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ABSTRACT X-ray is a commonly used imaging method for the diagnosis and evaluation of osteoporosis,
which has crucial clinical diagnostic significance. To ensure the high fidelity requirements of medical image
diagnosis and achieve high-quality transmission and storage of image data, this study uses deep learning to
design a dual stream lossless compression network suitable for X-ray images. The results demonstrated that
the designed network performed well in compression and bit rates on different datasets, with a minimum bit
rate of 0.204 and a maximum compression rate of 0.946. Compared to other advanced models, this network
had the highest peak signal-to-noise ratio and lower distortion of compressed images. In the compression
process of X-ray images of osteoporosis, this network outperformed other models in different structural
similarity indices, with values above 0.90, showing significant advantages. The equivalent number of views
of the compressed image reached 0.93, and the visual quality of the lossless compressed image was high,
ensuring the efficiency and accuracy of diagnosis. The research method can significantly improve the
theoretical research level of lossless compression technology and enhance its practical value in remote

medical diagnosis.

INDEX TERMS Lossless compression, medical imaging, neural network, osteoporosis, X-ray.

I. INTRODUCTION

Osteoporosis is often characterized by a decrease in bone
tissue quality and density, and fragile bones that are prone
to fractures. It is a skeletal system disease caused by
age, genetic factors, unhealthy lifestyle habits, or other
diseases and medications. Digital X-ray is an important
diagnostic method for assessing bone tissue quality and
distinguishing the presence of osteoporosis [1], [2]. With the
advancement of medical imaging instruments and medical
technology, the use of digital X-ray imaging (DX-rayl)
to diagnose osteoporosis has become a common treatment
method, generating a considerable amount of image data
in medical institutions. Therefore, storing and retrieving
a large number of X-ray images has become a problem
faced by medical organizational structures. At the same
time, telemedicine is gradually emerging, and sending and
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transmitting high-quality medical imaging data is crucial for
ensuring accurate and reliable medical diagnosis. However,
there are differences in the services and equipment of various
medical institutions, and using DX-rayl to achieve remote
diagnosis of osteoporosis still poses challenges [3]. With the
surge in the amount of imaging data and the demand for
remote medical care, the use of computer vision technology
to assist radiologists in clinical diagnosis has become an
important research trend in order to effectively process,
collect, and transmit medical images [4]. Image compression
is an image signal processing technique that saves data
storage space and transmission bandwidth by reducing the
size of image files to accelerate transmission speed. Common
image compression methods include lossy compression and
lossless compression. Lossy compression requires sacrificing
some image quality, which can easily cause loss of image
details and artifacts, and does not meet the diagnostic
requirements of medical images. Lossless compression can
balance the need to reduce file size and preserve image
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details as much as possible. However, currently, lossless
compression techniques are mostly aimed at natural images
with low dynamic range (LDR), while DX-rayl used for
the diagnosis of osteoporosis belongs to high dynamic
range (HDR) images. The existing lossless compression
technology cannot be directly applied to the diagnosis of
osteoporosis DX-rayl [5]. Therefore, in order to ensure the
high fidelity requirements of medical diagnosis, this study
innovatively abandons traditional encoder decoder structures
and chooses deep learning (DL) technology, utilizing end-
to-end advantages to simultaneously compress high and low
sub images, and designs a dual stream image compression
network for HDR images. This study is expected to improve
the efficiency of medical personnel in processing and
analyzing medical imaging data, and enhance the diagnostic
efficiency and accuracy of osteoporosis.

The research content mainly consists of four parts. Part
1 mainly elaborates on the research status and progress
of image lossless compression technology in medical and
other fields, and outlines the shortcomings of the research.
Part 2 designs a dual stream lossless compression network
(DSLC-Net) based on feature fusion. Part 3 conducts perfor-
mance testing and application analysis on lossless compres-
sion algorithms. Part 4 summarizes the experimental results.

Il. LITERATURE REVIEW

The rise of image compression technology provides efficient
technical support for managing and storing large amounts of
data. In order to further improve the compression ratio (CR)
and image fidelity of compression technology, domestic and
foreign scholars have conducted a series of studies on the
optimization and improvement of compression technology.
Remote healthcare enables the exchange of medical diag-
nostic data based on the Internet of Things, but the massive
amount of medical information results in the actual cost of
transmitting medical data with limited bandwidth being too
high. To ensure the compression quality of medical images,
Mohammadi et al. [6] designed a hybrid medical information
compression technique that combines Huffman encoding
and rearrangement information. This method utilized binary
information arrangement to ensure the compression quality
and efficiency of the technology, and the restored image
quality was relatively high. Residual encoding has been
widely used in lossless compression. Liu et al. [7] used video
codecs as lossy layers and networks based on bilateral context
modeling as residual layers to design a 3D medical image
residual encoding framework for lossless compression. This
method could effectively reduce redundant information and
had better performance than existing advanced models. The
non-integer reversible nature of traditional discrete shmaliy
moment transform (DST) was not suitable for lossless image
applications. To overcome technical limitations, Daoui et al.
[8] introduced integer DST and proposed a one-dimensional
chaotic system model, which was applied to reversible image
processing. Medical image compression experiments have
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shown that this method has a good CR and can achieve safer
medical image transmission.

3D radiological images are crucial in radiology. To meet
the high compression requirements for storage and trans-
mission of 3D radiographic images, Boopathiraja et al. [9]
used optimal multilinear singular value decomposition to
solve the volume of interest in the image. It also used an
adaptive binary range encoder for image compression, and
finally decompressed to reconstruct the original image. This
method had a good compression rate of up to 37.31 and
the lowest bit rate (BR) of 0.21. Repeated magnetic
resonance imaging scans generated massive amounts of
image data. To reduce memory requirements, Jumakulyyev
and Schultz [10] designed a new lossless nuclear magnetic
resonance diffusion data codec. This method introduced
g-space partial differential equations, and the compression
rate was effectively improved. To improve the attention of the
deep generative model PixelCNN to important information
at long distances, Jiang et al. [11] combined causal attention
modules with residual connections and used mixed residual
causal attention modules to improve the performance of
PixelCNN. Verified by the HTRU1 dataset, this method
improved the modeling ability of the model for pulsar data
and enhanced its lossless compression ability. To achieve
lossless compression of Tc-99 m radioactive nuclide renal
static imaging (Dimercaptosuccinic acid), Yadav et al. [12]
improved and optimized the coefficient threshold of discrete
cosine transform (DCT). After verification by eight image
quality indicators, the improved DCT lossless compression
technology in this study achieved high-quality image com-
pression without significant loss of clinical details. The
optimal thresholds were 10, 15, and 20. The massive increase
in image data has brought difficulties to the storage and
transmission of images. To meet the high fidelity require-
ments and improve the lossless image CR, Liu et al. [13]
designed an improved lossless image compression algorithm
based on integer wavelet transform and Huffman coding. This
method was superior to existing advanced algorithms, with
a CR improvement of at least 6.22%, reaching 72.36%. The
healthcare industry involved the storage and protection of a
large amount of confidential information. Reddy et al. [14]
designed an improved string table compression algorithm
and completed information encryption protection based on
symmetric/asymmetric key encryption. This method reduced
the time required to generate keys by 1/4, encrypts data by
20%, and significantly saved resources on compressed image
information.

In summary, there have been many studies and applications
on lossless compression algorithms, but most of them use
codecs as the core technology of lossless compression. This
approach has poor adaptability to HDR images, and the
compression quality and efficiency are difficult to meet the
needs of medical image diagnosis. In this regard, this study
conducted lossless compression research on HDR images
based on DL technology.
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1Il. DESIGN OF A LOSSLESS COMPRESSION MODEL FOR
DUAL STREAM X-RAY IMAGES BASED ON END-TO-END
DL

To store and transmit large-scale X-ray HDR image data and
ensure high image fidelity, this study uses DL technology to
design a lossless compression algorithm.

A. DESIGN OF HIGH 8-BIT DEEP SUB-GRAPH
COMPRESSION NETWORK BASED ON LOSSY PLUS
RESIDUAL

Common medical imaging techniques, such as computed
tomography (CT) and X-ray, consist of multiple slice
images. The pixel grayscale levels of different slice images
can be represented as values between 2'2-21¢, meaning
that the single channel depth of the image is 12-16 bit
deep. High bit depth provides richer image information for
clinical diagnosis, which helps to obtain more comprehensive
information about the condition [15]. Traditional 2D codecs,
multi-layer codecs, and lossless codecs are not suitable for
lossless compression of HDR slice images [16]. In this study,
a layer by layer lossless compression method is proposed
to improve compression performance by dividing the bits
of HDR slice images. This study takes a 16 bit deep X-ray
image as an example, defined as X. The schematic diagram
of the designed dual stream compression model structure is
Figure 1.

In Figure 1, the first is to divide X into two sub-graphs, x”
and x!. x" and x! represent images with high and low 8-bit
depth. By designing a network to adjust the BR of different
depth images, the total BR is minimized. There are significant
differences between x” and x/ in terms of information content
such as resolution, CR, file size, and information richness.
x! has higher resolution and details, lower compression rate,
larger file size, and more image details. Usually, x! requires
a higher BR, while x" only accounts for 10% of the total
BR. Therefore, the design of the x" compression network
should be as concise as possible, controlling the number
of model parameters, and consisting of two parts: a lossy
compression model and a residual compression model. The
lossy compression model structure of the sub-graph module
with a high 8-bit bit depth is Figure 2.

In Figure 2, the overall structure of the 8-bit deep image
is a lossy compression network based on a hyper-priori
model. The lossy compression framework can complete
image reconstruction using an encoder and decoder, and the
calculation process is equation (1).

X =5 (v; 05) = 95 (Q (Pa (x; 6a)) ; 05) ey

In equation (1), g, and g, represent the encoder and
decoder, respectively. x and x represent reconstructed images
and input images, respectively. Q represents the quantization
function. 6 represents the model parameters. y represents
discretized encoding.

In the lossy compression model, after x” is input into
the network, the encoder converts it into a latent spatial
representation y” and performs downsampling operations to
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reduce the scale of the image, ensuring that y* is compact
in size and independent in content. Then, the hyperpriori
encoder extracts edge information from y” and uses the
decoder to convert the edge information into the probability
model parameters of y”, thereby generating the hidden feature
3" of y". At the same time, the decoder will generate lossy
reconstructed image X and reconstructed feature u”. The
decoder performs a reverse upsampling operation to restore
the image scale. This process achieves high-quality image
reconstruction by compressing and reconstructing important
features, ensuring consistency in scale and content between
the reconstructed image and the original image. The hidden
features in the lossy compression model are modeled using a
Gaussian model, and the estimated probability distribution of
hidden feature 3" is calculated using equation (2).

oo ) =1 () 0 (-5) 649,
i, o7 = fipa (2') 2)

In equation (2), pg« (’ih ['Eh) represents the estimated
probability distribution. fj,,; is a Gaussian distribution. j; and
al.z are the corresponding mean and variance. fj,,q represents
a super prior decoder. Z" represents the characteristics of edge
information. i represents the spatial position of the index.
The edge information adopts a decomposable entropy model
and completes entropy encoding using Z"’s prior probability
distribution. The calculation process of the BR Rg 2 for the

lossy BR of x” is equation (3).

Rj\,\h”z\lz = Ep(xh)Eq¢ G2 )

[oem () om ()]

In equation (3), E represents the measure of mean
square error. p represents the actual probability distribution.
a(" ") represents the inference model. ¢ represents a
parameter. The calculation of residual 7" in the residual
compression model is equation (4).

= xh 3t @)

The main task of the residual compression part is to
construct a residual compression network, complete the
probability distribution estimation and entropy encoding of
r"'. This study uses a mixed logic model to fit the probability
distribution of residuals, as shown in Figure 3.

In Figure 3, different parameter prediction sub networks
are designed in the mixed logic model to complete the
estimation of entropy parameters. Each prediction sub
network is composed of 7 x 7’s convolutional layer and Leaky
ReLU function. The probability distribution pg (rh |uh, Crh)
of " is estimated and calculated using equation (5).

Do (rh ’uh, C,h)

K + ok Y
S ()] -
k=1 i i
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FIGURE 1. Schematic diagram of the two-stream compression model structure.
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FIGURE 2. Compression model structure of the sub-graph module with a height of 8 bit depth.

In equation (5), C,» represents the contextual feature of
", which is extracted using mask convolution. 7 represents
mixed weights. K represents the mixed quantity. k represents
the logical distribution index. S represents the sigmoid
function. rl.+ and r;” represent 7; floating up and down by 0.5,
respectively. Due to the use of a larger convolution kernel of
7 x 7 in the designed mixed logic model, the increase in the
convolution kernel leads to an increase in the receptive field
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of the mixed logic model, which can further capture global
information and improve the stability of feature extraction.
However, the computational cost and over-fitting risk of the
model increase, the model overly focuses on local details
of the data, and the model’s generalization decreases [17],
[18]. In comparison, this study introduces the weighted
moving average (WMA) method to average the model
parameters, increase the robustness of the model, and reduce
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FIGURE 4. Compression model structure for the low 8b-DSG module.

over-fitting [19]. The recursive equation of WMA is
equation (6).

vi=pvi—1+0-B)7 (6)

In equation (6), v represents the time series of the given

variable. ¢ represents the timestamp. 8 represents a hyper-

parameter between 0 and 1. ¥ represents the observed value
of the current iteration.

B. DESIGN OF LOW 8B-DSG COMPRESSION NETWORK
BASED ON LOSSY PLUS RESIDUAL

The low 8-bit deep sub-graph (8b-DSG) compression net-
work is still based on a lossless and residual compression
model, mainly using swapping modules and entropy models.
The transformation module extracts and learns higher-level
features by transforming data representations. This study uses
a transformation module to convert high-dimensional pixel
domain data into low dimensional feature domains, removing
redundant information and noise from input data, facilitating
the estimation of probability distribution, and reducing the
compression rate of entropy coding. The lossy compression
network model for low 8b-DSGs is Figure 4.
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In Figure 4, the overall structure of the lossy compression
network is still based on a hyper-priori model. However,
due to the higher BR required for the low 8b-DSG x!, x's
compression network adopts a window attention mechanism
to enhance the transformation module. After introducing
the window attention mechanism, the model can focus
on information from different regions at different time
steps through parameter sharing, enhancing compression
performance. The entropy model in the lossy compression
network of the x" sub-graph has added a channel auto-
regressive model, forming the channel wise auto-regressive
entropy model (CWAE).

In addition, this study adds an information exchange
module between x” and x! compressed networks. One is that
the entropy model of hidden feature 3 in x! integrates the
hidden feature 3 of sub-graph x". The second is to integrate
the u” of the x"* sub-graph in the residual entropy model. In the
simultaneous transformation module, a feature prediction
model is used to extract feature information from the x”-
compression network. The structural principle of feature
prediction is Figure 5.

In Figure 5, the principle of the feature prediction model
is similar to that of the hierarchical context extractor, which
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uses a hierarchical approach to learn information at different
scales [20]. This hierarchical extractor includes a down-
sampling path, an upsampling path, and a skip connection
module. The downsampling path gradually expands the
receptive field through a series of convolutional and pooling
layers, and calculates feature maps at multiple scales. The
calculation of downsampling feature F” is equation (7).

F" :fextracl (xh) ,n=0,1,2 7N

In equation (7), n represents the scaling step size. The
upsampling path samples F"*! through the deconvolution
layer, achieving the combination of local information in
the low-level feature map and global information in the
high-level feature map. Combined with information F", the
calculation is shown in equation (8).

F" = concat (F" Fupsample (F"“)) n=01 (8

Finally, complementary information is added to F" to
generate the final prediction information C " as calculated in
equation (9).

C" = F" + feomplement (F") ,n=10,1,2 )

The designed feature prediction model only outputs the
original scale feature map, and then completes feature
fusion with x’ through convolution, residual operation. The
decoding features of the decoder are fused with the features
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of x" in the same way, and finally, two convolution operations
are used to obtain the lossy reconstruction x* of x! and the
corresponding feature . The CWAE module can improve
the accuracy of entropy model estimation of 3 probability
distribution. The calculation process of estimating probability
distribution pgk (’y\l ﬁ) and BR Ry z is consistent with
the calculation method of high 8-bit deep sub-graph. The
residual compression part of the low 8b-DSG compression
network also adopts a mixed logic model, and the structural
composition is Figure 6.

The calculation expression of residual 7/ is equation (10).

rl=x' -3 (10)

The input information of the mixed logic model includes
residual features r! and rh of x! and x", as well as
contextual features of r!. Compared to the mixed logic
model of high 8b-DSGs, the input information of low
8b-DSG increases. Therefore, the number of feature channels
increased from 128 to 192. The number of mixed logic
models used for high and low 8b-DSG is 5 and 10,
respectively. Combining high and low 8b-DSG compression
networks yields end-to-end DSLC-Net. The loss function
calculation of DSLC-Net is equation (11).

L=Ryz+Ryz +Ru+Ri+A-(a-Dy-Dp) (11

In equation (11), A represents the trade-off parame-
ter. R.» and R,., D, and D; represent the residual BR
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FIGURE 7. The impact of different trade-off parameters on BR.

and distortion term of high and low 8b-DSG, respec-
tively. o represents the control parameter of the distortion
term. The calculation process of the distortion term is
equation (12).

2
Dy, = (xh —fh)

= (' -%)’

In the dual stream compression network, the autoregressive
model acceleration algorithm used in this study is Pix-
elCNN. PixelCNN generates new images by learning the
probability distribution between image pixels, as shown in
equation (13).

(12)
D

n2
po ) =[]p @il ....xi1) (13)
i=1

In equation (13), x; represents the pixel value. pg (x)
represents the product of the conditional distributions of
different pixels.

IV. PERFORMANCE TESTING AND APPLICATION
ANALYSIS OF A DUAL STREAM MODEL FOR
NON-DESTRUCTIVE COMPRESSION OF BONE X-RAY
IMAGES

To test the performance and clinical diagnostic application
of the designed lossless compression dual stream model, this
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study constructed a performance testing experiment for the
model and analyzed and discussed the results.

A. PERFORMANCE TESTING OF LOSSLESS COMPRESSION
DUAL STREAM MODEL

The hardware environment used in the experiment is Win-
dows 10, with a processor of Intel(R) Core(TM) i5-8500 CPU
@3.00GHz, GPU of GeForce GTX1080Ti*2, and memory
of 64G. The lossless compression framework in the software
environment is implemented based on PyTorch 1.4, and the
programming language is Python 3.6. Using the medical
field HDR imaging dataset as the experimental dataset, the
dataset is divided into training and testing sets in an 8:2 ratio
according to the experimental needs. There are four datasets.
A dataset containing chest X-rays of pneumonia, including
5,863 JPEG format X-ray images. The MedNIST dataset
includes medical images of X-rays, CT, and MRI. The TCIA
dataset contains medical image data of common tumors.
The ChestX-ray dataset contains 112,120 X-ray images from
frontal views.

The experiment selected a Joint Photographic Experts
Group 2000 (JPEG2000)-based image compression standard
using wavelet transform, a mixed compression model com-
bining huffman coding (HC) and Lempel-Ziv-Welch (LZW)
with rearranged information [6], and a residual encoding
lossless compression framework based on Bilateral Context
Modeling-based Network (BCM-Net) [7]. DSLC-Net has
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FIGURE 9. Comparison of SSIM of different models.

the best compression performance. The impact of different
trade-off parameters on BR is Figure 7.

In Figure 7(a), on different datasets, as A increases, the
BR of DSLC-Net shows a trend of first decreasing and then
increasing. When A = 0.001 is present, the BR value of
DSLC-Net is the smallest and reaches its optimal value.
In Figures 7(b) and 7(c), as A increases, the compression
residual BR value of the model gradually decreases, the
BR value of lossy encoding gradually increases, and the
proportion of BR decreases. Based on the variation pattern
of the total BR value in Figure 7(a), increasing the BR of
lossy encoding does not improve the performance of the
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TABLE 1. Comparison of CR and BR for different compression models.

Model  Index f}?:;‘;l("f; MedNIST ~ TCIA Chf;ytx'
DSLCNet G go;  obds  0o0d 0om
PEG000 ko 0703 076 0am
HOLZW o one omo  omas oo
BOMN  Cp  gnos  ores  osls os

model. Table 1 shows the comparison results between CR
and BR.
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In Table 1, the lowest BR for DSLC-Net is 0.204,
and the highest BR is 0.348. Compared to JPEG2000,
the highest reduction in BR reached 66.16%. Compared
to the HC-LZW model, the highest reduction in BR
reached 58.62%. Compared to BCM-Net, BR experienced
a maximum decrease of 63.82%. DSLC-Net has a high
degree of compression for image data and achieved good BR
performance. Meanwhile, the CR value level of DSLC-Net is
the highest, all above the 0.90 level, with a maximum value
of 0.946. The experimental results of mean squared error
(MSE) and peak signal-to-noise ratio (PSNR) are shown in
Figure 8.

In Figure 8(a), the MSE of different compression models
decreases continuously as the image compression process
progresses, and the MSE of DSLC-Net converges to the
minimum value of 0.07. The MSE values of the other three
models are all above the 0.1 value level, with the highest
MSE value of 0.24 for JPEG2000. In Figure 8(b), the
corresponding DSLC-Net has the highest PSNR value, which
rapidly rises above 40 dB during the initial compression
stage. This indicates that the similarity between the original
image and the compressed image is high, the image quality
is good, and the distortion is within an acceptable range.
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In contrast, the PSNR value of JPEG2000 converges to
around 34 dB, which is 9.09 dB lower than the PSNR value
of DSLC-Net.

B. DIAGNOSIS AND ANALYSIS OF OSTEOPOROSIS BASED
ON LOSSLESS COMPRESSION DUAL FLOW MODEL

From 2023 to 2024, medical imaging data of osteoporosis
patients who underwent X-ray examination at a public
tertiary hospital in China were collected and processed into
images of 256 x 256 size. The structural similarity index
(SSIM) results of X-ray image compression processing using
different models are shown in Figure 9.

In Figure 9(a), the feature similarity index (FSIM) curve
of DSLC-Net is the highest, with a value of 0.9. The
image after lossless compression is relatively similar in the
feature space. In Figure 9(b), DSLC-Net still outperforms
the other three models in the multi-scale structural similarity
index (MS-SSIM), with improvements of 0.45, 0.20, and
0.11 compared to JPEG2000, HC-LZW, and BCM-Net,
respectively. Therefore, the compression processing effect of
DSLC-Net on images is the best at different spatial scales.
In Figure 9(c), DSLC-Net has a significant advantage with
an information content weighted SSIM (IW-SSIM) value of
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0.94. This network can effectively balance the importance
of different parts of the image and improve the quality
of image compression. The results of visual information
fidelity (VIF), equivalent number of views (ENL), universal
quality index (UQI), and noise quality measure (NQM)
before and after compression of X-ray images are shown in
Figure 10.

In Figure 10(a), the compressed image performs well
on UQI and VIF, and the results of both evaluation
indicators reach a value level of 0.9 in the later stage
of compression. The overall visual quality and fidelity of
compressed images are good, and the subjective visual effect
is better. In Figure 10(b), the lossless compression network
achieved high values on ENL and NQM, with ENL reaching
0.93 and NQM reaching 0.94. Overall, DSLC-Net has strong
noise resistance and its compressed visual performance is
not significantly affected. The compressed X-ray image
data is used for remote diagnosis of osteoporosis, and the
comparison between diagnostic efficiency and accuracy is
Figure 11.

In Figure 11, after applying the DSLC-Net lossless
compression network, the clinical diagnostic efficiency of
osteoporosis patients improved by 0.22 and the diagnostic
accuracy improved by 0.14. Lossless compression technol-
ogy has improved the diagnostic performance of remote
treatment processes. The compressed image has high fidelity,
reducing the interference of image compression on disease
diagnosis during remote diagnosis.

V. CONCLUSION

X-ray imaging plays an important clinical diagnostic role
in bone density measurement, osteoporosis detection, and
prevention and treatment. To improve the lossless com-
pression quality of images, this study designed a lossless
compression dual stream network suitable for X-ray HDR
images based on DL technology. The experiment showed
that when the balance parameter was set to 0.001, the
BR of DSLC-Net was optimal. Compared to other models,
the lowest BR of DSLC-Net was 0.204, and compared
to JPEG2000, the highest BR reduction was 66.16%.
For different datasets, the CR values of DSLC-Net were
all above the 0.90 level, and the PSNR values of the
images were higher than 40 dB, indicating a high degree
of similarity before and after compression. DSLC-Net
has achieved a relatively good evaluation level in FSIM,
MS-SSIM, and IW-SSIM indicators. The four evaluation
indicators of VIF, ENL, UQI, and NQM have verified the
visual authenticity of the images, ensuring the diagnostic
efficiency and accuracy of osteoporosis. The performance
of the lossless compression network designed in this study
has been significantly improved, which is helpful for the
transmission, storage, and clinical diagnosis of medical
image data, and has important application significance in
X-ray diagnosis of osteoporosis. Future research can explore
more lossless compression frameworks to accelerate the
progress of lossless compression.
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