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ABSTRACT In holography, the resolution of the hologram significantly impacts both display size and
angle-of-view, yet achieving high-resolution holograms presents formidable challenges, whether in capturing
real-world holograms or in the computational demands of Computer-Generated Holography. To overcome
this challenge, we introduce an innovative Hologram-to-Hologram Super-Resolution network (H2HSR)
powered by deep learning. Our encoder-decoder architecture, featuring a novel up-sampling block in the
decoder, is adaptable to diverse backbone networks. Employing two critical loss functions, data fidelity
and perceptual loss, we guide H2HSR to attain pixel-wise accuracy and perceptual quality. Rigorous
evaluations, using theMIT-CGH-4K dataset, demonstrate H2HSR’s consistent superiority over conventional
interpolation methods and a prior GAN-based approach. Particularly, in conjunction with the SwinIR
encoder, H2HSR achieves a remarkable 8.46% PSNR enhancement and a 9.30% SSIM increase compared to
the previous GAN-based method. Also, we found that our H2HSR shows more stable reconstruction quality
across varying focal distances. These results demonstrate the robustness and effectiveness of our H2HSR in
the context of hologram super-resolution.

INDEX TERMS Holography, deep learning, super-resolution, hologram super-resolution.

I. INTRODUCTION
The ability of holography to directly project three-
dimensional images, without the need for additional
accessories like 3D glasses, has firmly established it as
the pinnacle of display technology. At its core, holography
relies on the hologram, serving as the medium for precisely
encoding and storing holographic information.

Resolution plays a pivotal role in determining the quality
of displayed holographic images. The hologram’s size and
angle-of-view (AoV) are closely tied to its resolution. How-
ever, achieving high-resolution holograms is a challenging
task, both in capturing real-world holograms due to their
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inherent complexity and in Computer-Generated Holography
(CGH) [1] due to the substantial computational demands.

Recent works have explored the use of deep neural
networks for hologram generation [2], [3], with notable
examples such as Tensor Holography [4], which takes
RGB-D images as input and produces holograms. While
impressive, Tensor Holography requires RGB-D input and
needs to regenerate the hologram when the target resolution
changes.

Addressing these challenges, particularly the enhancement
of hologram resolution, represents a promising avenue for
further research. Recent advancements in deep learning,
including Convolutional Neural Networks (CNNs) and
Transformer-based models, have demonstrated exceptional
results in various image super-resolution tasks [5], [6],
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[7], [8], [9], [10], [11], [12]. However, their application in
holography remains largely unexplored.

In response, we present an innovative Hologram-to-
Hologram Super-Resolution network (H2HSR). Our H2HSR
is designed as an encoder-decoder architecture with a unique
up-sampling block in the decoder (Sec. III-A). The encoder
component is flexible and can utilize various backbone net-
works. To guide the H2HSR network in effectively capturing
both fidelity to ground truth and the perceptual quality
of reconstructed holograms, we employ two specific loss
functions: data fidelity loss and perceptual loss (Sec. III-B).
We have developed three versions of H2HSR, each

leveraging a different backbone network for the encoder.
These versions are thoroughly evaluated using the MIT-
CGH-4K dataset [4] (Sec. IV). Our evaluation includes
comparisons with conventional interpolation methods and a
prior deep learning-based (GAN) approach [13].
The results clearly demonstrate the superior performance

of H2HSR across multiple dimensions. H2HSR consistently
outperforms alternative methods, regardless of the specific
encoder network, in terms of both reconstruction quality
(Sec. IV-A) and hologram similarity (Sec. IV-C). Notably,
when employing the SwinIR [11] encoder, H2HSR achieves
an impressive PSNR of 32.85 and an SSIM of 0.91 in recon-
struction quality. This represents a significant improvement
of 8.46% and 9.30%, respectively, over the prior GAN-
basedmethod. Furthermore, our research reveals that H2HSR
produces super-resolution results with a more stable quality
across varying focal distances (Sec. IV-B).

These findings underscore the robustness and effectiveness
of H2HSR in the context of hologram super-resolution,
making it a valuable contribution to the field.

II. RELATED WORK
A. COMPUTER-GENERATED HOLOGRAM
Computer-generated holography (CGH) is capable of gen-
erating holograms from a virtual environment that includes
three-dimensional information, making it one of the most
commonly used methods for hologram generation. The
techniques employed in CGH vary depending on the type
of object representation, such as point clouds [14], polygon
meshes [15], [16], [17], and layer-based methods [18],
[19]. Additionally, Shimobaba et al. [20] proposed a hybrid
approach known as the wavefront recording plane (WRP)
method. This technique records a point wave field onto near
planes (i.e., WRPs) and propagates them to the hologram
plane, thereby reducing the computational complexity asso-
ciated with point-based CGH.

The quality of a hologram is generally proportional to
its resolution. However, as the resolution increases, so do
the computational and spatial overheads. To mitigate these
overheads, parallel computing approaches utilizing multi-
core CPUs [21] and GPUs [22] have been implemented.
Additionally, memory-efficient CGH algorithms have been
proposed [23]. Despite these performance improvements,

the CGH process for generating ultra high-resolution holo-
grams remains time-consuming. For example, generating a
100K 2 hologram using CGH can take several hours [24].

B. HOLOGRAM GENERATION WITH DEEP NEURAL
NETWORK
Generating high-quality holograms is a complex and time-
consuming process. Recent work has attempted to use deep
neural networks (DNNs) to overcome these challenges.
Hirosaki et al. [2] demonstrated the use of DNNs in
generating a phase-only hologram from an image, which can
be an alternative to iterative phase refinement algorithms such
as the Gerchberg Saxton (GS) algorithm [25]. Eybposh et al.
[3] presented DeepCGH, a CNN-based hologram generation
network that creates a 3D volume consisting of planes at
specific depths, and then uses a U-Net-based network to
perform image plane holography. As a result, DeepCGH
achieved a speedup with higher accuracy than traditional
approaches such as the GS algorithm.

Learning the wave propagation model using neural net-
works is a key strategy for incorporating neural networks
into CGH [26], [27]. Peng et al. [28] proposed the camera-
in-the-loop (CITL) optimization method to learn the wave
propagation model of a specific display. Based on CITL,
they also presented HoloNet, which generates full-color-
high-quality holographic images in real-time.

Shi et al. [4] proposed Tensor Holography, a neural
network that takes RGB-D images and outputs a hologram.
The network has a simple CNN architecture consisting of
thirty convolution layers, and it shows real-time hologram
generation performance on a consumer-grade GPU (e.g.,
60Hz for 1,920×1,080 pixel resolution). To train the network,
they generated a set of scenes in a virtual environment and
made a set of holograms based on CGH. This dataset is
called MIT-CGH-4K, and it consists of an RGB image,
a depth image, and holograms in two resolutions. Since loss
functions like MSE do not work properly for holograms, they
also proposed novel loss functions, including ASM (Angular
Spectrum Method) loss and total-variation loss, to measure
the inference accuracy over the ground-truth hologram. They
recently extended Tensor Holography to version 2 with an
unsupervised learning approach to decrease noise at the
outline in the reconstructed image [29].

The MIT-CGH-4K dataset includes a pair of holograms in
two resolutions: 192-by-192 with a 16 µm pixel pitch and
384-by-384 with an 8 µm pixel pitch. We use this dataset to
train our super-resolution network. Furthermore, we employ
the loss function proposed in Tensor Holography to ensure
the accuracy of our super-resolution results.

C. IMAGE SUPER-RESOLUTION
Image super-resolution has been actively studied for a long
time [30]. Traditional approaches involve interpolating the
values of existing pixels to fill the empty pixels added to
increase resolution. Common interpolation methods include
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nearest-neighbor, bilinear, and bicubic algorithms [31], [32].
Although simple and generally applicable to various appli-
cations, these methods are not suitable for super-resolution
(or up-sampling) because they cannot guarantee the quality
of the result since they only exploit the values of neighboring
pixels.

The evolution of deep learning has provided a solution
to the problem of interpolation-based approaches [30].
SRCNN [5] showed that a convolutional neural network
(CNN) could generate a more natural high-resolution image
from a low-resolution input image than the bicubic inter-
polation method. Kim et al. [6] achieved higher accuracy
than SRCNN by using a very deep CNN. Further works
improved the quality of the super-resolution result usingmore
complex or advanced CNN architectures [7], [8], [9], [33].
The network depth grew using a residual block [34] or a
memory block [35]. Shi et al. [36] introduced an innovative
decoder component known as the pixel shuffle layer,
which demonstrates superior performance compared to the
transposed convolution layers used in previous studies. This
efficiency is achieved by rearranging the pixels of a feature
map in a channel-wise order. While it effectively reduces the
number of channels when upscaling the resolution of features,
it accomplishes this without the need to train any additional
parameters. While the deeper network generated better
results, Zhang et al. [10] found that prior work did not fully
utilize the hierarchical features in each convolutional layer.
Zhang et al. proposed the residual dense network (RDN)
to address this issue. RDN has dense residual connections,
making it possible to fully use the hierarchical features from
a low-resolution input image. RDN is one of the state-of-the-
art CNNmodels for super-resolution, and we employ it as one
of the backbones for our hologram super-resolution network.

Dosovitskiy et al. [37] introduced the vision Transformer
(ViT), which adapts Transformer [38] to image tasks. Swin
Transformer [39] extends ViT with a hierarchical feature
map to a general-purpose backbone for computer vision.
Liang et al. [11] proposed SwinIR, an image super-resolution
model based on Swin Transformer. Also, Chen et al.
[12] presented HAT (Hybrid Attention Transformer) based
on Swin Transformer, which combines color channel-wise
attention mechanisms. These Transformer-based methods for
image super-resolution are currently state-of-the-art models.
Therefore, we employ SwinIR and HAT as candidates for the
backbone of our network.

D. HOLOGRAM SUPER-RESOLUTION
In the field of microscopy, various optical-based super-
resolution methods have been studied, including those
that utilize holography to enhance resolution at nanometer
scales [40], [41], [42]. For coherent imaging systems, various
super-resolution methods based on optical and numerical
techniques have been proposed to overcome the limitations
imposed by pixel size and diffraction [43], [44], [45].
Also, deep learning-based super-resolution frameworks were

proposed [46], [47], [48], [49], like Liu et al. [50] used
a generative adversarial network (GAN) to enhance the
resolution of both pixel size-limited and diffraction-limited
coherent imaging systems. Coherent imaging systems are
commonly used in microscopy, and the goal of those work
is to retrieve missing information (e.g., phase) due to sensor
chip limitations. Unlike those works, our method targets
the super-resolution of a full-color hologram generated by
computer-generated holography (CGH).

Several works have attempted to use deep learning-based
super-resolution for holograms generated from CGH [13],
[51], [52]. Liu et al. [52] proposed a newmethod that exploits
a Variational Autoencoder (VAE) [53] to develop real-time
hologram generation. They introduced a new hologram
format, SSHM (Spatial Spectrum of Hologram Modulator),
to better represent complex-valued frequency data to train
the network. They used three hologram animations for each
3D object as the dataset and achieved impressive results.
However, it may be challenging to apply their network to
holograms with different contents from the original data used
in training, as VAE is generally better suited for generating
data similar to the original data used in training. Additionally,
they did not present any quantitative evaluations, such as
PSNR (Peak Signal-to-Noise Ratio) or SSIM (Structural
Similarity Index Map), to support their results. Jee et al. [13]
proposed using dual GAN for hologram generation, with the
input and output being amplitude and phase. They used the
MSE as the loss function, and the MIT-CGH-4K dataset [4]
to train their network, achieving better results than the
interpolation method. However, we found that evaluating the
quality of the reconstructed image is crucial for displaying
holograms. Like Jee et al. [13], we used the MIT-CGH-4K
dataset to train our network for holograms generated from
CGH. However, we further analyzed the results by measuring
the reconstruction quality.

III. HOLOGRAM SUPER-RESOLUTION WITH DEEP
NEURAL NETWORK
In this work, we aim to design an end-to-end super-resolution
network that takes a low-resolution hologram as input
and generates a high-resolution hologram as output. The
resolution of a hologram affects the reconstructed image in
two ways: the reconstructed image’s size and the hologram’s
AoV. Consequently, there are two types of hologram super-
resolution. The first method involves increasing the number
of pixels while decreasing the pixel pitch, which leads to a
wider AoV while maintaining the reconstructed image size.
The second method involves up-scaling the volume of the
hologram while maintaining the pixel pitch, similar to 2D
image super-resolution methods. Our approach targets the
first case, which involves increasing the resolution of the
hologram by decreasing the pixel pitch.
Dataset: To train our super-resolution network, we used

the MIT-CGH-4K dataset [4]. This dataset includes four
thousand samples, each containing a pair of low- and
high-resolution holograms generated from the same 3D
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scene. The low-resolution hologram has a resolution of 192×

192 and a pixel pitch of 16 µm, while the high-resolution
hologram has a 384 × 384 and a pixel pitch of 8 µm. Both
resolutions’ physical width and height are 3.072mm, and the
depth volume is 6mm. It is a full-color hologram consisting
of three color channels whose wavelengths, ordered by red,
green, and blue, are 638nm, 520nm, and 450nm, respectively.
This dataset satisfies the requirement of having a pair of
low- and high-resolution holograms generated from the
same content, which is essential for training our super-
resolution network. Also, since the physical volume of
the two resolutions is the same, we can properly compare
the reconstructed images with the same focal length. The
MIT-CGH-4K dataset is partitioned into 3,800 training
images, 100 validation images, and 100 test images, with all
evaluations performed using the test set.

A. H2HSR NETWORK
Our hologram super-resolution network (i.e., H2HSR) has
an encoder-decoder model, and the input and output are a
set of amplitudes and phases. Since each color channel has
amplitude and phase and the color hologram consists of RGB
(red, green, and blue) colors, the input and output of H2HSR
are six channels.

1) INPUT AND OUTPUT
H2HSR takes the amplitude and phase of a hologram as
its input, and the output is also a pair of amplitude and
phase with a resolution four times larger than the input (e.g.,
1922 → 3842). Before feeding the input into the H2HSR
network, we normalize the input amplitude and phase values,
ranging from 0 to 1. However, we need to set the maximum
value as a hyper-parameter for the amplitude input.

Regarding the MIT-CGH-4K dataset, the phase values are
already normalized within the range of 0 to 1, so we directly
use these normalized phase values. However, for amplitude
normalization, we calculate the maximum value among all
the samples (holograms) in the dataset and use it as the
maximum value for the normalization process.

The output of H2HSR, including both the amplitude and
phase, also falls within the range of 0 to 1. To obtain the
final output amplitude, we apply inverse normalization by
multiplying the amplitude value with the hyper-parameter
(i.e., the maximum value). This process ensures that the
output amplitude is restored to its original scale and can be
properly interpreted. The phase output remains within the
range of 0 to 1 as it does not require further normalization
adjustments.

2) ENCODER
The encoder module plays a crucial role in extracting
informative features from the input hologram. In our
approach, we leverage well-established models that have
shown exceptional performance in image super-resolution
tasks. Specifically, we evaluated three state-of-the-art image

super-resolution models: RDN [10], SwinIR [11], and
HAT [12].

To incorporate these image super-resolution models into
our hologram super-resolution network, we made modifica-
tions to the first layer of the backbone models. By extending
the first layer, we adapted the models to handle holograms
with six channels, corresponding to the amplitude and phase
components. Consequently, the encoder generates a feature
map with dimensions [6, H , W ], where H and W denote the
height and width of the input hologram, respectively. This
feature map serves as a representation of the input hologram
and is subsequently utilized for further processing in the
network.

The output dimension of the encoder is [C , H , W ],
where C denotes the number of feature map channels and
is determined by the choice of the backbone model. In our
method, the value of C is 64 for the RDN-based encoder,
while it is 180 for the SwinIR and HAT-based encoders.

3) DECODER
The decoder network plays a crucial role in generating the
super-resolved hologram from the feature maps obtained
from the encoder. In the field of image super-resolution,
several methods have been explored, including convolution
with nearest-neighbor interpolation [5], [54], transposed-
convolution [55], and pixel-shuffle [36]. Among these meth-
ods, the pixel-shuffle technique has demonstrated superior
performance in capturing high-frequency details, which are
particularly important for holograms due to their sensitivity
to high-frequency information. Our experimentation revealed
that the H2HSR network attains the best outcomes when the
decoder layer employs the pixel-shuffle method. Therefore,
we have integrated the pixel-shuffle technique into our
decoder network to ensure the highest fidelity in preserving
high-frequency details within the super-resolved hologram.

Based on the pixel-shuffle method, we have devised an
up-sampling block that consists of two convolution layers
along with a pixel-shuffle layer (Fig. 1). For SwinIR and HAT
encoder, we added a convolution layer before the up-sampling
block to reduce the feature map channels from 180 to 64 due
to the GPU memory limit.

The first convolution layer of the up-sampling block
increases the number of feature map channels by a factor
of four, preparing the feature map for the subsequent
pixel-shuffle layer that enlarges the feature map size by
consolidating four channels into one. This progression entails
that the first convolution layer takes in a [C, H, W] feature
map and generates an output of [4C, H, W]. Following the
pixel-shuffle layer, the output is further transformed into
[C, 2H, 2W]. Finally, the final convolution layer shapes
the up-sampling block’s output dimensions to [6, 2H, 2W],
with each channel corresponding to the amplitude and
phase components for each color channel, mirroring the
arrangement of the input hologram.
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FIGURE 1. Overview of H2HSR architecture.

At the termination of the decoder, a hyperbolic tangent
layer is employed to normalize the output values, confining
them within a range of -1 to 1. This range mirrors the value
range of the input amplitude and phase components, ensuring
consistency in the representation of the hologram data.

B. LOSS FUNCTION
In the context of image super-resolution, assessing the
similarity between images by comparing the pixel values and
using metrics such as Mean Square Error (MSE) to measure
the performance is common. This approach works well for
images as they primarily consist of color values for each pixel,
and the quality of the super-resolution result can be evaluated
by comparing it to the ground-truth high-resolution image.

However, when working with holograms, measuring qual-
ity using MSE presents challenges for two reasons. Firstly,
holograms consist of amplitude and phase components,
unlike images with only color values. Directly comparing
pixel values is not sufficient for evaluating holograms. Addi-
tionally, the periodicity of the phase makes MSE unsuitable
for measuring hologram quality accurately. Secondly, in the
hologram context, the quality of the reconstructed results is
more important than the individual values in the amplitude
and phase components.

To address these challenges, we utilize two specific loss
functions proposed by Shi et al. [4]: the data fidelity loss
and the perceptual loss. These loss functions are specifically
designed to handle holograms and effectively capture both the
fidelity to the ground truth and the perceptual quality of the
reconstructed hologram.

The loss function we use to train the H2HSR network is
represented by Eq. 1. In this equation, α represents a weight
parameter that balances the contributions of the data fidelity
loss, denoted as Ldata (Sec. III-B1), and the perceptual loss,
denoted as Lpcp (Sec. III-B2). By combining these two loss
functions, we can effectively guide the training process of the
H2HSR network to ensure both fidelity to the ground truth

and perceptual quality in the super-resolved hologram.

L = αLdata + (1 − α)Lpcp (1)

1) DATA FIDELITY LOSS
The data fidelity loss measures the pixel-wise accuracy
between the super-resolution result and the ground-truth
high-resolution hologram, considering both the amplitude
and phase components. Eq. 2 represents the data fidelity loss
used in our H2HSR network.

Ldata = ∥Â− Aeδ(θ̂ ,θ )−δ(θ̂ ,θ)
∥2, (2)

where the estimated amplitude and phase are denoted as Â and
θ̂ , respectively, while the ground-truth amplitude and phase
are represented as A and θ . The term δ corresponds to the
average phase difference across the RGB channels, which
helps reduce disparities. The function captures the phase
difference between the estimated and ground-truth phases
δ(θ̂ , θ), as defined in Eq. 3.

δ(θ̂ , θ) = atan2(sin(θ̂ − θ ), cos(θ̂ − θ )) (3)

The phase is a periodic value ranging from −π to π , and
it is treated within an absolute coordinate system to ensure
accurate comparison. Minimizing the phase difference in the
δ term, the sine term approaches zero, and the cosine term
approaches one, resulting in the exponential term being close
to one in Eq. 2. This implies that the absolute angle tends
to approach zero, leading to a better alignment between the
estimated and ground-truth amplitudes.

2) PERCEPTUAL LOSS
The perceptual loss measures the similarity between images
reconstructed from the super-resolved hologram and the
ground-truth high-resolution hologram. It incorporates two
components: the ASM (Angular Spectrum Method) loss and
the total-variation loss introduced by Shi et al. [4].
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The ASM loss is specifically designed for near hologram
reconstruction, such as those found in the MIT-CGH-4K
dataset. Using the ASM, we can numerically reconstruct
the display result on a hologram display device, such as a
Spatial Light Modulator (SLM), at a specific distance. This
reconstructed result is represented as an image. The ASM
loss measures the difference between the reconstructed image
using the super-resolved hologram (Ĥ ) and the ground-truth
high-resolution hologram (H ). It is defined as the average
pixel-wise absolute difference between the two images,
as shown in Eq. 4:

LASM (d) =
1
N

N∑
i=1

W (d, i) · |ASM (Ĥ , d)i − ASM (H , d)i|

(4)

In this equation, ASM (X , d) represents the reconstructed
image using a hologram X at distance d , and ASM (X , d)i
denotes the pixel value at the i-th pixel in ASM (X , d). N is
the total number of pixels in the image.

The weight function W (d, i) is introduced to give
pixel-wise weights based on the proximity of the i-th pixel’s
depth to the desired focal distance d , as shown in Eq. 5:

W (d, i) =
exp(β · (Zmax − |Zi − d |))

Zmax
(5)

In this equation, Z is the depth map associated with the
ground-truth hologram H , and Zmax and Zi are the maximum
depth value in Z and the depth value of the i-th pixel,
respectively. The parameter β controls the rate of weight
decay. The weight function W (d, i) plays a crucial role in
the perceptual loss by assigning higher weights to pixels that
are closer to the desired reconstruction distance. This enables
the network to focus more on the regions of the hologram
that have a perceptually stronger impact on the reconstructed
image quality.

The total-variation loss captures the variation among pixels
in the reconstructed image, promoting a more natural image
reconstruction. It measures the difference between the total
variations of ASM (Ĥ , d) and ASM (H , d), as shown in Eq. 6,
where ▽ASM (X , d)i represents the gradient of ASM (X , d)i.

LTV (d) =
1
N

N∑
i=1

W (d, i) · |▽ASM (Ĥ , d)i − ▽ASM (H , d)i|

(6)

The perceptual loss (Lpcp) is computed as the average of
the ASM loss (LASM ) and the total-variation loss (LTV ) over
all the reconstruction distances d in the set D, as shown in
Eq. 7:

Lpcp =
1

|D|

∑
d∈D

(LASM (d) + LTV (d)) (7)

By utilizing the perceptual loss, we ensure that the network
is trained to optimize both the similarity to the ground-truth
hologram at various distances and the naturalness of the

reconstructed images. This comprehensive loss function
encourages the network to generate super-resolved holo-
grams that exhibit high fidelity and perceptual quality.
Distance selection: Holograms generate a continuous

volume, making it infeasible to evaluate perceptual loss for
every possible focal distance. To overcome this challenge,
we employ a distance selection strategy that consists of key
distances and random distances. To identify the key distances,
we construct a histogram using the depth values from the
associated depth map. From this histogram, we select the top
k depths as the key distances for the hologram. This approach
allows us to focus on specific depth characteristics that are
deemed important for hologram reconstruction. In addition
to the key distances, we include random distances in our set.
These random distances are uniformly sampled within the
hologram volume (e.g., -3mm to 3mm). By incorporating
both key distances and random distances, we consider both
localized depth features and the overall depth distribution,
enabling a comprehensive evaluation of the reconstructed
holograms.

IV. EXPERIMENTS
We developed three distinct variants of the H2HSR network,
each featuring a unique encoder network: RDN [10],
SwinIR [11], and HAT [12].

• H2HSRRDN is a H2HSR network that incorporates
the RDN as its encoder. For RDN, we opted for
a configuration featuring 16 RDBs (Residual Dense
Blocks), each comprising 8 convolution layers with
64 channels.

• H2HSRSwinIR uses the SwinIR as the encoder of
the H2HSR network. The SwinIR is based on a
medium-size Transformer model with an embedding
space of 180 dimensions.

• H2HSRHAT employs HAT as its encoder. Similar to
H2HSRSwinIR, HAT is founded on a medium-sized
Transformer model with an embedding space of
180 dimensions.

The H2HSRRDN was trained with a batch size of 16,
while H2HSRSwinIR and H2HSRHAT used a batch size of 8.
We initialized the learning rate at 0.001 and implemented
a step-scheduler strategy, reducing the learning rate by half
every 50 epochs to ensure stable convergence. For all models,
we used a fixed training epoch count of 200 for consistency.
As an optimizer, we employed the Adam optimizer [56],
configuring alpha to 0.99 and beta to 0.999. For the perceptual
loss (Sec. III-B2), we set the weight (β) to 0.35 following the
principles of the Tensor Holography approach. For the loss
function in Eq. 1, we have empirically determined that setting
α to 0.5 yields the best performance in our experiments.

During our experiments, we used two distinct system
configurations. For training, we employed four NVIDIA
RTX A6000 GPUs, each equipped with 48GB of VRAM.
For testing and validation, we relied on a single NVIDIA
RTX 3090 GPU with 24GB of VRAM. SwinIR and HAT
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TABLE 1. Super-resolution performance comparison of eight methods.

typically required approximately 50 hours, while the RDN
model demanded nearly two full days of training.
Baselines: In our evaluation, we benchmark H2HSR

against existing methods, encompassing both conventional
interpolation techniques and a previously introduced holo-
gram super-resolution approach. Firstly, we explore conven-
tional interpolationmethods to understand their effectiveness.
Specifically, we independently upscale the amplitude and
phase components of the holograms. We assess the per-
formance of three interpolation methods: nearest-neighbor
(nearest), bilinear , and bicubic.
Our second baseline is a hologram super-resolutionmethod

utilizing GANs, as proposed by Jee et al. [13]. Since the
implementation code for this method is not publicly available,
we implemented it ourselves while acquiring implementation
details from the author. Following the paper’s specifications,
we constructed a generator based on the Cascading Residual
Network (CARN) [57] and a discriminator adapted from
EfficientNet (size B2) [58]. Similar to their dual-generator
GAN model, we employed and trained two generators.
Consequently, we obtained two distinct generators, which we
label as DGANG1 and DGANG2.
Evaluation metrics:As previously discussed in the context

of loss design (Sec. III-B), assessing the quality of the recon-
structed results holds paramount importance in holography.
Therefore, our primary focus in evaluating super-resolution
performance lies in the assessment of these reconstructed
results. Specifically, we employ two widely-used metrics
in the super-resolution field: PSNR and SSIM. To conduct
this evaluation, we generate seven numerically reconstructed
images corresponding to focal distances ranging from -3mm
to 3mm at 1mm intervals. Subsequently, we calculate PSNR
and SSIM values by comparing these reconstructed images
with the high-resolution hologram (i.e., the ground truth), for
each of these distances. The final metrics are then derived by
averaging these values.
Numerical reconstruction method: For the numerical

reconstruction process, we utilized the ASM since the
hologram plane is close to the scene in the MIT-CGH-4K
dataset. The equation for ASM is detailed in Eq.8:

u2(x2, y2) = F−1

[
U (fx , fy) exp

(
i2πz

√
1
λ2 − f 2x − f 2y

)]
(8)

In this equation, u2(x2, y2) represents the reconstructed
two-dimensional scene at a specific distance z. The term
U (fx , fy), which denotes the Fourier space of hologram

plane, is multiplied by an exponential factor incorporating
λ (the wavelength) and the spatial frequencies fx and fy.
To transform the Fourier domain into the spatial domain,
we employ the inverse Fourier transform, denoted as F−1.
In our method, the ASM incorporates zero-padding to
mitigate the effects of circular convolution during the
Fourier transform. To reduce aliasing and unnecessary high
frequencies in the hologram, our implementation of ASM
is based on the band-limited ASM approach described by
Matsushima et al. [59].

A. RESULTS
Table 1 provides a quantitative comparison of the
super-resolution performance among eight different methods.
The first three columns on the left display the results
achieved by interpolation-based approaches. While bilinear
and bicubic interpolation methods demonstrate higher
performance than nearest interpolation, they fall significantly
short when compared to neural network-based methods,
as indicated by both the PSNR and SSIM metrics.

Two GAN-based methods, denoted as DGANG1 and
DGANG2, exhibit similar performance to each other. They
achieve considerably higher performance, approximately 2 in
terms of PSNR and 0.1 for SSIM, when compared to the
bicubic interpolation method.

However, our H2HSR consistently outperforms theDGAN
models, achieving up to 2.5 in PSNR and 0.078 in SSIM
improvement. The key distinction between our H2HSR and
the DGAN models is that the latter focus on restoring the
amplitude and phase of the high-resolution hologram without
considering the reconstructed results. As a result, our H2HSR
attains the highest performance among all methods evaluated.
Among the three encoders we employed, the transformer-
family models, specifically SwinIR and HAT, demonstrate
superior performance compared to RDN in our H2HSR
network. Notably, an intriguing observation emerges: while
HAT exhibits superior performance to SwinIR in the
image super-resolution field, SwinIR surpasses HAT in the
context of H2HSR for hologram super-resolution. Ultimately,
H2HSRSwinIR emerges as the top-performing model, boasting
impressive scores of 32.85 in PSNR and 0.91 in SSIM.

1) QUALITATIVE COMPARISON
In Fig. 2, we present the numerical reconstruction results
achieved through the ASM for holograms super-resolved by
three distinct methods and the ground truth high-resolution
hologram. Upon closer examination of the zoomed images
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FIGURE 2. Numerical reconstruction results obtained from hologram super-resolution using three different methods. The focused objects are highlighted
within red boxes, and the second row provides magnified views of these regions. More comparison results are available in the supplementary report.

in the focused region, marked by the red box, notable
differences become evident. In the results obtained from
the interpolation method (bicubic), aliasing artifacts are
pronounced, especially around the edges. Additionally, these
results exhibit an overall smoothing effect when compared
to GT. Also, although the DGAN manages to avoid aliasing
artifacts around the edges, it still introduces a smoothing
effect across the entire image, including the edges.

In contrast to the two aforementioned methods, our
H2HSRSwinIR achieves results that closely match the GT.
Notably, in the first scene, where the green object and
the white cube overlapped, we observed a remarkable
preservation of edges, mirroring the quality seen in the GT
results. This also demonstrates that our method successfully
captures the volume information embedded in the hologram
to authentically represent the scene. A similar result can
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FIGURE 3. Numerical reconstruction results for three focal distances.

be found in the second scene, featuring a yellow circular
object. Additionally, H2HSRSwinIR exhibits minimal smooth-
ing effects when compared to the other methods, all while
successfully preserving the texture in a manner similar to the
GT.

B. RECONSTRUCTION QUALITY ACROSS THE FOCAL
DISTANCE
Fig. 3 illustrates the reconstruction results obtained at three
different focal distances: 3mm, 0mm, and −3mm. The
qualitative trends observed in the reconstructed results align
with those found in Fig. 2. To assess the influence of focal
distance on reconstruction quality, we conducted separate
evaluations of PSNR and SSIM for specific distances.

We found that the PSNR values remained relatively stable
across varying focal distances. However, it is important to
emphasize that the SSIM values for the bicubic method
displayed a notable decline as the distance from the center
(i.e., 0mm) increased (Table 2). For instance, the SSIM
values exhibited a difference of 0.044 between 0mm and
−3mm, with a standard deviation of 0.0159. This decline in

SSIM aligns with prior research findings [60], suggesting that
hologram super-resolution may encounter challenges related
to preserving volumetric properties within the reconstructed
scene.

Differing from the interpolation method, which solely
considers pixel values, both the DGAN and H2HSR
approaches leverage deep learning to capture hologram
characteristics in the super-resolution context. This may
contribute to their lower standard deviation, indicating higher
robustness. Furthermore, H2HSR differs from DGAN in
its training approach. While DGAN primarily focuses on
the hologram’s amplitude and phase, H2HSR takes into
account reconstruction quality through perceptual loss (see
Sec. III-B2). This comprehensive approach results inH2HSR
exhibiting the most robust performance across varying focal
distances.

C. HOLOGRAM SIMILARITY AND RECONSTRUCTION
QUALITY
Given that holograms are mediums for recording three-
dimensional images, the quality of a hologram is intrinsically
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TABLE 2. This table presents SSIM values across varying focal distances, along with the corresponding standard deviation (SD).

TABLE 3. Hologram similarity (amplitude and phase) to the ground truth hologram as assessed by PSNR and SSIM. The values within brackets in the
DGANG1 column represent reported values from the paper [13], while the remaining values in the column are measured through our experiments.

FIGURE 4. Comparison of the amplitude and phase components in holograms generated by five super-resolution methods.

linked to the visual quality of the reconstructed images.
One might intuitively assume that higher hologram simi-
larity should correspond to visually similar reconstruction
outcomes. However, encapsulating this intricate relationship
within a single, comprehensive similarity metric remains a
formidable challenge.

Jee et al. [13] sought to evaluate the performance of
their hologram super-resolution method by quantitatively
comparing the amplitude and phase of the super-resolved
hologram with those of the ground-truth hologram. To assess
the similarity, they conducted measurements of PSNR and
SSIM independently for both the amplitude and phase
components. However, unfortunately, they did not provide
information regarding the reconstruction quality of the
super-resolved hologram produced by their network.

To investigate the relationship between hologram simi-
larity and reconstruction quality, we evaluated the PSNR
and SSIM for both the amplitude and phase of holograms
super-resolved by different methods (Table 3). We observed
a strong correlation between hologram similarity, as assessed

by PSNR and SSIM, and reconstruction quality, particularly
for the amplitude component. This correlation aligns with
the quantitative evaluation results presented in Table 1,
whereDGANG1 demonstrated higher PSNR and SSIM values
compared to bicubic. Furthermore, the H2HSR methods
consistently achieved higher values in both metrics than the
other alternatives.

For phase, SSIM appears to have a correlation with
reconstruction quality. However, PSNR does not align with
the reconstruction quality. Although DGANG1 achieves a
higher PSNR than bicubic, which may appear to align
with reconstruction quality,H2HSRSwinIR, which exhibits the
highest reconstruction quality, receives a significantly lower
PNSR score compared to other methods.

Fig. 4 compares the amplitude and phase of holograms
super-resolved from a low-resolution hologram using differ-
ent super-resolution methods. We observed that the phase
obtained from DGANG1 exhibits more blurriness compared
to the ground truth (HR), while the H2HSR method achieves
a phase more similar to HR than DGANG1. It means that
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FIGURE 5. The LR hologram inputs with noise and the corresponding super-resolution results achieved by H2HSR.

H2HSR methods restore the high-frequency information.
Among H2HSR methods, H2HSRRDN and H2HSRHAT gets
a little more blurred results in phase than H2HSRSwinIR
while the H2HSRSwinIR achieve lower PSNRphase than
others. In terms of images, applying blur can reduce
artifacts and enhance visual quality. However, smoothing the
high-frequency information in phase can lead to loss of details
in reconstruction results. Consequently, we can conclude that
it is hard to measure the quality of hologram by PSNR.

It is important to note that standard PSNR is not suitable
for directly assessing phase information, given its angular
nature expressed in radians. Therefore, we utilized PSNRphase
as introduced by Oh et al. [61] to address this limitation.
As a result, we figure out that the PSNRphase values alleged
with the reconstruction quality while H2HSRSwinIR gets the
highest value.

We incorporated perceptual loss into our training process,
a departure from the approach employed by DGAN , which
relies solely on MSE loss for amplitude and phase. This
design choice enables our H2HSR method to adjust phase
in tandem with amplitude values, resembling optimization
techniques like Stochastic Gradient Descent (SGD) for phase
refinement [62]. As a result, H2HSR excels in accurately
restoring the phase within the context of reconstructed images
when compared to DGAN . Although individual pixel values
may be less similar to the HR, these results underscore the
effectiveness of our approach for the task of hologram super-
resolution.

D. ROBUSTNESS TO NOISE HOLOGRAM
Unlike holograms generated by CGH, those captured by
holographic cameras or microscopy often contain noise.
Our method directly processes holograms, enabling its
application to real-world captures. To evaluate our system’s
noise robustness, we conducted experiments using H2HSR

FIGURE 6. Overview of the optical-based experiment configuration.

to super-resolve noisy holograms. We introduced Gaussian
noise into a LR hologram in both amplitude and phase
components, characterized by zero mean and a standard
deviation of 0.05. Fig. 5 displays the noisy LR hologram
and the super-resolved (SR) result achieved through H2HSR.
Although the results exhibit noise, originating from the noisy
input LR hologram, the hologram retains robustness in terms
of focal distance. In this work, we focused on super-resolution
rather than denoising while training the networks with
clear hologram pairs. Nonetheless, these results indicate
that our method could work with damaged holograms
too.

E. OPTICAL RECONSTRUCTION RESULTS
We conducted a qualitative evaluation of optical reconstruc-
tion using our Spatial Light Modulator (SLM), HOLOEYE
LETO 3 Phase only LCoS. The SLM has a resolution of
1920 × 1080 and a pixel pitch of 6.4 µm. Fig. 6 shows the
configuration for the optical experiment. To facilitate the use
of a phase-only SLM, we employ the double phase amplitude
coding (DPAC) [63] to extract the phase information from the
complex-valued hologram. The light source used is a laser
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FIGURE 7. The left-most column shows the LR hologram used for the optical experiment, while the second and third columns display the optical
reconstruction results of the HR hologram and the SR hologram from H2HSR, respectively. The color boxes indicate the zoomed regions shown in Fig. 8.

FIGURE 8. Comparison between numerical and optical reconstruction results. The first row shows the reconstruction result of the HR hologram, while
the second row displays the result of the super-resolved hologram from our H2HSRSwinIR . (a) and (b) are the zoomed regions of the red boxes in Fig. 7.
The near focus refers to the focal distance being near the red box, while the far focus refers to the focal distance being near the blue box.

(FISBA RGBeam) with a maximum output power of 70 mW
and the wavelengths for red, green, and blue are 638 nm,
520 nm, and 450 nm, respectively. The coherent light from
the laser is converted into a plane wave by a lens (Lens1),
and it reaches the SLM by passing through a polarizer. The
modulated beam from the SLM is directed into the 4F system,
which consists of two lenses (Lens2 and Lens3), by the
beam splitter (BS). In the frequency plane of the 4F system,
the aperture filters out high-frequency components to meet
the requirements of DPAC and ensure high-quality optical
reconstruction. Finally, the reconstructed scene is captured
by a camera (FLIR Grasshopper3 USB Color, CCD) through
the 4F system. Full-color optical reconstruction is achieved
by merging the results of the red, green, and blue channels,
which are captured separately.

For the optical experiment, we generated a hologram as
an input to our network since the pixel pitch of the SLM
(6.4µm) differs from that of theMIT-CGH-4K dataset, which
has 16 µm for low-resolution and 8 µm for high-resolution
holograms. For hologram generation, we employed the

point-based method and the wavefront recording plane (mid-
point hologram), using objects from the HOPE dataset [64].
The left-most column in Fig. 7 shows the generated LR
hologram. For the LR hologram, we set the resolution
and pixel pitch to 540 × 540 and 12.8 µm, respectively,
to match the SLM’s specifications for the super-resolution
results. To validate the optical reconstruction result, we also
generated a HR hologram for the same scene as the LR
hologram. To fit the resolution to the SLM, both the HR
and SR holograms were revised by adding zero-padding,
increasing the resolution from 1080 × 1080 to 1920 × 1080.
Fig. 7 shows the optical reconstruction results, captured

by a camera, focusing around the red (near focus) and blue
(far focus) boxes. Fig. 8 displays the zoomed images of the
red and blue boxes and compares them with the numerical
reconstruction results. Similar to the high similarity observed
between HR and SR in numerical reconstruction, the optical
reconstruction results of HR and SR also demonstrate a
high degree of similarity. We found that the SR hologram
accurately displays details across varying focal lengths. For
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example, letters in the focusing region are clear, while those
at different depths appear out-of-focus, as seen in Fig. 8.
It should be noted that our H2HSR network successfully

inferred the SR hologram without depth distortion, even
though the pixel pitch of the holograms used in the
optical experiment (12.8 µm and 6.4 µm for LR and HR,
respectively) is different from the pixel pitch of the training
data (16 µm and 8 µm for LR and HR, respectively). These
results demonstrate the potential of our H2HSR method to be
applied to holograms with non-trained pixel pitches.

V. CONCLUSION AND FUTURE WORK
In this study, we introduced H2HSR, a novel hologram
super-resolution method harnessing the power of deep
learning to enhance the quality of reconstructed holographic
images. Our H2HSR framework is built upon an encoder-
decoder architecture, with a focus on designing a simple yet
efficient up-sampling block in the decoder. The encoder can
seamlessly integrate with various backbone models, offering
flexibility and adaptability to different hologram super-
resolution tasks. A fundamental aspect of our approach lies in
the incorporation of perceptual loss, which complements the
conventional data fidelity loss. Unlike methods relying solely
on MSE loss, H2HSR’s adaptive phase adjustment, guided
by perceptual loss, closely aligns with the characteristics of
real-world holograms. This holistic approach contributes to
the overall enhancement of reconstructed image quality.

Our comprehensive evaluation reveals the superior per-
formance of H2HSR when compared to conventional
interpolation techniques and a prior GAN-based approach.
Particularly noteworthy is the exceptional performance of
H2HSR with the SwinIR encoder, achieving an impressive
PSNR of 32.85 and SSIM of 0.91 in terms of reconstruction
quality. This represents a significant improvement of 8.46%
and 9.30%, respectively, over the prior GAN-based method.

These findings underscore the substantial contributions of
H2HSR to the field of hologram super-resolution. Beyond
superior quantitativemetrics, our approach offers a promising
pathway to efficiently adapt given holograms to suit specific
hologram display requirements. As holographic imaging
continues to advance and find applications across various
domains, we anticipate that H2HSR will play a pivotal role
in shaping the future of high-quality holographic displays and
immersive experiences.

A. FUTURE WORK
While our super-resolution method effectively reduces pixel
pitch, the impact of increasing the Angle of View (AoV)
remains challenging to quantify despite our diligent efforts.
The MIT-CGH-4K dataset, designed primarily for RGB-D
to hologram conversion, provides holograms with limited
resolutions (e.g., 192-by-192) and depth volumes, making
it inadequate for thoroughly evaluating the effects of pixel
pitch alterations. To address this limitation, our future work
will concentrate on the generation of a comprehensive
full-parallax hologram dataset. This dataset will encompass

holograms with varying pixel pitches and higher resolutions,
facilitating the exploration of pixel pitch adjustments’ true
implications. Additionally, with the introduction of this new
dataset, we aim to design a hologram resolution adaptation
network. This network will not only support super-resolution
but also down-resolution tasks, broadening its applicability to
diverse scenarios.

H2HSR uses inputs of amplitude and phase derived from
a complex-valued matrix according to Euler’s formula. The
network is inclined to treat the hologram as a real-valued
image, common in image processing tasks. To effectively
train using holograms, converting the hologram plane to a
mid-point hologram is crucial, enabling the amplitude to
resemble a clearer image. However, if the hologram plane
is distant from the three-dimensional scene, the network’s
performance diminishes, unlike current methods that utilize
mid-point holograms for training. To overcome this, the
network should be designed to directly train complex-valued
holograms without converting them into amplitude and phase
or diffracting into a mid-point. Developing a specialized
network for complex holograms represents our future direc-
tion, aiming to deepen our understanding and enhance our
manipulation of holograms.
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