

Received 16 April 2024, accepted 9 June 2024, date of publication 1 July 2024, date of current version 9 July 2024. Digital Object Identifier 10.1109/ACCESS.2024.3421299

RESEARCH ARTICLE

Enhancing Explanation of LSTM-Based DDoS Attack Classification Using SHAP With Pattern Dependency

BASIL ASSADHAN^{®1}, (Senior Member, IEEE), ABDULMUNEEM BASHAIWTH^{®1,2}, AND HAMAD BINSALLEEH^{®3}

¹Department of Electrical Engineering, King Saud University (KSU), Riyadh 11421, Saudi Arabia

²Department of Electronic Engineering and Communication, Hadhramout University (HU), Al Mukalla 50512, Yemen

³Department of Computer Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia

Corresponding author: Abdulmuneem Bashaiwth (abdulmuneem@student.ksu.edu.sa)

This work was supported by the International Scientific Partnership Program of King Saud University under Grant ISPP-18-134(2).

ABSTRACT DDoS attacks pose serious threats to the availability and reliability of computer networks. With the increasing complexity of DDoS attacks, the accurate detection and classification of these attacks is essential to ensure the protection of network systems. In this paper, we leverage the power of the LSTM model for DDoS attack classification and its ability to automatically learn complex patterns and select features from raw traffic at the packet level. LSTM models have remarkable performance in network traffic classification, however explaining the internal workings of them remains challenging, which hinders their wider adoption in real-world applications. To address this limitation, we propose the SHAP with Pattern Dependency (SHAPPD) approach to explain the predictions of the LSTM model. The results demonstrate significant performance in classifying the DDoS attacks from raw traffic using the LSTM model. SHAPPD effectively explains the predictions of the LSTM model, highlighting the underlying packet traffic fields that drive the LSTM to make its true and false positive predictions and finding the common fields between the DDoS attacks. The results of the comparison between the SHAPPD and the original SHAP emphasize that the SHAPPD is superior to the original SHAP in providing more elaborative justifications for DDoS attacks classification results. The SHAPPD, by quantifying the contribution of each input feature and considering the interdependencies between the features as well as the continued traffic packets, enables security analysts to gain insights into the decision-making process of the LSTM model and identify critical indicators about the DDoS attacks.

INDEX TERMS DDoS attacks, machine learning, DL classification, DL explanation, SHAP.

I. INTRODUCTION

In today's interconnected world, the threat of cyberattacks on network security is a significant and ever-growing concern to organizations, governments, and individuals. This leads to financial losses, data breaches, disruptions in critical services, and compromised privacy. One of the most common of today's cyberattacks is DDoS attacks. Distributed Denial of Service (DDoS) attacks pose significant threats to the availability and reliability of online services and networks [1]. These attacks exploit the inherent vulnerabilities of Internet's architecture and overwhelm targeted systems with a flood of

The associate editor coordinating the review of this manuscript and approving it for publication was Diego Oliva^(D).

malicious traffic, rendering them inaccessible to legitimate users [2]. DDoS attacks have become increasingly prevalent and sophisticated, necessitating robust defense mechanisms to mitigate their impact and ensure the uninterrupted operation of critical online infrastructures. DDoS attacks aim to disrupt the normal functioning of targeted systems by flooding them with a massive volume of traffic or exploiting vulnerabilities in network protocols [3]. The attackers typically harness a network of compromised computers, known as a botnet, to launch the attack [4]. This distributed nature makes it difficult to trace and block the attack traffic effectively. Additionally, modern DDoS attacks leverage various techniques, including amplification attacks, reflection attacks, and application-layer attacks, to overwhelm the targeted systems and exhaust their resources [5]. The consequences of DDoS attacks can be severe including financial losses and service unavailability that leads to reputational damage for businesses and service providers [5]. Moreover, DDoS attacks can be used as a diversionary tactic to mask other malicious activities, such as data breaches or network intrusions, further complicating the security landscape [5].

To face the threats of DDoS attacks, researchers and practitioners have developed a range of defense strategies and mitigation techniques [6]. These techniques include network-level defenses, such as traffic filtering and rate limiting, as well as anomaly detection and traffic diversion mechanisms [6]. Furthermore, Machine Learning (ML) and Artificial Intelligence (AI) based approaches have been employed to detect and mitigate DDoS attacks by analyzing network traffic patterns and identifying anomalous behavior [7]. The transition from traditional machine learning to Deep Learning (DL) for detecting DDoS attacks has revolutionized the field by leveraging the power of neural networks to automatically learn complex patterns and features from network traffic data. Detecting DDoS attacks using DL models has gained significant attention due to the ability of these models to automatically learn complex patterns and features from raw network traffic data. DL techniques, such as Recurrent Neural Networks (RNNs), offer promising avenues for enhancing the accuracy and effectiveness of DDoS attack detection systems [8]. RNNs are well-suited for analyzing temporal dependencies in network traffic. By considering the sequential nature of packet arrivals, RNNs can capture long-term patterns and detect anomalies associated with DDoS attacks [9]. Long Short-Term Memory (LSTM) is a popular RNN architecture used for DDoS detection, as they can model both short-term and long-term dependencies in the traffic data [10].

DL models have achieved remarkable performance in complex tasks, but their black-box nature often raises concerns about transparency and trustworthiness. Interpreting DL models is crucial to gaining insights into their decisionmaking process, understanding the factors influencing their predictions, and ensuring their transparency and accountability. Therefore, researchers have developed explanation methods that aim to highlight how these models arrive at their predictions or decisions [10]. These explanation methods provide insights and explanations that help users understand the underlying factors that contribute to the model's outputs. Several explanation methods including [11], [12], [13], [14], [15], [16], have been proposed to interpret predictions of DL models. Some of these methods such as Local Interpretable Model-agnostic Explanations (LIME), LOcal Rule Explanation (LORD), Local Explanation Method using Nonlinear Approximation (LEMNA), and SHapley Additive exPlanation (SHAP) are used to explain DL-based security applications. These methods have limitations in providing robust and representative explanations of the RNNs that consider dependencies between the input samples as well as

between the features within a single sample. The limitations include: 1) ignore the dependency among features of one input sample to the DL model and 2) ignore the dependency between the current input sample and the historical input samples. The classification problem for some applications such as image (each byte within an image independently represents the color of a pixel) is performed sufficiently by utilizing DL models that are based on a single input sample. The output of these models can be denoted by $y_t = f(\mathbf{x}_t)$, where x_t is a sample represented by a d-dimensional feature vector $(x_1, \ldots, x_d)^T$. On the other hand, DL such as RNN models that are based on the current input sample as well as k history inputs to make decisions are compatible with the security application that exhibit time-series inputs. The output of these models can be denoted by $y_t = f(x_t, x_{t-1}, \dots, x_{t-k})$, that depends on the current input sample x_t and the k history inputs from x_{t-1} to x_{t-k} . As the network traffic is continuous traces through the time, they exhibit dependency among their packets as well as dependency among the features inside each packet. For instance, the fields in network packet headers have well-defined meanings dependencies; TCP.flag is a sub-feature of TCP, which means if the TCP.flag feature has impacts on the decision of DL model, then the TCP feature is impacted as well.

In our work, we propose an explanation approach SHAP with Pattern Dependency (SHAPPD) that develops the original SHAP method to improve its explanations by considering the dependencies among the network traffic packets as well as the interdependencies between the features within the packet. We apply the proposed approach to the LSTM model used to classify the DDoS attacks in the CICDDoS2019 dataset. The contribution of our work can be presented as follows:

- 1) Adopting the classification of the raw data instead of the featured data because of several benefits including: i) raw data classification retains the original information presented in the dataset without any specific transformations or feature engineering, ii) classifying raw data can help mitigating potential biases and overfitting issues that may arise from the selection and engineering of features, and iii) classifying raw data can enhance the explanation of the classification model's predictions where it becomes easier to understand how the model arrives at its decisions by analyzing the raw data.
- 2) Leveraging the capabilities of LSTM models to classify 12 classes of DDoS attacks, in addition to benign traffic directly from the raw data of the CICDDoS2019 dataset.
- 3) Proposing the SHAPPD approach that exploits the inherent continuity in the network traces to improve the LSTM model explanations by considering the interdependencies between network traffic traces, further enriching the explanations provided.

The remainder of the paper is organized as follows: Section II presents an overview of the related work in the domains of DDoS attack classification and DL models explanation. Section III outlines the preprocessing of the

CICDDoS2019 dataset [17]. Section IV describes our proposed approach (SHAPPD) in detail. Section V presents the results obtained from the experiments conducted on the CICDDoS2019 dataset classification and LSTM model explanation. The findings of the SHAPPD approach are analyzed and discussed in comparison with the original SHAP approach. Section VI provides a comprehensive conclusion, summarizing the main contributions of the study.

II. RELATED WORK

In this section, we review the prior literature on classification network traffic techniques, particularly those that use ML techniques, and explanation methods used to interpret DL models. We first present briefly several methods used to detect and classify network traffic and focus on the ones that employ ML to classify network traffic in its raw format. We then cover the works that implemented explanation methods to interpret DL models applied on raw network traffic.

A. NETWORK TRAFFIC CLASSIFICATION

There are several methods used to classify network traffic. We highlight the most popular of these methods including: port-based methods, payload inspection-based methods, and ML-based methods.

Port-based classification methods are a basic and wellknown technique [18], which exploits information of the TCP/UDP packet's header to extract protocol port numbers. The extracted ports are compared with standardized ports of the Internet Assigned Numbers Authority (IANA) organization to perform classification purposes. The simplicity and the fastness in procedures of these methods qualified them to be used in firewalls and access control lists [18]. However, there are several factors that have a significant negative effect on the performance of this method. These factors include: port forwarding, pervasiveness of port obfuscation, protocol embedding, network address translation, and random port assignments.

Payload inspection-based methods, also known as Deep Packet Inspection (DPI), rely on the analysis of the application layer header and payload information [19]. These methods utilize what is known as predefined patterns, such as signatures for each involved protocol, [20], to distinguish the protocols from each other. The drawbacks of payload inspection methods include the violation of user privacy by accessing private information during payload analysis, and the predefined patterns used in inspection that needs to be updated continuously to capture the new abnormal traffic.

The aforementioned obstacles such as port forwarding, the pervasiveness of port obfuscation, violation of user privacy, and the continuous demand for updates limits the use of port and payload-based methods in modern network traffic classification Recent approaches to network traffic classification rely on ML techniques, which can deal with a wider range of network traffic [21]. However, the performance of ML-based approaches is highly based on the extracted features selected by humans which can limit the accuracy and generalizability. In addition, ML-based classification approaches usually need high storage and computational resources. Consequently, these demands restrict the utilization of ML-based classification approaches in resource-constrained fields [22]. As the network traffic classifier with real-time accuracy is the basis of Network Intrusion Detection systems (NIDs) and network management tasks, newer classification methods are needed. Therefore, the classification methods of network traffic using DL have emerged to avoid the difficult task of feature selection and gain feature information automatically during the training of the classifier [23]. One of the properties of classification approaches of network traffic using DL (e.g., Convolutional neural network (CNN) and RNN) is that they have a higher learning capability compared to the traditional ML methods (e.g., Random Forest (RF), Support Vector Machine(SVM), and K-Nearest Neighbors(KNN)) [21].

The process of feature extraction from network traffic requires preprocessing that involves utilizing various mathematical techniques to prepare network traffic for the DL model. These procedures of preprocessing can cause loss of information and affect the output of DL models. Moreover, as the features selected are often the outputs of other tools such as Intrusion Detection Systems (IDS), a bad selection of these features might enable adversarial perturbation of attack samples. This means that if the selected features do not capture the most relevant information or fail to capture the underlying patterns in the data, the model may rely heavily on less robust or easily fooled features. This can create opportunities for adversarial attacks, as the attacker can identify and manipulate those vulnerable features to deceive the model. To address these challenges, we directly apply the DL models to raw nibbles or bytes of a packet. In the following, we present recent works of DL-based network traffic classification from the raw data.

Hu and Shen [24], consider a DL method to classify intrusions in network traffic. Their proposed design utilizes the raw information of traffic as the features of flow and implements the hierarchical network structure of CNN and LSTM to automatically learn the spatial and temporal features of flow without involving feature engineering. The raw traffic packets are used to identify the intrusions where the design retains all the feature information of each traffic packet. They considered the first 10 packets from each flow and extracted only 160 bytes from each packet to represent the features. Therefore, there was 1,600-dimensional raw data for each flow. In this paper, CICIDS2017 dataset and CTU dataset were used to evaluate the proposed design. The results demonstrate that the proposed design could provide high detection classification performance (accuracy, precision, recall, and F1-score). In addition, the authors analyze the features that are significantly involved in intrusion traffic detection and give the true meanings of these important features. This was done by calculating the importance of the extracted features. Three different metrics were used: weightbased importance, gain-based importance, and cover-based

importance. The final result was 11 features with top scores obtained by averaging the results of the three methods.

Zhang et al. [25], propose a framework to detect anomaly traffic and they call it D-PACK. This framework consists of using CNN and an autoencoder as an unsupervised deep learning model for auto-profiling detection classification. They claim that the D-PACK can detect the anomaly early by inspecting only the first few packets (80 bytes for each) in each network traffic flow. The authors use USTC-TFC2016 and Mirai-RGU datasets to evaluate the proposed framework. The results of experiments in this paper show that the D-PACK can detect the anomaly with high performance and low false positive rate even by exploiting the first packets for each flow.

Hwang et al. [26], develop an anomaly network traffic classification method called DataNet. This method is an encrypted data packet classifier that consists of a Multilayer Perceptron (MLP), stacked autoencoder (SAE), and CNN. The authors define a variable input of the DataNet classifier that is extended to 1,500 bytes per packet as the maximum value. To evaluate the DataNet, this paper used more than 20,000 data packets from 15 types of applications selected from an encrypted ISCX VPN-nonVPN dataset. The results illustrated that the developed DataNet can provide real-time detection and fine-grained awareness of harmful applications.

Wang et al. [27], propose an intrusion detection system called HAST-IDS. The hierarchical spatial-temporal featuresbased intrusion detection system HAST-IDS operates in a cascade manner using CNN and LSTM. HAST-IDS first exploits CNN to learn the low-level spatial network traffic features and then uses LSTM to learn high-level temporal features. These features are learned automatically using HAST-IDS without the need for feature engineering techniques and this contributes to reducing the false positive rate. The raw data (100-1,500 bytes per packet) from standard DARPA1998 and ISCX2012 datasets are used to evaluate HAST-IDS. The comparing results showed that the HAST-IDS exceeded the other approaches in classification performance particularly in terms of accuracy and false alarm rate.

Wang et al. [28], present a framework, Deep-Full-Range (DFR), to detect intrusions in encrypted network traffic. DFR uses three deep learning models; CNN, LSTM, and SAE, in the classification process. All these models are combined to fine classification of the encrypted traffic and provide a deep and full range understanding of the raw data input. Two public datasets, ISCX VPN-nonVPN traffic and ISCX 2012 IDS, are used to evaluate the DFR where 900 bytes for each packet have been adopted to represent the raw data input of the model. Authors, in [14], claim that their proposed framework (DFR) can outperform the state-of-the-art methods in terms of F1-score for both classification of encrypted traffic and intrusion classification.

Zeng et al. [29], propose a general framework for the classification of mobile and encrypted traffic using DL techniques. The proposed framework is based on a strict definition of its milestones such as the choice of the traffic object, the definition of the input, and the architecture of the

90710

DL model (CNN). The proposed framework is evaluated by three types of datasets: FB/FBM, Android, and iOS as raw inputs of 1D-CNN by performing two experiments. The first experiment uses a single model of 1D-CNN with the first 784 bytes of layer 4 payloads, while the second experiment uses multiple models of 1D-CNN with the first 576 bytes of layer 4 payloads. The authors consider their work as a starting point toward the design of effective mobile traffic classifiers. The result of this study was a DL-based traffic classification framework that was able to benefit from varied input data from mobile traffic and address multiple traffic classification tasks.

Aceto et al. [30], propose a network traffic classification approach, called Deep-Packet, using deep learning. Deep-Packet can integrate both feature extraction and classification phases in one scheme to deal with traffic characterization and application identifications. The architecture of Deep-Packet includes SAE and CNN that operate together for network traffic classification. The proposed framework is evaluated using raw data extracted from the UNB ISCX VPN-nonVPN dataset where 1,500 bytes of each IP packet were employed as input for the classification model. The results show that the Deep-Packet can achieve the best performance in terms of recall of 0.98 in the application identification task and 0.94 in the traffic categorization task.

Lotfollahi et al. [31], propose a new approach that combines a malicious classification using the LSTM model with a support word embedding technique. The proposed approach can extract packet semantic meanings and exploit the LSTM to learn the temporal relation among fields in the packet header and identify the behavior of inputs. The authors use ISCX2012, USTC-TFC2016, IoT dataset from Robert Gordon University, and IoT dataset collected on the Mirai Botnet to evaluate the proposed approach where the field in the packet header was considered as a word and trimmed to a fixed length of 54 bytes. The comparing results show that the proposed approach in this work can compete with the previous literature which classifies the malicious traffic at the flow level and this work can inspire the research community in terms of exploiting the advantages of DL to develop effective intrusion detection systems with significant detection rate.

The aforementioned studies about the classification of raw datasets using DL models have several limitations including: 1) Although the used dataset contains multiple attacks, the classification was limited only to binary classification, 2) some of the used datasets were out of date and have no recent attacks, 3) adopting the byte as the smallest unit to represent the raw dataset during the classification leads to missing some traffic packet information that may affect the classification decision, and 4) utilizing only the packet header information and ignoring the payload information might lead to less reliable classification. Therefore, in our work, we address these limitations through the multiclass classification of a recent dataset (CICDDoS2019) with a variety of DDoS attacks using the LSTM model which is suitable for classifying this type of dataset [10]. We adopt the nibble (4 bits) as the smallest unit of the raw data to ensure the utilization of all the traffic

information. We also employ the packets' header and payload information in the classification process.

B. DL EXPLANATION METHODS

In this subsection, we present recent works that used explanation methods to interpret the predictions of DL models, in particular, the SHAP method as it is the focus of this paper.

Hwang et al [32], develop an approach to address several issues that make the classification of DDoS attacks in CICDDoS2019 dataset using ML models less efficient. These issues include the existence of irrelevant dataset features, class imbalance, and lack of transparency of the classification model. They first preprocessed CICDDoS2019 and use the adaptive synthetic oversampling technique to address the imbalance issue. They then conduct a selection mechanism for the dataset features through embedding SHAP importance to eliminate recursive features with Decision Tree (DT), Random Forest (RF), Gradient Boosting (GBoost),Light Gradient Boosting (LGBoost), and Extreme Gradient Boosting (XGBoost) models.

After that, LIME and SHAP explanation methods are performed on the dataset with selected features to ensure model transparency. Finally, binary classification is performed by feeding the selected features to K-Nearest Oracle Eliminate (KNORA-E) and K-Nearest Oracle Union (KNORA-U) dynamic ensemble selection techniques. The classification experiment is performed on balanced and imbalanced datasets. The findings show that the balanced dataset performance outperformed the imbalanced datasets. The authors stated that using KNORA-E and KNORA-U improved the classification performance in terms of accuracy to 99.9878% with KNORA-E and 99.9886% with KNORA-U compared to using the classification approach without KNORA.

Batchu and Seetha [33], propose ensemble tree models approach, DR and RF, to improve IoT-IDSs performance that evaluated on three IoT-based IDS datasets (IoTID20, NF-BoT-IoT-v2, and NF-ToN-IoT-v2). They assert that their proposed approaches provide 100% performance in terms of accuracy and F1 score compared to other methods of the same used datasets while they demonstrate lower Area Under the ROC Curve (AUC) compared to previous Deep FeedForward(DFF) and RF methods using the NF-ToN-IoTv2 dataset. The authors also exploit the SHAP method in both global and local explanations. The global explanation was used to interpret the model's general characteristics by analyzing all its predictions by the heatmap plot technique. On the other hand, the local explanation was used to interpret the prediction results of each input (instance) of the model using the decision plot technique.

Le et al., [34], propose the SPIP (S: Shapley Additive exPlanations, P: Permutation Feature Importance, I: Individual Conditional Expectation, P: Partial Dependence Plot) framework to assess explainable DL models for IDS in IoT domains. They implement LSTM model to conduct binary and multiclassification in three datasets: NSL-KDD, UNSW-NB15 and ToN-IoT. The predictions of LSTM model were interpreted locally and globally using SHAP, PFI, ICE, and PDP explanation methods. The proposed approach is able to extract a customized set of input features that can outperform the original set of features in the three datasets and enhance the utilization of AI-based IDS in cybersecurity systems. The results show that the explanations of the proposed method depend on the performance of IDS models. This indicates that the framework's performance is affected negatively in the presence of poorly built IDS which causes the proposed framework to miss detecting the exploited vulnerability.

Keshk et al., [35], introduce a standard to compare and assess the explanation methods. They classified the investigated explanation methods into black-box methods and white box methods. Six explanation methods (LIME, SHAP, LEMNA, Gradients, IG, and LRP) were investigated and evaluated. The evaluation metrics: completeness, stability, efficiency, and robustness were implemented in this work. The authors applied the DL model RNN to four selected security systems (Drebin+, Mimicus+, DAMD, and VulDeePecker) to provide a diverse view of security. They construct general recommendations to select and utilize explanation methods in network security from their observations of significant differences between the methods.

Warnecke et al., [36], propose principled instructions to evaluate the quality of the explanation methods. Five explanation approaches (LIME, Anchor, LORE, SHAP, and LEMNA) were investigated. These approaches were applied to detect Android malware and identify their family. The authors design three quantitative metrics to estimate stability, effectiveness, and robustness. These metrics are principal properties that an explanation approach should fulfill for crucial security tasks. The results show that the evaluation metrics can evaluate different explanation strategies and enable users to learn about malicious behaviors for accurate analysis of malware.

The aforementioned studies employ explanation techniques like LIME, SHAP, and LEMNA to interpret predictions made by DL models. However, these explanation methods have certain limitations when it comes to providing comprehensive and accurate explanations for DL models, especially recurrent neural network (RNN) models, which take into account dependencies among input samples and features within a single sample. These limitations include disregarding the interdependence among features within an individual input sample and the relationship between the current input sample and the historical input samples. Consequently, in our research, we propose the SHAPPD approach, which addresses these limitations of the SHAP method by considering both the dependency between the features of an input sample and the correlation between multiple input samples. This approach aims to enhance the quality of the resulting explanations compared to that resulting from the original SHAP.

III. PREPROCESSING OF CICDDOS2019 DATASET

Understanding the intricate details of DDoS attacks is essential to develop effective mitigation and defense mechanisms against such malicious activities. Such details include the techniques used in the attacks and the impact of the attacks on network resources.

The CICDDoS2019 dataset [17] addresses this need by providing a diverse set of DDoS attack instances, encompassing a wide range of attack vectors and strategies. The CICDDoS2019 dataset was developed by the Canadian Institute for Cybersecurity at the University of New Brunswick [17]. This dataset is a comprehensive and valuable resource to aid researchers, practitioners, and professionals in the cybersecurity field to understand and mitigate DDoS attacks. The CICDDoS2019 dataset provides a rich collection of real-world DDoS attack scenarios, capturing various attack types, network traffic patterns, and attack characteristics.

CICDDoS2019 is classified into two main categories, Reflection-based DDoS and Exploitation-based DDoS. The attacks in reflection-based DDoS are subcategorized into TCP (MSSQL, SSDP), UDP (NTP, TFTP), or TCP/UDP (DNS, LDAP, SNMP, WebDDoS). While exploitation-based DDoS, in concept, is similar to Reflection-based DDoS with the difference that these attacks can be conducted through application-layer protocols using transport-layer protocols. The attacks evidenced in this category are subcategorized into TCP (SYN-Flood) or UDP (UDP Flood, UDP-Lag). The CICDDoS2019 dataset is available in two formats; the raw data in format PCAP files, and the extracted features flows in format CSV files. As in our work we target the classification of raw dataset, we use the PCAP files of CICDDoS2019. There are 819 separated PCAP files each with about 195 KB to cover about 12 classes of DDoS attacks.

We first used 'tshark' tool to convert these files into corresponding JSON files that contain raw information of each network packet in hexadecimal format. We then built the corresponding CSV files. As the inputs of the DL model should be constant in length, each row (sample) in the CSV file is a vector of packet raw that consists of 324 elements. Each element represents a decimal number (0 - 15) corresponding to sequential 4 bits (nibble). To maintain each sample with a constant length (324), we trim the long packets and pad the short ones. The sample with a length of 324 can cover the header packet and a portion of the payload data. It is noteworthy to state that we remove Ethernet information from each packet, which consists of 14 bytes (28 nibbles) represented by the red rectangular in Figure 1. Therefore, to get 324 nibbles, we start by nibble number (28) and end by nibble number (351).

We finally labeled each sample of CSV files with an attack name according to the execution time of the attack as shown in Table 1. We used the packet timestamp to figure out the start and end time for each attack. We note that the # of samples column of Table 1 shows how the number of samples varies significantly between different attacks, where its maximum value is 75,517,782 for the NTP class and its

0000	00	21	56	53	94	00	28	7†	cf	fe	b3	07	<u> </u>	00	45	00	• ! V	S··(·	• • • • • • E •
0010	00	46	d3	09	40	00	80	11	00	00	0a	с8	de	6f	d4	8a	٠F٠	-@	•••••
0020	79	0e	c9	a7	01	bb	00	32	37	14	40	ec	6f	a6	0a	17	y۰۰	· · · · 2	7.@.o
0030	4f	f5	b2	cd	3e	95	81	6d	d0	56	13	b1	b3	48	ec	b7	0	• > • • m	$\cdot V \cdot \cdot \cdot H \cdot \cdot$
0040	78	14	85	13	5a	e8	b5	bd	3c	e4	6d	2e	c2	a0	93	cd	×۰۰	٠Z٠٠٠	<.m
0050	4f	c3	a3	e7													0		

FIGURE 1. Screenshot from the raw data displayed using Wireshark. The part inside the red rectangular represents the Ethernet information, which is removed from the used data.

 TABLE 1. Number of samples for each DDoS attack in the CICDDoS2019

 dataset that was obtained during the execution time for each attack.

Attack	Execution time	# of Samples
PortMap	09:43 - 09:51	3,920
NTP	10:35 - 10:45	75,517,782
DNS	10:52 - 11:05	1,583,145
LDAP	11:22 - 11:32	9,250,592
MSSQL	11:36 - 11:45	7,102,655
SNMP	12:12 - 12:23	16,882,478
SSDP	12:27 - 12:37	9,446,212
UDP	12:45 - 13:09	10,903,442
UDP-Lag	13:11 - 13:15	20,849
Web	13:18 - 13:29	7,339
SYN	13:29 - 13:34	2,576,862
TFTP	13:35 - 17:15	68,562,992

 TABLE 2. Number of samples in each class of the CICDDoS2019 dataset after the data balancing process.

Attack	# Samples	Attack	# Samples
PortMap	3,920	NTP	20,849
DNS	20,849	LDAP	20,849
MSSQL	20,849	SNMP	20,849
SSDP	20,849	UDP	20,849
UDP-Lag	20,849	Web	7,339
SYN	20,849	TFTP	20,849
	·		

FIGURE 2. An example of one sample of DL model input that ranges from element F0 to F323 along with their decimal values and is followed by the attack label.

minimum is 3,920 for the PortMap class. Training the classifier with such imbalanced data is not practical and results in low classification performance. Therefore, we balance the data by taking samples from the classes with large number of samples (DNS, MSSQL, SSDP, SYN, NTP, LDAP, SNMP, UDP, and TFTP) to be balanced with UDP-Lag (20,849 samples) and leaving the low classes (PortMap and Web) without changes. As the attack and benign samples were generated from different machines [17], the attack samples have different IP source. We utilize the timestamp and IP source for each sample to ensure that the sample selection is inside the intended execution time. Table 2 presents the balanced CICDDoS2019 classes.

The final version of each sample in a CSV file is a feature-vector ranging from F0 to F323 and followed by the attack label. Figure 2 shows an example of a sample form NTP CSV file. We concatenated the CSV files of classes to one file that contains 240,598 samples covering 12 DDoS attacks plus benign traffic. The dataset matrix (N, m) as a CSV file

is shown in the left side of Figure 3 where N represents the number of samples, while m represents the number of features (F0 - F323). Each sample in the dataset is associated with the class label y. To consider the continuity in the dataset, we adopt the timesteps window T samples with (T - 1) as a sliding window during the whole dataset. This procedure converts our 2D matrix (N, m) into 3D matrix ((N - T) + 1, T, m) while maintaining the corresponding label for the last sample of T timesteps as shown in Figure 3.

FIGURE 3. Implementation of the packet continuity in the CICDDoS2019 dataset by adopting timesteps window T samples with (T - 1) sliding window.

IV. PROPOSED APPROACH

RNN models such as LSTM are based on the current input sample as well as several history inputs to make their decisions. These models are compatible with the security application that exhibits time-series inputs such as network traffic. As the network traffic is continuous traces through time, they manifest dependency among their packets as well as dependency among the features inside each packet. Therefore, the explanation method of the LSTM models that adopts the interactions between the features and the packet traces is more robust and representative.

SHapley Additive exPlanation (SHAP) is one of the explanation methods that can explain the predictions of the black box models such as LSTM. The SHAP method was proposed by Lundberg and Lee [14] to explain the black box models based on calculating the Shapley Values [38]. Shapley value represents the contribution of each feature of the input instance in predicting the black box model.

SHAP method considers only the dependency among the packet features and ignores the dependency between the input samples where the Shapley values are calculated by determining the marginal contribution of each feature. The marginal contribution measures how the prediction changes when a feature is added or removed from the combination. The drawback of the SHAP method, particularly in the timeseries application, is ignoring the dependency between the current explained input sample and the history inputs. This drawback leads the SHAP method to provide an explanation that represents only the effect of the features in individual samples on the model prediction ignoring the interaction between the intended sample and the history samples. In this paper, we propose the SHAP with Pattern Dependency (SHAPPD) approach that can develop the SHAP method to consider explanations of the current input sample as well as the (T - 1) history input samples. Figure 4 shows an architecture of the LSTM explanation using the SHAPPD approach including three parts: test set instances, LSTM model, and SHAPPD model. Algorithm 1 illustrates how these three parts works to produce the explanations.

Algorithm 1 Procedures of SHAPPD
Input: $I = \{I_1, I_2, I_3, \dots, I_n\}$ are <i>n</i> class instances from
test set and I_i is $(T \times m)$ array: <i>m</i> is number of features in
the dataset and T is number of continuous packets.
Output: <i>S</i> is a set of important features that represents the
explanation.
$ALL_F = [],$
for $I_i \in I$ do
$V_{T \times m} = Expl(I_i)$, where $V_{T \times m}$ are \pm Shapley values
$(T \times m)$ of input features.
$C_{Expl} = \{Fl, \ldots\} \forall Fl: Fl \text{ has } + \max(\text{Shapley value}) \text{ and } l$
$\in \{0, 1, 2, \ldots, m\}.$
$ALL_F \longleftarrow C_{Expl}$
end for
return $S = \{Fl, \ldots\} \forall Fl: Fl$ occurs in each C_{Expl} of ALL_F

The input I of Algorithm 1 is the number of instances from the testset with TP or FP prediction of the certain class where each instance is a $(T \times m)$ array. On the other hand, the output of the SHAPPD algorithm S is a set of important features that represents the explanation of the prediction of the LSTM model on the input instances. Instead of explaining the samples one by one as in the standard SHAP, our approach (SHAPPD) can explain T samples simultaneously to exploit the dependency between the continues samples (packets) in the series data and produce representative explanation. The output V_{Tm} of explaining each instance in I is positive or negative $(T \times m)$ Shapley values of the m features as shown in Figure 4, Step 1. Then, only the features with positive and maximum Shapley value are selected, as shown in Figure 4, Step 2, as they push the baseline value of the SHAP toward the interested prediction. This step in Algorithm 1 produces the vector C_{Expl} that contains all features with +max (Shapley values). Since the input I has n instances, we obtain *n* of C_{Expl} vectors as shown in Figure 4, Step 3. All these vectors are added to the ALL_F list. The last step of our Algorithm provides a set of features in a vector S that represent the explanation of the intended class. This vector is extracted from the *n* explanations in the previous step by selecting the repeated features as shown in Figure 4, Step 4. The repeated features mean that each feature in S occurs in all the *n* explanations, which indicates that the selected features in S are more robust and representative of the class explanation.

FIGURE 4. The architecture of the LSTM explanations using the SHAPPD approach where the predictions of *T* samples each with *m* nibbles are explained simultaneously to produce an explanation vector *S* of *n* inputs each with *T* samples.

V. RESULT AND DISCUSSION

In this section, we first set the architecture of experiments that are performed in this paper. We then conduct two experiments including DDoS attacks classification using the LSTM model and explain this model using the SHAPPD and the original SHAP. The results from these experiments are presented and discussed. We also compare the result of the SHAPPD to the original SHAP for evaluation purposes. We finally justify the LSTM TP predictions depending on the resulting explanations.

A. EXPERIMENTAL SETUP

Figure 5 shows the architecture used to perform the classification and explanation experiments. This architecture consists of three parts: dataset preprocessing, classification model, and explanation model.

The dataset preprocessing part was explained in detail in Section III. The output of the dataset preprocessing part is divided into train and test sets at a ratio of 70% and 30% respectively. The LSTM model uses the train set to learn the classification patterns automatically from the raw data and evaluates its predictions using the test set.

In this paper, the design of the LSTM model consists of two LSTM layers (LSTM_1 and LSTM_2) and two Dense layers (Dense_1 and Dense_2) as shown in Figure 6. The LSTM layers and the first Dense layer include 64 hidden neurons for each, while the second Dense layer includes 13 neurons corresponding to the model output. The neuron activation function of each layer uses the RELU function for nonlinear operation except the second Dense uses the Softmax function to compute the probability for each class during the classification process. We use two dropout layers with a rate of 0.2 and one batch normalization layer to prevent overfitting, improve the generalization capabilities of the model, and help to stabilize and accelerate the training process. The learning rate of the Adam optimizer in the designed model is 0.001 and the loss function is categorical cross-entropy. The model learns the temporal features

TABLE 3. Overall metrics used to evaluate the performance of the LSTM classification model.

Metric	Expression	Metric	Expression
ACC	$\frac{1}{T}\sum_{i=1}^{C}TP_i$	PR	$\frac{1}{C}\sum_{i=1}^{C}\frac{TP_i}{TP_i + FP_i}$
RE	$\frac{1}{C}\sum_{i=1}^{C}\frac{TP_i}{TP_i+FN_i}$	F1-score	$\frac{1}{C}\sum_{i=1}^{C}\frac{2\times PR_i \times RE_i}{PR_i + RE_i}$
FPR	$\frac{1}{C}\sum_{i=1}^{C}\frac{FP_i}{FP_i+TN_i}$	FNR	$\frac{1}{C}\sum_{i=1}^{C}\frac{FN_i}{TP_i + FN_i}$

of all samples inside the time window T and exploits the time dependency between them to enhance its predictions. To show the impact of using T on the model performance, we perform several experiments to train the model by increasing the values of T incrementally from 1 to 10. The results of the experiments demonstrate that the increase in the value of T leads to improved model performance. We settled for 10 samples to avoid the complexity of our proposed approach specifically in the explanation part.

To evaluate the performance of the LSTM model we use the general performance metrics including Accuracy (ACC), Precision (PR), Recall (RE), F1-score, False Positive Rate (FPR), and False Negative Rate (FNR). We provide the following definitions to build the performance metrics:

- *TP_i*: Number of instances correctly classified with the label of *i*,
- *TN_i*: Number of instances correctly classified with the labels not *i*,
- *FN_i*: Instances classified as label *i*, but they belong to another class, and
- *FP_i*: Instances of *i*, but mistakenly classified in another class.

Table 3 shows the formal expression of overall performance metrics: ACC, PR, RE, F1-score, FPR, and FNR that are used to evaluate the LSTM model. N_c is the number of all samples in the testset and C is the number of classes in the dataset.

FIGURE 5. The overall architecture used in experimental results including dataset preprocessing, DDoS attack classification using the LSTM, and explanation of the LSTM using the SHAPPD.

FIGURE 6. The design of the LSTM model shows the estimated layers: the input layer, the output layer, and the necessary hidden layers.

TABLE 4.	The	performance metrics of multiclass classification	on on the
CICDDoS2	.019 d	dataset using the LSTM model.	

Class	ACC	PR	RE	F1-score	FPR	FNR
Benign	0.99	0.95	1.00	0.97	0.0041	0.0053
DNS	0.99	0.98	1.00	0.99	0.0013	0.0010
LDAP	1.00	1.00	1.00	1.00	0.0001	0.0006
MSSQL	1.00	1.00	1.00	1.00	0.0000	0.0002
NTP	0.99	1.00	0.93	0.97	0.0000	0.0607
PortMap	0.99	0.99	0.94	0.96	0.0010	0.0289
SNMP	1.00	1.00	1.00	1.00	0.0003	0.0023
SSDP	1.00	1.00	1.00	1.00	0.0003	0.0024
SYN	1.00	1.00	1.00	1.00	0.0000	0.0020
TFTP	1.00	1.00	1.00	1.00	0.0000	0.0002
UDP	1.00	0.99	1.00	0.99	0.0006	0.0033
UDP-Lag	0.99	0.99	1.00	0.99	0.0009	0.0137
Web	0.99	0.95	0.94	0.99	0.0040	0.0281

The third part of Figure 5 is the explanation of the LSTM model using our proposed approach (SHAPPD) explained in Section IV. To evaluate the SHAPPD approach, we compare

FIGURE 7. The Confusion matrix resulting from the multiclass classification of the CICDDoS2019 dataset using the LSTM model.

	IEEE Access [®]	
--	--------------------------	--

F000-F017 F036-F053 F072-F089 F108-F125 F144-F161 F180-F197 F216-F233 F252-F269 F288-F305	F0 F18 F36 F54 F72 F90 F126 F144 F162 F144 F162 F180 F180 F180 F180 F216 F224 F250 F270 F270 F278 F306	F1 F19 F37 F55 F73 F91 F109 F127 F145 F163 F181 F199 F217 F235 F253 F271 F289 F307	F2 F20 F38 F56 F74 F92 F110 F128 F146 F164 F182 F200 F218 F236 F254 F272 F272 F308	F3 F21 F39 F57 F75 F93 F119 F129 F147 F165 F183 F201 F219 F225 F225 F225 F291 F309	F4 F22 F40 F58 F76 F130 F148 F166 F184 F202 F220 F228 F256 F274 F292 F310	F5 F23 F41 F59 F77 F95 F113 F131 F167 F167 F167 F221 F223 F227 F225 F223 F311	F6 F24 F60 F78 F96 F114 F132 F168 F186 F204 F224 F258 F276 F276 F294 F312	F7 F25 F43 F61 F79 F115 F155 F155 F169 F187 F205 F228 F227 F259 F277 F255 F313	Enign F8 F26 F44 F62 F80 F98 F116 F134 F152 F170 F188 F206 F226 F226 F226 F226 F226 F226 F226	F9 F27 F45 F63 F81 F81 F135 F153 F153 F153 F153 F225 F225 F223 F2243 F2261 F227 F297 F315	F F F F F F F F F F F F F F F F F F F	10 28 34 35 30 00 18 36 54 72 90 08 26 44 62 80 98 16	F11 F29 F47 F65 F83 F101 F119 F137 F155 F173 F191 F209 F227 F245 F263 F263 F263 F263 F263 F263 F263 F263	F12 F30 F48 F66 F84 F102 F120 F138 F156 F174 F192 F210 F228 F226 F226 F226 F300 F318	F F F F F F F F F F F F F F F F F F F	13 31 '49 67 103 121 139 157 175 193 2211 229 247 265 283 801 319	F14 F32 F50 F68 F86 F122 F140 F158 F176 F194 F212 F230 F248 F266 F284 F302 F320	F1 F3 F6 F8 F11 F11 F11 F11 F11 F11 F11 F2 F22 F22	5 3 1 9 9 7 7 55 9 9 9 9 9 9 9 9 9 9 9 9 9	F16 F34 F52 F70 F88 F106 F124 F142 F142 F142 F146 F178 F196 F214 F232 F250 F268 F268 F268 F304 F322	F17 F35 F53 F71 F89 F107 F125 F143 F161 F179 F175 F215 F225 F251 F269 F287 F305
F0 F1 F18 F19 F36 F37 F34 F55 F72 73 F90 F91 F108 F109 F126 F125 F144 F145 F188 F199 F216 F217 F224 F225 F225 F253 F270 F278 F288 F289 F306 F307	F2 F3 F20 F21 F38 F39 F56 F57 F4 F3 F10 F111 F128 F129 F146 F165 F120 F231 F200 F231 F236 F237 F244 F255 F272 F231 F329 F231 F329 F231 F338 F309	F4 F5 F22 F23 F40 F41 F58 F59 F76 F77 F94 F95 F102 F113 F138 F139 F148 F145 F122 F203 F202 F203 F238 F239 F256 F257 F247 F275 F292 F293 F310 F311	F6 F7 F24 F25 F42 F43 F60 F61 F36 F97 F114 F115 F120 F133 F150 F136 F168 F169 F224 F223 F224 F223 F240 F241 F258 F259 F214 F255 F312 F313	DNS F8 F9 F26 F27 F44 F45 F62 F80 F98 F99 F116 F117 F134 F135 F100 F171 F188 F189 F190 F170 F124 F205 F242 F243 F246 F241 F248 F243 F244 F315 F344 F315	F10 F11 F28 F29 F46 F47 F64 F62 F82 F83 F100 F101 F138 F129 F154 F155 F172 F173 F100 F101 F208 F209 F226 F227 F244 F245 F208 F299 F298 F299 F316 F317	F12 F13 F30 F31 F48 F49 F66 F67 F102 F103 F138 F139 F156 F157 F174 F175 F120 F131 F210 F211 F228 F229 F246 F265 F230 F301 F318 F319	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F122 F123 F140 F141 F158 F159 F176 F177 F194 F195 F176 F177 F194 F195 F212 F213 F248 F249 F266 F267 F244 F283 F302 F330 F320 F321	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F143 F160 F107 F188 F199 F196 F107 F124 F143 F178 F179 F186 F197 F196 F197 F214 F215 F225 F231 F268 F269 F284 F205 F304 F305 F302 F323	F0 F18 F36 F54 F72 F90 F108 F126 F188 F126 F188 F216 F234 F276 F270 F270 F270 F278 F270 F278 F270 F278 F276 F288 F306	F1 F19 F37 F55 F73 F91 F109 F145 F145 F145 F145 F1217 F235 F235 F271 F289 F307	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F72 F32 F110 F111 F128 F129 F146 F144 F146 F144 F146 F147 F200 F201 F2018 F218 F218 F218 F2248 F227 F272 F272 F272 F272 F272 F272 F208 F201 F308 F309	F4 F22 F40 F58 F76 F94 F112 F112 F130 F148 F112 F130 F148 F184 F202 F220 F220 F220 F220 F220 F220 F22	F5 F23 F F39 F F59 F F113 F F113 F F131 F F131 F F149 F F167 F F203 F F203 F F221 F F227 F F227 F F227 F F233 F F231 F	F6 F7 7:24 F25 :42 F43 :60 F61 :78 F79 :114 F115 :122 F133 :150 F151 :168 F169 :164 F169 :222 F223 :242 F224 :222 F223 :240 F241 :258 F259 :276 F277 :294 F295 :312 F131	LDAI F8 F26 1 F44 1 F44 1 F80 1 F30 1 F30 1 F12 F F134 F F134 F F134 F F122 F F188 F F226 F F224 F F2278 F F2296 F F314 F	F9 F1 F27 F2 F45 F44 F38 F6 F81 F38 F99 F10 117 F11 135 F15 171 F17 189 F19 207 F22 243 F24 201 F22 201 F22 201 F22 201 F22 201 F23 201 F23 201 F24 201 F25 201 F24 201 F25 201 F26 201 F31	0 F11 8 F29 5 F47 4 F65 2 F83 10 F101 8 F119 16 F137 14 F155 12 F173 10 F191 18 F209 10 F211 12 F263 12 F263 12 F263 10 F291 14 F245 12 F263 10 F281 18 F299 6 F317	F12 F30 F48 F66 F34 F100 F120 F138 F120 F138 F156 F172 F192 F192 F210 F228 F228 F226 F226 F226 F226 F318 F318 F318	F13 F1 F31 F3 F49 F3 F67 F6 F85 F3 103 F10 1121 F12 139 F14 157 F15 175 F17 1793 F19 211 F21 229 F22 2265 F26 283 F28 301 F30	F15 F33 F51 F69 F87 F87 F87 F87 F87 F87 F87 F105 F177 F105 F177 F175 F177 F175 F177 F175 F177 F175 F177 F175 F177 F175 F175	F16 F17 F34 F35 F52 F53 F70 F74 F88 F89 F106 F107 F124 F125 F142 F143 F160 F161 F178 F179 F124 F215 F224 F235 F224 F235 F224 F235 F250 F251 F268 F269 F204 F305 F304 F305 F322 F323
F0 F1 F18 F19 F36 F37 F37 F55 F2 F73 F90 F91 F108 F109 F126 F127 F144 F145 F188 F199 F216 F217 F234 F235 F252 F253 F268 F289 F306 F307	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F10 F111 F128 F129 F146 F165 F120 F23 F246 F165 F128 F219 F236 F237 F236 F237 F236 F237 F236 F235 F290 F291 F308 F309	F4 F5 F22 F23 F40 F41 F58 F50 F76 77 F94 F95 F102 F113 F130 F131 F148 F149 F166 F167 F184 F185 F202 F223 F238 F239 F256 F257 F274 F275 F292 F293 F310 F311	F6 F7 F24 F25 F42 F43 F60 F61 F78 F79 F96 F97 F114 F115 F120 F133 F168 F169 F1204 F205 F222 F223 F240 F241 F258 F259 F224 F235 F240 F245 F241 F255 F312 F313	MSSQL F8 F9 F26 F27 F44 F45 F62 F63 F80 F81 F98 F99 F116 F117 F134 F135 F100 F171 F188 F189 F206 F207 F242 F225 F278 F278 F206 F201 F218 F278 F2314 F315	F10 F11 F28 F29 F46 F47 F64 F65 F32 F33 F100 F101 F118 F119 F136 F137 F154 F155 F122 F173 F100 F101 F208 F209 F224 F226 F228 F229 F298 F299 F316 F317	F12 F13 F30 F31 F48 F49 F66 F67 F32 F83 F100 F121 F138 F139 F120 F121 F138 F139 F120 F121 F210 F211 F228 F229 F246 F265 F282 F283 F300 F301 F318 F319	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F174 F104 F185 F159 F176 F177 F176 F177 F121 F213 F220 F231 F230 F231 F248 F249 F266 F267 F302 F333 F320 F331	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F123 F124 F143 F160 F161 F178 F179 F196 F197 F214 F213 F224 F233 F250 F251 F268 F269 F304 F305 F322 F323	F0 F18 F36 F54 F72 F90 F108 F126 F188 F216 F188 F216 F234 F225 F2700 F2288 F306	F1 F19 F37 F55 F73 F91 F109 F127 F145 F145 F145 F145 F145 F145 F145 F145	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F74 F75 F128 F129 F140 F141 F146 F144 F146 F145 F200 F200 F201 F201 F203 F233 F254 F233 F254 F233 F274 F2737 F2775 F270 F270 F2701 F233 F300	F4 F22 F40 F58 F76 F94 F12 F148 F164 F202 F220 F220 F220 F220 F220 F220 F220 F238 F274 F292 F310	F5 F23 F F41 F F39 F F113 F F113 F F113 F F113 F F149 F F167 F F185 F F203 F, F221 F F239 F, F257 F, F257 F, F257 F, F253 F, F	F6 F7 7:24 F25 7:42 F43 7:60 F61 7:8 F79 7:90 F27 7:91 F28 7:92 F295 312 F313	NTP F8 F26 1 F44 1 F62 1 F80 1 F80 1 F88 1 F134 F F134 F F134 F F134 F F122 F F206 F F224 F F224 F F226 F F278 F F296 F F314 F	F9 F1 727 F2 745 F4 663 F6 811 33 999 F10 1175 F13 153 F15 1717 F11 189 F19 207 F20 243 F22 261 F26 279 F28 297 F28 297 F28 297 F28 297 F28 297 F28 297 F28 291 F26 297 F28 297 F28 297 F28 291 F26 291 F26 293 F31	0 F11 8 F29 6 F47 4 F65 2 F83 10 F101 8 F101 8 F107 14 F155 7 F173 10 F191 18 F209 16 F227 14 F245 12 F245 10 F281 18 F299 6 F317	F12 F30 F48 F66 F84 F120 F138 F156 F172 F138 F156 F172 F210 F228 F228 F228 F228 F228 F228 F228 F22	F13 F1 F31 F3 F349 F5 F67 F6 F85 F3 103 F10 1121 F12 139 F14 157 F17 175 F17 1793 F19 211 F22 2247 F24 265 F26 2301 F30 319 F32	4 F15 2 F33 0 F51 8 F69 9 F87 4 F105 2 F123 0 F141 8 F159 6 F177 4 F195 2 F231 0 F231 8 F249 6 F267 4 F285 2 F303 0 F321	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F125 F124 F143 F160 F161 F178 F179 F214 F215 F220 F231 F250 F251 F268 F268 F204 F305 F322 F333
F0 F1 F38 F19 F36 F37 F54 F55 F72 F73 F90 F91 F108 F109 F126 F127 F144 F145 F180 F189 F198 F193 F234 F235 F232 F233 F270 F271 F288 F286 F306 F307	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F10 F111 F108 F129 F146 F165 F120 F201 F218 F219 F148 F129 F148 F165 F20 F201 F218 F219 F220 F201 F236 F237 F254 F255 F272 F273 F308 F309	F4 F5 F22 F23 F40 F41 F58 F59 F76 777 F94 F95 F12 F133 F130 F134 F148 F165 F202 F221 F238 F239 F236 F257 F244 F255 F238 F239 F310 F311	F6 F7 F24 F25 F42 F43 F60 F61 F78 779 F96 F97 F114 F115 F150 F151 F168 F187 F204 F204 F204 F245 F240 F241 F258 F259 F244 F245 F245 F255 F312 F313	PortMap F8 F9 F26 F27 F44 F45 F62 F63 F80 F81 F98 F99 F116 F117 F138 F189 F152 F153 F170 F171 F188 F189 F206 F207 F242 F243 F260 F261 F278 F297 F314 F315	F10 F11 F28 F29 F46 F47 F64 F63 F100 F101 F118 F119 F136 F137 F154 F155 F122 F133 F100 F101 F208 F209 F226 F227 F244 F245 F262 F263 F288 F299 F316 F317	F12 F13 F30 F31 F48 F49 F66 F67 F24 F85 F102 F103 F138 F139 F156 F157 F174 F175 F120 F211 F228 F229 F246 F247 F264 F264 F280 F301 F318 F319	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F122 F123 F140 F141 F158 F159 F176 F177 F194 F105 F122 F213 F230 F231 F248 F245 F248 F249 F266 F267 F284 F280 F302 F303 F302 F303 F320 F321	F16 F17 F24 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F123 F160 F161 F178 F179 F196 F197 F214 F213 F224 F233 F250 F236 F268 F269 F284 F230 F304 F305 F322 F323	F0 F18 F36 F72 F90 F108 F126 F180 F188 F162 F180 F188 F216 F234 F252 F270 F288 F306	F1 F19 F37 F55 F73 F91 F109 F127 F145 F163 F163 F163 F181 F199 F217 F223 F221 F221 F227 F227 F227 F227 F227	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F74 F75 F74 F74 F74 F145 F110 F111 F128 F139 F146 F144 F144 F144 F145 F145 F218 F218 F218 F218 F218 F218 F218 F217 F273 F273 F274 F234 F2218 F219 F2218 F219 F272 F277 F272 F277 F270 F291 F208 F300	F4 F22 F40 F58 F76 F94 F112 F112 F112 F112 F112 F123 F148 F166 F166 F166 F166 F166 F166 F166 F170 F220 F220 F220 F220 F220 F220 F220 F2	F5 F23 F F41 F F59 F F113 F F113 F F131 F F149 F F1203 F F203 F F221 5 F227 F F2257 F F2253 F F2253 F F2253 F F2253 F	F6 F7 724 F25 742 F43 760 F61 778 F79 979 F97 114 F115 132 F133 150 F151 168 F169 186 F187 204 F224 222 F223 240 F241 258 F259 276 F275 312 F131	SNM F8 F26 F44 F62 F80 F162 F164 F17 F116 F134 F134 F1752 F170 F188 F206 F224 F2278 F208 F2096 F314	P 59 F1 527 F2 545 F4 563 F6 581 F8 599 F10 117 F11 135 F13 153 F15 171 F17 135 F13 207 F20 2243 F22 243 F22 243 F22 243 F22 243 F22 243 F22 243 F22 243 F22 243 F22 243 F22 244 F22 57 72 72 72 72 72 72 72 74 74 74 74 74 74 74 74 74 74	0 F11 8 F29 6 F47 7 F65 2 F33 10 F101 8 F101 8 F107 14 F155 12 F173 10 F191 18 F209 6 F227 14 F245 12 F263 10 F281 18 F299 6 F317	F12 F30 F48 F66 F34 F100 F120 F138 F138 F156 F174 F192 F210 F228 F228 F226 F226 F228 F226 F300 F318 F318	F13 F1 F31 F3 F49 F5 F67 F6 F85 F8 F103 F10 1121 F12 139 F14 157 F15 175 F17 193 F19 211 F22 229 F22 2265 F26 2301 F30 3119 F30	F15 F33 F51 F69 F87 F123 F14 F152 F1231 F159 F177 F152 F213	F16 F17 F34 F35 F52 F33 F70 F74 F188 F89 F102 F124 F124 F125 F142 F143 F160 F107 F160 F107 F178 F179 F196 F197 F214 F215 F222 F230 F268 F269 F268 F269 F304 F305 F322 F323
F0 F1 F18 F19 F36 F37 F72 F73 F90 F91 F108 F109 F126 F127 F144 F145 F180 F181 F180 F181 F181 F216 F244 F235 F252 F233 F270 F271 F288 F288 F286 F307	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F10 F117 F18 F129 F14 F165 F142 F183 F200 F201 F218 F219 F236 F237 F236 F237 F238 F239 F239 F233 F279 F273 F308 F309	F4 F5 F22 F23 F40 F41 F58 F59 F76 F77 F172 F133 F130 F131 F148 F148 F122 F233 F238 F237 F246 F257 F274 F275 F310 F311	F6 F7 F24 F25 F42 F33 F60 F61 F36 F79 F96 F97 F114 F115 F122 F133 F150 F151 F124 F188 F188 F189 F204 F203 F240 F241 F258 F259 F294 F295 F312 F313	SSDP F8 F9 F26 F27 F44 F45 F62 F63 F80 E31 F98 F99 F116 F117 F134 F135 F152 F153 F170 F171 F188 F189 F206 F207 F242 F243 F250 F297 F296 F297 F314 F315	F10 F11 F28 F29 F46 F47 F64 F65 F32 F83 F100 F101 F118 F119 F136 F137 F154 F150 F208 F207 F244 F245 F280 F281 F280 F281 F280 F281 F288 F299 F316 F317	F12 F13 F30 F31 F48 F49 F66 F67 F120 F103 F120 F121 F138 F139 F156 F157 F122 F133 F124 F27 F125 F127 F126 F281 F210 F211 F228 F229 F246 F247 F264 F265 F282 F283 F300 F301 F318 F319	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F122 F123 F140 F141 F158 F157 F174 F105 F175 F177 F194 F195 F122 F213 F230 F231 F248 F245 F248 F245 F266 F267 F230 F331 F320 F331 F320 F331	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F123 F160 F161 F178 F179 F196 F197 F214 F123 F225 F223 F238 F268 F268 F280 F204 F305 F322 F323	F0 F36 F34 F72 F90 F108 F126 F188 F126 F180 F188 F216 F234 F252 F270 F288 F306	F1 F19 F37 F55 F91 F109 F127 F163 F163 F163 F163 F181 F181 F181 F235 F223 F223 F289 F289 F307	F2 F3 F20 F21 F38 F39 F56 F57 F74 F75 F72 F39 F10 F111 F128 F129 F146 F145 F128 F128 F144 F145 F128 F132 F218 F213 F218 F218 F218 F223 F227 F227 F227 F227 F229 F2291 F2308 F3005	F4 F22 F00 F58 F76 F94 F112 F166 8 7 F202 7 F202 7 7 7 7 7 7 7 7 7 7 8 8 9 7 <td>F5 F41 F F59 F F77 F F95 F F113 F F149 F F181 F F203 F F205 F F205 F F203 F F203 F F205 F F205 F F203 F F203 F F203 F F203<td>F6 F7 724 F25 742 F43 760 F61 778 F79 979 F96 979 F97 114 F115 1132 F133 150 F151 168 F169 186 F187 204 F224 7240 F241 258 F259 276 F277 941 F293 312 F133</td><td>SYN F8 F26 F44 F62 F80 F14 F152 F134 F125 F170 F206 F224 F224 F224 F226 F278 F278 F314 F314</td><td>F9 F1 227 F2 45 F4 463 F6 881 F8 999 F10 117 F11 153 F15 171 F17 189 F15 207 F22 243 F24 207 F22 217 F22 217 F22 217 F23 315 F31</td><td>D F11 8 F29 6 F47 4 F65 2 F33 10 F101 8 F119 6 F137 14 F155 12 F133 10 F191 10 F191 10 F191 15 F227 14 F245 12 F263 10 F291 18 F299 6 F317</td><td>F12 F30 F48 F66 F84 F102 F120 F138 F138 F138 F136 F174 F174 F200 F228 F246 F264 F282 F300 F318 F318</td><td>F13 F1 F31 F3 F49 F5 F67 F6 F85 F8 103 F10 1121 F12 139 F14 157 F15 175 F17 193 F19 211 F21 229 F23 265 F26 2301 F30 319 F32</td><td>F15 F33 F51 F69 F87 F123 O F141 8 F159 6 F177 4 F123 0 F231 8 F249 6 F267 4 F285 2 F303 0 F321</td><td>F16 F17 F34 F35 F52 F33 F70 F71 F88 F89 F106 F107 F124 F125 F142 F143 F160 F107 F178 F179 F196 F197 F214 F212 F213 F223 F268 F269 F268 F269 F204 F305 F3024 F305 F3024 F305</td></td>	F5 F41 F F59 F F77 F F95 F F113 F F149 F F181 F F203 F F205 F F205 F F203 F F203 F F205 F F205 F F203 F F203 F F203 F F203 <td>F6 F7 724 F25 742 F43 760 F61 778 F79 979 F96 979 F97 114 F115 1132 F133 150 F151 168 F169 186 F187 204 F224 7240 F241 258 F259 276 F277 941 F293 312 F133</td> <td>SYN F8 F26 F44 F62 F80 F14 F152 F134 F125 F170 F206 F224 F224 F224 F226 F278 F278 F314 F314</td> <td>F9 F1 227 F2 45 F4 463 F6 881 F8 999 F10 117 F11 153 F15 171 F17 189 F15 207 F22 243 F24 207 F22 217 F22 217 F22 217 F23 315 F31</td> <td>D F11 8 F29 6 F47 4 F65 2 F33 10 F101 8 F119 6 F137 14 F155 12 F133 10 F191 10 F191 10 F191 15 F227 14 F245 12 F263 10 F291 18 F299 6 F317</td> <td>F12 F30 F48 F66 F84 F102 F120 F138 F138 F138 F136 F174 F174 F200 F228 F246 F264 F282 F300 F318 F318</td> <td>F13 F1 F31 F3 F49 F5 F67 F6 F85 F8 103 F10 1121 F12 139 F14 157 F15 175 F17 193 F19 211 F21 229 F23 265 F26 2301 F30 319 F32</td> <td>F15 F33 F51 F69 F87 F123 O F141 8 F159 6 F177 4 F123 0 F231 8 F249 6 F267 4 F285 2 F303 0 F321</td> <td>F16 F17 F34 F35 F52 F33 F70 F71 F88 F89 F106 F107 F124 F125 F142 F143 F160 F107 F178 F179 F196 F197 F214 F212 F213 F223 F268 F269 F268 F269 F204 F305 F3024 F305 F3024 F305</td>	F6 F7 724 F25 742 F43 760 F61 778 F79 979 F96 979 F97 114 F115 1132 F133 150 F151 168 F169 186 F187 204 F224 7240 F241 258 F259 276 F277 941 F293 312 F133	SYN F8 F26 F44 F62 F80 F14 F152 F134 F125 F170 F206 F224 F224 F224 F226 F278 F278 F314 F314	F9 F1 227 F2 45 F4 463 F6 881 F8 999 F10 117 F11 153 F15 171 F17 189 F15 207 F22 243 F24 207 F22 217 F22 217 F22 217 F23 315 F31	D F11 8 F29 6 F47 4 F65 2 F33 10 F101 8 F119 6 F137 14 F155 12 F133 10 F191 10 F191 10 F191 15 F227 14 F245 12 F263 10 F291 18 F299 6 F317	F12 F30 F48 F66 F84 F102 F120 F138 F138 F138 F136 F174 F174 F200 F228 F246 F264 F282 F300 F318 F318	F13 F1 F31 F3 F49 F5 F67 F6 F85 F8 103 F10 1121 F12 139 F14 157 F15 175 F17 193 F19 211 F21 229 F23 265 F26 2301 F30 319 F32	F15 F33 F51 F69 F87 F123 O F141 8 F159 6 F177 4 F123 0 F231 8 F249 6 F267 4 F285 2 F303 0 F321	F16 F17 F34 F35 F52 F33 F70 F71 F88 F89 F106 F107 F124 F125 F142 F143 F160 F107 F178 F179 F196 F197 F214 F212 F213 F223 F268 F269 F268 F269 F204 F305 F3024 F305 F3024 F305
F0 F1 F18 F19 F36 F37 F54 F55 F72 F73 F90 F91 F108 F109 F162 F163 F180 F181 F198 F198 F124 F235 F270 F271 F284 F289 F208 F289 F309 F307	F2 F3 F20 F21 F38 F39 F56 57 F74 F75 F10 F110 F128 F129 F146 F165 F120 F236 F202 F236 F205 F237 F236 F237 F224 F238 F227 F273 F290 F338 F308 F309	F4 F5 F22 F23 F40 F41 F38 F59 F76 F77 F17 F17 F130 F131 F130 F131 F166 F167 F202 F203 F203 F238 F238 F239 F256 F257 F274 F275 F310 F311	F6 F7 F24 F25 F42 F33 F60 F61 F78 F79 F96 F97 F14 F115 F122 F133 F156 F169 F186 F169 F204 F203 F223 F223 F240 F249 F258 F259 F204 F259 F312 F313	TFTP F8 F9 F26 F27 F44 F45 F62 F38 F80 F81 F98 F99 F116 F112 F112 F133 F120 F123 F124 F245 F205 F207 F224 F225 F205 F207 F204 F225 F205 F207 F206 F207 F206 F207 F206 F207 F206 F207 F206 F207 F207 F214 F314 F315	F10 F11 F28 F29 F46 F47 F64 F65 F82 F83 F100 F101 F118 F119 F136 F137 F154 F155 F100 F101 F122 F173 F190 F191 F208 F209 F226 F227 F244 F245 F208 F280 F288 F299 F316 F317	F12 F13 F30 F31 F48 F49 F66 F67 F34 F85 F102 F103 F120 F121 F138 F139 F156 F157 F174 F175 F210 F211 F238 F229 F246 F247 F264 F265 F282 F280 F318 F319	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F122 F123 F140 F141 F158 F159 F176 F177 F174 F195 F176 F177 F124 F230 F230 F231 F266 F267 F302 F301 F320 F321	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F105 F107 F124 F143 F160 F161 F174 F143 F160 F161 F178 F179 F186 F187 F178 F179 F166 F197 F178 F179 F176 F179 F176 F179 F176 F179 F176 F179 F178 F268 F268 F269 F304 F305 F322 F323	F0 F18 F36 F54 F72 F90 F103 F126 F180 F180 F180 F180 F180 F252 F270 F288 F306	F1 F19 F37 F55 F73 F91 F109 F127 F163 F163 F181 F181 F181 F181 F181 F199 F225 F225 F225 F227 F289 F307	F2 F3 F20 F21 F20 F21 F38 F39 F56 F57 F74 F75 F22 F93 F100 F111 F128 F122 F146 F165 F164 F165 F1218 F2138 F2138 F2138 F2138 F2236 F2274 F2272 F2290 F2390 F308 F309	F4 F22 F40 F58 F76 F94 F112 F138 F166 F148 F166 F148 F122 F220 F220 F238 F220 F238 F224 F229 F310	F5 F23 F F41 F F59 F F77 F F95 F F131 F F131 F F149 F F149 F F167 F F203 F F203 F F221 F F229 F F275 F F275 F F275 F F275 F F275 F F275 F F275 F	F6 F7 24 F25 542 F43 600 F61 78 779 979 F96 979 F97 114 F115 132 F133 150 F151 168 F167 204 F205 202 F223 204 F241 258 F259 276 5277 294 F295 312 F133	UDP F8 F26 F F44 F F62 F F80 F F134 F F134 F F134 F F132 F F134 F F224 F F224 F F224 F F224 F F224 F F226 F F228 F F314 F	F9 F1 227 F2 545 F4 653 F6 810 F3 999 F10 1117 F11 1135 F13 153 F15 207 F22 225 F22 2261 F26 279 F22 217 F25 2175 F31	0 F11 8 F29 6 F47 4 F65 2 F83 10 F101 8 F119 16 F137 4 F155 12 F173 10 F191 8 F209 6 F227 14 F245 12 F263 10 F281 18 F299 6 F317	F12 F30 F48 F66 F102 F F120 F F138 F F156 F F174 F F192 F F210 F F228 F F246 F F246 F F246 F F246 F F248 F F300 F F318 F	F13 F1- F31 F3- F49 F3- F47 F6- F67 F6- F685 F3- 103 F10 1121 F12 1139 F14 157 F17 1139 F14 1217 F21 2217 F21 2217 F22 2237 F28 301 F30 319 F30	 F15 F33 F51 F67 F87 F123 F13 F143 F159 F177 F159 F177 F195 F211 F231 F249 F267 F267 F233 F333 F321 	F16 F17 F34 F35 F52 F53 F60 F77 F88 F89 F102 F124 F124 F143 F166 F107 F178 F179 F196 F197 F124 F215 F224 F215 F224 F215 F224 F215 F224 F215 F226 F261 F268 F269 F268 F269 F304 F305 F322 F323
F0 F1 F18 F19 F36 F37 F54 F55 F72 F73 F90 F91 F126 F127 F126 F127 F144 F145 F180 F181 F180 F181 F196 F217 F234 F235 F220 F271 F280 F287	F2 F3 F20 F21 F38 F39 F56 F57 F74 F72 F74 F74 F74 F147 F182 F183 F102 F183 F200 F201 F182 F183 F203 F201 F218 F217 F246 F247 F256 F237 F206 F2920 F207 F293	F4 F5 F22 F23 F40 F41 F58 F59 F76 F77 F94 F95 F130 F131 F148 F149 F184 F185 F220 F220 F238 F239 F256 F257 F292 F293 F274 F275 F292 F293 F294 F295 F292 F293 F294 F295 F292 F293 F294 F295 F292 F293 F294 F295	F6 F7 F24 F25 F42 F43 F60 F61 778 F79 F14 F115 F132 F133 F150 F151 F168 F169 F222 7223 F244 F205 F276 F277 F274 F295	UDP-Lag F8 F9 F26 F27 F44 F45 F62 F63 F80 F81 F14 F165 F170 F173 F170 F173 F1224 F123 F224 F243 F208 F207 F224 F243 F208 F207 F278 F278 F234 F234	F10 F11 F28 F29 F46 F47 F64 F65 F32 F38 F100 F101 F118 F119 F136 F137 F154 F155 F172 F173 F180 F200 F206 F227 F244 F245 F280 F280 F280 F280 F280 F280 F280 F299	F12 F13 F30 F31 F48 F49 F66 F67 F31 F102 F102 F103 F120 F121 F138 F139 F156 F157 F174 F175 F122 F121 F228 F229 F246 F245 F282 F283 F200 F201	F14 F15 F32 F33 F50 F51 F68 F69 F104 F105 F122 F123 F140 F141 F158 F159 F176 F177 F194 F195 F212 F213 F230 F231 F248 F249 F266 F267 F284 F285 F022 F033	F16 F17 F34 F35 F52 F53 F70 F71 F88 F89 F106 F107 F124 F125 F100 F161 F178 F179 F142 F125 F196 F197 F196 F197 F214 F215 F225 F233 F250 F251 F268 F269 F286 F287 F304 F305	F0 F18 F36 F54 F54 F108 F126 F144 F162 F180 F188 F216 F234 F252 F2700 F288 F288	F1 F19 F37 F55 F73 F91 F107 F145 F145 F145 F163 F163 F163 F199 F217 F255 F271 F227 F271 F229	F2 F3 F20 F21 F20 F21 F28 F39 F56 F57 F74 F75 F92 F93 F100 F111 F128 F122 F144 F164 F164 F165 F182 F138 F200 F201 F218 F131 F218 F218 F2218 F218 F227 F2737 F2737 F2737 F2737 F2737	F4 F22 F40 F58 F76 F94 F112 F138 F166 F166 F148 F166 F184 F202 F220 F220 F220 F220 F228 F258 F256 F252	F3 F23 F F41 F F59 F F77 F F13 F F131 F F149 F F149 F F149 F F185 F F203 F F203 F F221 F F239 F F257 F F257 F F257 F F253 F	F6 F7 724 F25 726 F27 760 F61 78 F79 96 F97 976 F97 976 F97 114 F115 132 F133 150 F151 168 F167 204 F222 202 F223 240 F241 258 F259 276 F2277 2 34 F295 312 F325	Web F8 F26 F44 F62 F80 F98 F116 F134 F134 F134 F252 F134 F134 F252 F242 F224 F224 F220 F2208 F2208 F2208 F2208 F2208	F9 F1 F27 F2 F45 F4 F63 F6 F81 F3 F99 F10 1117 F11 153 F15 171 F17 189 F19 207 F22 243 F24 261 F22 279 F28 297 F28 297 F28	0 F11 8 F29 6 F47 4 F65 2 F83 10 F101 8 F119 6 F137 4 F155 2 F173 10 F191 8 F209 6 F227 4 F245 2 F263 0 F281 8 F299 6 F299	F12 F30 F48 F66 F34 F102 F F120 F F138 F F138 F F136 F F174 F F210 F F228 F F228 F F226 F F2264 F F282 F F300 F	F13 F14 F31 F33 F49 F53 F47 F66 F85 F88 103 F10 121 F12 139 F14 157 F15 175 F17 193 F193 211 F22 227 F23 2265 F26 283 F28 801 E00	 F15 F33 F51 F69 F87 F123 F141 F159 F159 F159 F213 F213 F231 F249 F247 F252 F231 F249 F249	F16 F17 F34 F35 F52 F53 F70 F71 F88 F80 F106 F107 F142 F125 F178 F197 F160 F161 F178 F197 F142 F125 F136 F197 F214 F215 F232 F233 F250 F251 F268 F267 F244 F305 F344 F305

FIGURE 8. Explanations of TP samples of all classes in the CICDDoS2019 dataset where the shaded cells with black represent the features\nibbles that interpret the LSTM predictions according to the SHAPPD approach.

TABLE 5. SHAPPD explanations of TP samples for each class in the CICDDoS2019 dataset. The features\nibbles for each class are the shaded cells wit	h black
in Figure 8.	

Class (#)	Features\Nibbles Name
Benign (92)	'F99', 'F79', 'F207', 'F96', 'F100', 'F75', 'F54', 'F279', 'F296', 'F66', 'F76', 'F274', 'F230', 'F322', 'F68', 'F40', 'F323', 'F301', 'F225', 'F10', 'F318', 'F233', 'F64', 'F211', 'F172', 'F71', 'F143', 'F248', 'F218', 'F127', 'F186', 'F140', 'F148', 'F67', 'F111', 'F217', 'F158', 'F120', 'F203', 'F189', 'F286', 'F43', 'F315', 'F168', 'F90', 'F240', 'F192', 'F80', 'F108', 'F177', 'F226', 'F135', 'F193', 'F243', 'F181', 'F72', 'F288', 'F133', 'F149', 'F124', 'F175', 'F210', 'F84', 'F185', 'F204', 'F278', 'F132', 'F122', 'F222', 'F220', 'F212', 'F242', 'F282', 'F128', 'F244', 'F290', 'F123', 'F234', 'F190', 'F184', 'F284', 'F130', 'F78', 'F250', 'F129', 'F109', 'F273', 'F223', 'F223', 'F253', 'F253', 'F134', 'F146'
DNS (24)	'F131', 'F302', 'F250', 'F217', 'F75', 'F225', 'F81', 'F111', 'F297', 'F231', 'F301', 'F296', 'F79', 'F273', 'F73', 'F54', 'F274', 'F74', 'F78', 'F218', 'F230', 'F135', 'F86', 'F322'
LDAP (38)	'F56', 'F63', 'F86', 'F79', 'F50', 'F82', 'F16', 'F128', 'F62', 'F275', 'F78', 'F109', 'F77', 'F70', 'F71', 'F223', 'F249', 'F252', 'F296', 'F248', 'F220', 'F323', 'F274', 'F320', 'F110', 'F253', 'F301', 'F226', 'F75', 'F84', 'F20', 'F218', 'F247', 'F300', 'F227', 'F302', 'F303', 'F273'
MSSQL (31)	'F56', 'F77', 'F249', 'F21', 'F297', 'F16', 'F272', 'F86', 'F321', 'F71', 'F128', 'F248', 'F223', 'F222', 'F129', 'F46', 'F82', 'F301', 'F44', 'F104', 'F54', 'F274', 'F84', 'F83', 'F303', 'F254', 'F226', 'F322', 'F57', 'F250', 'F230'
NTP (22)	'F79', 'F74', 'F78', 'F217', 'F220', 'F222', 'F218', 'F82', 'F59', 'F16', 'F272', 'F77', 'F128', 'F219', 'F17', 'F109', 'F221', 'F86', 'F275', 'F223', 'F253', 'F130'
PortMap (47)	F129', 'F130', 'F77', 'F36', 'F16', 'F34', 'F37', 'F109', 'F320', 'F105', 'F131', 'F135', 'F322', 'F21', 'F227', 'F79', 'F321', 'F6', 'F10', 'F86', 'F17', 'F18', 'F71', 'F104', 'F220', 'F82', 'F223', 'F253', 'F249', 'F248', 'F296', 'F250', 'F133', 'F252', 'F128', 'F297', 'F272', 'F275', 'F226', 'F323', 'F229', 'F300', 'F217', 'F84', 'F274', 'F83', 'F273'
SNMP (47)	'F302', 'F16', 'F67', 'F78', 'F279', 'F57', 'F71', 'F76', 'F320', 'F79', 'F106', 'F296', 'F43', 'F129', 'F75', 'F272', 'F108', 'F274', 'F231', 'F127', 'F220', 'F222', 'F277', 'F110', 'F74', 'F251', 'F130', 'F230', 'F9', 'F250', 'F322', 'F303', 'F104', 'F70', 'F301', 'F218', 'F248', 'F84', 'F226', 'F255', 'F83', 'F111', 'F253', 'F54', 'F107', 'F46', 'F254'
SSDP (44)	'F39', 'F79', 'F70', 'F67', 'F75', 'F74', 'F71', 'F78', 'F296', 'F43', 'F277', 'F302', 'F16', 'F76', 'F274', 'F320', 'F220', 'F110', 'F255', 'F230', 'F86', 'F9', 'F81', 'F253', 'F129', 'F301', 'F22', 'F250', 'F111', 'F272', 'F248', 'F104', 'F222', 'F84', 'F108', 'F82', 'F106', 'F251', 'F226', 'F54', 'F322', 'F130', 'F254'
SYN (71)	'F79', 'F67', 'F103', 'F272', 'F78', 'F83', 'F82', 'F279', 'F76', 'F57', 'F274', 'F86', 'F5', 'F296', 'F84', 'F129', 'F128', 'F18', 'F301', 'F297', 'F277', 'F226', 'F320', 'F322', 'F49', 'F54', 'F9', 'F223', 'F323', 'F250', 'F105', 'F104', 'F135', 'F248', 'F227', 'F71', 'F319', 'F249', 'F56', 'F254', 'F251', 'F107', 'F61', 'F53', 'F255', 'F106', 'F11', 'F133', 'F273', 'F321', 'F253', 'F58', 'F303', 'F130', 'F63', 'F229', 'F299', 'F131', 'F23', 'F50', 'F295', 'F271', 'F55', 'F52', 'F228', 'F275', 'F219', 'F298', 'F300', 'F109'
TFTP (47)	'F78', 'F220', 'F79', 'F218', 'F76', 'F58', 'F296', 'F75', 'F57', 'F82', 'F81', 'F59', 'F277', 'F86', 'F228', 'F110', 'F106', 'F320', 'F222', 'F111', 'F43', 'F251', 'F130', 'F129', 'F16', 'F62', 'F272', 'F84', 'F71', 'F253', 'F274', 'F63', 'F226', 'F104', 'F50', 'F255', 'F108', 'F128', 'F300', 'F303', 'F83', 'F248', 'F295', 'F219', 'F47', 'F252', 'F322'
UDP (34)	'F79', 'F16', 'F81', 'F272', 'F78', 'F71', 'F253', 'F274', 'F63', 'F82', 'F302', 'F76', 'F110', 'F106', 'F128', 'F129', 'F230', 'F277', 'F50', 'F218', 'F67', 'F9', 'F54', 'F220', 'F75', 'F320', 'F70', 'F226', 'F86', 'F59', 'F108', 'F84', 'F296', 'F222'
UDP-Lag (52)	'F254', 'F301', 'F211', 'F104', ['] F110', 'F279', 'F83', 'F129', 'F255', 'F84', 'F322', 'F111', 'F108', 'F76', 'F135', 'F127', 'F302', 'F43', 'F79', 'F272', 'F250', 'F248', 'F217', 'F222', 'F128', 'F67', 'F223', 'F82', 'F71', 'F9', 'F226', 'F130', 'F296', 'F225', 'F78', 'F319', 'F277', 'F323', 'F230', 'F253', 'F320', 'F303', 'F219', 'F218', 'F220', 'F274', 'F300', 'F77', 'F22', 'F74', 'F75', 'F10'
Web (26)	'F302', 'F79', 'F16', 'F82', 'F67', 'F75', 'F76', 'F84', 'F5', 'F297', 'F78', 'F279', 'F320', 'F274', 'F106', 'F296', 'F110', 'F253', 'F277', 'F128', 'F301', 'F248', 'F303', 'F222', 'F223', 'F43'

	Benign	DNS	LDAP	MSSQL	NTP	PortMap	SNMP	SSDP	SYN	TFTP	UDP	UDP_Lag	Web
Benign	1	0.18	0.21	0.16	0.13	0.25	0.29	0.28	0.28	0.24	0.22	0.36	0.17
DNS	0.71	1	0.42	0.33	0.25	0.46	0.62	0.67	0.54	0.42	0.46	0.71	0.33
LDAP	0.5	0.26	1	0.39	0.34	0.63	0.5	0.53	0.71	0.63	0.55	0.61	0.45
MSSQL	0.48	0.26	0.48	1	0.26	0.68	0.65	0.58	0.81	0.55	0.42	0.65	0.35
NTP	0.55	0.27	0.59	0.36	1	0.68	0.45	0.55	0.59	0.64	0.55	0.68	0.36
PortMap	0.49	0.23	0.51	0.45	0.32	1	0.38	0.4	0.77	0.47	0.32	0.55	0.26
SNMP	0.57	0.32	0.4	0.43	0.21	0.38	1	0.83	0.66	0.68	0.57	0.83	0.45
SSDP	0.59	0.36	0.45	0.41	0.27	0.43	0.89	1	0.64	0.73	0.68	0.82	0.45
SYN	0.37	0.18	0.38	0.35	0.18	0.51	0.44	0.39	1	0.46	0.31	0.49	0.28
TFTP	0.47	0.21	0.51	0.36	0.3	0.47	0.68	0.68	0.7	1	0.6	0.68	0.4
UDP	0.59	0.32	0.62	0.38	0.35	0.44	0.79	0.88	0.65	0.82	1	0.74	0.53
UDP_Lag	0.63	0.33	0.44	0.38	0.29	0.5	0.75	0.69	0.67	0.62	0.48	1	0.42
Web	0.62	0.31	0.65	0.42	0.31	0.46	0.81	0.77	0.77	0.73	0.69	0.85	1

FIGURE 9. Pair intersections between the explanations of TP samples. Each cell in the row is the ratio of the number of intersected features to the number of features of the row label.

TABLE 6. The features\nibbles of each TP class explanation that have no intersection (unique features) with other explanations.

Class (#)	Features Name
Benign (52)	'F99', 'F207', 'F96', 'F100', 'F66', 'F68', 'F40', 'F318', 'F233', 'F64', 'F241', 'F172', 'F143', 'F186', 'F140', 'F148', 'F158', 'F120', 'F203', 'F189', 'F286', 'F315', 'F168', 'F90', 'F240', 'F192', 'F80', 'F177', 'F193', 'F243', 'F181', 'F72', 'F288', 'F149', 'F124', 'F175', 'F210', 'F185', 'F204', 'F278', 'F132', 'F122', 'F242', 'F242', 'F282', 'F244', 'F290', 'F123', 'F234', 'F190', 'F184', 'F284', 'F134', 'F146'
DNS (1)	'F73'
LDAP (2)	'F20', 'F247'
MSSQL (1)	'F44'
NTP (1)	'F221'
PortMap (4)	'F36', 'F34', 'F37', 'F6'
SNMP (0)	-
SSDP (1)	'F39'
SYN (11)	'F103', 'F49', 'F61', 'F53', 'F11', 'F299', 'F23', 'F271', 'F55', 'F52', 'F298'
TFTP (1)	'F47'
UDP (0)	-
UDP-Lag (0)	-
Web (0)	-

II ver	IIIL	103			101	Len			
F0	F1	F2	F3	F4	F5	F7			
	Ip	vid		Flags		FragOffs			
F8	F9	F10	F11	F12	F15				
Т	TL	TrI	Prot		Hea	dChs			
F16	F17	F18	F19	F20	F21	F22	F23		
			Src	Add					
F24	F25	F26	F27	F28	F29	F30	F31		
			Dst	Add					
F32	F33	F34	F34 F35 F36 F37		F37	F38	F39		
	Src	Port		DstPort					
F40	F41	F42	F43	F44	F45	F46	F47		
			Seql	Num					
F48	F49	F50	F51	F52	F53	F54	F55		
			Ackl	Num					
F56	F57	F58	F59	F60	F61	F62	F63		
Offset	Reserved	TCI	Pflgs		Win	dow			
F64	F65	F66	F67	F68	F69	F70	F71		
	Chk	sum			UrP	nter			
F72	F73	F74	F75	F76	F77	F78	F79		
	(a)								

IPver	IHL	T	OS		Tot	:Len				
F0	F1	F2	F3	F4	F5	F6	F7			
	Iŗ	oid		Flags		FragOffs				
F8	F9	F10	F11	F12	F13	F14	F15			
T	ΓL	TrI	Prot		Hea	dChs				
F16	F17	F18	F19	F20	F21	F22	F23			
			Src	Add						
F24	F25	F26	F27	F28	F29	F30	F31			
			Dst	Add						
F32	F33	F34	F35	F36	F37	F38	F39			
	Src	Port			Dst	Port				
F40	F41	F42	F43	F44	F45	F46	F47			
	UDI	PLen			Chk	sum				
F48	F49	F50 F51		F52	F53	F54	F55			
	(b)									

FIGURE 10. Mapping the nibbles to their corresponding header fields in the transport layer. (a) TCP/IP header and (b) UDP/IP header.

its results to those obtained from explaining the LSTM model using the original SHAP.

B. EXPERIMENTAL RESULTS

In this subsection, we can summarize our experimental results in three folds: 1) the classification of the DDoS

90718

attacks in the raw CICDDoS2019 dataset using the LSTM model and calculating the classification performance. 2) the explanation of the LSTM predictions using the SHAPP and the original SHAP, mapping the resulted explanations into their corresponding packet fields, and evaluation the SHAPPD approach by comparing its explanations to those are obtained from the original SHAP. 3) the explanation of FP predictions of the LSTM model using the SHAPPD approach and justification of these predictions.

1) DDOS ATTACK CLASSIFICATION

We use the LSTM model designed in Figure 6 to conduct multiclass classification on the preprocessed raw traffic samples mentioned in Section III. We classify 12 classes of DDoS attacks extracted from CICDDoS2019 plus to the benign class. Table 4 shows that the LSTM model provides high performance on these classes where the metrics (accuracy, precision, recall, and F1-score) have very high values while the metrics FPR and FNR have very low values.

Figure 7 shows the confusion matrix of the multiclass classification on the CICDDoS2019 test set. The diagonal of the confusion matrix represents the true positive (TP) samples while the columns except the diagonal cells represent the false positive (FP) samples. We note from Figure 7 that the number of FP is few and this indicates a good performance of the classification model. However, The model can misclassify some samples of the dataset, which will cause the FPs. We can notice from the figure that the highest number of FPs are 320 for being misclassified as Benign, 105 for being misclassified as DNS.Such cases will be investigated by our proposed approach in the following sections.

2) LSTM MODEL EXPLANATION

In this subsection, we employ the SHAPPD approach to explain the predictions of the LSTM model. We follow the procedures in Algorithm 1 to explain TP and FP predictions of the LSTM classification on 13 network traffic classes extracted from the CICDDoS2019 dataset.

Fields	Benign	DNS	LDAP	MSSQL	NTP	PortMap	SNMP	SSDP	SYN	TFTP	UDP	UDP-Lag	Web
IPver	X	X	X	X	X	×	X	X	X	×	X	×	X
IHL	X	X	X	X	X	X	X	X	X	×	X	×	X
TOS	X	X	X	X	X	×	X	X	X	X	X	×	X
TotLen	X	X	X	X	×	1	X	X	1	×	×	×	1
IPid	1	×	X	X	×	1	1	1	1	×	1	1	X
Flags	X	X	X	X	X	×	X	X	X	X	X	×	X
FragOffs	X	X	X	X	×	X	X	X	X	X	X	×	X
TTL	X	X	1	1	1	1	1	1	X	1	1	×	1
TrProt	X	X	X	X	×	1	X	X	1	X	X	×	X
HeadChs	X	X	1	1	×	1	X	1	1	1	X	1	X
SrcAdd	X	X	X	X	X	×	X	X	X	X	X	×	X
DstAdd	X	X	X	X	×	1	X	X	X	X	X	×	X
SrcPort	1	X	X	X	×	X	1	1	X	1	X	1	1
DstPort	X	X	X	1	×	X	1	X	X	1	X	×	×
UDPLen	X	X	1	X	×	X	1	X	X	1	1	×	X
SeqNum	1	X	X	X	X	1	X	X	1	X	X	×	X
AckNum	X	X	X	X	×	X	X	X	1	X	X	×	X
Offset	1	X	X	X	×	X	X	X	X	X	X	×	×
Reserved	X	X	X	X	X	×	X	X	X	X	X	×	X
TCPflgs	1	×	×	X	×	X	X	X	1	×	×	X	1
Window	1	X	X	X	×	X	X	X	1	X	X	X	X
Chksum	1	1	X	1	×	X	1	1	X	×	1	X	1
UrPnter	1	×	X	X	×	X	X	X	1	×	X	X	1

TABLE 7. The result of mapping SHAPPD explanation of each attack in the CICDDoS2019 into their corresponding TCP/UDP header fields of the transport layer.

 TABLE 8. The result of mapping SHAPPD explanation of each attack in the

 CICDDoS2019 dataset into their corresponding header fields of the

 application layer.

Class	Fields	XIV	Class	Fields	XI/	Class	Fields	XI
	Id	X		MesgID	1		PktType	1
	DNSflgs	X]	ProtOP	1]	LstPktInd	X
DNS	QDcount	X	LDAP	-	-	MSSQL	PktSize	X
	NScount	X	1	-	-	1	Unkwn	X
	ARcount	1		-	-		-	-
	NTPflgs	X		FrgHder	1		SNMPver	<
	Stratum	1		xid	X]	Commy	X
	Poll	X		MesgTy	X		-	-
	Precision	X	PortMap	PRCver	1		-	-
	RoDely	X		RPCprog	X	SNMP	-	-
NTP	RoDisp	1		ProgVer	X		-	-
	RefID	1		Proced	1		-	-
	RefTims	X		Creden	X		-	-
	OrgTims	X		Verifier	×		-	-
	RecTims	1		PMprog	X		-	-
	TranTims	X		PMver	X		-	-
	-	-		PMprot	X		-	-
	Search	1		OPcode	1		StrtLine	1
	Host	1		Block #	1		Host	X
SSDP	Man	X	TFTP	-	-	Web	Conn	×
	-	-		-	-		AccEncod	1
	-	-		-	-		Accept	

a: TRUE POSITIVE (TP) EXPLANATIONS

Figure 8 presents explanations of true positive predictions of all 13 classes in the raw CICDDoS2019 dataset. All the 324 features/nipples used in the data classification are presented in Figure 8 as (18×18) matrix starting from F0 into F324. The shaded features in this figure represent the class explanation *S* that is provided by the SHAPPD approach illustrated in Algorithm 1.

The explanation features of each class in Figure 8 are listed in Table 5 in descending order depending on their Shapley values. For example, the benign class has 92 features in its explanation starting with F99 which has the largest Shapley value, and ending with F146 which has the lowest Shapley value. The feature with the large Shapley value has more contribution to the class prediction.

The pair intersection between the explanations is shown in Figure 10. Each cell in this figure contains the ratio of the number of common features to the number of features in the intended class. As an example, consider the first row of Figure 10. In this case, the intended class is "Benign," which has 92 features within its explanation. Out of these features, 17 intersect with the "DNS" class, which itself has 24 features in its explanation. Therefore, the ratio will be $\frac{17}{92} = 0.18$ as shown in the second cell of the first row. We can see from Figure 10 that the largest ratio is 0.89 of SNMP \cap SSDP to SSDP (³⁹/₄₄) followed by 0.88 of SSDP \cap UDP to UDP (30/34). The common features between the pair explanations indicate the presence of a degree of similarity in the behavior of the corresponding DDoS classes. This degree of similarity is shown as similar features (nibbles) between the DDoS attacks but sometimes is not enough to produce similar predictions of the classification model.

On the other hand, the classes that exhibit different behavior reflect different features in their explanations. We can list in Table 6 the unique features of each class explanation. These features appear only in the explanation of the intended class, and they do not show any intersection with other classes. We can note from the result in this table that the benign class includes several unique features in its explanation compared to the other DDoS classes. This is expected because of the difference in the behavior between the benign and the DDoS attacks and the similarity in the behavior of DDoS attacks. The classes SNMP, UDP, UDP-Lag, and Web do not have any unique features while the rest of the DDoS classes have a few unique features compared to the Benign class.

b: GROUPING THE EXPLANATIONS

We use a nibble (4 bits) as raw dataset because it represents the smallest structure unit in protocol header fields. For example, the Header Length (IHL) field in the IP header consists of one nibble while the Time to Live (TTL) field consists of 2 nibbles and the Identification field consists of 4 nibbles. Consequently, the explanation features are also represented by nibbles. The deal with an explanation as individual nibbles often is meaningless, particularly for the header fields consisting of more than one nibble. To address this issue, we adopt a grouping process to put the related nibbles together to reconstruct the packet header fields.

Figure 10 illustrates the mapping process between the nibbles and the protocol header fields. For example, nibbles F2 and F3 are assigned to the Type of Service (TOS) field. Subplot (a) of Figure 10 represents packet header fields of TCP/IP protocols, whereas Subplot (b) represents packet header fields of UDP/IP protocols. The first 40 nibbles (F0 - F39) with the orange color represent the IP header fields, which are common between Subplots (a) and (b). The rest of the nibbles (F40 - F79) in (a) represent TCP header fields whereas the rest of the nibbles (F40 - F55) in (b) represent UDP header fields. We use Figure 10 to assign the class explanation to header fields of TCP and UDP protocols. The type of transport layer protocol (TCP or UDP) in the dataset can be identified from the protocol number field (TrProt) in the IP header. This field takes the hexadecimal value 0×06 for the TCP and 0×11 for the UDP.

After checking the TrProt field, we found that all the DDoS attacks in the CICDDoS2019 dataset were generated using UDP protocol except PortMap, SYN, and Web attacks were generated using TCP protocol. The benign traffic was generated using both TCP and UDP protocols.

Table 7 shows the result of mapping the explanations in Table 5 into TCP and UDP header fields. The first column lists all TCP and UDP header fields whereas the rest of the columns present the result of the mapping process for each class. It is worth mentioning that the Chksum field in the first column is common between the TCP and UDP headers.

The presence of the correct sign (\checkmark) in the class column indicates that the corresponding fields have been derived from the mapping process of the class explanation. We notice from

TABLE 9. The result of mapping SHAPPD explanation of each attack in the CICDDoS2019 dataset into their corresponding header fields of both the transport and application layers.

Class	Fields	Class	Fields	Class	Fields	Class	Fields
	Chksum		TTL		TTL		TTL
	ARcount		HeadChs		HeadChs		Stratum
DNS	PL(20)	IDAD	UDPLen	MESOI	DstPort	NTP	RoDisp
DINS	-	LDAI	MesgID	MISSQL	Chksum	1111	RefID
	-		ProtOP		PktType		RecTims
	-		PL(17)		PL(22)		PL(10)
	TotLen		IPid		IPid		TotLen
	IPid		TTL		TTL		IPid
	TTL		SrcPort		HeadChs		TrProt
	TrProt		DstPort		SrcPort	SYN	HeadChs
	HeadChs		UDPLen	SSDP	Chksum		AckNum
PortMap	DstAdd	SNMP	Chksum		Search		TCPflgs
	SeqNum		SNMPver		Host		Window
	FrgHder		PL(40)		PL(19)		UrPnter
	PRCver		-		-		PL(48)
	Proced		-		-		-
	PL(22)		-		-		-
	TTL		IPid		IPid		TotLen
	HeadChs		TTL		HeadChs		TTL
	SrcPort		UDPLen		SrcPort		SrcPort
	DstPort		Chksum		PL(48)		TCPflgs
TETP	UDPLen	UDP	PL(30)	UDP-Lag	-	Web	Chksum
	OPcode		-	ODI Dug	-		UrPnter
	Block #		-		-		StrtLine
	PL(38)		-		-		AccEncod
	-		-		-		Accept
	-		-		-		PL(6)

TABLE 10. The result of mapping the original SHAP explanation of each attack in the CICDDoS2019 dataset into their corresponding header fields of both the transport and application layers.

Class	Fields	Class	Fields	Class	Fields	Class	Fields
	ARcount		ProtOP		PktType		TTL
DNS	PL (13)	LDAP	PL (3)	MSSQL	PL(16)	NTP	RoDisp
	-		-		-		PL (7)
	UrPnter		SNMPver		IPid		SeqNum
	FrgHder	SNMP	PL (14)	SSDP	TTL	SYN	AckNum
PortMap	PL (16)		-		Search		UrPnter
	-		-		Host		-
	-		-		PL (15)		-
	TTL		IPid		PL (17)	Web	StrtLine
TETP	OPcode		TTL	LIDP-L ag	-		PL (4)
	Block #	ODI	PL (25)	ODI -Lag	-		-
	PL (37)		-		PL(48)		-

the table that several header fields are not assigned to any of the classes therefore all cells of its row include (X) sign. These fields are IPver, IHL, TOS, Flags, FragOffs, SrcAdd, and Reserved. We can also see that the DstAdd field assigns (X) for all classes except for the PortMap. This is because the PortMap class was generated in a victim network different from that of the other classes. The PortMap network includes a Web server with a different IP address. The reader can refer to [17] for more details. We can see from Table 7 that TotLen, TrProt, SeqNum, TCPflgs, and UrPnter fields were assigned

Class	Benign	DNS	LDAPL	NTP	PortMap	SNMP	SSDP	SYN	UDP	UDP-Lag	Web
EX _{TP}	92	24	38	22	47	47	44	71	34	52	26
EXFP	160	55	55	89	66	57	40	102	48	57	59
$\mathrm{EX}_{\mathrm{TP}}\cap\mathrm{EX}_{\mathrm{FP}}$	92	21	27	22	38	47	34	71	29	43	26
$\left(\frac{\mathrm{EX}_{\mathrm{TP}}\cap\mathrm{EX}_{\mathrm{FP}}}{\mathrm{EX}_{\mathrm{TP}}}\right)\%$	100	88	71	100	81	100	77	100	85	83	100

TABLE 11. The intersection between the explanations of TP and FP samples of the CICDDoS2019 classes using the SHAPPD approach.

only for the classes (Benign, PortMap, SYN, and Web) that are generated based on the TCP protocol.

The impact of the application layer DDoS attacks on the behavior of network traffic is not limited to the header fields of the TCP/IP and UDP/IP packets. The header fields of the application layer protocols can be affected by the DDoS behavior and reflect it to the corresponding features in the DDoS class explanation. Therefore, we also map the explanation features into their corresponding header fields in the application protocols. By analyzing the raw traffic of the CICDDoS2019 dataset, we found that the DDoS attacks whose effect extends to the application layer are DNS, LDAP, MSSQL, NTP, PortMap, SNMP, SSDP, TFTP, and Web.

Table 8 shows the result of mapping the class explanation into the header fields of the DDoS attack protocols that work in the application layer. The 'Fields' columns state the header fields for each DDoS attack protocol in the application layer. The (\checkmark) sign next the field indicates that this field has been extracted from the mapping process of the class explanation. All the header fields mentioned in Tables 7 and 8 are described in Appendix A.

The result in Table 9 summarizes the mapping process into both transport and application header fields of all the DDoS attack classes in the CICDDoS2019 dataset. Payload features (PL) for each class, in the table, refers to the rest of the features (nibbles) in the class explanation located in the range of the packet payload. For example, PL (20) in the DNS class means that the last 20 features of the DNS explanation are located in the packet payload. We note from Table 9 that some of the attack classes have common header fields, particularly in the network and transport layers. The SNMP and UDP classes have 4 common fields ('IPid', 'TTL', 'UDPLen', and 'Chksum') out of 7. The SSDP class also has 3 common fields ('IPid', 'HeadChs', and 'SrcPort') out of 7 with the UDP-Lag class and 4 common fields ('IPid', 'TTL', 'SrcPort', and 'Chksum') out of 10 with SNMP class. The result in Table 9 demonstrates that our proposed approach effectively provides a detailed analysis of the CICDDoS 2019 raw dataset. The approach could assign a specific set of header fields and a portion of the payload of the traffic packet that can differentiate the DDoS attacks in the analysis dataset.

c: COMPARISON SHAPPD TO ORIGINAL SHAP

To evaluate the SHAPPD approach, we compare its explanations of the LSTM model to those obtained from explaining the LSTM model using the original SHAP. In order to conduct the comparison, we will conduct the explanation using the original SHAP on the same results of the used LSTM model. Since the original SHAP deals with the input samples independently, the input vector is $(1 \times m)$ instead of an array $(T \times m)$. We then follow the same mapping steps to assign the resulting explanations to their packet header fields. Table 10 presents all the classes in the CICDDoS2019 dataset associated with their packet header fields and payload portion according to the resulting explanation using the original SHAP.

By comparing the results of the original SHAP in Table 10 to the results of the SHAPPD in Table 9, we can notice that the original SHAP provides less representative explanations of the series dataset (CICDDoS2019). The original SHAP, as shown in Table 10, failed to extract the explanations from all phases of the encapsulated packet traffic in several of the dataset classes. For example, the explanations of DNS, LDAP, MSSQL, SNMP, UDP-Lag, and Web don't include IP header fields compared to the SHAPPD explanations. Moreover, these explanations foremost concentrate on the packet features (PL). On the other hand, the results of our proposed approach (SHAPPD) in Table 9 provides more robust and representative explanations of all classes in the CICDDoS2019 dataset. These explanations can cover all phases of the encapsulated packet traffic and present several fields in each phase.

d: FALSE POSITIVE (FP) JUSTIFICATION

In this subsection, we perform the proposed explanation approach on the false positive (FP) samples. We can see from the confusion matrix in Figure 7 that there are few FP samples compared to the TP samples for each class. The number of FP samples can be found by summing the values of column cells of the confusion matrix except the cells at the matrix diagonal that represent the TP samples. Accordingly, the FP samples for all 13 classes are 320, 100, 4, 0, 2, 13, 26, 22, 1, 0, 49, 71, and 105 for Benign, DNS, LDAP, MSSQL, NTP, PortMap, SNMP, SSDP, SYN, TFTP, UDP, UDP-Lag, and Web, respectively. We follow the procedures in the SHAPPD algorithm to explain the LSTM predictions on the FP samples of the CICDDoS2019 classes to justify these predictions.

The FP of a certain class (i) is defined as the number of samples that are classified as *i* but they truly belong to other classes. The explanations of the FP samples of class (i) are expected to have common features with the explanations of TP samples for that class. Depending on these features, the model misclassifies the samples from other classes (not *i*) and predicts

TABLE 12. Description of the packet header fields in the transport and application layers.

Field	Discription
IPver	The Version field indicates the format of the internet header IPv4 or IPv6.
IHL	Internet Header Length is the length of the internet header in 32-bit words, and thus points to the beginning of the data.
TOS	The Type of Service provides an indication of the abstract parameters of the quality of service desired.
TotLen	Total Length is the length of the datagram, measured in octets, including internet header and data.
IPid	An identifying value assigned by the sender to aid in assembling the fragments of a datagram.
Flags	Various Control Flags: Reserved, DF, and MF.
FragOffs	Fragment Offset: This field indicates where in the datagram this fragment belongs.
TTL	Time to Live: This field indicates the maximum time the datagram is allowed to remain in the internet system.
TrProt	Protocol: This field indicates the next level protocol used in the data portion of the internet datagram.
	Header Checksum: A checksum on the header only. Since some header fields change this is recomputed and
HeadChs	verified at each point that the internet header is processed.
SrcAdd	Source Address: IP address identifies the specific host that transmitted the packet or frame onto the network.
DstAdd	Destination Address: IP address of the device to whom you want to send packet.
SrcPort	The source port number.
DstPort	The destination port number.
UDPLen	Length: is the length field in octets of this user datagram including this header and the data.
SeqNum	The sequence number of the first data octet in this segment.
AckNum	Acknowledgment Number: This field contains the value of the next sequence number the sender of the
Offeet	This indicates where the data begins
Reserved	A set of control bits reserved for future use
TCPflgs	TCP Elags: The control bits: CWP, ECE, LIPG, ACK, PSH, RST, SVN, and EIN
Terings	The number of data actets beginning with the one indicated in the acknowledgment field that the sender of
Window	this segment is willing to accept.
Chksum	The checksum field is the 16-bit ones' complement of the ones' complement sum of all 16-bit words in the
	header and text. The checksum computation needs to ensure the 16-bit alignment of the data being summed.
UrPnter	Urgent Pointer: This field communicates the current value of the urgent pointer as a positive offset from the sequence number in this segment
	A 16-bit identifier assigned by the program generates any kind of query. This identifier is copied the
Id	corresponding reply and can be used by the requester to match up replies to outstanding queries.
DNSflgs	Flags: QR, 0pcode, AA, TC, RD, RA, Z, and RCODE.
ODcount	An unsigned 16-bit integer specifying the number of entries in the question section.
ANcount	An unsigned 16-bit integer specifying the number of resource records in the answer section.
	An unsigned 16-bit integer specifying the number of name server resource records in the authority records
NScount	section.
ARcount	An unsigned 16-bit integer specifying the number of resource records in the additional records section.
MasaID	Message ID: A server identifies request packets sent by clients according to the message IDs and correctly
MesgiD	returns response packets.
	Protocol OP: Packet body, which carries packet type and authentication as well authorization information.
ProtOP	Common packet types are bindRequest, bindResponse, searchRequest, searchResEntry, searchResDone, and
	searchResRef.
PktType	Packet Type: This field specifies the type of service packet such as TDS query, TDS login, and TDS authentication
LstPktInd	Last Packet Indicator: This takes two values 0 and 1 for more received packets and for last packet respectively
PktSize	Packet Size: The size of packet in network byte order
Unkwn	Unknown: It is always 0 and this has something to do with server-to-server communication/RPC stuff
NTPflos	Flags are LI: 2 bits Leap Indicator. VN: 3 bits Version Number and Mode: 3 bits
	8-bit integer representing the stratum, with values: unspecified (0), primary server (1), secondary server $(2 - $
Stratum	25), unsynchronized (16), and reserved $(17 - 255)$.

Field	Discription						
Poll	8-bit signed integer representing the maximum interval between successive messages, in log2 seconds.						
Precision	8-bit signed integer representing the precision of the system clock, in log2 seconds.						
RoDely	Root Delay: Total round-trip delay to the reference clock.						
RoDisp	Root Dispersion: Total dispersion to the reference clock.						
RefID	Reference ID: 32-bit code identifying the particular server or reference clock.						
RefTims	Reference Timestamp: Time when the system clock was last set or corrected.						
OrgTims	Origin Timestamp: Time at the client when the request departed for the server.						
RecTims	Receive Timestamp: Time at the server when the request arrived from the client.						
TranTims	Transmit Timestamp: Time at the server when the response left for the client.						
SNMPver	SNMP version.						
	Community: An SNMP community string is a means of accessing statistics stored within a router or other						
Commy	device. Sometimes referred to simply as a community string or an SNMP string, it comprises the user						
	credential—ID or password—delivered alongside a GET request.						
TC (1	Indicates the SEARCH method to discover the services. M-SEARCH method uses the header format of						
litte	HTTP/1.1.						
TT+	The host and port the message will be sent to. Typically, M-SEARC messages use the IP address						
Host	239.255.250 with the port number 1900.						
Man	This defines the message type, for an M-SEARCH this will always be ssdp:discover.						
Max	This specifies the maximum amount of seconds it takes for a device to respond.						
ODeede	The code of operation includes Read request (1), Write request (2), Data (3), Acknowledgment (4), and Error						
Orcode	(5).						
Block #	The block numbers on data packets begin with one and increase by one for each new block of data.						
	The Fragment header is 32 bits that precede XDR packets over TCP. The most significant bit of the Fragment						
FrgHder	header indicates whether the packet is the last fragment, and the remaining 31 bits are the length of the						
	Fragment that follows.						
xid	All PortMap messages start with a transaction identifier, xid.						
MesoTy	Message Type: RPC message protocol consists of two distinct structures: the call message and the reply						
- Mesgiy	message.						
PRCver	RPC version: The version of Remote Procedure Call service.						
RPCprog	RPC Program: The program used to map Remote Procedure Call service.						
ProgVer	Program Version: The program version used in Remote Procedure Call service.						
Proced	The procedure used in PortMap operation: NULL, SET, UNSET, GETPORT, DUMP, and CALLIT.						
Creden	Credentials: This field is authentication field. There are two kinds of credentials: one in which the client uses						
	its full network name, and one in which it uses its "nickname" given to it by the server.						
Verifier	This field is authentication field that the server generates in order to validate itself to the client.						
hline PM-	PortMap Program: The program used to map port based on the RPC service.						
prog							
PMver	PortMap version: The version of PortMap service.						
PMprot	PortMap Protocol: The used protocol in the napping process.						
PMport	PortMap Port: The used port in the napping process.						
StrtLine	Start line: The first line of the message which indicating what to do for a request or what happened for a						
	response.						
Host	The Host request-header field specifies the Internet host and port number of the resource being requested.						
Conn	Connection: The Connection field allows the sender to specify options that are desired for that particular						
	connection.						
Accept	The Accept field can be used to specify certain media types which are acceptable for the response.						
AccEncod	Accept-Encoding field is similar to Accept but restricts the content-coding that are acceptable in the response.						

TABLE 12. (Continued.) Description of the packet header fields in the transport and application layers.

them as *i*. Table 11 presents the intersection between TP and FP explanations. The first row in Table 11 shows the data classes that include samples with FP prediction. We exclude MSSQL

and TFTP classes because they do not have FP samples. The second row lists the number of features in explanation of TP samples while the second row lists the number of features in

explanation of FP samples. The third row lists the number of common features between TP and FP explanations of each class. The rate of these common features to the number of features in TP explanations is listed in the last row.

We can see that the percentage of intersection between TP and FP explanations is high (100% for 5 classes and above 70% for the rest) of all classes. This indicates that the LSTM classification model made incorrect predictions for FP samples as these samples possess a majority of the features found in TP samples. This brings us to two separate conclusions; First, when the DDoS sample is incorrectly classified as one of the other DDoSs, which means that the classification model is unable to distinguish the DDoS classes that exhibit almost the same behavior. Second, when the DDoS sample is incorrectly classified as benign, which happens at the start points of the attack in the dataset where the few samples are labeled as background traffic (Benign) because of the difficulty in determining the specific starting time of the attack.

VI. CONCLUSION

In this paper, we propose an explanation approach SHAP with Pattern Dependency (SHAPPD) that evolves the original SHAP method to enhance its explanations. The SHAPPD considers the dependencies among the network traffic packets as well as the interdependencies between the features within the packet. We utilize the SHAPPD to explain the predictions of the LSTM model used to classify the DDoS attacks in the CICDDoS2019 dataset.

We first preprocess the CICDDoS2019 data by converting the PCAP data (in bits) into CSV data (in nibbles). For each packet in the dataset, we employ the first 324 nibbles to cover the TCP/IP or UDP/IP headers and portion of the payload. We then use the LSTM model to classify 13 different traffic classes in the CICDDoS2019 dataset. The classification's results demonstrate high values of performance metrics on all these classes.

After that, we use our proposed approach (SHAPPD) to explain the LSTM predictions of all the 13 classes in the CICDDoS2019 dataset. The output of SHAPPD is a class explanation that includes a set of nibbles/features that cause the class prediction. To provide an understanding of the set of nibbles inside the explanation set, we map these nibbles to their corresponding packet fields. The result of mapping provides a specific set of header fields and a portion of the payload of the traffic packet that can differentiate the DDoS attacks of the CICDDoS2019 dataset.

We evaluate our proposed approach (SHAPPD) by comparing its explanation results on the raw CICDDoS2019 dataset to those obtained from the original SHAP. The comparison results show that the SHAPPD can provide a more robust and representative explanation than the original SHAP.

We finally use the class explanation to justify the false positive (FP) predictions of the LSTM model. We compare the explanations of TP and FP to find the features that caused the LSTM to generate FP. The result shows that the percentage of intersection between TP and FP explanations is high for all classes. This indicates that the LSTM classification model made incorrect predictions for FP samples as these samples possess a majority of the features found in TP samples.

The approach (SHAPPD) is suitable for all the DL models that consider the dependencies of the dataset samples where the SHAPPD leverages these dependencies to enhance its explanation by providing more robust and representative explanations.

Our future work will include a study of implementing several recent DL models to classify the DDoS attacks and explaining these models using other explanation methods such as LIME and Anchor and show how adopting the dependency concept between the data samples can improve the explanation results.

APPENDIX A

see the Table 12.

REFERENCES

- J. Mirkovic and P. Reiher, "A taxonomy of DDoS attack and DDoS defense mechanisms," ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, pp. 39–53, Apr. 2004.
- [2] K. Arora, K. Kumar, and M. Sachdeva, "Impact analysis of recent DDoS attacks," *Int. J. Comput. Sci. Eng.*, vol. 3, no. 2, pp. 877–883, Feb. 2011.
- [3] M. M. Salim, S. Rathore, and J. H. Park, "Distributed denial of service attacks and its defenses in IoT: A survey," *J. Supercomput.*, vol. 76, no. 7, pp. 5320–5363, Jul. 2020.
- [4] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, "Botnet in DDoS attacks: Trends and challenges," *IEEE Commun. Surveys Tuts.*, vol. 17, no. 4, pp. 2242–2270, 4th Quart., 2015.
- [5] V. D. M. Rios, P. R. M. Inácio, D. Magoni, and M. M. Freire, "Detection and mitigation of low-rate denial-of-service attacks: A survey," *IEEE Access*, vol. 10, pp. 76648–76668, 2022.
- [6] S. T. Zargar, J. Joshi, and D. Tipper, "A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks," *IEEE Commun. Surveys Tuts.*, vol. 15, no. 4, pp. 2046–2069, 4th Quart., 2013.
- [7] M. Mittal, K. Kumar, and S. Behal, "Deep learning approaches for detecting DDoS attacks: A systematic review," *Soft Comput.*, vol. 27, no. 18, pp. 13039–13075, Sep. 2023.
- [8] T. E. Ali, Y.-W. Chong, and S. Manickam, "Machine learning techniques to detect a DDoS attack in SDN: A systematic review," *Appl. Sci.*, vol. 13, no. 5, p. 3183, Mar. 2023.
- [9] S.-Y. Ji, B. K. Jeong, and D. H. Jeong, "An analysis of temporal features in multivariate time series to forecast network events," *Appl. Sci.*, vol. 13, no. 18, p. 10411, Sep. 2023.
- [10] H. Aydın, Z. Orman, and M. A. Aydın, "A long short-term memory (LSTM)based distributed denial of service (DDoS) detection and defense system design in public cloud network environment," *Comput. Secur.*, vol. 118, Jul. 2022, Art. no. 102725.
- [11] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation," *PLoS ONE*, vol. 10, no. 7, Jul. 2015, Art. no. e0130140.
- [12] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, "LEMNA: Explaining deep learning based security applications," in *Proc. ACM SIGSAC Conf. Comput. Commun. Secur.*, Oct. 2018, pp. 364–379.
- [13] M. T. Ribeiro, S. Singh, and C. Guestrin, "Why should I trust you?" in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 1135–1144, doi: 10.1145/2939672.2939778.
- [14] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," in *Proc. 31st Int. Conf. Neural Inf. Process. Syst.*, 2017, pp. 4768–4777.
- [15] M. T. Ribeiro, S. Singh, and C. Guestrin, "Anchors: High-precision modelagnostic explanations," in *Proc. AAAI Conf. Artif. Intell.*, 2018, vol. 18, no. 1, pp. 1527–1535.

- [16] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti, "Local rule-based explanations of black box decision systems," 2018, arXiv:1805.10820.
- [17] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, "Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy," in *Proc. Int. Carnahan Conf. Secur. Technol. (ICCST)*, Oct. 2019, pp. 1–8.
- [18] N. Namdev, S. Agrawal, and S. Silkari, "Recent advancement in machine learning based Internet traffic classification," *Proc. Comput. Sci.*, vol. 60, pp. 784–791, Sep. 2015.
- [19] H. Alhumyani, I. Alrube, S. Alsharif, A. Afifi, C. B. Amar, H. S. El-Sayed, and O. S. Faragallah, "An efficient Internet traffic classification system using deep learning for IoT," *Comput., Mater. Continua*, vol. 71, no. 1, pp. 407–422, 2022.
- [20] H. Yi and Z. Aye, "Performance analysis of traffic classification with machine learning," Int. J. Comput. Inf. Eng., vol. 15, no. 1, pp. 42–47, Feb. 2014.
- [21] A. Azab, M. Khasawneh, S. Alrabaee, K.-K.-R. Choo, and M. Sarsour, "Network traffic classification: Techniques, datasets, and challenges," *Digit. Commun. Netw.*, vol. 10, no. 3, pp. 676–692, Sep. 2022, doi: 10.1016/j.dcan.2022.09.009.
- [22] S. Hwang, K. Cho, J. Kim, Y. Baek, J. Yun, and K. Han, "Traffic classification approach based on support vector machine and statistic signature," in *Internet of Things, Smart Spaces, and Next Generation Networking.* Cham, Switzerland: Springer, 2013, pp. 332–339.
- [23] J. J. Kponyo, J. O. Agyemang, G. S. Klogo, and J. O. Boateng, "Lightweight and host-based denial of service (DoS) detection and defense mechanism for resource-constrained IoT devices," *Internet Things*, vol. 12, Dec. 2020, Art. no. 100319.
- [24] B. Hu and Y. Shen, "Machine learning based network traffic classification: A survey," J. Inf. Comput. Sci., vol. 9, no. 11, pp. 3161–3170, Oct. 2012.
- [25] Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, "Network intrusion detection: Based on deep hierarchical network and original flow data," *IEEE Access*, vol. 7, pp. 37004–37016, 2019.
- [26] R.-H. Hwang, M.-C. Peng, C.-W. Huang, P.-C. Lin, and V.-L. Nguyen, "An unsupervised deep learning model for early network traffic anomaly detection," *IEEE Access*, vol. 8, pp. 30387–30399, 2020.
- [27] P. Wang, F. Ye, X. Chen, and Y. Qian, "Datanet: Deep learning based encrypted network traffic classification in SDN home gateway," *IEEE Access*, vol. 6, pp. 55380–55391, 2018.
- [28] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu, "HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection," *IEEE Access*, vol. 6, pp. 1792–1806, 2018.
- [29] Y. Zeng, H. Gu, W. Wei, and Y. Guo, "Deep-Full-Range: A deep learning based network encrypted traffic classification and intrusion detection framework," *IEEE Access*, vol. 7, pp. 45182–45190, 2019.
- [30] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, "Toward effective mobile encrypted traffic classification through deep learning," *Neurocomputing*, vol. 409, pp. 306–315, Oct. 2020.
- [31] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, "Deep packet: A novel approach for encrypted traffic classification using deep learning," *Soft Comput.*, vol. 24, no. 3, pp. 1999–2012, May 2019.
- [32] R.-H. Hwang, M.-C. Peng, V.-L. Nguyen, and Y.-L. Chang, "An LSTMbased deep learning approach for classifying malicious traffic at the packet level," *Appl. Sci.*, vol. 9, no. 16, p. 3414, Aug. 2019.
- [33] R. K. Batchu and H. Seetha, "An integrated approach explaining the detection of distributed denial of service attacks," *Comput. Netw.*, vol. 216, Oct. 2022, Art. no. 109269.
- [34] T.-T.-H. Le, H. Kim, H. Kang, and H. Kim, "Classification and explanation for intrusion detection system based on ensemble trees and SHAP method," *Sensors*, vol. 22, no. 3, p. 1154, Feb. 2022.

- [35] M. Keshk, N. Koroniotis, N. Pham, N. Moustafa, B. Turnbull, and A. Y. Zomaya, "An explainable deep learning-enabled intrusion detection framework in IoT networks," *Inf. Sci.*, vol. 639, Aug. 2023, Art. no. 119000.
- [36] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck, "Evaluating explanation methods for deep learning in security," in *Proc. IEEE Eur. Symp. Secur. Privacy*, Sep. 2020, pp. 158–174.
- [37] M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan, and T. Liu, "Can we trust your explanations? Sanity checks for interpreters in Android malware analysis," *IEEE Trans. Inf. Forensics Security*, vol. 16, pp. 838–853, 2021, doi: 10.1109/TIFS.2020.3021924.
- [38] L. S. Shapley, "A value for n-Person games," in *The Shapley Value*. Princeton, NJ, USA: Princeton Univ. Press, 1988, pp. 31–40.

BASIL ASSADHAN (Senior Member, IEEE) received the M.Sc. degree in electrical and computer engineering from the University of Wisconsin and the Ph.D. degree in electrical and computer engineering from Carnegie Mellon University. He is currently an Associate Professor with the Electrical Engineering Department, King Saud University. His research interests include cybersecurity, network security, network traffic analysis, anomaly detection, and machine learning.

ABDULMUNEEM BASHAIWTH received the B.A. degree in electrical engineering from Hadhramout University and the M.Sc. degree in electrical engineering from King Saud University, where he is currently pursuing the Ph.D. degree with the Electrical Engineering Department. His research interests include cybersecurity, network security, network traffic analysis, anomaly detection, and machine learning.

HAMAD BINSALLEEH received the Master of Information Systems Security degree and the Ph.D. degree in computer science from Concordia University, Canada. He is currently an Assistant Professor with the Computer Science Department, Imam Mohammad Ibn Saud Islamic University. His current research interests include cybersecurity, network security, network traffic analysis and anomaly detection, passive DNS traffic analysis, malware analysis, and malware reverse engineering.

...