiment Lexicon (Emo-SL) assign sentiment scores to
frequently used emojis allowing the framework to capture the
emotional weight emojis carry in online communication. The
study incorporate sentiment scores from Emo-SL alongside
sentiment analysis from existing text-based lexicons. Various
ML models, including SVM, Naive Bayes (NB), RF, and
KNN, are used in the research. The combined approach, using
Emo-SL derived features with ML techniques, improve the
accuracy by 26.7% and give the F1-score of 89%.

The research paper [26] on the classification of arrhythmias
in multi-lead Electrocardiogram (ECG) data using multi-
modal approaches incorporates Self-Supervised Learning
(SSL) algorithms to analyze unlabeled ECG data. The
network proposed in this study utilizes SSL and consists of
two modules corresponding to pre-stream (self-knowledge
distillation techniques employed in the absence of labeled
data) and down-stream tasks (trained on labeled data, a gate
fusion mechanism is integrated to merge information from
different modalities, blending features from both time-series
data and spectrograms). The model achieved an AUCROC of
96%, demonstrating its effectiveness on the given dataset.

Social media spam detection, focused on DL architectures
with RNNs to capture long term dependencies in text
is proposed in [27]. Instead of relying on static word
embeddings, Alshattnawi, S. et al. incorporated contextual-
ized embeddings like Bidirectional Encoder Representations
from Transformers (BERT) and Embeddings from Language
Model (ELMo). These models considered the surrounding
words to understand a word’s meaning in a better manner.
This approach led to an improvement (over 10-15%) in
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identifying spam in datasets of both Twitter and YouTube.
The study highlighted the potential of contextualized lan-
guage models for improving social media security by devel-
oping more effective defense mechanisms against evolving
spam threats.

In the development of Medical BERT (Med-BERT) [28],
a pre-trained model using large-scale EHR data has been
used. The paper demonstrates the application of DL and
Natural Language Processing (NLP) in disease prediction.
The models include variations of GRU, Bidirectional GRU
(BiGRU), Reverse Time Attention Mechanism (RETAIN),
and Med-BERT, tested on three different datasets: Dia-
betes Heart Failure cohort (DHF-Cerner), Pancreatic Cancer
cohort (PaCa-Cerner, and PaCa-Truven). The combination
of Bi-GRU with Med-BERT consistently shows high perfor-
mance across all three datasets, with accuracies of 83.15%,
82.63%, and 79.17% for DHF-Cerner, PaCa-Cerner, and
PaCa-Truven, respectively.

The creation of a specialized 3D Computed Tomogra-
phy (CT) Image dataset for Classifying Congenital Heart
Diseases (ImageCHD) [29], highlights the importance of
high-quality, disease-specific data in medical diagnostics.
The methodology focuses on advanced image processing
techniques to analyze and classify complex congenital heart
conditions from 3D CT scans. The base method provides an
accuracy of 81.9%.

In [6], Al-based learning techniques are reviewed for their
role in disease diagnosis and post-operative life expectancy
prediction. This paper highlights a specific case study on a
data-driven cervical cancer prediction model. A deep CNN-
LSTM network for recognizing diseases using multivariate
physiological signals has been utilized. LSTM achieved an
accuracy of 95.7%.

In [30], the authors used an approach for disease recog-
nition by treating physiological signal data as a time series
classification problem in ML. This perspective is particularly
beneficial for diseases where physiological signals play a key
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role in diagnosis. The 4CNN+-2LSTM provides an F1-score
of 0.88.

Bouchareb et al. [31] describe a system that enhances
prediction accuracy using multiple classifiers. This method
exemplifies the trend towards more sophisticated, integrated
computational models in healthcare, capable of handling
diverse data types for more accurate disease prediction.
LR with Principal Component Analysis (PCA) outperforms
with 98% to 100% accuracy and with 95% to 98% accuracy
with Chest X-ray (CXR) images for feature extraction.

The authors in [32] presents a heart disease prediction
model that utilizes a Cluster-based bidirectional LSTM
(C-BiLSTM) algorithm. This approach combined the advan-
tages of clustering for data segmentation with the capabilities
of BiLSTM. The C-BiLSTM model is good in acquiring
temporal dependencies and variations in patient data. The
accuracy score of the proposed system is 94% for real
data and 92% for University of California Irvine (UCI)
data.

Sudha and Kumar [33] in their research suggested a hybrid
CNN and LSTM based system for CVD prediction. This
combined the power of feature extraction of CNN with the
capability of handling sequential data efficiently that LSTMs
possess to make a robust framework for analyzing medical
data. This hybrid model’s accuracy is 89%, sensitivity is 81%,
and specificity is 93%.

Sharma et al. made a hybrid DNN learning model for
predicting Coronary Heart Disease, and used Randomized
Search Cross Validation (RSCV) optimization [34] with 98%
accuracy. Naskath et al. [35] provide detailed comparison
of different DL algorithms used in DNNSs, focusing on
MLP, Self-Organizing Maps (SOMs), and Deep Belief Net-
works (DBNs) by highlighting their applicability in various
healthcare scenarios, including heart disease prediction. The
response and performance matrix scores are above 90% for
these algorithms.

Ogundepo et al’s [36] research performs a performance
analysis of supervised classification models on heart disease
prediction. This study underscores the critical role of
model selection in predictive accuracy, examining various
supervised learning models to determine their efficacy in
heart disease prediction. SVM achieves an 87% accuracy,
88% specificity, 93% AUC, 85% sensitivity, 36% log loss,
85% precision and 85% F1-score.

In [37], the authors explore the potential of using Large
Language Models (LLMs) and ML algorithms for predictive
analytics in mental health. The study aim to capture the
semantic meaning and details of language, in order to analyze
social media posts. Following that, different ML models,
including SVM, RF, Extreme Gradient Boosting (XGBoost),
KNN, and NNs are trained with these embeddings to
determine whether or not posts are suggestive of mental
health conditions like stress disorders. SVM outperforms
other ML techniques and yielded the highest accuracy of 83%
in classifying posts related to stress.
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The paper [38] focused on the use of DL and ML
techniques, such as KNN, DT, and DL with ReLU and
sigmoid activation functions, to predict chronic diseases in
patients. Praveenkumar, S. et al. discuss the prediction of
patients’ incurable diseases using a DL approach, indicating
the expanding role of Al in diagnosing complex medical
conditions. The DL approaches produce a superior accuracy,
which is around 97.9%. The study by Shukur and Mijwil [39]
involves ML techniques in heart disease diagnosis, providing
a performance analysis of various models including LR, RF,
ANN, SVM, and KNN. SVM provides the highest accuracy
of 96%.

Kapila et al. introduce a novel Quine McCluskey Binary
Classifier (QMBC) for heart disease prediction [40]. The
proposed QMBC (Anova with PCA) provides an accuracy of
98.36%, proposed QMBC (Chi-Square with PCA) provides
an accuracy of 99.92% on CVD Dataset, and proposed
QMBC (Anova with PCA)on heart disease comprehensive
dataset results in 98.31% accuracy.

Dhanka et al. present uses supervised algorithms for
coronary artery heart disease detection, contributing to the
field of expert systems [41]. After parametric optimization,
the accuracy score for LR is 87.78% and XGBoost is 91%.

Kim et al. [42] developed Tiny ML based Classifica-
tion for ECG monitoring Embedded Systems (TinyCES).
The framework used Tiny ML (TinyML) for classifying
ECG data directly on the monitoring device. It enabled
the device to perform the classification using a small,
optimized ML model. This reduced the amount of data
needed to be transmitted resulting in improved battery life.
Two large ECG datasets: the Massachusetts Institute of
Technology-Beth Israel Hospital Arrhythmia Database and
the Physikalisch-Technische Bundesanstalt Diagnostic ECG
Database, are used to train model. With an approximately
97% detection ratio, TinyCES yielded high performance in
monitoring ECG.

Wang et al. [43] uses a Cloud-RF (C-RF) algorithm
for risk assessment of coronary heart disease, blending
cloud computing and ML, for healthcare applications and
achieves an accuracy score of 85%. In summary, these
studies demonstrate a significant focus on the application of
advanced ML and DL techniques, optimization algorithms,
and data preprocessing methods for early-stage and accurate
prediction of heart disease. The integration of various
computational approaches, including ensemble methods,
NN, and feature selection techniques, illustrates the evolving
landscape of data-driven healthcare solutions. Summary of
the prior studies is shown in Table 1.

IIl. PROPOSED SYSTEM MODELS

This section outlines the overall flow of this study. Two
ensemble techniques, EnsCVDD-Net and BICVDD-Net, are
proposed in our work. Before being fed into the DL models,
The dataset must undergo preprocessing. The dataset used
is cleaned, i.e., it does not contain any missing values or
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outliers. However, it is highly imbalanced. Class 0 contains
more instances than Class 1. Thus, we have employed the
ADASYN balancing approach to balance the data. In both
proposed approaches, LeNet and GRU are used. It leverages
the strengths of both CNN for feature extraction and RNN for
considering not just the current input, but also a memory of
past inputs.

A. DATASET

For this study “Heart Disease Health Indicators Dataset,” is
used. It is a patient health record dataset gathered for heart
disease prediction [44]. Centers for Disease Control (CDC)
made the Behavioural Risk Factor Surveillance System
(BRFSS) for conducting a yearly health survey that produced
this dataset. This extensive dataset contains the annual health
data of more than 400,000 Americans, which makes it one
of the largest health survey datasets in the world. It has been
running since 1948.

In this dataset, each row is composed of detailed informa-
tion of a heart patient. The Heart Disease Health Indicator
dataset is organized in a tabular manner. This dataset includes
22 features and 253,680 instances, which assists in the binary
categorization of heart disease. These features include age,
smoking habits, body mass index, alcohol intake, history
of stroke, and physical and mental health status, and are
gathered via individual replies or direct participant queries.
Heat map [45] is used to visualize the correlation between
each feature in the dataset, as shown in Fig. 1.

Beyond missing values and outliers, the dataset has already
been cleansed. Class 0 accounts for 91% of occurrences in
the dataset, whereas class 1 accounts for just 9% occurrence.
It is crucial to recognize this significant imbalance in the
dataset. As such, preprocessing measures like class balancing
and feature selection are necessary steps to guarantee the
robustness and dependability of the trained Ensemble and
Blending CardioNets in practical settings. Heart disease
prediction research and development can benefit from the
public availability of this dataset on Kaggle.

B. DATA BALANCING

One of the crucial steps in preprocessing is data balancing.
A large difference in the number of instances between two
classes indicates an imbalance in the data. Two classes
can be found in a dataset: the minority class, which has
fewer occurrences, and the majority class, which has more.
An imbalanced dataset can lead to a poor and biased model
performance.

It is a significant difficulty for real-time databases. Two
main data balancing techniques are used to overcome
this problem of data imbalance: under-sampling and over-
sampling. In under-sampling technique, the majority class
instances are decreased to align with the minority class, but
this may result in the loss of important information. On the
other hand, in over-sampling technique, the instances in the
minority class are increased by creating synthetic samples.
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There are several techniques for balancing data. To avoid
information loss, it is important to perform this process
carefully. The dataset used in this study is highly imbalanced
with 229,787 participants in class 0 (no heart disease) and
only 23,893 participants in class 1 (heart disease). It shows
that a small proportion of the individuals in the dataset have
heart disease. To address this imbalance, the ADASYN data
balancing technique has been used in this study.

C. ADAPTIVE SYNTHETIC SAMPLING TECHNIQUE
ADASYN is an effective technique for handling imbalanced
datasets. ADASYN analyses the distribution of the minority
class and assigns weights to each data point, unlike simple
oversampling such as Random Over Sampling (ROS), which
simply duplicates the existing minority data. These weights
reflect the “difficulty” of learning from each point; harder-
to-classify data points receive higher weights, signifying their
need for more synthetic neighbors. Based on these weights,
ADASYN then generates new data points, effectively focus-
ing its efforts on the most challenging areas of the minority
class [46].

ADASYN ensures that the DL model will learn the
characteristics of the minority class accurately by decreasing
the bias towards the majority class. Another of its advantages
is that it concentrates on the data samples that are difficult to
classify and this helps the model in efficiently distinguishing
the class boundaries in complex regions. Unlike its counter-
parts that replicate the existing data points for data balancing,
ADASYN generates new synthetic data samples that helps in
preventing overfitting of the model.

All these advantages make ADASYN an effective method
for overcoming class imbalance and improving the perfor-
mance of the model on the minority classes, especially in the
domain of medical diagnosis, and anomaly recognition [47].
Fig. 2 shows that by utilizing the strengths of ADASYN
balancing technique, the severe imbalance within the Heart
Disease Health Indicator dataset is tackled.

D. FEATURE SELECTION

Another crucial DL preprocessing step is feature selection or
dimension reduction. It is a simple and effectual method to
remove redundant and irrelevant data. It improves learning
accuracy and interpretability of the models in decision
making process and reduces computational time. In this
paper, PBCC technique is used for feature selection.

A statistical method known as PBCC is used to measure the
correlation between a continuous and binary variable [48].
This technique is mostly used when one of the variables is
binary, i.e., it has only two possible outcomes. In this study,
binary variable is the target variable having two possible
outcomes: healthy individuals and heart diseased patients.
For feature selection, PBCC can be employed to evaluate
the direction and intensity of each feature’s correlation with
a binary target variable. The most significant attributes
in predicting the binary outcome can be determined by
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FIGURE 1. Correlation heatmap of heart disease health indicator dataset.
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FIGURE 2. Data balancing through adaptive synthetic sampling technique.

computing this coefficient for every feature. Features with
higher absolute values of the PBCC are considered to have
greater influence.

IV. DESCRIPTION OF ENSEMBLE AND BLENDING BASED
CARDIOVASCULAR DISEASE DETECTION NETWORKS
(ENSCVDD-NET AND BLCVDD-NET)

In DL, an ensemble technique involves combining the
predictions of multiple NNs to improve overall performance.
It provides advantages such as reduced variance and lower

VOLUME 12, 2024

generalization error as it overcomes the individual model’s
limitations. These techniques are used for various purposes,
from finance to healthcare, like detecting heart disease,
theft detection in smart grids, image recognition and so on.
In ensemble techniques, the models are trained and their
predictions are combined using different methods like aver-
aging, voting and stacking. Some of the popular ensemble
techniques are hybrid, bagging, boosting and stacking.

In this research, two ensemble techniques, EnsCVDD-Net
and BICVDD-Net, have been proposed as shown in Fig. 3.
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EnsCVDD-Net is a hybrid combination of LeNet and GRU,
while BICVDD-Net is a blending of LeNet and GRU as base
models with MLP as the meta-learner layer.

A. ENSEMBLE BASED CARDIOVASCULAR DISEASE
DETECTION NETWORK

A hybrid model combines different DL models to form a
single predictive model. It minimizes the drawbacks of each
model while maximizing its strengths. By merging multiple
models, the hybrid model delivers superior predictive perfor-
mance compared to using a single model alone.

Sequential hybrid modeling or parallel hybrid modeling are
the two approaches that can be used to create a hybrid model.
In a sequential hybrid model, the output of the first base
model is given as an input to the second base model, resulting
in a single output. When using a parallel hybrid model, each
model functions on its own. Based on the same input, both
models give predictions. The outputs of both models are then
concatenated to create a single output, which makes them
hybrid [49]. A hybrid model requires careful consideration
of several factors, such as the values of the hyper-parameters
and the training strategies.

Our proposed EnsCVDD-Net model comprises of two
DL models, i.e., LeNet and GRU. The combined use of
both models enhances the overall performance. Both the
models received the same input. In the case of LeNet, the
input passes through convolutional layers, then max-pooling
layers and fully connected layers. By adjusting the kernel
sizes and strides of the convolutional layers accordingly, the
output is obtained through features. While GRU processes
the input data sequentially, using the recurrent nature of
the GRU layers. The output of both models is concate-
nated and passed through the last hybrid layer for final
prediction. The workflow of the EnsCVDD-Net is shown in
Algorithm 1.

The GRU is known for its effectiveness in sequential
data processing. In the proposed model, EnsCVDD-Net,
the GRU is comprised of two layers, with 17 neurons and
a total of 929 parameters. LeNet is one of the pioneers
in CNN, which contains convolutional, pooling, and fully
connected layers to learn intricate features from the data.
For EnsCVDD-Net, the LeNet architecture is modified to
have 12 layers, with 6929 parameters and 173 neurons. These
modifications to the LeNet architecture help in accurate
heart disease detection. The hybrid of these models results
in a comprehensive architecture, EnsCVDD-Net, consisting
of 16 layers, 7857 parameters, and 189 neurons. It aimed
at improving the accuracy and reliability of heart disease
predictions by leveraging the strengths of both GRU and
LeNet architectures.

B. BLENDING BASED CARDIOVASCULAR DISEASE
DETECTION NETWORK

The blending technique combines the predictions from
multiple individual models to create a final prediction. This
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Algorithm 1 Ensemble Based Cardiovascular Disease Detec-
tion Network for Heart Disease Prediction
Require: Dataset D = {(x1, y1), (x2, ¥2), - - -, (Xn, Yn)}
1: Split the data into features Xirain and labels Yirain
Input:
Input X
Initialize LeNet and GRU models with their respective
architectures and parameters.
5: Pass input X through LeNet model:
6: Let Y1enet = LeNet(X)
7: Pass input X through GRU model:
8
9

Eeal i

: Let Ygru = GRU(X)
: Concatenate outputs of LeNet and GRU models:
10: Let Yeoncat = Concatenate(Y1 eNet, YGRU)
11: Pass concatenated output through a fully connected layer:

12: Youtput = Dense(Yconcar)

13: Apply sigmoid activation to obtain final output:
14: ¥ = Sigmoid(Youtput)

15: Output: Final heart disease prediction.

reduces the chances of the model getting overfitted and
enhances the overall performance of the blending based
model. In this study, two base models, LeNet and GRU,
and a meta-model, MLP, have been blended together to
make BICVDD-Net. For blending, the dataset is split into
three parts: training, validation and testing. The base models,
LeNet and GRU, are trained on the training set. After
training, they generate predictions on the validation set. These
predictions become the new features for training the meta-
model, MLP. At the end, MLP learns on these new features
and accurately generates the final prediction on unseen data,
as shown in Algorithm 2.

V. DEEP LEARNING TECHNIQUES

The proposed ensemble models, EnsCVDD-Net and
BICVDD-Net, are composed of different DL models. This
section discusses in detail each deep model used in the
proposed ensemble models.

A. LENET

LeNet is one of the initial CNN architectures that was
proposed by LeCun, Y. et al. in the late 1990s. LeNet 5’s
architecture is made up of 7 layers: 3 convolutional, 2 pooling
and 2 fully connected layers. As the name of the model
suggests, out of these 7 layers, 5 of them are learnable [50].
The architecture of LeNet 5 is shown in Fig. 4. It is primarily
designed for handwritten digit recognition. It is a well-known
architecture because of its simplicity and efficient pattern
identification abilities. Due to this, in this research, LeNet is
used for heart disease detection.

In LeNet, the convolutional layers play a significant role in
identifying hidden patterns and intricate relationships within
the data. Following the convolutional layers, the pooling
layers are used that reduce the dimensionality of the feature
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Algorithm 2 Blending Based Cardiovascular Disease Detec-
tion Network for Heart Disease Prediction
Require: Dataset D = {(x1, y1), (x2, ¥2), - - ., (X, Yn)}
1: Split D into training set Dirin, validation set Dy,jig, and
testing set Diest
2: Input:
3: Input X
4: Initialize LeNet, GRU and MLP models with their
respective architectures and parameters
5: Train LeNet model My eNet On Dyain by passing input X
through LeNet model
6: Obtain LeNet predictions PpeNet ON Dyalig:
PLeNet = LeNet(X)
7: Train GRU model MGru on Dyin by passing input X
through GRU model
8: Obtain GRU predictions Pgry on Dyalig:
Pgru = GRU(X)
9: Combine PpeNet and PGru int0 Xyalid_combined
10: Train MLP model Mypp on Xyalid_combined With labels
Yvalid
11: Generate final predictions using MyrLp on Xiest
12: Output: Final heart disease prediction.

maps without losing the most important data in order to
make the network less complex. The first convolutional layer
performs 1D convolution on 1D heart disease data using
5 kernels and 32 neurons, followed by a pooling layer. The
second convolutional layer, equipped with 8 neurons and
the same kernel size, further refines the feature maps. The
third convolutional layer applies a 1 x 1 convolution with
16 neurons.

Next, there are 3 fully connected layers with 32, 16 and
4 neurons, respectively. The first 5 learnable layers use a tanh
activation function, and in the final dense layer, a sigmoid
activation function is used. This final layer outputs the
probability of the presence of heart disease. This combination
of activation functions is employed to ensure a balance
between computational efficiency and non-linearity within
the network.

LeNet is an effective model and is simple to imple-
ment [51]. This makes LeNet a popular choice in the field
of DL. The alternating convolutional and pooling layers
in LeNet’s architecture followed by fully connected layers,
provide a robust framework for heart disease prediction tasks.
Algorithm 3 shows the workflow of LeNet model.
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Algorithm 3 Working of LeNet
Require: Dataset D = {(x1, y1), (x2, ¥2), . . ., (X, Yn)}
1: Split the data into features Xy, and labels Yy
Input:
Input X
Initialize the weights w and biases b for each layer L.
Pass the input through multiple convolutional layers
followed by max-pooling layers.

6: Convolutional layer:

Y, = Tanh (z{il(x * Wi + bli))

7. Max-Pooling layer:

Y> = Max.Pooling (Y7, P1)

8: Fully-connect layer: After the convolutional and pool-
ing layers, three fully connected layers are used for
classification.

9: Y3 = Flatten (¥3)

10: Output layer: The final layer produces class probabili-
ties using sigmoid activation function.

11: ¥ = Sigmoid (Y3 - Wa + b))

12: Output: Predicted class label.

B. GATED RECURRENT UNIT

As a kind of RNN, GRU is intended to simplify the gating
mechanism and minimize the number of parameters, hence
improving the computational performance and simplifying
training. The gated procedures are also used to manage and
regulate the information flow in the NNs. It is developed
to address some shortcomings of RNN, such as vanishing
gradients, while maintaining the ability to capture sequential
dependencies effectively. GRU enables capturing long-term
dependencies from massive sequential data without exclud-
ing information from the previous portion of the sequence of
data.

GRU uses a reset gate and an update gate and a hidden state
to transfer information from one cell to another, as shown
in Fig. 5. The reset gate chooses how much of the previous
information to lose, whereas the update gate chooses how
much of the previous information to save. The information
from earlier time steps is stored in the hidden state, which
functions as a kind of memory. It evolves over time as GRU
processes sequential input [52].

The previous hidden state (h.1) and current input (x;) are
combined and passed through a reset gate.

re=o[Wrx, + U(r)hi-1] ey
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FIGURE 5. Architecture of gated recurrent unit.

While the upgrade gate updates the hidden state with new
information.

z = o[W@x: + Uhi-1] @)

The GRU computes a candidate hidden state that blends the
previous hidden state with new information from the current
input.

hy = tanh(Wyx; + Uphy—1) 3)
he = zehe—1 + (1 — z0)hy )

GRU is effective in applications where sequential data
processing is required in the field of DL [53]. The GRU
is less complex in architecture with fewer parameters when
compared to LSTM and other variants of RNN with gating
mechanisms. When working with limited resources, this
improves the GRU’s computational efficiency.

Algorithm 4 Working of Gated Recurrent Unit
Require: Dataset D = {(x1, y1), (X2, ¥2), . . ., (X, Yn)}
1: Split data into features X4, and labels Yiqin
2: Input:
3: Inputx;, Previous hidden state s;_1, Weight matrices W,,
W, Wi, Uy, U, Uy,
4: Compute reset gate: ry = o (W,x; + U, hy—1)
5: Compute update gate: z; = o (Wyx; + U hy—1)
6: Compute candidate hidden state: fl, = tanh(Wpx; +
Un(rt © hyi—1)) _
7: Compute new hidden state: iy = z; O hy—1 +(1 —z,)) O hy

8: Output layer:
9: Final prediction.

C. MULTILAYER PERCEPTRON

A type of ANN called MLP is made up of several layers
of interconnected neurons. The data flow of a feed-forward
NN is unidirectional, meaning it originates at the input layer,
moves through hidden levels, and ultimately arrives at the
output layer. Each node-to-node connection has a weight, and
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the network learns to adjust these weights during training to
make accurate predictions [54].

An input layer, a hidden layer or layers, and an output layer
are the three primary types of layers that make up an MLP.
Fig. 6 describes the basic architecture of MLP. The input
layer consists of nodes that represent the features of the input
data. For the input features x1, x, x3, . . ., X, the output of the
input layer is the same as the input values, and it is denoted

as aO:

a® = [x1,x2, %3, ..., X] )

MLP comprises of one or multiple hidden layers sand-
wiched between the input and output layers. Every node
within a hidden layer is linked to all nodes in its adjacent
layers, both preceding and succeeding [55]. The output for
each node in the hidden layer is determined by applying an
activation function to the weighted sum of its inputs.

Common activation functions include the sigmoid func-
tion, tanh or ReLU. The output layer produces the final output
of the network. The calculation is similar to that of the hidden
layers, using the weighted sum and an activation function.

NL—I

&= > wia T +bf (©6)
j=1

ak =o(zh) (M

where k indexes the output nodes, N L=l is the number
of nodes in the previous layer, wﬁj is the weight of the
connection, ajL ~lis the output of the j-th node in the previous
layer, bﬁ is the bias term and o is the activation function. The
architecture of MLP is trained using a supervised learning
approach, adjusting the weights and biases to minimize a loss
function. This is typically done using backpropagation and
gradient descent to reduce error. In Algorithm 5, x is the input,
w represents weights, h represents hidden layers, and [ is the
hidden layers count.

D. PROPOSED MODELS’ PERFORMANCE EVALUATION

The confusion matrix is a tool that is used for evaluating
the performance of these proposed models, EnsCVDD-Net,
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Algorithm 5 Working of Multilayer Perceptron

Require: Dataset D = {(x1, y1), (x2, ¥2), . . ., (X, Yn)}

1: Split data into features Xy, and labels Y;in
Initialize weights w and biases ) for each layer [
Input layer
a9 =x
for/ =1to L do

Hidden layer

7D =D gl=b 4 pD

a® =g (zD)
end for
Output layer
: Final prediction.

R e A T

—_ =
—_ o

TABLE 2. Confusion matrix.

Actual: Heart Actual:
disease Healthy
Patient Patient
Predicted: TP FP
Heart disease
Patient
Predicted: FN TN
Healthy
Patient

BICVDD-Net and the individual models. The confusion
matrix is made of True Positives (TP), False Positives (FP),
True Negatives (TN) and False Negatives (FN) as shown
in Table 2, and it is an effectual method for measuring
the performance metrics like accuracy, precision, recall and
F1-score.

E. EVALUATION METRICS
This section will provide a detailed description of the
performance metrics that are used to assess how well the
proposed models perform.

Accuracy is one of the most instinctive performance
evaluation measures that shows the percentage score of the
accurate predictions made by the model in predicting heart
disease, as compared to the total observations. Equation 8 is
used for calculating the accuracy.

Accuracy = TP + TN ®)
TP + TN + FP + FN

Precision can be seen as the indication of exactness and
is the ratio of TP observations to all positive observations
predicted by the model. In terms of heart disease prediction,
it shows the accuracy of positive predictions the model has
made. High value of precision reflects a low rate of false
positives. It is calculated by equation 9:

. TP
Precision = —— ©)]
TP + FP
Recall shows the ratio of TP that the model correctly
predicts against all the observations in actual class. In disease
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prediction, it describes the model’s ability to identify all
positive cases. It is calculated by equation 10:
TP
Recall = —— (10)
TP + FN
F1-score is a model evaluation performance metric that com-
bines precision and recall using harmonic mean. It focuses
on the class-wise performance rather than the overall
performance of the model. It includes both FP and FN and
is considered more useful than accuracy. It is calculated by
equation 11:
2 x (Precision x Recall)

F1-score = — (11
Precision + Recall

F. K-FOLD CROSS VALIDATION

k-FCV technique is used to evaluate the performance of
our model on unseen data by repeatedly splitting the data
into k folds and using them for training and validation [56].
The dataset is split into equal sized k folds. Then, in order
to prevent overfitting, the dataset is trained and evaluated
k times. For k-FCV, we split the dataset into three sets:
training, testing, and validation. Every time a different fold
is selected for validation [57]. The model is trained over k
iterations. In each iteration, k- / folds are used for training and
the remaining folds are used for validation. Accuracy score
along with F1-score, precision, recall, and execution time are
obtained after training and testing. In our study, we have taken
k = 10, resulting in 10-FCV. 10-FCV increases the model’s
efficacy by yielding highly reliable outputs [58].

G. ESTIMATING UNCERTAINTY: 95% CONFIDENCE
INTERVAL FOR ENSEMBLE AND BLENDING BASED
CARDIOVASCULAR DISEASE DETECTION NETWORKS
RESULTS

After applying 10-FCV on our proposed models, we get
10 values for each metric. We calculate 95% Confidence
Interval (CI) from those values, to estimate the range within
which the true performance of our DL models likely falls.
For n number of values, the point estimate, which is the
mean value, x = rll >7 , x; and the standard deviation s are
calculated (equation 12).

Q- _
s= | — Z(xi —%)? (12)
i=1
We used the standard deviation of the performance metric
in order to calculate the margin error, which is given by

ME = ty2 qf X % (13)
where #y 2, 4f is the critical value from the t-distribution value
and df = n — 1 degrees of freedom. The value of t,/2 g4
is equal to 2.201 for determining 95% CI with small df.
Adding and subtracting this value from the point estimate,
we obtain the upper and lower bounds of the 95% CI for our
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deep models as shown in equation 14.

95%CI = x + ME (14)

By the inclusion of CI, we gained a better understanding
of our models’ generalizability and the potential variability
in their performance.

H. RESULTS OF ENSEMBLE BASED CARDIOVASCULAR
DISEASE DETECTION NETWORK

EnsCVDD-Net is the hybrid of LeNet and GRU models.
Table 3 and Table 4 provides the details of EnsCVDD-Net
architecture and the hyper-parameters utilized in it, respec-
tively. The provided Tables 5, 6, 7 and 8 present the results
of an EnsCVDD-Net across 5, 10, 20 and 30 epochs,
respectively. It showcases the performance of three different
models: LeNet, GRU and EnsCVDD-Net. These tables show
various evaluation metrics, including accuracy, precision,
recall, Fl-score and execution times at different training
epochs. For each performance metrics, the tables include
95% CI for the EnsCVDD-Net model at different epochs
of 10-FCV. The bold value is the mean or average value
while the values enclosed in square brackets are the CI values
calculated after applying 10-FCV on EnsCVDD-Net.

The EnsCVDD-Net, when equipped with PBCC, exhibits
a notable improvement in accuracy as compared to LeNet
and GRU at the 5-epochs mark (Table 5). Despite the
improvements, the execution time of the EnsCVDD-Net
remains reasonable, making it a practical choice.

The performance of EnsCVDD-Net continues to improve
at 10 epochs, with the highest accuracy among the three
models, as shown in Table 6. Precision, recall, and F1-score
are well-balanced, indicating the model’s reliability. While
the execution time is higher, it still remains manageable.

Table 7 shows that the EnsCVDD-Net is still leading in
terms of accuracy at 20 epochs, performing better than both
LeNet and GRU. Precision, recall, and F1-score values also
suggest that the PBCC technique contributes positively to
the model’s performance. The execution time increases with
the increase in the number of epochs but is still within the
acceptable limits.

From Table 8 it can be seen that with the increase
in the number of epochs, the performance of EnsCVDD-
Net increases, while still having the highest accuracy and
competitive precision, recall, and Fl-score. The execution
time, as expected, is larger than that observed for ear-
lier epochs, but is reasonable considering the increase in
performance.

The inclusion of PBCC appears to enhance the EnsCVDD-
Net’s performance, particularly in terms of accuracy, preci-
sion, and recall. This technique likely aids in better feature
selection and classification, resulting in improved overall
results. However, it is important to consider the trade-off
between performance gains and execution time, as the
EnsCVDD-Net with PBCC may require more computational
resources as compared to the original model.
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TABLE 3. Architectures of deep learning models and ensemble based
cardiovascular disease detection network.

Models Architecture

Conv 1D layer(Number of neurons=32,
kernel_size=5, activation="tanh’)
MaxPooling layer(padding = ’same’)
Conv 1D layer(Number of neurons=8,
kernel_size=5, activation="sigmoid)
MaxPooling layer(padding = ’same’)
Conv 1D layer(Number of neurons=16,
kernel_size=5, activation="tanh’)
Dense layer(Number of neurons=64,
activation function="‘linear”)
Dense layer(Number of neurons=32,
activation="tanh’)

Dense layer(Number of neurons=16,
activation="linear”)
Dense(Number of neurons=4,
activation="tanh’)

Dense layer(num_classes, activation
function="sigmoid’)
GRU(Number of neurons=16,
activation="tanh’, return_sequences=False
Dense layer(Number of neurons=1,
activation function="sigmoid’)
Conv 1D layer(Number of neurons=32,
kernel_size=5, activation="tanh’)
MaxPooling layer(padding="same’)
Conv 1D layer(Number of neurons=8,
kernel_size=5, activation="sigmoid’)
MaxPooling layer(padding="same’)
Conv 1D layer(Number of neuron=16,
kernel_size=5, activation="tanh’)
MaxPooling layer(padding="same’)
Dense layer(Number of neuron=64,
activation="tanh’)

Dense layer(Number of neuron=32,
activation="tanh’)

Dense layer(Number of neurons=16,
activation="tanh’)

Dense layer(Number of neurons=4,
activation="tanh’)
GRU(Number of neurons=16,
activation="tanh’, return_sequences=False)
Dense layer(Number of neurons=2,
activation function="sigmoid”)

LeNet

GRU

EnsCVDD-Net

I. RESULTS OF BLENDING BASED CARDIOVASCULAR
DISEASE DETECTION NETWORK

The BICVDD-Net combines two base models: LeNet, GRU,
and a meta-model, MLP. The details of the architecture of
BICVDD-Net and the hyper-parameters utilized in it are
shown in Tables 9 and 10 respectively. At the 5-epochs, the
BICVDD-Net demonstrates competitive accuracy of 87%,
precision of 87.03%, recall of 86.9%, and Fl-score of
86.9%, as shown in Table 11. It stands out with the highest
performance metrics, while LeNet and GRU also provide
strong contributions. Execution times for all models are
reasonable, with the BICVDD-Net being the fastest.

At 10 epochs, the BICVDD-Net continues to deliver strong
performance across all metrics, with an accuracy of 89.4%
and an Fl-score of 89.3% (Table 12). Execution times are
consistent with Tablell. It also maintains its competitive
advantage at 20 epochs, with an accuracy of 91.1% and
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FIGURE 7. Simulation representation of ensemble and blending based cardiovascular disease detection networks on

5 epochs for heart disease prediction.

(10 epochs)
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FIGURE 8. Simulation representation of ensemble and blending based cardiovascular disease detection networks on

10 epochs for heart disease prediction.

an Fl-score of 90.7%. Table 13 shows that BICVDD-Net
exhibits the highest performance, followed by LeNet and
MLP. Execution times are well within the acceptable limits.
At 30 epochs, the performance of BICVDD-Net enhances,
with an accuracy of 91.7% and an Fl-score of 91.2%.
Moreover, it consistently outperforms the other base models,
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showcasing its effectiveness. Execution times, especially
for the BICVDD-Net, remain reasonable considering the
substantial performance improvement, which can be seen in
Table 14. For enhancing the generalizability of the proposed
DL model, 10-FCV is implemented. In all these tables, the
BICVDD-Net has three values for each performance metric.
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FIGURE 9. Simulation representation of ensemble and blending based cardiovascular disease detection networks on

20 epochs for heart disease prediction.

(30 epochs)
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FIGURE 10. Simulation representation of ensemble and blending based cardiovascular disease detection networks on

30 epochs for heart disease prediction.

The first bold value is the mean value while the other values
(enclosed in square brackets) show 95% CI measured from
10-FCV results.

Overall, BICVDD-Net, which is the essence of three
different DL models (LeNet, GRU and MLP), proves to be
a powerful blending approach for heart disease prediction.

VOLUME 12, 2024

It consistently demonstrates the best performance, indicating
its ability to effectively capture and leverage the insights
from the base models. The results also suggest that increasing
the number of training epochs generally leads to improved
performance across all models. However, it is essential
to consider the trade-off between computational resources
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TABLE 4. Hyper-parameters utilized in ensemble based cardiovascular
disease detection network.

Common Parameters:

Loss Function Binary cross_entropy
Metrics Accuracy
Epoch 5-30
Batch Size 32
LeNet:

Optimizer SGD
Number of neurons in each layer 4-64
Activation Function on Output | Sigmoid
Layer

GRU:

Optimizer SGD
Number of neurons in each layer 16
Activation Function on Output | Sigmoid
Neuron

EnsCVDD-Net:

Optimizer SGD
Number of neurons in each layer 4-64
Activation Function on Output | Sigmoid
Neuron

(as indicated by execution time) and the marginal gains in
performance. The combined simulation results of EnsCVDD-
Net and BICVDD-Net at different epochs are shown in
Figs. 7, 8,9 and 10.

J. COMPARISON OF ENSEMBLE AND BLENDING BASED
CARDIOVASCULAR DISEASE DETECTION NETWORKS
In the proposed system, two DL solutions, EnsCVDD-Net
and BICVDD-Net, have been proposed for heart disease
prediction. Both the networks are implemented on the same
dataset. EnsCVDD-Net utilizes a parallel hybrid combination
of LeNet and GRU. Both LeNet and GRU are trained in
parallel, and their outputs are concatenated before the final
prediction. While BICVDD-Net combines the predictions
of two base models (LeNet and GRU) using a meta-model
(MLP). It combines the outputs of the base models and
feeds them to the meta-model for final prediction. The base
models (LeNet and GRU) are trained separately on validation
set, after which the prediction of these base models is
concatenated and the meta-model (MLP) is trained on it.

The precision, recall, accuracy and F1-score metrics are
used to gauge the two proposed models. A comparison of the
evaluation results of EnsCVDD-Net and BICVDD-Net are
shown in Figs. 11, 12, 13 and 14. With the blend of three
models, BICVDD-Net performs better than EnsCVDD-Net
with an accuracy of 87%, precision of 87.03%, recall of
86.9%, and Fl-score of 86.9% at 5 epochs (Fig. 11).
BICVDD-Net maintains its good performance at 10 epochs
in all measures with an accuracy of 89.4%, when compared
with the performance of EnsCVDD-Net, as shown in Fig. 12.
Similarly, with a competitive accuracy of 91.1% and 91.7%
in Figs. 13 and 14 shows the consistent performance of
BICVDD-Net over EnsCVDD-Net at 20 and 30 epochs,
respectively.

Based on the evaluation results, BICVDD-Net outperforms
EnsCVDD-Net across all performance metrics. This suggests
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(5 epochs)
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FIGURE 11. Comparison of ensemble and blending based cardiovascular
disease detection networks at 5 epochs.

(10 epochs)

= Accuracy
=== F1Score
=== Precision
m= Recall

EnsCD-Net

BICD-Net

FIGURE 12. Comparison of ensemble and blending based cardiovascular
disease detection networks at 10 epochs.

that the approach of blending predictions from LeNet and
GRU using an MLP meta-model yields better results as
compared to the parallel combination of LeNet and GRU.
It offers better generalization by capturing diverse patterns
from both models and effectively combining their strengths.
Additionally, the architecture of BICVDD-Net provides more
flexibility in integrating different types of models, potentially
leading to better performance in heart disease prediction.

K. SHAPLEY ADDITIVE EXPLANATIONS

SHAP is an interpretability framework that helps in under-
standing the model’s output. It works on the principle of game
theory and it assigns a significance value to every feature of
the model [59]. This helps in explaining the role each feature
plays in the prediction process. SHAP provides a clear picture
of the role each feature plays in the prediction process. In this
way, it not only enhances the interpretability of ML models
but also ensures fairness [60].

In terms of the BRFSS dataset, the individual feature values
are considered as the players. The SHAP values show how
much each feature has contributed to predicting CVD.

In this study, a kernel explainer is used with SHAP.
A kernel explainer uses local LR with specific weights to
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TABLE 5. Simulation Results (with Confidence Interval of 95%) of ensemble based cardiovascular disease detection network (5 Epochs).

Models Accuracy (%) | Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 76.0 73.8 82.9 78.1 284.10

LeNet 75.9 68.3 95.8 79.8 100.92
EnsCVDD-Net | 79.2, [78.0, 81.0] | 77.0, [73.0, 81.0] | 86.2, [81.2,91.1] | 81.0, [80.0, 82.0] | 143.3, [136.4, 150.2]

TABLE 6. Simulation results (with confidence interval of 95%) of ensemble based cardiovascular disease detection network (10 Epochs).

Models Accuracy (%) | Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 78.7 77.9 79.7 78.8 494.03

LeNet 81.1 97.7 63.5 77.0 206.68
EnsCVDD-Net | 85.1, [84.0, 87.0] | 85.0, [81.0, 89.0] | 87.2, [84.0, 91.0] | 86.0, [85.0, 86.3] | 295.2, [277.0, 313.6]

TABLE 7. Simulation results (with confidence interval of 95%) of ensemble based cardiovascular disease detection network (20 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 82.7 83.1 81.9 82.5 785.39

LeNet 85.0 83.4 91.0 87.0 326.03
EnsCVDD-Net | 87.0, [86.3, 88.0] | 90.0, [87.0, 93.0] | 85.0, [81.3, 88.0] | 87.0, [86.2, 88.0] | 505.1, [495.0, 515.5]

TABLE 8. Simulation results (with confidence interval of 95%) of ensemble based cardiovascular disease detection network (30 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 85.0 88.9 81.7 85.2 971.11

LeNet 84.0 96.7 71.9 82.5 507.96
EnsCVDD-Net | 88.0, [87.2, 89.0] | 91.0, [88.1, 94.0] | 85.0, [82.10, 87.0] | 87.3, [87.0, 88.0] | 760.3, [746.0, 775.1]

(20 epochs)

== Accuracy
= F1Score
W Precision
e Recall

(30 epochs)

= Accuracy
== F1Score
e Precision
mem Recall

EnsCD-Net

BlCD-Net

FIGURE 13. Comparison of ensemble and blending based cardiovascular
disease detection networks at 20 epochs.

compute the SHAP values. This kernel is applied to all the
features of the dataset and it checks how much each feature
is contributing to the predicted outcome. Once the SHAP
values are calculated for each feature, various visualizations
are generated. These graphs provide a better explanation of
these contributions. In this way, SHAP helps in understanding
which features are important and how they interact with
each other. Figs. 15 and 20 show the summary plot for
EnsCVDD-Net and BICVDD-Net, where y-axis includes the
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EnsCD-Net

BlCD-Net

FIGURE 14. Comparison of ensemble and blending based cardiovascular
disease detection networks at 30 epochs.

list of features contributing to the prediction and x-axis shows
the average SHAP value for each feature. The color of the bar
indicates the distribution of individual SHAP values for each
feature.

The beeswarm plot [61] provides a more detailed view of
how individual features contribute to the model’s predictions
than the average SHAP values in the bar plot. It is used to
visualize the distribution of individual SHAP values for each
feature and helps to understand how the model’s predictions
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TABLE 9. Architectures of deep learning models and blending based
cardiovascular disease detection network.

Models Architecture

Conv 1D layer(Number of neurons=32,
kernel_size=5, activation="tanh’)
MaxPooling layer(padding = ’same’)
Conv 1D layer(Number of neurons=16,
kernel_size=5, activation="tanh’)
MaxPooling(padding= ’same’)
Dense layer(Number of neuron=64,
activation="tanh”)

Dense layer(Number of neurons=32,
activation="tanh”)

Dense layer(num_classes,
activation="sigmoid’)
GRU(Number of neurons=16,
activation="tanh’, return_sequences=False
Dense layer(Number of neurons=1,
activation function="sigmoid”)
Dense layer(Number of neurons= 256,
activation="tanh”)

Dense layer(Number of neurons= 128,
activation="tanh’)

Dense layer(Number of neurons= 64,
activation="tanh’)

Dense layer(Number of neuron= 32,
activation="tanh”)

Dense layer(num_classes,
activation="sigmoid’)

Conv 1D layer(Number of neurons=32,
kernel_size=5, activation="tanh’)
MaxPooling layer(padding = ’same’)
Conv 1D layer(Number of neurons=16,
kernel_size=5, activation="tanh’)
MaxPooling(padding= ’same’)
Dense layer(Number of neuron=64,
activation="tanh’)

Dense layer(Number of neurons=32,
activation="tanh”)
GRU(Number of neurons=16,
activation="tanh’, return_sequences=False)
Dense layer(Number of neurons= 256,
activation="tanh”)

Dense layer(Number of neurons= 128,
activation="tanh’)

Dense layer(Number of neurons= 64,
activation="tanh”)

Dense layer(Number of neuron= 32,
activation="tanh’)

Dense layer(Number of neurons=2,
activation function="sigmoid”)

LeNet

GRU

MLP

BICVDD-Net

vary for different values of a particular feature. Here Figs. 17
and 22 are the beeswarm plots for EnsCVDD-Net and
BICVDD-Net, respectively.

ML models behave as a black box. To understand the
output of the model and to interpret the influence of input
features, a waterfall plot is used in ML [62]. In this scenario,
it is used to understand the impact of various health factors
on the outcomes of EnsCVDD-Net and BICVDD-Net for
predicting CVD (Fig. 16 and Fig. 21).

A SHAP dependence plot is a type of plot that shows how
a feature’s value affects a model’s prediction. It shows the
average relationship between a feature and the model’s pre-
diction [63]. However, it does not show how the relationship
varies for individual data points. In Fig. 18, the feature is
‘GenHIth’ and the EnsCVDD-Net model’s prediction is a
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TABLE 10. Hyper-parameters utilized in blending based cardiovascular
disease detection network.

Common Parameters:

Loss Function Binary cross_entropy
Metrics Accuracy
Epoch 5-30
Batch Size 32
LeNet:

Optimizer Adam
Number of neurons in each layer 16-64
Activation Function on Output | Sigmoid
Layer

GRU:

Optimizer Adam
Number of neurons in each layer 16
Activation Function on Output | Sigmoid
Neuron

MLP:

Optimizer Adam
Number of neurons in each layer 32-256
Activation Function on Output | Sigmoid
Neuron

BICVDD-Net:

Optimizer Adam
Number of neurons in each layer 16-256
Activation Function on Output | Sigmoid
Neuron

SHAP value, which is a measure of how much a particular
feature contributes to the model’s prediction. The color of
the dots represents the density of the data points, with darker
colors representing more data points. The plot shows that
there is a positive relationship between the feature ‘GenHIth’
and the SHAP value. This means that as the value of
‘GenHIth’ increases, the SHAP value also increases. In other
words, the ‘GenHIth’ feature has a positive impact on the
model’s prediction. Similarly, Fig. 23 show dependence plot
for BICVDD-Net.

The force plot is a type of Shapley value plot, which is
used to understand the contribution of each feature to the
prediction of a specific instance in an ML model. In the force
plot, the base value is considered to be the average effect
of all the features. Each feature either pushes the prediction
higher (red) or lower (blue) from this base value. The final
prediction (f(x)) is the sum of the base value and all the feature
contributions. Fig. 19 and Fig. 24 represent the force plots for
EnsCVDD-Net and BICVDD-Net, respectively. In Fig. 24,
the feature ‘Age’ has the largest positive impact on the
heart disease prediction, while the feature ‘BMI’ has the
largest negative impact. However, the positive contributions
of features ‘HighChol’, ‘Sex’, and ‘Age’ are not enough to
offset the negative contributions of ‘Income’, ‘PhysHIth’, and
‘BMUI’, resulting in a final prediction of less than the base
value.

L. COMPARISON OF SHAPLEY ADDITIVE EXPLANATIONS
PLOTS

To learn the feature contribution in the decision making
process of the proposed system model, SHAP is implemented
on EnsCVDD-Net and BICVDD-Net. From the SHAP plots
of EnsCVDD-Net for predicting heart disease, it is observed
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TABLE 11. Simulation results (with confidence interval of 95%) of blending based cardiovascular disease detection network (5 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 82.5 90.5 72.6 80.6 84.27

LeNet 82.6 80.8 85.5 83.1 23.25

MLP 74.9 68.7 91.4 78.5 43.26

BICVDD-Net | 85.0, [84.0, 85.2] | 84.00, [82.40, 85.60] | 86.0, [84.0, 88.0] | 85.0, [84.0, 85.1] | 37.1, [34.0, 41.0]

TABLE 12. Simulation results (with confidence interval of 95%) of blending based cardiovascular disease detection network (10 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 86.0 98.8 72.9 83.9 144.10

LeNet 85.1 84.5 85.9 85.2 84.55

MLP 78.0 72.9 89.1 80.2 84.29

BICVDD-Net | 89.7, [89.5, 89.9] | 93.0, [91.7, 94.2] | 86.0, [85.0, 87.0] | 89.4, [89.2, 89.6] | 73.2, [64.8, 81.5]

TABLE 13. Simulation results (with confidence interval of 95%) of blending based cardiovascular disease detection network (20 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 89.0 97.7 80.8 88.5 264.26

LeNet 88.0 89.9 86.9 88.3 84.06

MLP 82.7 87.4 76.5 81.6 77.07

BICVDD-Net | 90.7, [90.4, 91.0] | 95.0, [94.0, 97.0] | 86.0, [85.0, 87.3] | 90.2, [89.9, 90.5] | 125.0, [103.3, 146.3]

TABLE 14. Simulation results (with confidence interval of 95%) of blending based cardiovascular disease detection network (30 Epochs).

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Execution Time (sec)
GRU 90.5 90.5 90.5 90.5 345.26
LeNet 85.3 96.0 73.5 83.3 144.8
MLP 83.6 77.9 93.8 85.1 144.21
BICVDD-Net | 91.5, [91.0, 92.0] | 96.0, [94.0, 97.3] | 87.0, [85.0, 89.0] | 90.7, [90.1, 91.2] | 236.5, [204.6, 268.4]
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FIGURE 15. Summary Plot of ensemble based cardiovascular disease

detection network.

that the features like ‘Age’ and ‘High Cholesterol’ have
the highest impact in generating heart disease prediction.
‘Sex’, ‘GenHlIth’, ‘DiffWalk’, ‘Stroke’ and ‘Smoker’ have
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FIGURE 16. Waterfall plot of ensemble based cardiovascular disease
detection network.

considerable impacts on the model’s predictions. While
features like “‘HighBP’, ‘Income’, ‘Diabetes’, and ‘PhysHIth’

have low impact, with the least contributing features
to be ‘CholCheck’, ‘Education’ and ‘PhysActivity’ for
EnsCVDD-Net in forecasting heart disease. It means higher
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FIGURE 17. Beeswarm plot of ensemble based cardiovascular disease
detection network.
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FIGURE 18. Dependence plot of ensemble based cardiovascular disease
detection network.
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FIGURE 19. Force plot of ensemble based cardiovascular disease
detection network.

values of age (old age individuals) have a higher chance
of getting the heart disease. Similarly, individuals with
high cholesterol, heavy smoking habits, poor general health,
difficulty in walking or having a stroke significantly increase
the chance of heart disease. It also coincides with the general
interpretation for predicting heart disease, i.e., there is a high
chance of getting heart disease with the increase in age factor,
high BP, high cholesterol levels, poor general health, or heart
stroke, etc.
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FIGURE 20. Summary plot of blending based cardiovascular disease
detection network.
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FIGURE 21. Waterfall plot of blending based cardiovascular disease
detection network.

In a similar manner, the SHAP plots of BICVDD-Net
for heart disease prediction shows the predictions of the
base models. GRU and LeNet play significant contribution
for BICVDD-Net in early prediction of CVD. While health
related features like ‘PhysHIth’, ‘Age’, ‘HighBP’, ‘Sex’ and
‘Income’ play a critical role in the decision making pro-
cess for BICVDD-Net. Other features including ‘Veggies’,
‘Education’, ‘Stroke’, ‘Diabetes’, ‘Smoker’, ‘MentHIth’,
‘HvyAlcoholConsump’ and ‘Fruits’ have low contributions
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FIGURE 22. Beeswarm plot of blending based cardiovascular disease
detection network.
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FIGURE 23. Dependence plot of blending based cardiovascular disease
detection network.
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FIGURE 24. Force plot of blending based cardiovascular disease
detection network.

to the proposed BICVDD-Net model’s output. Comparing the
SHAP plots of both the proposed models show that ‘Age’,
‘Sex’, ‘HighChol’, ‘HighBP’, ‘PhyHIth’, and ‘Stroke’ are
important features for predicting CVD.

VI. CONCLUSION
The aim this study is to accurately predict CVDs while
minimizing the difficulties caused by unbalanced data and
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taking the patient’s health and socioeconomic circumstances
into account. This study utilizes the Heart Disease Health
Indicator dataset. The ADASYN data balancing approach is
employed due to the high imbalance ratio in this dataset.
Furthermore, feature selection is done using PBCC. In this
article, EnsCVDD-Net and BICVDD-Net are constructed
for heart disease prediction. EnsCVDD-Net is a hybrid
combination of LeNet and GRU. BICVDD-Net incorporates
LeNet and GRU as base-models and MLP as a meta-
model. The findings indicate that the EnsCVDD-Net achieves
88% accuracy, 88% Fl-score, 91% precision, 85% recall,
and 777s execution time, surpassing all base models.
Similarly, BICVDD-Net outperforms its base models with
91% accuracy, 91% F1-score, 96% precision, 86% recall, and
247s execution time. 10-FCV is also used to estimate model
prediction and adjust model parameters. To see each feature’s
contribution to the output, SHAP is utilized. SHAP values
break down the output and summarize each feature’s behavior
in the network prediction. In the future, this study can be
implemented on multiple healthcare datasets tothe proposed
system models generalizable. Additionally, by implementing
the proposed system models in a real-time hospital setting,
continuous monitoring of heart disease patient data will
allow the proposed system models to evolve over time.
This dynamic adaptation will enhance the accuracy and
responsiveness of the EnsCVDD-Net and BICVDD-Net,
resulting in improved patient outcomes.

APPENDIX
LIST OF ABBREVIATIONS

TABLE 15. List of abbreviations.

Abbreviation Description
10-FCV 10-Fold Cross Validation
ADASYN Adaptive Synthetic Sampling Technique

Al Artificial Intelligence

BICVDD-Net Blending based Cardiovascular Disease
Detection Network

BP Blood Pressure

BRFSS Behavioural Risk Factor Surveillance
System

CDC Centers for Disease Control

CHD Chronic Heart Disease

CNN Convolutional Neural Network

CVD Cardiovascular Disease

DL Deep Learning

DNN Deep Neural Network

Ensemble based Cardiovascular Disease
Detection Network

EnsCVDD-Net

GRU Gated Recurrent Unit

LSTM Long Short Term Memory

ML Machine Learning

MLP Multilayer Perceptron

PBCC Point Biserial Correlation Coefficient

RNN Recurrent Neural Network

ROS Random Over Sampling

SHAP SHapley Additive exPlanations

SMOTE Synthetic ~ Minority ~ Oversampling
TEchnique

XAl eXplainable Artificial Intelligence
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