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ABSTRACT This paper introduces a novel hybrid parking system that integrates stationary charging piles
(SCPs) and mobile charging robots (MCRs) to optimize urban parking utility. The model categorizes
parking spaces based on the presence of SCPs, considering customer behavior including improper parking.
It also introduces an operational algorithm—Earliest Available Device First (EADF)—to manage real-time
scheduling of MCRs efficiently. Through strategic planning and operational management, the system aims
to enhance social welfare by balancing cost-efficiency with flexible charging solutions. We evaluate our
approach based on real-world data, demonstrating how MCRs significantly improve both the strategic and
accumulated operational aspects of urban parking facilities. The results showcase the potential of hybrid
systems in urban environments, promoting higher utility and cost-effective management.

INDEX TERMS Mobile charging robots, stationary charging piles, urban parking utility, hybrid charging
systems, operational optimization, strategic planning.

I. INTRODUCTION
The rising adoption of electric vehicles (EVs), encompassing
Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric
Vehicles (PHEVs), reflects their attributes of efficiency, eco-
friendliness, and cost-effective maintenance. In 2023, the
global count of these vehicles ascended to 14.2 million,
a significant 35% climb from the previous year, indicating
a robust and growing market [1].
The advent of electric vehicles has spurred a surge in

research within this domain, encompassing areas such as
charging frameworks [2], [3], [4], wireless charging [5], [6],
[7], [8], [9], [10], and charging safty or state monitoring [11],
[12]. Conventional charging infrastructures, predominantly
Fixed Charging Stations (FCS), are extensively studied
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and integrated into urban frameworks, aiming to enhance
charging efficacy [13], [14], [15], [16], [17], [18]. Sadeghi-
Barzani et al. advanced an optimization strategy for strategic
placement and sizing of fast charging stations [13]. Luo et al.
tailored an optimization model for the optimal allocation
of charging stations comprising multi-types of charging
facilities [15]. Further, Dong et al. introduced an EV
charging pricing strategy to leverage the load flexibility [16].
Arias et al. developed a time-spatial predictive model for EV
charging-power demand in urban landscapes [14].
Although fixed charging stations are instrumental and

have been widely deployed, they present limitations in terms
of location dependency and user convenience. To address
these constraints, the concept of ‘‘Mobile Charging Stations
(MCS)’’ has been introduced, promising to improve acces-
sibility and operational adaptability for EV charging [19],
[20], [21]. This model leverages the mobility of charging
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units, enabling on-demand service to EVs regardless of
their location and obviating the need for EV owners to
search for fixed charging stations. Important studies in this
domain include Huang et al., who introduced a service
model for mobile charging based on the nearest-work-
next principle, enhancing scheduling efficiency [22]. The
dispatching problem of mobile chargers is modeled as a static
vehicle routing problem with time windows and is solved
by CPLEX in [23]. Cui et al. formulated a location-routing
problem for static mobile charging operations, analyzing
sensitivity to battery capacity and recharging rates [24].
Raeesi and Zografos’s application of vehicle routing problem
frameworks to mobile charging [25], and Tang et al.’s
simulation-based optimization for mobile charging systems
design and evaluation [26].
The introduction of mobile charging stations has indeed

augmented the user experience and operational agility in
urban parking ecosystems, but these conveniences come at a
cost, particularly when they rely on auxiliary vehicles for the
deployment of charging devices. This has spurred a newwave
of innovation focused on Mobile Charging Robots (MCRs),
which offer an even more adaptable approach to charging
services within parking facilities [27], [28], [29], [30],
[31], [32]. Autonomous by design, equipped with advanced
sensors and cameras, MCRs are capable of independently
navigating parking structures to connect with and charge
EVs, substantially enriching both the user experience and the
degree of automation in charging services.

Nevertheless, the discourse on MCRs has predominantly
revolved around their technological development, with
research concentrating on their charging mechanisms, such
as the automated detection of charging ports [27], precise
connection capabilities [28], and their mechanical and kine-
matic designs [29], [30], [32]. Conversely, the operational and
strategic frameworks for the deployment of MCRs are areas
yet to be fully explored. A holistic review ofMCR technology
can be found in [33], offering a wide-ranging overview of
current advancements.

In the realm of urban planning, the planning and scheduling
of charging device allocation are critical components of
enhancing parking utility and societal benefits. Studies
like [34] have introduced EV charging station planning
with realistic mobility constraints, while [21] proposed
a charging planning method for shared electric vehicles.
Reference [35] discusses planning scheduling policy for
electric buses, aimed at reducing costs and meeting bus route
constraints. Work by Chen et al. [36] tackles MCS power
management within the Internet of Things (IoT) framework
to maximize long-term profit, and [37] delves into MCS
dispatching algorithms designed to minimize customer wait
times. Research by Wang et al. [19] presents an equilibrium
model that delineates customer behavior within systems
incorporating both fixed and mobile charging solutions.
Adak et al. integrated renewable energy sources and EVs into
a micro-grid system and analyzed the impact of the stochastic
charging/discharging of EVs on the secure and stable

operation of the microgrids [38]. They demonstrated that the
coordinated control between electric vehicles and renewable
energy sources is essential and should be considered in the
design of microgrid systems. Additionally, Chauhan and
Gupta [39] have devised heuristic scheduling algorithms for
mobile charging stations to complement the capacity of fixed
stations.

Although insightful for mobile charging station strategies,
these studies do not directly translate to the context of
MCRs due to their distinctive operational and strategic
nuances. One key differential is the co-location of MCRs
and Stationary Charging Piles (SCP) within the same parking
facility, a factor that significantly influences their joint
operation, which is neglected in existing literature. Moreover,
while cost-minimization is often a focal point, the overall
enhancement of parking utility or social welfare is sometimes
overlooked. Presently, there exists a gap in the systematic
study of the strategic and operational integration of MCRs
to augment societal benefit comprehensively.

This paper introduces an innovative hybrid parking system
combining SCPs and MCRs to elevate urban parking utility,
as shown in Figure 1. Within this system, parking spaces are
bifurcated into two categories based on the presence of SCPs,
with customers selecting space according to their specific
characteristics. The parking system is depicted as a graph-
based model, inclusive of the MCR travel network, and a
comprehensive state transformation model to facilitate the
optimization of social welfare.

We delve into the optimization challenges pertinent to
MCR scheduling during strategic and operational configu-
ration planning, with an overarching aim to amplify overall
social welfare while concurrently mitigating investment and
operational expenditures. Figure 2 provides an overview of
the optimization process.

In the Strategic Planning layer, the objective is to determine
the optimal configuration of the hybrid parking system
given predefined external factors. The process evaluates
all combinations of key factors—such as the number of
rows and columns in the parking lot, the number of
vertical tracks, and the quantities of stationary charging
piles and charging robots—and selects the configuration that
maximizes overall social welfare. This optimal configuration
is identified through simulation, which incorporates customer
characteristics and parking demand data.

During the simulation, the system must assign a charging
device to each charging request based on the current
system state to maximize expected operational utility. This
requirement brings us to the Operational Optimization
layer. To address this challenge, we propose the Earliest
Available Device First (EADF) algorithm, which aims to
enhance operational utility by efficiently allocating charging
devices.

The main contributions of this paper are as follows:
• Hybrid Parking System Model: We introduce an
innovative model for parking facilities that synergizes
stationary charging piles (SCPs) with mobile charging
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FIGURE 1. Diagrammatic Representation of the hybrid Parking System. Note that each vehicle should
be aligned with the identical node representing the parking space it occupies. To clarify the
illustration, vehicle icons are positioned directly beneath their respective parking space nodes.
Similarly, mobile charging robot icons are placed above the respective parking space nodes where
they are operational or stationed.

robots (MCRs), targeting both cost-efficiency and
adaptability to diverse charging demands within the
parking infrastructure.

• Improper Parking Behavior: Acknowledging the
real-world complexity, our model integrates the
often-ignored aspect of improper parking by non-
charging vehicles. We examine how this behavior
influences system state transformations and the corre-
sponding impact on optimization procedures.

• Earliest Available Device First (EADF) Algorithm.
To solve the operational optimization problem in real-
time, we propose the EADF algorithm, an solution
that is both efficient and robust, facilitating the pri-
oritization of charging assignments based on device
availability. According to the evaluation results, the
EADF algorithm can improve the operational utility
by up to 1.9% compared to existing algorithms, with
its time expense three to five orders of magnitude
lower.

• Comprehensive Evaluation of the Framework: We
evaluate the EADF algorithm and strategic planning
of the proposed framework based on customers char-
acteristiced from a real-world dataset. The evaluation
results demonstrate that the proposed EADF algorithm
can better optimize the utility while ensuring real-
time scheduling. Moreover, the results also affirm the

value added by MCRs in elevating the operational
and strategic utility of urban parking facilities, with a
balanced consideration of associated costs.

The remainder of this paper is organized as follows.
Section II presents the hybrid system model and mathemat-
ical formulation of the optimization problem. Section III
describes the operational dynamics of the system and
Section IV presents the algorithm for the operational
optimization problem. Section V discusses the strategic
planning of hybrid parking system configuration. Section VI
presents the evaluation results. Finally, Section VII concludes
the paper and outlines directions for future work.

II. SYSTEM MODEL AND PROBLEM DEFINITION
A. MOTIVATION OF HYBRID PARKING SYSTEM
The proposed hybrid parking system combines two distinct
types of parking spaces: fixed pile parking space and
flexible parking space. The fixed pile parking space (FPPS),
as its name suggests, is distinguished by the presence of
a stationary charging pile (SCP) situated adjacent to it.
The flexible parking space (FPS) is essentially a normal
parking space, but incorporating a specialized overhead track
network. Each node of this network corresponds to a flexible
parking space, intricately connected through a series of
tracks. A fleet of mobile charging robots (MCR) is deployed
in the network to deliver charging services, each of which can
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FIGURE 2. Framework for optimizing urban parking utility: strategic and operational planning of
stationary and mobile EV charging services in hybrid parking systems.

navigate effortlessly from any one node to another through
tracks.

A distinctive innovation within the hybrid parking system
is the integration of the vehicle recharging power grid with the
track network. This integration allows MCRs to continuously
draw power from the grid for both locomotion and charging
EVs, eliminating the need for onboard batteries. This design
yields three primary benefits: firstly, it allows for a reduction
in MCR hardware costs; secondly, it significantly decreases
the weight of MCRs, thereby reducing operational costs; and
thirdly, it negates the need for MCRs to detach for battery
recharging, thus enhancing overall system utilization.

The fixed pile parking space represents a cost-effective
solution because of its implicity and lower installation cost
relative to more complex mobile charging system. However,
its rigidity in spatial configuration may not accommodate
irregular parking patterns. As shown in Figure 1, a vehicle
without charging demand obstructs a FPPS, rendering the
charging pile unusable until the obstructing vehicle departs.
Thus, a singular reliance on FPS may not achieve the optimal
facility utilization.

On the other hand, flexible parking spaces, equipped
with an overhead track network for MCRs, offer a dynamic
and adaptable charging alternative. This design ensures that
the charging service’s availability or efficiency won’t be
disrupted by improperly parked vehicles, thereby boosting
the utilization of facilities and, by extension, the potential for
increased revenue from more frequent parking and charging
sessions.

However, the advanced nature of FPS entails higher initial
and operational costs due to the complexity of the mobile
charging infrastructure. Given the unpredictable patterns
of improper parking and the variable demand for electric
vehicle (EV) charging based on the facility’s location,
an exclusive reliance on FPS and MCR could result in
excessive construction and operational costs, reducing overall
efficiency.

Therefore, in alignment with the objective of optimizing
urban parking utility, we propose the hybrid parking system
that blends FPPS and FPS which supported by a network of
track and power grid, and a fleet of MCRs. This composite
approach allows the system to cater to the diverse parking
and charging requirements of both conventional vehicles and
EVs, ensuring effective utilization across various environ-
ments. This strategic blend aligns with the goals of enhancing
urban parking efficiency and accommodating fluctuating
charging demands within diverse urban landscapes.

B. SYSTEM MODEL
1) TRACK NETWORK AND MCR
Notation: in this paper, scalars are represented by letters, e.g.,
v or V , and vectors are denoted by bold lowercase letters, e.g.,
v. Sets and matrices are denoted by bold uppercase letters,
e.g., V.

We consider a hybrid parking system composed of nx

fixed pile parking spaces each paired with a charging pile,
ny flexible parking spaces, nz mobile charging robots, and
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a track network. The parking spaces and the track network
are modeled as a directed graph G (N, A), where N is
the set of nodes and A is the set of links. Each node Ni
corresponds to the ith parking space, which can be either
an FPPS or an FPS. For any two nodes Ni and Nj, the
link Aij represents the shortest track path connecting them,
with d(Ni,Nj) symbolizing the travel distance between these
nodes. Then, a parking system can be configured by a tuple
P = (G, nx , ny, nz).

This system architecture comprises two categories of
charging devices: nx SCPs and nz MCRs, collectively
represented by E. The charging period for both device types,
SCP or MCR, correlates directly with the requisite energy,
as characterized by the charging rate r .
Parking spaces in G are organized by proximity to the

entrance, with FPPSs prioritized over FPSs. Likewise, SCPs
precede MCRs within E, each SCP indexed to its respective
FPPS for streamlined consistency.

An MCR stationed for charging could potentially obstruct
the pathway for others. To tackle such complexity, it is
assumed that each MCR is outfitted with a set of auxiliary
tracks such that it does not hinder the movement of other
MCRs, thus allowing for seamless bypassing with minimal
time delay. Additionally, all MCRs are assumed to travel at a
constant speed V along the track, thus the travel time tij for
an MCR moving from Ni to Nj is computed as:

tij = d(Ni,Nj)/V (1)

2) CUSTOMER AND CHARGING REQUEST
Operational dynamics involve the generation of potential
customers C = {· · · , c, · · · }, who arrive at the facility
entrance according to a specific temporal stochastic process.
The generation of customers is strongly influenced by
external factors related to the facility, such as its geographic
location, the penetration rate of electric vehicles, and local
traffic conditions. For example, parking facilities near large
commercial centers often see peak customer inflow during
evening hours. Additionally, areas with higher electric
vehicle adoption rates tend to have a larger share of
customers needing charging services. Let K denote the
fraction of customers who require charging services. For
convenience, we will refer to customers requiring charging as
DC-customers and those who do not as NC-customers.

Each customer c is characterized by a tuple (tc, qc, wc,
lc, p1, p2) reflecting individual characteristics: tc represents
the entering time, qc denotes the required charging energy
amount, wc specifies the acceptable waiting time window
for avoiding additional charging waiting costs, lc signifies
the maximum allowable waiting time, representing the
customer’s opportunity cost for seeking alternate charging
options, p1 and p2 are the probabilities of improper parking in
two scenarios: (1) at least one FPS is available; (2) no FPS but
one FPPS is available, respectively. It is reasonable to assume
that p1 < p2. Note that p1 and p2 are meaningful only for
NC-customers; qc and lc are meaningful only for

DC-customers. Therefore, for DC-customers, p1 and p2 are
set to 0. For NC-customers, qc and lc are set to 0 and their
wc denotes the desired parking duration. Different values
of wc and lc can capture distinct characteristics of DC-
customers. For instance, a customer intending to charge
during a one-hour dinner may have wc = 60min, with
a potential lc = 30min. Conversely, a vehicle nearing
battery depletion may corresponds to a small wc, such as
5 minutes, and a large lc, due to the difficulty of locating an
alternative charging station. We stipulate that the completion
time for immediate charging must not surpass the customer’s
maximum waiting threshold, defined as t lc = tc+wc+ lc, i.e.,

qc
r
≤ wc + lc,∀c ∈ C (2)

Although customer generation is stochastic and varies
every day, one can assume the process follows certain
distributions. The stochastic process of customer generation
is now defined by a distribution tuple of above six factors: F ,
with the assumption that F is established through extensive
market research.

ADC-customerwould opt to park at the FPPS closest to the
entrance for the quickest possible charging. Should no FPPS
be available, the vehicle is directed to the FPS closest to the
entrance, followed by the submission of a charging request
Rc = (tc, qc,wc, lc,Nc), where Nc is c’s parking space. Next,
the hybrid parking system tries to allocate an MCR to serve
the customer. The charging finish time t fc for Rc should not
surpass the waiting limit t lc:

t fc ≤ t
l
c (3)

If no MCR can meet this timing requirement, the request
Rc is declined, and the customer c exits the parking
system. Conversely, if the timing constraint is manageable,
an appropriate MCR is designated to Rc. However, this MCR
might not proceed to Nc instantly, as it needs to fulfill any
prior charging requests first.

C. PROBLEM DEFINITION
The goal of this paper is to optimize urban parking utility
through the proposed hybrid parking system. Now, we first
introduce the formal mathematical definition of utility.

For customers not receiving charging services—either
NC-customers or those with rejected requests—the utility uc
is 0. If the request Rc is served, the utility uc stems from the
customer’s opportunity waiting cost. If charging completes
within the acceptable waiting time (tc < t fc ≤ tc + wc), uc is
a constant lc. Otherwise, uc is determined by the reduction in
waiting time. Finally, we have:

uc =


0, if qc = 0 or tc = t fc
lc, if tc < t fc ≤ tc + wc
t lc − t

f
c , if tc + wc < t fc ≤ t

l
c

(4)

Here, qc = 0 identifies a NC-customer, and tc = t fc signifies
a rejected Rc.
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The optimization of our hybrid parking systems is divided
into two layers: operational scheduling and strategic plan-
ning. In the operational layer, given the system configuration
P and a customer trace C, the goal is scheduling the
MCR fleet to fulfill the charging request, maximizing the
operational utility as the customers’s utilityminus operational
costs:

max θ
∑
c∈C

uc − γ · Dmcr (5)

where theta is the value of time, Dmcr is the total mileage
accumulated by all MCRs and γ denotes the cost per unit
of meter. Consequently, γ · Dmcr embodies the operational
cost. In the strategic layer, given the customer generation
distribution tuple F , the aim is to find the optimal system
configuration P which maximizes the average daily social
welfare:

max Exp
C∼F
{
θ

L

∑
c∈C

uc − γ · Dmcr } − C f (6)

where C f represents the daily facility capital cost covering
the purchase of MCRs and infrastructure development, and
L is the duration in days over which the average utility is
calculated. The expectation operator Exp

C∼F
(·) calculates the

expectation for customers C following F .

III. SYSTEM OPERATION PROCESS
To solve the operational optimization problem (5), an in-
depth examination of the operational dynamics is necessary.

A. OPERATIONAL PRINCIPLES
The online operation is driven by customer and MCR events
in a dynamic manner. To facilitate the development of an
efficient online scheduling algorithm targeting (5), we adopt
the following principles to simply the process.
• Immediate System Response: The scheduling policy
ensures immediate determination of a charging request’s
viability, including acceptance or rejection based on the
availability of an MCR to meet the request’s need (3),
and, if accepted, the scheduling of start and end times
for charging.

• First-In-First-Out Queue Management: Accepted
requests are queued in a strict First-In-First-Out (FIFO)
manner specific to the assigned MCR. This strict queu-
ing discipline prohibits any cancellations or reordering
of requests.

• Temporal Aspect Simplifications: For analytical sim-
plicity, the model abstracts from the temporal dimen-
sions related to parking space searching, vehicle park-
ing, submission and processing of charging requests, and
the preparing and terminating of charging cycles. This
simplification allows for a focused examination of the
system’s scheduling policy and operational dynamics.

• Dedicated Use of Stationary Charging Piles: Sta-
tionary charging piles are exclusively allocated for the

recharging of vehicles positioned in the corresponding,
designated parking space. This exclusivity principle
restricts the use of these stations to vehicles within
their assigned spaces, thereby preventing utilization by
vehicles in adjacent or nearby spaces.

Adopting these principles allows for a precise calculation
of charging completion time t fc , streamlining scheduling and
optimizing charging operations in hybrid parking systems.

B. OPERATIONAL STATE
The operation of hybrid parking systems involves the
management of two crucial resources: parking spaces and
charging devices. System dynamics are propelled by cus-
tomer actions and MCR activities, which in turn affect the
availability of these resources. Online operational state is
therefore depicted by resource availability.

Mathematically, the availability of a parking space Ni at
any given time t is binary, either be vacant or occupied by a
customer. Without loss of generality, we define the parking
space available time τ

p
i (t).

τ
p
i (t) =

{
t, if Ni is vacant at time t,
te, if Ni is occupied by c at time t

(7)

Here, te signifies the anticipated exit time for customer c.
Analogously, the availability of a charging device Ei is

determined by its queue status, expressed by τi(t). This is set
to the current time t if the device’s queue is empty, or the
charging finish time t f

ci
−1

of the last customer ci
−1 in the queue

if it is not empty:

τi(t) =

{
t, if the queue of Ei is empty at t,

t f
ci
−1

, if the queue of Ei is not empty at t (8)

The state of hybrid parking systems should encapsulates
the dynamic availability of the system’s resources and thus
is defined by the tuple (Zfpps(t),Zfps(t),Zdev(t)), where
Zfpps(t), Zfps(t), and Zdev(t)) are vectors that contain the
available times of the nx fixed pile parking spaces, ny flexible
parking space and nx+nz charging devices, respectively. Each
set provides a snapshot of the current occupancy and expected
turnover of parking or charging units, with the ordering
within these sets reflecting the corresponding arrangement of
parking and charging units in N and E, ensuring consistent
system representation.

Denote the system operational state before an event
occuring at time t as S(t) = (Zfpps(t),Zfps(t),Zdev(t)), then,
after the event, the system state should be updated to S+(t) =
(Zfpps+(t),Zfps+(t),Zdev+(t)), which is discussed in the next
section.

C. OPERATIONAL STATE TRANSFORMATION
Customer events fall into categories such as entering,
parking, requesting charging, waiting for charging devices,
charging and departure. Owing to temporal simplification,
entering, parking, and requesting charging are considered
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FIGURE 3. Decision-Making flowchart for vehicle parking in urban hybrid parking systems.

simultaneous. Following a scheduling decision, immediate
system response allows for swift determination of waiting,
charging, and departure activities. Consequently, the system
state could be recalculated instantly after the customer enters.
The focus, therefore, is on the state transition triggered by
the arrival event, synthesizing a unified entry event within the
operational framework.

As detailed in the system model, a customer entering at
time tc may either secure a FPPS, or a FPS, or exit without
parking. The decision flowchart is outlined in Figure 3.
If a customer exits without parking, the system state S(tc)
remains unchanged; otherwise, it updates to incorporate the
new parking and charging allocations.

1) CUSTOMER WITHOUT CHARGING REQUEST
In this case, the parking duration of customer c is wc.

Case 1: If an FPPS is selected, it is clear that set Zfps is
unchanged, i.e.,Zfps+(tc) = Zfps(tc). The selected FPPSmust
be unoccupied and nearest to the entrance. The vacant spaces
at time tc are depicted by the set Nv(tc) = {Ni|Z

fpps
i (tc) ≤ tc}.

As previously noted, the order of nodes inZfpps are consistent
with the arrangement of parking spaces in N, i.e., sorted
by their proximity to the entrance. Consequently, Nv(tc)
adheres to this order, presenting the nearest available FPPS
as Nv(tc)[0]. The index of Nv(tc)[0] in Zfpps and N are the
same, denoted as I †. Then we have the updated availability
set for FPPSs:

Zfpps+(tc) = Modify(Zfpps(tc), I †, tc + wc). (9)

Here, Modify(Z , i, a) is a operator that modifies the value of
the ith element in Z to awhile other elements unchanged, i.e.,
Modify(Z , i, a) = a×e|Z |i +Z⊙(1−e

|Z |
1 ), where e|Z |i is a |Z |-

dimension base vector whose elements are all zeros except
that the ith element is 1 and ⊙ denotes the element-wise
product of two vectors.

Since a SCP is associated with each FPPS, its available
time also needs updating. Recall that charging piles in E
are sorted identically to parking spaces in N, thus EI† is the

associated stationary charging pile. Then,

Zdev+(tc) = Modify(Zdev(tc), I †, tc + wc) (10)

Case 2: If an FPS is chosen, the state of all FPPSs and
charging devices are unchanged, i.e., Zfpps+(tc) = Zfpps(tc),
Zdev+(tc) = Zdev(tc). In this case, the vacant space set is
Nv(tc) = {Ni|Z

fps
i (tc) ≤ tc}. Following the same logic, the

selected FPS is Nv(tc)[0] and the corresponding node index
in Zfps is also denoted as I †. Similarly, we have:

Zfps+(tc) = Modify(Zfps(tc), I †, tc + wc) (11)

2) CUSTOMER WITH CHARGING REQUEST
In this case, we first calculate the charging completion time,
as it may effect the departure time of the customer. Same
notations in previous analysis are adopted here.

Case 3: For the FPPS case, Zfps+(tc) = Zfps(tc), and EI† is
the associated stationary charging pile. Under the temporal
simplification assumption and dedicated use principles,
vehicles begin charging immediately. The charging finish
time of customer c then yields:

t fc = tc +
qc
r

(12)

Then, consider the expected parking time wc, we can predict
the departure time and update Zfpps as:

Zfpps+(tc) = Modify(Zfpps(tc), I †, tc + max(
qc
r

,wc)) (13)

Consequently, the available time of EI† is updated:

Zdev+(tc) = Modify(Zdev(tc), I †, tc + max(
qc
r

,wc)) (14)

Case 4: For the FPS cases, Zfpps+(tc) = Zfpps(tc), and
customer c must be assigned an MCR Ek , with nx < k ≤
nx + nz. Following FIFO scheduling, each MCR maintains a
queue for charging tasks. LetN k

i and q
k
i denote the target node

and energy requirement of ith request in Ek ’s queue before
the scheduling event. Post-scheduling, a new request Rc is
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appended to Ek ’s queue, extending Ek ’s availability by the
travel and charging times, resulting in:

Zdev+(tc) = Zdev(tc)+ (d(N k
−1,Nc)/V + qc/r)e

nx+nz
k (15)

where index −1 means the last charging request before
scheduling. If the queue is empty before the scheduling event,
N k
−1 denotes the parking space where Ek stationed at tc. After

updating Zdev+(tc), we can directly obtain the charging finish
time for customer c.

t fc = Zdev+k (tc). (16)

Finally, the Zfps is updated as:

Zfps+(tc) = Modify(Zfps(tc), I †,max(t fc , tc + wc)) (17)

Finally, to summarize the above 4 cases, for customer
c entering at time tc, the parking system state S =

(Zfpps,Zfps,Zdev) before the event can be updated to
(Zfpps+,Zfps+,Zdev+) after the event.

Zfpps+=


Modify(Zfpps, I †, tc + wc), Case 1
Zfpps, Case 2 and 4

Modify(Zfpps, I †, tc + max(
qc
r

,wc)), Case 3

Zfps+=


Zfps, Case 1 and 3
Modify(Zfps, I †, tc + wc), Case 2
Modify(Zfps, I †,max(t fc , tc + wc)), Case 4

Zdev+=


Modify(Zdev, I †, tc + wc), Case 1
Zdev, Case 2

Modify(Zdev, I †, tc + max(
qc
r

,wc)), Case 3

Zdev + (d(N k
−1,Nc)/V + qc/r)e

nx+nz
k , Case 4

IV. ONLINE SCHEDULING POLICY OF MCRS
A. REQUIREMENTS OF THE SCHEDULING POLICY
When a DC-customer initiates a charging request, the online
scheduling policy should designate an appropriate charging
device. Theoretically, an optimal scheduling policy would
enhance operational utility by considering both immediate
and future customer demands, as shown in the following
optimization problem:

max Exp
Cfu∼F

{U (S(tc),Cfu,b)} (18)

s. t. U (S(tc),Cfu,b) =
W∑
i=0

u(S(ti), c
fu
i , bi) (19)

whereU (S(tc),Cfu,b) is the cumulative operational utility of
sampled future traces Cfu and u(S(ti), c

fu
i , bi) represents the

incremental utility achieved when a charging device Ebi is
allocated to cfui under the system state S(ti).
Although this approach is theoretically optimal, the

indeterminate and variability in future customers generation
pose a serious challenge to it. Predicting the influence of
current allocations on future demands typically involves

Algorithm 1 Earliest Available Device First Policy
Input: G (N, A), S(tc), c, Nc
Output: bc
1: if c is a NC-customer then
2: return ∅
3: end if
4: if Nc is a FPPS then
5: return the index of Nc’s charging pile
6: end if
7: bc← ∅, tstartbest ← inf
8: for i in {1, · · · , |E|} do
9: if Ei is an MCR then
10: if tstartc (k)+ qc/r > t lc then
11: continue
12: end if
13: if tstartc (k) < tstartbest then
14: tstartbest ← tstartc (k)
15: bc← i
16: end if
17: end if
18: end for
19: return bc

simulating numerous potential customer traces, a method
impractical for real-world application due to:

• The necessity to solve complex sub-problems for each
sampled customer trace, constituting a computational
challenge comparable to NP-hard problems.

• The requirement to process extensive simulations for an
array of potential customer traces, which is computa-
tionally demanding.

• Observations from systematic trials that reveal the
utility for future customers is sensitive to the varia-
tion in customer traces, leading to unreliable future
utility estimates in certain instances. This constraint
compromises the robustness since the actual future
customer generation may differ from those forecasted in
simulation.

For practical application, the scheduling policy must
prioritize low computational complexity to ensure immedi-
ate system response. Additionally, the assignment process
should also be aimed at boosting the operational utility
of the hybrid parking system and maintain robustness
across various system scenarios. Considering the real-time
and robustness requirements of the scheduling policy, we
propose an online scheduling policy selecting the mobile
charging robot which can start charging the customer the
earliest.

B. EARLIEST AVAILABLE DEVICE FIRST POLICY
The idea behind the Earliest Available Device First (EADF)
policy is trying to balance the utilization of all mobile
charging robots. An MCR with an earier available time is
more likely to be less utilized than the others. Meanwhile,
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FIGURE 4. The adopted type of track network layout integrated in hybrid
parking systems for mobile charging robots.

serving the customer as soon as possible is also beneficial for
optimizing the operational utility. By adopting this approach,
the policy seeks a near-optimal solution while balancing
service promptness and MCRs utilization.

Given the current state of the system and the charac-
teristics of c, the start time that a charging device Ek
can serve c is calculated as below, which is a variation
of (15):

tstartc (k) = Zdev+k (tc)+ d(N k
−1,Nc)/V (20)

Its calculation is based on Zdev+k (tc), the anticipated charging
finish time of the last request in Ek . The policy selects the
charging device that can start charging c the earliest. The
pseudo code of the policy is shown in Algo. 1.
The algorithm first checks if the customer is a NC-

customer. If so, the algorithm returns an empty set. If the
customer parks at a FPPS, the algorithm returns the index
of the charging pile at the FPPS. Otherwise, the algorithm
iterates through all the charging devices and selects the
charging device with earliest available time tstartc (k) to start
charging the customer. The algorithm returns the index of the
selected charging device. If no charging device can meet the
customer’s waiting limit t lc, the algorithm returns an empty
set.
Lem. 1: The time complexity of the Earliest Available

Device First policy is O(n).
Proof:

The algorithm iterates through all the |E| charging devices
to find the one with the earliest available time. Then, the scale
is related to the number of charging devices and it is clear that
the time complexity is O(n).

V. STRATEGIC PLANNING OF HYBRID PARKING
SYSTEMS
Given a customer distribution F , strategic optimization
entails determining the optimal configuration of a hybrid
parking system. This includes establishing the total count
and arrangement of parking spaces, quantifying the sta-
tionary charging pile number nx , specifying the fleet size
nz of mobile charging robots, and the layout of track
network.

A. LAND INVESTMENT
This paper addresses a conventional parking lot arrangement
comprising parallel rows of parking spaces, as shown in
Figure 4. Denote as nr and nc for the number of rows and
columns, the aggregate count of parking spaces is nr × nc.
A road with a width of wr is posited between alternate rows.
A primary component of infrastructural expenditure includes
land leasing or acquisition expensesC f

land directly correlating
with the parking structure’s footprint:

C f
land = α(nr ls + ⌊

nr

2
⌋wr )ncws. (21)

Here ls and ws represent the parking space’s length and
breadth, while α is the daily cost per unit of land.

B. TRACK NETWORK INVESTMENT
Complementary to the above arrangement of parking spaces,
a track network is designed, placing a horizontal track above
each row, enabling connectivity among spaces within the
same row, as illustrated in Figure 4. To bridges the horizontal
tracks, nv vertical tracks are installed, allowing the MCRs to
move between rows. The track network investment C f

track is
proportional to the track network’s aggregate length:

C f
track = β[nr ∗ (nc − 1)ws + nv ∗ ((nr − 1)ls + ⌊nr/2⌋wr )]

(22)

Here β symbolizes the daily financial cost per track unit
length.

The track configuration suggests that nv can potentially
influence the MCRs’ transit efficacy and thus plays a role
in strategic framework deliberation. Although additional
vertical tracks can diminishMCR transit time and length, they
also elevate the C f

track and potentially impact the system’s
strategic utility adversely. Thus, nv is retained as a factor in
the strategic optimization process.

C. INVESTMENT OF CHARGING DEVICES
Identifying the most advantageous mix of nx and nz is
key to optimizing the strategic utility of hybrid parking
systems, considering the balance between cost-efficiency and
adaptability. The daily capital costs for charging devices,
represented by C f

dev, is calculated by:

C f
dev = δnx + ηnz, (23)

where δ and η are the daily costs per unit of stationary
charging pile and mobile charging robot, respectively.

D. FORMULATION OF THE STRATEGIC PLANNING
Strategic planning aims to maximize the expected daily
social welfare for traces shaped by F , denoted as
Q(C, nr , nc, nx , nz, nv), which is the accumulated operational
utility minus the investment costs for described aspects:.

Q = max
b
U (Sinit ,C,b)− C f

land − C
f
track − C

f
dev (24)
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FIGURE 5. The strategic utility for different nz and nc . Note the local
peaks in both curves.

The strategic planning problem is formulated with the
following constraints:

max
nr ,nc,nx ,nz,nv

Exp
C∼F
{Q(C, nr , nc, nx , nz, nv)} (25)

subject to 1 ≤ nr ≤ nrmax, 1 ≤ n
c
≤ ncmax, (26)

0 ≤ nx ≤ nxmax, 0 ≤ n
z
≤ nzmax, (27)

1 ≤ nv ≤ nvmax, (28)

1 ≤ nr ∗ nc ≤ ntotalmax , (29)

1 ≤ nx + nz ≤ nr ∗ nc, (30)

nr , nc, nx , nz, nv ∈ N+. (31)

Constraints (26), (27) and (28) ensure that the numbers of
parking spaces, charging piles, and tracks are within feasible
limits (29) limits the total number of parking spaces. Linear
constraint (30) guarantees the number of charging devices
does not exceed the parking capacity. All parameters are
constrained to be non-negative integers, ensuring a practical
and implementable solution.

E. OPTIMIZATION OF STRATEGIC PLANNING
We use simulation-based method to evaluate the expected
strategic utility Exp

C∼F
(Q) for different configurations of nr , nc,

nx , nz and nv. The time expense for calculating Q primarily
hinges on |C|, the length of the simulated customer trace.
Note that although |E| is also a factor could theoretically
influence the time complexity, as noted by Lem. 1, the time
expense of EADF algorithm is generally negligible compared
to the simulation due to its high efficiency. Therefore, with
|C| held constant, we can assume the time complexity of
calculating strategic utility is O(1). Then, given the search
space is a 5-dimensional grid, it is clear that the time
complexity of the strategic utility optimization is O(n5).
Strategic utility Q is a nonlinear and multimodal function

of nr , nc, nx , nz and nv, as empirical data suggests. Visual
evidence, such as that provided in Figure 5, demonstrates
that strategic utility fluctuates with different combinations
of nz and nc. The existence of local optima in the strategic
utility curve renders existing convex optimization algorithms
inapplicable.

The strategic planning is an integer linear programming
(ILP) problem. Since strategic planning is usually performed
offline, the computational complexity is not a major concern.
Heuristic algorithms like Genetic Algorithms (GA) or
Simulated Annealing are appropriate to obtain near-optimal
solutions. Alternatively, given the polynomially bounded
search space, a brute-force approach is feasible and guar-
antees finding the global optimum. Moreover, in brute-force
searching, parallelization is practical due to the separability
of the configuration evaluations, facilitating a more efficient
optimization procedure.

VI. EVALUATION
In this section, we evaluate and validate the proposed
operational scheduling optimization algorithms and the
strategic-level planning algorithm.

First, we compare the proposed Earliest Available Device
First (EADF) policy with two other scheduling algorithms
in terms of the accumulated operational utility: (1) the
Greedy Scheduling Algorithm (GSA); and (2) the Recursive
Approximation Algorithm (RAA) proposed in [26]. Then we
verify that the joining of mobile charging robots will improve
the strategic utility. Afterward, we explore the sensitivity
of this utility enhancement to customer parameters under
different settings. Finally, we report the time consumption
and scalability of the proposed operational scheduling
algorithms.

A. EXPERIMENTAL SETUP
We adopted a real-world dataset from public charging stations
in the Beijing area to model the customer generation [26].
The dataset contains 396,077 transactions between January
and March 2018. The majority of charging requests, notably
peaking at 11 p.m. due to lower electricity rates. Orders are
uniformly distributed from 8 a.m. to midnight and drops
significantly after 1 a.m. The average charging quantity
is 14 kWh and the standard deviation is 10 kWh. Both
distributions are shown in Figure 6. The other default
parameters adopted in the evaluation are listed in Table 1.

B. COMPARISON OF SCHEDULING ALGORITHMS
We compare the performance of the EADF, GSA and
RAA algorithms in terms of the accumulated operational
utility. The GSA algorithm, as the name suggests, selects
the charging robot that maximizes the immediate utility
u(S(tc), c, k) for the customer at each scheduling instance.
The RAA algorithm, introduced by [26], addresses the online
scheduling of mobile charging stations. At each scheduling
instance, the algorithm selects the optimal charging station by
considering both immediate and a limited number (tracelenf )
of future customer demands. To reduce computational
complexity, the RAA algorithm retains only the best B
assignment schemes at each step, narrowing the search space.
Consequently, the time complexity of the RAA algorithm
is influenced by tracelenf and B. In our evaluation, we set
tracelenf = 5 and B = 2.
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FIGURE 6. Distribution of custoer enter times and charging energy quantity.

TABLE 1. Default configuration for simulation.

Figure 7 shows the accumulated operational utilities
obtained by EADF, GSA and RAA at different settings.
We can make the following observations: (1) In general,
EADF could give higher accumulated operational utility than
GSA and RAA in most cases. This is because GSA may
overutilize charging robot resources due to the immediate
utility maximization. As shown in (4), the customer utility

is a constant lc if the customer’s charging finishes before
the acceptable waiting time. The EADF adopts the charging
start time as the criterion and thus can better balance the
utilization of all MCRs. (2) The accumulated operational
utility of EADF is strictly negative linear with the moving
cost coefficient γ . This is because EADF selects MCR
just based on the available time, and is unrelated to the
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FIGURE 7. Accumulated operational utilities obtained by EADF, GSA and RAA at different settings. Parameters not mentioned are defaults.

moving cost. Therefore the customer utility of EADF is not
affected by the moving cost, while the operational utility
is decreased linearly as the moving cost increases. (3) The
RAA algorithm yields the lowest utilities in most scenarios
due to its inability to effectively capture the stochastic
nature of customer generation with a limited number of
future customers and simulation repetitions. As analyzed in
Section IV-A, slight deviations in real future customer can
degrade performance. Additionally, the utility fluctuation of
RAA is more pronounced compared to EADF and GSA,
supporting this analysis. Despite the current settings of
tracelenf = 5 and B = 2, the RAA algorithm already incurs a
significant time cost of approximately 0.5 seconds, as shown
in the subsequent subsection. Increasing tracelenf and B
could potentially improve performance, but this would result
in much longer processing times, making RAA unsuitable for
real-time scheduling applications. (4) The improper parking
probability p1 has a significant impact on the accumulated
operational utility while p2 poses negligible impact on the
utility. This is because the scenarios for p2 is that all FPSs
are occupied while at least one FPPS is vacant. As we set
that FPPSs are more preferred than FPSs, these scenarios are
seldom encountered.

For a clear comparison, Table 2 presents the quantitative
differences among the three algorithms. The table reports
the average and maximal improvements of EADF over GSA
and RAA across three scenarios. Results indicate that EADF
achieves an average improvement around 0.3% over GSA
and around 1.3% over RAA. The maximal improvements
are 0.83% over GSA and 1.9% over RAA. These results
further confirm the effectiveness of the EADF algorithm
in enhancing the operational utility of the hybrid parking
system.

C. STRATEGIC UTILITY IMPROVEMENT
In this section, we verify that adding mobile charging robots
in our hybrid parking systemwill improve the strategic utility.
For a fair comparison, we set the number of total charging
devices, nx + nz, to be constant, and the operational cost
of MCR is twice that of SCP. For a clear presentation,
other parameters are constant, thus in this experiment the
strategic utility is a function of nx and nz, Q(nx , nz). The
strategic utility improvement between configurations (nx0, n

z
0)

FIGURE 8. The strategic utility improvement when part of the SCPs are
replaced by MCRs. Parameters not mentioned are defaults.

and (nx1, n
z
1) is defined as

1Q(nx1, n
z
1, n

x
0, n

z
0) = Q(nx1, n

z
1)− Q(n

x
0, n

z
0) (32)

Figure 8 shows the strategic utility improvement when the
charging devices number nx + nz varies from 10 to 20 in two
cases.
• Case 1: nx = 10, while nz varies from 0 to 10.
• Case 2: No MCR, i.e., nz = 0, while nx varies
from 10 to 20. For fair comparison, the daily cost of track
network investment C f

track is 0 in this case.
The strategic utility experiences a marked enhancement

when mobile charging robots are added to the system. This
enhancement amplifies with the addition of more MCRs. The
adaptability of MCRs to accommodate improperly parked
vehicles and their capacity to serve customers beyond the
reach of FPPSs substantially contributes to this improvement.

To further investigate the impact of customer param-
eters on the strategic utility improvement, we report
the strategic utility improvements 1Q(10, 10, 20, 0) and
1Q(15, 5, 20, 0) when the improper parking probability
p1 varies from 0 to 0.36 and and p2 from 0.4 to 0.78,
respectively. For control, only one of the probabilities is
varied while the other is held constant at 0.

The results shown in Figure 9a reveal a direct correlation
between strategic utility improvement and p1: the higher
the probability of improper parking probability p1, the more
significant the contribution of MCRs to the strategic utility.
On the other hand, Figure 9b demonstrates the strategic utility
improvement is almost non-related to p2, which is consistent
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TABLE 2. The improvement of EADF over GSA and RAA.

FIGURE 9. The strategic utility improvement of configurations (nx = 10, nz = 10) and (nx = 15, nz = 5) to configuration
(nx = 20, nz = 0). Parameters not mentioned are defaults.

FIGURE 10. The strategic utility for different nr , nc , nx , nz , nv . Parameters not mentioned are defaults.

with the previous observation. Another observation is that
the configuration with a higher proportion of MCRs, (nx =
10, nz = 10), exhibits a more pronounced improvement than
the one with less MCRs, (nx = 15, nz = 5), which further
strengthens the argument that MCRs play a crucial role in
enhancing the strategic utility of hybrid parking systems.
Remarkably, even in scenarios where p1 is 0—indicating no
improper parking—the strategic utility still sees an upturn.
This improvement arises because MCRs can swiftly handle
other charging requests once queued tasks are finished,
unlike stationary charging piles that remain occupied until
the current customer vacates. Consequently, the inclusion of
MCRs contributes to a more dynamic and efficient system,
demonstrating their significant role in enhancing the overall
strategic utility of parking systems.

D. STRATEGIC UTILITY SENSITIVITY
In this section, we investigate how the strategic utility changes
when the parameters nr , nc, nx , nz, nv vary and analyze the
sensitivity of the strategic utility to these parameters. For
clearity, in each experiment, we vary one or two parameters

while keeping the others constant. The results are shown in
Figure 10.

The following observations can be made: (1) larger values
of these parameters do not necessarily lead to higher strategic
utility. For example, the strategic utility first increases and
then decreases with the increase of nr and nc. This is because
the investment cost of land and track network increases
with the increase of nr and nc. (2) As Figure 10 shows,
the numbers of rows and columns, i.e., nx and nz, exhibit a
mutual influence on the strategic utility. Actually, they both
can be categorized as the parking space resource. A larger
nx results in a smaller optimal nz where the strategic utility
peak is achieved, and vice versa. One can also observe a
similar phenomenon in the case studies regarding the number
of SCPs and MCRs, since they can be categorized as the
charging device resource. (3) For the cases that the daily
cost per track unit β ≥ 0.1, the track number nv has a
negative impact on the strategic utility. One reason is that the
installing more vertical tracks just reduces the travelling cost
ofMCRs in part scenarios. Such reduction is trivial compared
to the additional investment cost. For the case β ≤ 0.5,
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FIGURE 11. The performance of Brutal Searching Strategic Optimization for different customer
numbers per day in the search space of nc ∈ [1, 25] and nr ∈ [1, 25]. Parameters not mentioned are
defaults.

FIGURE 12. The performance of Brutal Searching Strategic Optimization for different customer
numbers per day in the search space of nx ∈ [1, 30] and nz ∈ [1, 30]. Parameters not mentioned are
defaults.

we can observe that the strategic utility first increases and
then decreases with the increase of nv. If β = 0, one can
observe a positive correlation between nv and the strategic
utility. Thus, we can conclude that whether adding more
vertial tracks will lead to a higher strategic utility depends
on the value of β as well as the parking lot size.

E. STRATEGIC OPTIMIZATION
Now, we evaluate the performance of the brutal search-
ing method for strategic optimization. As aforementioned,
we parallelize the algorithm by 16 processes to accelerate
the searching process. The optimized strategic utility and the
best solution found by the algorithm for different number
of customer per day are shown in Figure 11 and Figure 12.
For clear comparison, in the first case study, the numbers of
SCP and MCR are fixed to 20 and 20, respectively and the
track number is also set as 1. The method searches parking
lot column number nc and row number nr in the same region
[1, 25]. Similarly, the search space in the second case study
is based on SCP number nx ∈ [1, 30] and MCR number
nz ∈ [1, 30], while the row and column numbers are both
19, and the track number is 1.

Observe that the optimal strategic utility is generally
linear with the number of customers per day in both
figures. This is reasonable since more customers mean
more charging demands and thus more opportunities for
gain utility. In Figure 11b, one can find that the parking

row number nr is preferred to the column number nc

for increasing customer numbers. Such pattern can better
match the process of customer finding parking space and
charging. In Figure 12b, the searching method prefers SCP
to MCR when the number of customers gets larger. This
is because SCP is more cost-effective than MCR. The
results demonstrate the effectiveness of the proposed strategic
optimization method in enhancing the strategic utility of the
hybrid parking system.

F. TIME EXPENSE OF ALGORITHMS
In this section, all the simulations are conducted on a HP
ZBOOK-G10 laptop with an Intel Core i7-13700H CPU
and 32GB RAM. The simulation is implemented in Python
3.10.13 and the time consumption is measured by the Python
time module.

First, we report the time consumption of EADF and RAA
scheduling algorithm.We vary the number ofMCRs from 5 to
50 and report the mean and max time consumption of
each scheduling instance. Note that the simulation length is
extended to 30 days to obtain more accurate results.

As Figure 13a demonstrates, the mean scheduling time
consumption of EADF is roughly linear with the number of
MCRs and just around 200 microseconds or shorter. The max
scheduling time consumptions are around 1200microseconds
and is still significantly short for real-time scheduling.
From Figure 13b, the mean scheduling times of RAA are
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FIGURE 13. The time consumption of EADF, RAA during online scheduling and brutal searching method for strategic planning.

approximately 500 milliseconds when nz ≤ 8, which is about
2500 times longer than EADF. For scenarios with larger nz,
the mean scheduling time of RAA varies from 1 to 10 seconds
and the max scheduling time is around 30 seconds. This
extended duration is due to the RAA algorithm’s need to
simulate future customer demands and solve a combinatorial
optimization problem at each scheduling instance. In general,
the scheduling time of RAA is about three to five orders
of magnitude longer than EADF and it is challenging to
implement RAA in real-time MCR scheduling.

Finally, we check the time consumption of the brutal
searching strategic optimization algorithm with EADF inte-
grated and evaluate if the algorithm is practical. In the case
studies, the number of candidates for each parameter nc, nr ,
nx , and nz are set to be same and vary from 4 to 15, to represent
the growing of search space. The track number is set to 1,
as the strategic utility is not sensitive to the track number. The
worst case happens when the candidate number is 15 for each
parameter, i.e., 154 = 50625 configurations to be simulated
in total. The results are shown in Figure 13c.

We can observe that the time expense for the strategic
optimization increases rapidly as the search space growing,
following the previous analysis that the time complexity of
brutal searching isO(n5). Nevertheless, the time consumption
is still acceptable for strategic optimization. In the worst case,
the time consumption is around 40 minutes. Consider that the
algorithm is implementation in Python with no optimization
and executed on a laptop, we believe that the algorithm is
practical after further optimization and branch cutting in a
real-world scenario.

VII. CONCLUSION AND FUTURE WORK
This study confirms that the integration of SCPs and
MCRs within a hybrid parking system significantly enhances
urban parking utility. The Earliest Available Device First
(EADF) algorithm proves effective in managing the dynamic
operational challenges posed by varying customer demands
and parking behaviors. Our evaluations indicate that the
proposed hybrid model not only optimizes facility utilization
but also aligns with economic efficiency and flexibility
in charging services. The results emphasize the critical
role of adaptive strategies in future urban infrastructure
development.

Future research will focus on new optimization algorithms
for scheduling with direct consideration of future customer
utility. Moreover, strategic planning for larger-scale scenarios
and more diverse urban layouts is also a key area of interest.
Additionally, exploring the integration of renewable energy
sources into the charging network could further enhance the
sustainability and cost-effectiveness of the hybrid parking
system.
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