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ABSTRACT Face Presentation Attack Detection (PAD) is critical for enhancing the security of facial
recognition systems against sophisticated attacks. This study explores the use of general Image Quality
Assessment (IQA) methods in face PAD, offering an alternative strategy that deviates from traditional, face-
specific PAD techniques. Our evaluation of eight widely-used IQA methods across four PAD databases is
structured around three distinct experimental protocols. Preliminary findings indicate that the general IQA
methods are not fully effective in differentiating between genuine and attack samples, highlighting the need
for modification. Nonetheless, a notable enhancement in performance is observed following the re-training
of these methods using PAD datasets, bringing their effectiveness in line with that of advanced traditional
PAD methods. This study provides evidence for the potential of general IQA in bolstering the resilience of
face recognition systems against presentation attacks.

INDEX TERMS Biometrics, face recognition, image quality assessment, presentation attack detection.

I. INTRODUCTION
Within the scope of image processing, the evaluation of
image quality is a critical aspect with a variety of practical
applications. ImageQualityMetrics (IQMs) serve as essential
tools for this purpose, providing a means to quantitatively
assess the fidelity of digital images. A multitude of IQMs
exists, specifically tailored for gauging the quality of natural
images [1]. These metrics are typically classified into
three distinct categories based on the need for a reference
image: full-reference, reduced-reference, and no-reference
IQMs [2]. Full-reference IQMs rely on comparing the input
images to pristine reference images to determine quality,
whereas reduced-reference IQMs require supplementary
information about the reference images for their calculations.
On the other hand, no-reference IQMs perform quality
estimation solely based on the input images without the need
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for any reference data. A visual representation of these three
categories of IQMs is depicted in Figure 1.

Beyond the evaluation of natural images, IQMs have been
extensively utilized across various fields, encompassingmed-
ical imaging, satellite imagery, and biometric technologies,
among others. Ongoing studies in biometrics consistently
underscore the significance of the quality of samples within
such systems, as it directly influences the effectiveness of
the biometric system [3]. In this context, the development
of methodologies for the assessment of biometric sample
quality has gained momentum, alongside the establishment
of ISO/IEC standards that define quality parameters for
biometric data like fingerprints, irises, and facial images [43],
[44], [45], [46]. The principal objective of these quality
assessment methods is to determine the reliability and
effectiveness of biometric samples [4]. Given that biometric
systems typically operate without a reference image, the
application of no-reference IQMs becomes essential for the
evaluation of the quality of biometric sample imagery.
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FIGURE 1. General frameworks of no-reference, reduced-reference, and
full-reference IQM.

The ability to recognize faces is a daily activity that
we perform almost effortlessly, thanks to its non-intrusive
nature. The clarity and completeness of face images are
crucial for the effectiveness of face recognition technologies,
as various factors can affect the quality of the captured facial
images. While Face Image Quality Assessment (FIQA) has
similarities to the broader Image Quality Assessment (IQA)
domain, significant differences set them apart. FIQA is a
specialized subset within the larger realm of IQA, which is a
widely explored area in the field of image processing. Unlike
IQA, which is concerned with evaluating the overall quality
of natural images, FIQA is tailored to assess the specific
attributes and characteristics of faces.

The rapid progress in FIQA and the widespread use of
high-quality capture devices like smartphones have increased
the accessibility of clear personal face images in public
domains. This widespread accessibility may significantly
increase potential security threats to face recognition sys-
tems [5]. In light of this, presentation attacks—where an
individual presents a fraudulent representation to a face
recognition system with the intent to gain unauthorized
access—pose a significant vulnerability [6]. In this context,
the role of face PAD is essential; it aims to distinguish
between live subject images (bona fide) and counter-
feit images created through various presentation attack
techniques, such as printed photographs, recorded videos,
or carefully crafted replicas of authorized faces. Despite
being a prevalent form of threat in the face recognition
process, detecting presentation attacks remains a formidable
challenge. This is due to the difficulty in developing

a versatile method that can effectively adapt to diverse
acquisition devices, environmental settings, and categories
of attacks. Face recognition systems are increasingly being
targeted by sophisticated presentation attacks, emphasizing
the critical need for robust PAD techniques.While specialized
PAD methods have been developed, they often struggle with
generalizability and adaptability to new and emerging attack
vectors.

Many face recognition systems adopt a dual-phase strategy,
as shown in Figure 2, which is designed to control the
quality of input face images and detect any potential
presentation attacks. This mechanism allows for the rejection
of face images at an early stage if they are of substandard
quality or if an attack is suspected. The implementation
of both FIQA and PAD is instrumental in enhancing the
accuracy and security of face recognition systems. Extensive
research has demonstrated discernible differences in image
quality between genuine and counterfeit face images [7],
[8], [10]. Much like FIQA, traditional PAD techniques are
typically specific to a single biometric modality, such as
face recognition. Moreover, existing PAD methods, while
effective in certain contexts, have several limitations. For
instance, many rely on feature sets that are tailored to specific
types of attacks, reducing their effectiveness when faced
with novel or unknown threats. Additionally, specialized PAD
techniques often require significant computational resources
andmay not be feasible for real-time applications. In contrast,
recognizing that variations in image quality can serve as a
vital clue for detecting face presentation attacks opens up the
possibility of employing generalized methods, like general
IQMs initially developed for natural images, to identify such
attacks. General IQMs have been designed to work across
a wide range of images and conditions, making them well-
suited for the diverse and evolving nature of presentation
attacks. Furthermore, IQMs can be more computationally
efficient, allowing for faster processing times that are crucial
for real-time systems. This approach has the potential to be
expanded beyond facial recognition to encompass multiple
biometric modalities, such as fingerprints and iris scans,
among others.

In this study, we commence by examining the efficacy of
general IQMs in their unaltered state for the task of face
PAD. Subsequently, we select a subset of these general IQMs
and re-train them using PAD-specific face images to evaluate
their modified impact when integrated with advanced PAD
methodologies. Our analysis is twofold: firstly, we assess
the capability of general IQMs to differentiate between
authentic and attack face samples through the allocation of
distinct quality scores; secondly, we scrutinize the impact of
eliminating both genuine and attack face images from the
recognition process based on the outcomes of the quality
assessment. Furthermore, we investigate whether the efficacy
of PAD algorithms is augmented by the exclusion of low-
quality face samples as determined by general IQMs. Lastly,
we explore the potential for score-level fusion to further
refine the performance of IQMs in the context of face PAD.
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FIGURE 2. Face image quality control and presentation attack detection before recognition.

Our study leverages the broad applicability and computa-
tional efficiency of general IQMs to address the shortcomings
of existing PAD methods. By retraining these metrics with
PAD-specific datasets, we aim to enhance their ability to
distinguish between bona fide and attack samples, thereby
improving the resilience of face recognition systems against
a wide array of attacks. The novelty of this manuscript
lies in harnessing the power of general IQMs for PAD,
offering a unique solution that combines the strengths of
both worlds. This innovative research topic has the potential
to significantly advance the field of biometric security by
providing a more robust and adaptable PAD solution. The
main contributions of this manuscript are:

• Our experiments reveal that the initial versions of gen-
eral IQMs struggle to effectively differentiate between
genuine and presentation attack face images;

• Upon re-training with face images specifically collected
for PAD, the performance of these general IQMs aligns
with that of the leading face PAD techniques;

• The preliminary application of general purpose IQMs to
filter out low-quality face images prior to PAD enhances
both the accuracy and the security of face recognition
systems;

• The fusion of scores from multiple IQMs not only lever-
ages the advantages of each metric but also mitigates
their individual shortcomings, thereby bolstering the
effectiveness of face PAD.

The layout of this manuscript proceeds as follows:
Section II provides an overview of existing literature and
research related to conventional methods of face PAD, the
utilization of IQMs in PAD, and the pertinent databases
used in these studies. Section III details the experimental
configuration, encompassing the chosen IQMs, traditional
PAD techniques, and the databases employed for our analysis.
Section IV presents the findings from our experiments,
along with a thorough discussion of these results. Section V
concludes the manuscript with a summary of our conclusions
and an outlook on future research directions.

II. STATE-OF-THE-ART OF FACE PAD
The primary objective of face PAD is to ascertain whether the
characteristics of a given face image originate from a living
individual or an artificial representation. Presentation attacks

have the potential to flood the face recognition system with
a multitude of unauthorized face images, thereby adversely
impacting the system’s efficacy. By effectively filtering out
these unauthorized images, PAD techniques help to maintain
a stringent security standard for face recognition systems. The
precision of PAD is a crucial indicator of the reliability of a
face recognition system’s security in the face of presentation
attacks, making it a critical and formidable challenge. Over
recent years, a plethora of research has conducted systematic
and exhaustive examinations of the dynamics between face
presentation attacks and PAD [19], [20], [21], [22], [23], [24],
[25]. These investigations underscore the necessity of PAD
as a fundamental component before the widespread adoption
of face recognition technology in everyday applications.
While numerous PAD methods have been proposed, many
are tailored to specific attack types and perform poorly
when generalized to unseen attacks [19], [21]. This lack of
generalizability limits their applicability in diverse real-world
scenarios. Several state-of-the-art PAD techniques, such as
those relying on deep learning models, require significant
computational resources [25]. These high demands can be
prohibitive for deployment in low-resource environments,
such asmobile devices or remote sensing systems. Some PAD
methods are highly sensitive to environmental conditions,
such as lighting variations or background noise, which
can significantly impact their performance [22], [23]. This
sensitivity limits their reliability in uncontrolled settings.

IQMs can be used for face PAD is based on the assumption
that:‘‘ It is expected that a presentation attack face image
acquired in an attack attempt can have image quality differ-
ences compared to a bona fide face sample image captured
in the normal acquisition protocol for which the device was
designed.’’ Such an assumption has been proved to be true
by many studies in recent years [7], [8], [9], [10]. The above
mentioned quality differences can be the following: sharpness
level, intensity of brightness, naturalness of color, global
and local distortion artifacts, absence of information or the
appearance of irregular information, and so on. For instance,
a face sample image taken from the screen of a smartphone
is more likely to have out of focus or reflection artifacts
during the reproduction processes. In addition, presentation
attack can sometimes tamper the face image just before the
feature extraction by replacing the bona fide face image to a
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synthetically manipulated image, which lacks of many image
quality attributes usually appears in natural face image.

A. FACE PAD USING HARDWARE APPROACHES
Face PAD using hardware approaches have advanced sig-
nificantly, offering robust solutions to combat presentation
attacks. Among these, Erdogmus and Marcel [47] as well
as Zhou et al. [48] focused on the identification of
facial presentation attacks by assessing the presence of
depth information in captured face images. In alternative
studies, the use of reflectance maps obtained through near-
infrared (NIR) imaging was explored for fake face detection.
Recently, Jiang et al. [49] introduced a method involving the
concatenation of visible and NIR images, which were then
input into a convolutional neural network (CNN) designed
for face PAD. An alternative methodology presented by
Mohamed et al. [50] centered on the extraction of Local
Binary Pattern (LBP) features from both visible light and
near-infrared image pairs. Meanwhile, Singh et al. [51],
Zhang et al. [52], and Weitzner et al. [53] capitalized on
light-field cameras, which capture both disparity and depth
data in a single frame, to advance face PAD. Although
these hardware-assisted PAD techniques have demonstrated
superior performance over methods that rely only on visible
light images, they still encounter operational constraints in
certain scenarios.

B. FACE PAD ANALYZING TEXTURE
Within the scope of 2D face PAD, attackers often present
counterfeit faces using printedmaterials or electronic screens.
The intrinsic constraints of such presentation mediums can
result in the degradation of the counterfeit faces, charac-
terized by blurred or distorted textures. This phenomenon
enables the identification of fake face attacks through
the analysis of textural inconsistencies between live and
fraudulent face images. In their work, Määttä et al. [54] and
Chingovska et al.. [55] utilized the LBP and its variations
to capture these textural cues. In a different approach,
Boulkenafet et al. [56], [57] proposed a PAD method that
integrates LBP features across multiple color spaces—RGB,
HSV, and YCbCr—to delineate color variations in textures.
Beyond the LBP framework, Agarwal et al. [58] introduced
Haralick features as an alternative for textural representation.

With the rise of deep learning, there has been a shift
towards self-learned texture-based PAD methods. Li et al.
[59] combined traditional LBP features with CNN filtered
features, while Sun et al. [60] incorporated local ternary
label supervision into their CNN training process for PAD.
Liu et al. [61] introduced a tree-structured network aimed
at categorizing spoof samples into semantic subgroups.
Shu et al. [62] proposed a novel texture descriptor, the
LDP, which enhances the traditional LBP. To capitalize on
color information in face analysis, Li et al. [63] developed
a compact network architecture that improves the detection
of fake faces. Alshaikhli et al. [64] integrated the Resnet-

50 model with spatial and channel attention mechanisms to
enhance face PAD performance.

Despite the promising results of these texture-based
analysis methods against low-quality fake faces, challenges
emerge when confronting high-definition printing or display
technologies, which can lead to a notable decrease in system
performance.

C. FACE PAD ANALYZING MOTION CUE
When juxtaposed with the static nature of manipulated
facial representations in printed or digital formats, live facial
expressions naturally exhibit unique motion characteristics,
which can be harnessed for the identification of counterfeit
faces that are static in nature. For instance, Pan et al. [65],
within the context of an undirected conditional random field
model, developed a detection technique that focuses on
the motion signals associated with eye blinking in video
inputs. To capture the textural changes brought about by
facial movements, Pereira et al. [66] and Phan et al. [67]
respectively adopted LBP-TOP and LDP-TOP features to
represent these subtle textural details. In a distinct method-
ology, Tirunagari et al. [68] employed the dynamic mode
decomposition technique to analyze the patterns of facial
muscle movements.

The advent of deep learning has facilitated the extraction
of motion features from video sequences of faces. Xu et al.
[69] leveraged a CNN to extract features from individual
video frames, which were then combined and fed into a
Long Short-TermMemory (LSTM) network to assess feature
dynamics. Extending beyond the LSTM model, the 3D CNN
has been integrated into face PAD systems, as demonstrated
by Li et al. [70]. Rehman et al. [71] introduced a supervised
CNN classifier for PAD, equipped with a layer designed
to capture dynamic disparities. Focusing on the liveness
signal derived from pulse detection, Li et al. [72] proposed
a technique for identifying face masks by estimating facial
pulsations from video sequences. In a related vein, Heusch
and Marcel [73] presented a long-term spectral statistics-
based approach for precisely characterizing pulsations in live
facial videos.

Despite the efficacy of these techniques in mitigating static
photo or mask-based presentation attacks, they are vulnerable
to attacks involving the replay of face videos, where attackers
capture and replay pre-recorded video clips in front of the
camera.

D. FACE PAD BASED ON DEEP LEARNING AND
TRANSFORMER
Rehman and Komulainen [26] proposed to improve the
accuracy of face PAD using a learnable pre-processing layer
for low-level deep features. These deep features are from
a candidate layer in CNN and hand-crafted features of
a input face sample image and can be used to generate
adaptive convolutional weights for the deep features of
the previous candidate layer. Qiao et al. [27] developed a
fine-grained detection network for face PAD. This method
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has three main steps: 1) a transformer style network using
convolution mapping operation is used for local feature
extraction; 2) the global features are extracted by a self-
attention module; 3) a linear mapping algorithm is used
for final classification. In addition, a VGG based transfer
network is adopted to overcome the issue of limited training
samples. Liu et al. [28] designed a new adversarial learning
framework guided by physical properties to classify whether
an input face sample is bona fide or imposter. Two processes
are defined in this method: additive process and inpainting
process. Three additive components and one inpainting
component are used to describe bona fide and imposter face
samples. Liao et al. [29] introduced a domain-invariant vision
transformer for face PAD. Two different losses are used
to enhance the generalizability of the vision transformer:
a concentration loss and a separation loss. The first loss
is adopted to learn a domain-invariant representation that
aggregates the features of bona fide face samples. The latter
loss is employed to joint different presentation attacks from
various domains. Dong et al. [30] developed an end-to-
end domain generalization face PAD approach for unknown
presentation attack type. This approach reform face PAD in
an open set framework in order to overcome the domain
discrepancy issue. Therefore, a novel statistical extreme value
theory and an identity-aware contrastive learning strategy are
proposed to further achieve face PAD for unknown multiple
attack types.

E. FACE PAD USING IQMS
Leveraging the ‘quality difference’ theory previously dis-
cussed, several studies have explored the applicability of
general IQMs in the realm of Face Presentation Attack
Detection (PAD). Galbally and Marcel [7] were among the
pioneers in merging face PAD with IQA. Their approach
utilized 14 image quality features, such as mean squared
error, peak signal-to-noise ratio, and Laplacian mean squared
error, among others, extracted from a single face image.
The empirical findings demonstrated that this method was
competitive with contemporary state-of-the-art face PAD
techniques. Further advancing the field, Yeh et al. [10]
introduced a PAD method that employs a perceptual IQA
model. This technique applies the Effective Pixel Similarity
Deviation model to a no-reference image quality evaluator,
using the standard deviation of the gradient magnitude
similarity map of selected effective pixels to construct a
multi-scale descriptor for classification. Feng et al. [11]
proposed a PAD method that integrates image quality
features with motion cues. They developed an extendable
multi-cues integration framework to enhance the generaliza-
tion capability of IQA-based PAD. Image quality features
were extracted through Shearlet transform, while motion-
based features were derived from dense optical flow, with
both sets of features being merged effectively using a
bottleneck feature merging technique. In a related study,
Chang et al. [12] presented a PAD method that utilizes
multi-scale perceptual image quality features. They grouped

handcrafted texture features from face images into three
categories and employed a support vector machine to extract
21 multi-scale image quality features for effective PAD.
Li et al. [13] proposed a two-stage PAD approach, where
initial face samples are subjected to image quality assessment
for manual categorization. A regression function then utilizes
these quality features to estimate coefficients for PAD on
input samples, refining the detection process.

Beyond the IQA-based face PAD algorithms previously
outlined, Galbally et al. [8] have put forward a biometric PAD
framework that leverages IQA across multiple modalities,
including iris, fingerprint, and facial recognition. This system
necessitates the extraction of a comprehensive set of 25 image
quality features from the input biometric samples. Subse-
quently, the PAD process is executed through a pair of pre-
trained classifiers, namely linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA). An extensive
performance evaluation across the three biometric modalities
underscores the system’s efficacy in detecting a variety of pre-
sentation attacks, showcasing its robustness against diverse
attack vectors. In a related study, Aravena et al. [42] explored
the utility of face image quality assessment techniques in the
context of PAD. Their empirical findings suggest that the
deployment of face quality assessment for pre-filtering low-
quality images can significantly enhance the PAD process.

The integration of IQA principles into PAD methods,
as reviewed in this section, underscores the potential for
enhancing the precision and reliability of biometric systems.
By fusing IQA insights with PAD strategies, the resultant
biometric system stands to benefit from an augmented
capability to discern and against sophisticated presentation
attacks. This study addresses the gaps in the current
body of work by leveraging general IQMs that have been
demonstrated to generalize well across different conditions
and attack types. By, for instance, retraining these IQMs with
PAD-specific datasets, it can improve generalizability of face
PAD methods without sacrificing computational efficiency.
Moreover, the proposed approach in this manuscript has
been designed to be robust against environmental variations,
ensuring reliable performance in diverse settings. In contrast
to existing methods that struggle with generalizability and
computational efficiency, our approach offers a balanced
solution that maintains high detection rates while remaining
feasible for low-resource applications.

F. DATABASES FOR FACE PAD
The Replay-Mobile [14] dataset is a specialized collection
designed for Face Presentation Attack Detection (PAD)
research, comprising 1190 video sequences of faces and
corresponding still images, capturing presentations of attacks
from 40 distinct subjects across varying lighting scenarios.
These visual records were produced using an iPad Mini2
and an LG-G4 smartphone, employing the devices’ front
cameras. The videos are characterized by a resolution of
720 × 1280 pixels, encapsulated in ‘‘.mov’’ format, and
recorded at a frame rate of 25 frames per second (Hz).
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Authentic facial recordings were conducted under a quintet
of lighting states: controlled, adverse, direct, lateral, and
diffuse. To emulate presentation attacks, high-fidelity images
(captured using a Nikon Coolpix P520 camera with an 18-
megapixel resolution) and videos (recorded with the LG-
G4 smartphone’s rear camera at 16-megapixel 1080p full
high definition) were obtained from each participant under
diverse conditions. Three distinct methods were employed
for the attack simulations: 1) a matte-screen displayed the
target face image or video, with both the presentation and
the recording apparatus secured on stands; 2) the printed
facial image was presented on a stand, while the recording
devices were also fixed; 3) the printed image was held by a
stand, with the recording apparatus being manually operated
by an individual. This process resulted in the registration of
16 attack videos per subject, enriching the dataset for PAD
analysis.

CASIA-MFSD [15] face PAD database contains 600 face
videos and images presentation attacks from 50 subjects
under different acquisition environment. Three acquisition
devices were used to reflect different face quality: 1) an old
USB camera to represent low face quality (video resolution
is 480 × 640 pixels); 2) a high standard new USB camera
to represent normal face quality (video resolution is 480 ×

640 pixels); 3) a high resolution Sony NEX-5 camera
to represent high face quality (video resolution is 720 ×

1280 pixels). The Sony NEX-5 camera was also used to
capture face images (resolution 1080×1900 pixels) for photo
presentation attacks. All bona fide face videos were acquired
under natural scenes and subjects were asked to blink their
eyes during the recording. Three presentation attacks were
conducted in the database: warped photo attack, cut photo
attack, and video attack. For warped photo attack, SonyNEX-
5 camera was used to take a face image and generate a video
for each subject. The acquired high resolution face images
were printed on the copper paper and the attacker warped this
paper to simulate facial motion in the video attack. For cut
photo attack, the eyes regions in the acquired high resolution
face images have been cut off so that attacker can conduct
eye blink behavior in the video attack. For video attack, high
resolution (720× 1280 pixels) face videos were shown on an
iPad and then recorded for such an attack.

Oulu-NPU [16] face PAD database consists of 5904 face
videos presentation attacks from 55 subjects under three
different lighting conditions by using six smartphones:
Samsung Galaxy S6 edge, HTC Desire EYE, MEIZU
X5, ASUS Zenfone Selfie, Sony XPERIA C5 Ultra Dual,
and OPPO N3. All videos were recorded at Full HD
resolution(1920 × 1080) using the frontal cameras of the six
mobile devices with the same recording application installed
on each device. Three sessions under different illumination
condition and background scene were conducted to acquire
bona fide face videos: 1) in a big open office environment
with the normal office light and natural light; 2) in a meeting
room with only normal office light; 3) in a small office with
the normal office light and natural light. Both print and video-

replay attacks were included in the database. For print attacks,
high quality face images were printed on A3 glossy paper
using a Canon imagePRESS C6011 and a Canon PIXMA
iX6550 printer. For video-replay attacks, high quality videos
were shown on two displays: a 19 inches Dell UltraSharp
1905FP display with 1280×1024 resolution, and a 13 inches
MacBook Retina display with 2560×1600 resolution. All six
devices were used to generate print and video-replay attacks.
Printed face image attacks were held by the attacker with
stationary acquisition devices for print presentation attacks,
while both videos and acquisition devices were stationary for
video-replay presentationg attacks.

NUAA [17] face PAD database has 12614 printed face
presentation attacks from 15 subjects by using a low price
webcam camera under unconstrained lighting conditions.
A series of 500 face images were acquired in two separate
acquisition sessions by the camera for bona fide face samples.
Each subject was required to face the camera with neutral
expression and no motion (e.g. eye blink, head rotation)
was allowed. A Canon camera was used to first capture
face images from all subjects, and then print attacks were
generated in three paper sizes by using a color HP printer:
6.8cm×10.2cm, 8.9cm×12.7cm, and A4 paper size. Finally
the same webcam camera was used again to obtain print
presentation attack face images.

SiW [18] face PAD database provides bona fide and
imposter face videos from 165 subjects. Eight bona fide and
no more than 20 attack videos are recorded for each subject,
and a total of 4478 videos are in the SiW database. All
videos are in 30 fps, about 15 second length, and 1080P
resolution. The bona fide videos were collected in four
sessions. In the first session, the subject moved his/her head
with difference distances to the camera. In the second session,
the subject changed the face angle of the head between
[−90◦, 90◦] with different face expressions. In the third and
fourth sessions, the subject repeated the first two sessions
under moving light source around the face from different
orientations. Two print presentation attacks and four replay
attacks were generated for each subject. A high quality face
image (5184×3456 resolution) was acquired for each subject
and printed with an HP color LaserJet M652 printer for print
attacks. The print attack videos were recorded by holding
printed face images still or warping in front of the cameras.
Replay attack videos were illustrated on four attack devices:
1) a Samsung Galaxy S8 smartphone, iPhone 7, iPad Pro, and
PC (Asus MB168B) screens. Two of the four high-quality
bona fide face videos were randomly selected to display on
the attack devices.

An overview of the above mentioned face PAD databases
as well as other existing databases is give in Table 1.

III. EXPERIMENTAL SETUPS
A. SELECTED IQMS
Since only no-reference IQMs can be used for face PAD tasks,
we selected eight commonly used and recent no-reference
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TABLE 1. An overview of commonly used face PAD databases.

IQMs to see their ability as well as evaluate their performance
on the face PAD:

• NIMA [31]: an automatically learned image quality
assessment to predict the distribution of human opinion
scores using a re-trained deep object recognition neural
network.

• BIQI [32]: a modular framework for constructing image
quality assessment using SVM for classification.

• DBCNN [33]: a no-reference image quality assessment
method using a deep bilinear CNN.

• dipIQ [34]: a no-reference quality assessment approach
by learning-to-rank discriminable image pairs.

• BIECON [35]: a fully deep no-reference image quality
assessment algorithm using the local quality maps as
intermediate targets for CNNs.

• OGIQA [36]: a no-reference image quality assessment
method using relative gradient statistics and adaboosting
neural network.

• MUSIQ [37]: a multi-scale transformer to deal with
native resolution images in different sizes and aspect
ratios for image quality assessment.

• SSEQ [38]: a no-reference image quality assessment
approach based on spatial and spectral entropies using
SVM for classification.

In selecting the eight IQMs for our study, we consid-
ered several criteria, including their theoretical robustness,
demonstrated efficacy in image quality assessment, com-
putational efficiency, and their ability to capture nuances
relevant to face PAD. Each of the chosen IQMs is grounded
in a unique theoretical framework. For instance, the NIMA
model utilizes deep learning to predict human opinion

scores, while BIQI employs a modular framework with
SVM for classification. These diverse approaches provide a
comprehensive assessment of image quality attributes. The
relevance of each IQM to PAD lies in their sensitivity to
image qualities that are often compromised in presentation
attacks. For example, the DBCNNmodel is adept at detecting
local distortions and artifacts, which are common in printed
or digitally manipulated attack images. We compared our
chosen IQMs with other existing metrics, considering their
applicability to PAD. The selected IQMs demonstrated
a superior balance between accuracy and computational
efficiency, which was critical for our real-time PAD system
requirements. Preliminary results from our experiments
provided evidence supporting the selection of these IQMs.
For instance, initial tests showed that the dipIQ model
effectively discriminated between high-quality and low-
quality face images, which is crucial for distinguishing
between bona fide and attack samples. We anticipate that the
integration of these IQMs into PADwill contribute to the field
by enhancing the robustness and accuracy of attack detection.
The chosen metrics, with their diverse theoretical bases and
proven track records, are expected to provide a multifaceted
approach to PAD.

B. SELECTED FACE PAD METHODS
Eight recently proposed and commonly used face PAD
methods are selected to compared their performance to
selected IQMs:

• Single Side Domain Generalisation (SSDG) [39]: it
improves the generalization ability of the face PAD
system in the following two ways: 1) learning a compact
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distribution of bona fide face features, and 2) learning
a dispersed distribution of fake face features in the
domain.

• ViTranZFAS [40]: the backbone of this method is a
vision transformer. The last layer of the transformer is
replaced by a fully connected layer with one output node
and fine-tunes using binary cross-entropy loss.

• MobileNetv3 [41]: it is a smartphone CPUs based
CNN. Squeeze-and-excitation and hard swish activation
modules are introduced in this CNN. By adding
these two modules it has better accuracy and faster
computation speed for image classification compared to
the earlier version. In this paper, we used ImageNet to
train the MobileNetv3 first, and then changed the last
layer of the network as a two-class output.

• LMFD-PAD [89]: it introduces a dual-stream CNNs
framework for face PAD, addressing challenges in
unseen scenarios. One stream employs learnable fre-
quency filters to capture features resilient to sen-
sor/illumination variations, while the other utilizes RGB
images for complementary information. The proposed
hierarchical attention module integrates information
from both streams, enhancing generalizability across
intra-dataset and cross-dataset setups.

• MADDoG [90]: it enhances face PAD generalization
using a multi-adversarial discriminative deep domain
generalization framework. By enforcing dual-force
triplet-mining constraints, it ensures a discriminative
and shared feature space across source domains, improv-
ing effectiveness against new presentation attacks.
Incorporating auxiliary face depth supervision further
boosts generalization.

• FRT-PAD [91]: it enhances the precision of face PAD
by integrating insights from ancillary face-related tasks.
The approach is characterized by the utilization of
features that are tailored to the specific requirements
of the task at hand. Furthermore, it deploys a cross-
modal adapter, which is augmented with a graph
attention network to facilitate the adaptation process.
PAD is accomplished by harnessing hierarchical fea-
tures extracted from a CNN-based presentation attack
detector, alongside features that have been re-mapped to
enhance their utility in the PAD process.

• FedSIS [93]: it introduces a privacy-preserving frame-
work using a hybrid vision transformer architec-
ture through Federated Learning and split learning.
To enhance generalization to new domains, it employs
an intermediate representation sampling strategy and
distills discriminative information using a shared
adapter network.

• OCKD-FacePAD [92]: it introduces a pedagogical
framework that facilitates cross-domain face PAD
through one-class domain adaptation.Within this frame-
work, the role of the teacher network is to develop
robust feature representations, which are cultivated
through training on the data from the source domain.

Concurrently, the student networks are tasked with
acquiring analogous representations by leveraging a
limited set of authentic samples from the target domain.
In the evaluation phase, the system evaluates the
similarity score derived from the juxtaposition of
the teacher and student representations to effectively
differentiate between attempted attacks and bona fide
facial presentations.

C. FACE PAD DATABASES
Five databases are used for the performance evaluation of face
PAD methods in the experiments: CASIA-FASD, NUAA,
Oulu-NPU, Replay Attack Mobile, and SiW. While the first
four databases are used to evaluate the IQMs’ performance
and re-training, the SiW database is used for the cross-dataset
validation of re-trained IQMs.

IV. EXPERIMENTS AND RESULTS
To systematically assess the efficacy of IQMs in the context
of face PAD and to benchmark their performance against
conventional PAD techniques, we propose a set of three
distinct experimental protocols. The initial protocol entails an
examination of the innate capacity of IQMs to differentiate
between authentic and attack face samples through the
assignment of distinct quality scores, without any re-training.
The second protocol involves the re-training of select IQMs
on a composite dataset of PAD images, followed by an
analysis of the impact on the detection process when
excluding face samples deemed of low quality based on
the quality assessment outcomes. The third protocol seeks
to establish whether the integration of re-trained IQMs into
the PAD process can lead to an enhancement in the overall
performance of the face recognition system. Expanding upon
these protocols, a key aspect of our methodology is the
application of score level fusion, which involves combining
the quality scores assigned by multiple IQMs to improve the
detection of presentation attacks. The score level fusion is
predicated on the notion that no single metric can capture
all the intricacies of image quality, especially in the context
of PAD where the subtleties of presentation attacks can
vary widely. Consequently, our strategy involves assigning
weights to each IQM’s output based on their demonstrated
efficacy in identifying nuances pertinent to PAD. These
weights are meticulously tuned to ensure that the fused score
not only accentuates the individual strengths of the IQMs but
also compensates for their individual limitations.

A. PROTOCOL I - IQMS EFFECT ON PAD
Figure 3 shows a box plot of the quality score statistics
for both bona fide and attack face samples from four face
PAD databases by using eight general non-reference IQMs.
According to the quality assumption we discussed previously,
quality scores from bona fide face samples should be higher
than presentation attack samples. In addition, quality scores
from bona fide and attack face samples should well separated
from each other if the IQMs can recognize the quality
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FIGURE 3. Score statistics for both bona fide and attack face samples from four face PAD database by using eight general non-reference
IQMs.

differences between real and fake face samples. However,
from Figure 3 we cannot observe quality scores from bona
fide face samples (orange boxes) are higher than attack
face samples (green boxes). On the contrary, quality scores
from attack face samples by using DBCNN in Figure 3 (a),
NIMA and SSEQ in Figure 3 (b), NIMA, DBCNN, BIECON,
OGIQA, and SSEQ in Figure 3 (d) are higher than bona fide
face samples. Amount the other IQMs, only BIQI on CASIA-
FASD and Oulu-NPU databases (Figure 3 (a), (c)), DBCNN
on NUAA and Oulu-NPU databases (Figure 3 (b), (c)) can
obtain higher quality scores from bona fide face samples.

The distribution of quality scores for both bona fide and
attack face samples from four face PAD database by using
eight general non-reference IQMs are given in Figure 4.
We can observe that the quality scores from bona fide and
attack samples are highly overlapped, which indicates that
tested IQMs cannot distinguish the bona fide and presentation
attack face samples by assigning different quality scores.
From Figure 4 we can discover that both bona fide and attack
quality scores from BIECON on CASIA-FASD database
(Figure 4 (a)), BIQI on Replay Attack Mobile database
(Figure 4 (d)) are separated into two parts. Such a finding
could because BIECONandBIQI are sensitive to the different
attack types and acquisition conditions in CASIA-FASD and
Replay Attack Mobile databases. Thus they assign different
quality scores to both bona fide and presentation attack face
samples.

From Figure 3 and 4 we can see that the distribution of
quality scores is very similar for both bona fide and attack
face samples. Therefore, none of the tested IQMs can be used
for face PAD in their original form.

B. PROTOCOL II - RE-TRAINED IQMS EFFECT ON PAD
1) TRAINING OF IQMS AND PAD METHODS
Following the findings from the initial experimental protocol,
we embarked on the re-training of six Image Quality Metrics
(IQMs): NIMA, DBCNN, dipIQ, BIECON, OGIQA, and
MUSIQ. This re-training process utilized a consolidated
dataset, which was compiled from the CASIA-FASD,
NUAA, Oulu-NPU, and Replay Attack Mobile databases.
A straightforward train-test split was applied, reserving
80% of the aggregated data for the training phase and
allocating the remaining 20% for the evaluation of the
models. Concurrently, to benchmark the PAD capabilities, the
aforementioned eight traditional face PAD techniques were
also trained on the combined databases. The implementation
of all six IQMs and eight face PAD methodologies was
conducted in Python, utilizing their publicly accessible open-
source versions. A uniform input image dimension of 300 ×

300 pixels was employed across all methods. The training
procedures were executed on a personal computer equipped
with an Intel i7-12700 CPU, 16 GB of RAM, and an NVIDIA
RTX 3060 GPU.
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FIGURE 4. Distribution of quality scores for both bona fide and attack face samples from four face PAD database by using eight
general non-reference IQMs.

2) IMAGE QUALITY EFFECT ON FILTERING PRESENTATION
ATTACKS
For the segment of the experimental process involving the
20% test dataset extracted from the integrated database,
quality assessments were performed on each image using all
six re-trained Image Quality Metrics (IQMs). Subsequently,
images constituting the lowest X%, with X taking on values
from 0% to 90%, were systematically excluded from further
consideration. This exclusion was implemented irrespective
of the image label. Figure 5 (a) delineates the proportion of
discarded images, normalized in relation to the total count of
images for each label present in the test dataset of the merged
database. Similarly, Figure 5 (b) presents this ratio for the
SiW database. The data indicates that genuine face samples,
depicted by solid lines, are discarded at a lower frequency
compared to the face attack samples, which are represented
by dashed lines. A consistent trendwas observed across all six
re-trained IQMs when applied to both the merged database
and the SiW database. These findings suggest that, despite
not being explicitly designed for face PAD, the application of
these IQMs as a pre-filtering step in image processing can be
advantageous. This is evidenced by the increased selection
of high-quality bona fide face samples and the rejection of
low-quality images that are indicative of presentation attacks
following retraining.

We illustrate again the score statistics and distribution of
quality scores for both bona fide and attack face samples from
testing dataset in merged database and SiW database by using
six re-trained IQMs in Figure 6. By comparing Figure 3 and 4

with Figure 6 we can see that, the score difference between
bona fide and attack face samples is much bigger after re-
training. As expected, attack samples show a lower score
on average than bona fide samples. By comparing Figure 6
(b) and (d) we can discover re-trained IQMs are not only
able to separate attack and bona fide face samples, but also
can have expected good performance on new dataset (SiW
database). It could be noted that attack samples fromDBCNN
have higher scores than most other IQMs in Figure 6 (d), and
bona fide samples from OGIQA have lower scores than the
others. In addition, it can be observed that scores fromNIMA,
dipIQ, and BECON have less overlapping than the other three
IQMs Figure 6 (d).

3) PERFORMANCE OF TRADITIONAL PAD METHODS
VERSUS RE-TRAINED IQMS
In order to compared the face PAD performance between re-
trained IQMs and traditional methods, we discarded 20% of
the lowest quality face samples from both the 20% merged
testing dataset and SiW dataset by using each of the IQM. The
performance of traditional PADmethods was evaluated based
on the ISO 30107-3 standard [94] by calculating the Bona fide
Presentation Classification Error Rate (BPCER), and Attack
Classification Error Rate (APCER). The definitions of these
two measures are as the following:

BPCER =

∑NBF
i=1 RESi
NBF

(1)
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FIGURE 5. Bona fide and attack face sample images filtering by quality
scores for six IQMs from merged PAD database and SiW database.

APCER =
1

NPAIS

NPAIS∑
i=1

(1 − RESi) (2)

where NBF is the number of bona fide face samples, NPAIS
is the number of attack samples, and RESi equals to 1 is the
system’s response to the i− th attack is classified as an attack
and equals to 0 if classified as bona fide. For both IQMs
and traditional face PAD methods, their performance can be
a single value of BPCER for a fixed APCER. For instance,
BPCER10 represents the BPCER value is calculated where
the APCER is 10%.

For a multi-factorial comparative study, we also calculated
the performance indicators for traditional PAD methods and
re-trained IQMs under two types of presentation attacks: print
and replay. The comparative analysis of various PADmethods
unveils significant insights into their performance across
different metrics and datasets. Through evaluating Equal
Error Rate (EER), BPCER10, and BPCER20 for both print
and replay attacks, discernible patterns emerge in Table 2
and Figure 7. From Table 2 and Figure 7 we can observe
that, in scrutinizing EER, MADDoG and NIMA consistently
emerges as a robust performer, exhibiting the lowest error
rates across both print and replay attacks in the 20% merged
testing dataset and the SiW dataset. Conversely, OGIQA
consistently lags behind, displaying comparatively higher
error rates across all evaluations. Notably, re-trained general
IQMs like NIMA and BIECON exhibit more reliability
compared to traditional PAD approaches, suggesting a

potential preference for established approaches in practical
implementations.
BPCER10 and BPCER20 analysis further reinforces the

dominance of NIMA, showcasing its ability to minimize false
non-match, particularly evident in its performance across
print and replay attacks in both datasets. Conversely, OGIQA
consistently records higher BPCER10 and BPCER20 values,
underscoring its inadequacies in effectively detecting presen-
tation attacks. Notably, consistent performers like NIMA and
BIECON demonstrate less performance degradation when
transitioning from the 20% merged testing dataset to the
SiW dataset, indicating superior generalization capabilities.
Most of traditional PAD and IQMs are more sensitive to
print attack, conversely, OGIQA exhibit higher PAD ability
to replay presentation attacks, emphasizing potential PAD to
specific datasets with replay presentation attacks.

Metric-specific performance highlights a strong corre-
lation between EER and BPCER10/20, suggesting that
methods excelling in one metric tend to perform well
in the other, further underscoring the reliability of top-
performing methods. In light of these findings, prioritizing
robust methods such as NIMA and BIECON for practical
implementations is advisable, while allocating resources
towards improving underperforming methods like OGIQA is
essential. Additionally, further testing on diverse datasets is
recommended to validate the generalization ability of PAD
methods and explore potential synergies through a balanced
approach that leverages the strengths of various methods.
Visual plots in Figure 7 complement the analysis, providing
clear comparisons across attack types and offering a compre-
hensive understanding of each method’s effectiveness.

Finally, by comparing the lowest error rates between
traditional PAD methods and IQMs we can see that, the
difference is smaller than 1% and BPCER20 from NIMA is
even lower than OCKD-FacePAD. Such an results indicates
that by using both the merged dataset to re-train general
purpose IQMs, their performance on both the 20% merged
testing dataset and a new cross-dataset validation SiW
database is comparable to the state-of-the-art traditional PAD
methods.

C. PROTOCOL III - IQMS FILTERED FACE PAD
This protocol is to verify whether the system performance
can be further improved by filtering low quality face
samples by using re-trained IQMs for face PAD. Therefore,
we first discarded 20% of the lowest quality face samples
by using NIMA and BIECOM (due to their better perfor-
mance in Table 2), respectively. Then, SSDG, ViTranZFAS,
MobileNetv3, LMFD-PAD, MADDoG, FRT-PAD, FedSIS,
and OCKD-FacePAD are used to conduct face PAD task on
the filtered datasets. The experimental results are illustrated
in Table 3.
The error rates without quality filtering are marked as

blue (the same values as in Table 2) in Table 3. It can be
discovered that the overall error rates after quality filtering
are lower. After filtering 20% of the lowest quality face
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FIGURE 6. Score statistics and distribution of quality scores for both bona fide and attack face samples by using six re-trained IQMs from
merged and SiW databases.

TABLE 2. Performance of traditional PAD methods versus re-trained IQMs under different presentation attack factors. DR represents the Discarded Rate.
Data in the performance indicators section: left side represents results from 20% merged testing dataset, right side represents results from SiW dataset.

samples by NIMA and BIECON, the EER decreases by about
1%-2%, BPCER10 decrease by about 1%, and BPCER20
decreases by about 1%-3% for all eight PAD methods.
Similar to the results reported in Table 2, the lowest EER is
from MADDoG by using NIMA for quality filtering. NIMA
remains providing lowest BPCER10 and BPCER20 for SSDG
and OCKD-FacePAD, respectively. In addition, we show
PAD performance using BPCER versus discarded ratio of
face samples filtered by IQMs in Figure 8. From Figure 8
we can observe that the best performance for both BPCER10

and BPCER20 from SSDG is when 50% lowest quality face
samples are discarded by using NIMA (BIECON is 20% for
BPCER10 and 40% for BPCER20). The best performance for
bothBPCER10 andBPCER20 fromViTranZFAS is when 20%
lowest quality face samples are discarded by using BIECON
(NIMA is 20% for BPCER10 and 60% for BPCER20). The
best performance for both BPCER10 and BPCER20 from
MobileNetv3 is when 60% lowest quality face samples
are discarded by using NIMA (BIECON is 20% for both
BPCER10 and BPCER20). For the rest five PAD methods,

VOLUME 12, 2024 94665



X. Liu et al.: Quality Matters: Boosting Face PAD With Image Quality Metrics

FIGURE 7. Performance comparison between traditional PAD methods and re-trained IQMs under different presentation attack factors.

the overall performance for both BPCER10 and BPCER20 is
better when more low quality samples are discarded by using
NIMA and BIECON.

The experimental results from protocol II and III indicate
that re-training existing general purpose IQMs by using face
PAD databases can not only improve their performance on
face PAD but also make them highly competitive compared
to the state-of-the-art traditional face PADmethods. By using
re-trained IQMs to first discard low quality face samples, the
performance of traditional face PAD methods can be further
improved.

D. SCORE LEVEL FUSION FOR ENHANCED FACE PAD
PERFORMANCE
In an effort to further enhance the performance of IQMs for
face PAD, we have explored the application of score level
fusion techniques. Recognizing the potential of combining
the outputs from multiple IQM models, we hypothesized

that a fused score could provide a more robust and accurate
representation of the image quality and, consequently, a more
reliable detection of presentation attacks.

1) WEIGHT ASSIGNMENT
The weight assignment process in our score level fusion
technique is designed to reflect the relative performance of
each IQM. The performance is quantified using the area under
the Receiver Operating Characteristic (ROC) curve (AUC),
which is derived from the FMR and FNMR. The ROC curve
is a graphical representation of the FMR against the FNMR
at various threshold settings. The AUC provides a single
measure of performance, with higher values indicating better
discrimination between bona fide and attack samples. The
AUC was calculated for each IQM using the trapezoidal rule
for numerical integration of the ROC curve. Given a set of
predicted probabilities and their corresponding true labels,
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TABLE 3. PAD performance after quality filtering.

the AUC is computed as follows:

AUC =

n−1∑
j=1

(
FMRj + FMRj+1

2

)
× (FNMRj+1 − FNMRj)

where n is the number of discrete probability points, FMRj
and FNMRj are the False Match Rate and False Non-
Match Rate, respectively, at the j-th probability threshold.
To ensure that the weights sum up to one, the AUC values
are normalized:

ωAUC,IQMi =
AUCIQMi∑m
i=1AUCIQMi

Here, m denotes the total number of IQMs, and ωAUC,IQMi

is the weight assigned to the i-th IQM based on its AUC
value. The final weights for the score level fusion can also
incorporate other factors such as the confidence in the IQM’s
performance or the desired balance between sensitivity and
specificity. A comprehensive weight ωIQMi for the i-th IQM
can be calculated as:

ωIQMi = wAUC,IQMi × wconf,IQMi × wbal,IQMi

where wconf,IQMi represents the confidence weight and
wbal,IQMi represents the balance weight. These additional
weights can be determined based on further analysis or
experimental outcomes. The calculated weights are then
applied to the quality scores output by each IQM, resulting

in a weighted score for each sample. These weighted scores
are aggregated to produce the final decision score.

2) FUSION TECHNIQUE
The fusion technique employed in our study utilizes a
weighted scoring system to combine the individual quality
assessments from multiple IQMs. This approach aims to
enhance the overall performance of face PAD by lever-
aging the collective predictions of the IQMs. Let I =

{i1, i2, . . . , im} denote the set of indices corresponding to
the m IQMs used in the study. For each IQM indexed by
i, a quality score si is assigned to a given face image.
These scores are then combined using weights ωi, which are
assigned based on the performance of each IQM as detailed in
the Weight Assignment section. The aggregated score F for
a given face image, resulting from the fusion of scores from
all m IQMs, is calculated using the following equation:

F =

∑
i∈I

ωi · si

Here, ωi represents the weight assigned to the i-th IQM, and
si is the quality score given by the i-th IQM for the face
image. The aggregated score F is then compared against
a predetermined threshold τ to make a decision on the
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FIGURE 8. PAD performance using BPCER versus discarded ratio of face samples filtered by IQMs.

authenticity of the face image:

Decision =

{
Bona Fide if F > τ,

Attack if F ≤ τ.

The threshold τ is chosen to minimize the overall error rate
of the PAD system, which is defined as the sum of the FMR
and FNMR:

Error Rate = FMR + FNMR
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TABLE 4. Performance of traditional PAD methods versus score level
fusion approach.

The optimization of the threshold τ can be performed using
a grid search over a range of possible threshold values. For
each candidate threshold, the corresponding error rate is
calculated, and the threshold that results in theminimum error
rate is selected as the final threshold.

3) RESULTS AND DISCUSSIONS
To ensure the effectiveness of the fusion approach, we con-
ducted experiments using the SiW database.

The results of the score level fusion experiment are
presented in Table 4. As shown in the table, the fused
approach achieved a EER of 1.97%, representing a 0.17%
reduction in comparison to the best-performing individual
method in Table 3. Moreover, both the BPCER10 and
BPCER20 are reduced by using the new fused approach.

The score level fusion technique leverages the collective
strengths of multiple IQMs, compensating for individual
weaknesses and enhancing the PAD system’s robustness and
accuracy. The weighted sum method, combined with an opti-
mized threshold, allowed for a more nuanced classification
of face samples. However, the success of the score level
fusion relies on accurate weight assignment and threshold
optimization. The validation set used to determine these
parameters must be representative of the true population to
avoid over-fitting.

V. CONCLUSION AND FUTURE WORK
In this study, we assessed the efficacy of general-purpose
IQMs for face PAD using three distinct protocols. Firstly,
we examined whether IQMs could differentiate between
authentic and attack face samples by assigning distinct quality
scores in their original state. Secondly, we explored whether a
re-training strategy could enhance the performance of IQMs,
bringing them on par with advanced traditional PADmethods.
Thirdly, we investigated the impact of filtering out low-
quality samples using re-trained IQMs to potentially boost
the performance of face recognition systems. Additionally,
we examined the potential of score-level fusion to further
refine IQM performance in PAD.

The findings from our experiments, along with the
fused approach, are as follows: initially, we found that the
original IQMs struggled to effectively distinguish between
genuine and attack face samples. However, re-training IQMs
using face PAD databases significantly improved their
performance, making them comparable to state-of-the-art
traditional PAD methods, both on the testing dataset and
on a new cross-dataset validation database. Furthermore,
we discovered that filtering out low-quality face samples
prior to PAD could substantially enhance the accuracy and

security of face recognition systems. Specifically, NIMA
and BIECON demonstrated superior performance in terms
of the BPCER and the EER, respectively. Among traditional
PADmethods, OCKD-FacePAD outperformed others. Lastly,
the integration of score-level fusion techniques showed a
noticeable improvement in PAD performance, highlighting
the potential of IQMs when combined effectively.

Our approach, while demonstrating promising results, has
certain limitations that should be considered. Firstly, the
reliance on general IQMs may not fully capture the nuances
of face presentation attacks, particularly those that are highly
sophisticated or use novel techniques. Secondly, our method
assumes access to a diverse set of training data, which may
not be readily available in all applications. The performance
of our approach is also contingent upon the quality of the re-
training process, which requires careful selection of param-
eters and validation techniques. Additionally, introducing
other types of presentation attacks images may also affect the
evaluation results.

Despite these limitations, our findings have practical
implications for enhancing the security of biometric systems.
By integrating general IQMs into PAD,we offer a flexible and
potentially cost-effective strategy for improving detection
rates. This approach could be particularly beneficial in
environments where specialized PAD techniques are not
feasible due to budget constraints or technical complexity.
However, it is important to note that the implementation
of our method would require careful consideration of these
limitations to ensure its effectiveness in a given context.

There is a need to develop an IQMcapable of handling both
face quality assessment and PAD, thereby strengthening the
robustness of face recognition systems. The score level fusion
experiment underscores the potential of using ensemble
techniques to enhance the robustness and accuracy of
biometric security systems in defending against presentation
attacks. Further research is warranted for the advancement of
multi-modal biometric PAD approaches.
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