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ABSTRACT This study presents a novel multimodal deep learning model designed to improve early
detection and diagnosis of chronic cardiac conditions such as Severe Left Ventricular Hypertrophy (SLVH)
and Dilated Left Ventricle (DLV). Leveraging nearly 70,000 medical records from Columbia University
Irving Medical Center, the model integrates early-stage CXR structured data and chest X-ray imagery,
employing SMOTE to correct data imbalances. The model utilizes the pre-trained EfficientNetB3 for image
feature extraction, enhanced with SE-Block and CBAM attention mechanisms, while Transformer Encoder
layers enrich the structured data representation. Notably, it incorporates Variational Autoencoders (VAEs) to
encode both types of data into a cohesive low-dimensional latent space, facilitating an innovative multimodal
fusion for cardiac disease risk classification. Ablation studies validate the essential role of each component,
with VAE-driven feature fusion significantly boosting accuracy and stability (increasing by 5.43% for SLVH
and 14.13% for DLV datasets). The model outperforms existing advanced multimodal frameworks, showing
a marked improvement in accuracy, recall, precision, and F1 scores. Specifically, it surpasses the leading
CLIP model by 1.56% and 0.68% in accuracy for 90—270 day SLVH and DLV datasets, respectively.
High AUC values across various disease stages highlight the model’s robustness, demonstrating consistently
superior performance in disease progression prediction. These results underscore the potential of integrating
multimodal data with advanced deep learning techniques to significantly enhance the diagnostic capabilities
of medical tools, paving the way for better early cardiac disease interventions and patient outcomes.

INDEX TERMS Multimodal deep learning, early cardiac disease detection, SMOTE, EfficientNetB3,
Transformer encoder, variational autoencoders embedding, medical diagnostics.

I. INTRODUCTION extracting features from chest X-ray images for cardiac

The critical importance of early detection in cardiac care
cannot be overstated. Timely diagnosis of cardiac conditions
is pivotal for effective treatment planning, significantly
reducing mortality rates and improving patient outcomes.
In recent years, the advent of deep learning has poised
to revolutionize the field of cardiac care, offering novel
methodologies for accurate and early diagnosis. Deep learn-
ing’s ability to analyze complex medical data sets, including
imaging and electronic health records, has shown promising
results in identifying subtle patterns that precede overt
cardiac diseases [1], [2], [3].For instance, EfficientNetB3,
a deep learning model known for its efficiency and accuracy
in image processing, has been successfully applied in
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disease prediction [4].

Despite the promising advancements brought about by
deep learning in cardiac care, the field faces significant
challenges, particularly concerning early disease prediction.
One of the primary obstacles is the reliance on single-
modality data analysis. Traditional diagnostic methods
typically focus on a singular type of data, such as imaging
or clinical measurements, which may not capture the
multifaceted nature of cardiac diseases. This limitation
becomes apparent in the context of diseases like severe left
ventricular hypertrophy (SLVH) and dilated left ventricle
(DLV), where the integration of diverse data types could
significantly enhance diagnostic accuracy [5]. Furthermore,
the current state-of-the-art models, including VisualBert and
CLIP, although groundbreaking, fall short in seamlessly
integrating multimodal data for cardiac disease prediction,
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highlighting a critical research gap that needs to be
addressed [6], [7].

The paramount objective of this study is to address the
prevailing challenges in early cardiac disease prediction
by harnessing the power of multimodal deep learning.
Specifically, the research aims to integrate chest X-rays
and echocardiographic data within a unified framework to
enhance the prediction accuracy of severe left ventricular
hypertrophy (SLVH) and dilated left ventricle (DLV). This
approach seeks to overcome the limitations of single-
modality data analysis by capitalizing on the complementary
information provided by these two diagnostic modalities.
Through the development and implementation of an advanced
deep learning model, this study endeavors to set a new
benchmark in the precision of cardiac disease prediction,
paving the way for timely and more effective clinical
interventions.

Overall, we summarize our contributions as follows:

This study presents a novel multimodal deep learning
framework tailored for the early detection and diagnosis
of complex cardiac conditions, utilizing a unique integra-
tion of advanced computational techniques. Central to our
innovation is the employment of Variational Autoencoders
(VAEs) for the fusion of multimodal data [10], a method
that stands out for its ability to encode heterogeneous
data types—including chest X-ray imagery and structured
echocardiographic measurements—into a coherent, low-
dimensional latent space. This approach not only preserves
essential diagnostic details but also enhances the model’s
capacity for interpreting and synthesizing diverse data
streams.

To support the VAE’s functionality, EfficientNetB3 is
integrated to extract high-level features from chest X-
ray images [4]. Its state-of-the-art efficiency in processing
medical images ensures that intricate patterns indicative of
cardiac abnormalities are captured with high fidelity. This
detailed image analysis is complemented by sophisticated
attention mechanisms, specifically SE-Block and CBAM [8],
[9]. These mechanisms refine the feature maps generated by
EfficientNetB3, focusing the model’s capacity on the most
clinically relevant features, thereby improving the predictive
accuracy of subsequent analyses.

The strategic use of Transformer Encoder layers further
enriches the representation of structured CXR data, enabling
a more detailed and effective integration within the VAE
framework. The culmination of these technologies in a
unified model facilitates a groundbreaking approach to data
fusion, leveraging the complementary strengths of each
modality to offer a comprehensive, nuanced understanding of
cardiac health.

II. LITERATURE

A. DEEP LEARNING IN CARDIOLOGY

The integration of deep learning (DL) into cardiology,
particularly in diagnostic imaging, has revolutionized the way
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cardiovascular diseases are detected and diagnosed. Over
the past three years, numerous studies have underscored the
potential of DL to enhance the accuracy and efficiency of
diagnostic processes. For example, Alshammari et al. demon-
strated the effectiveness of machine learning algorithms in
identifying cardiovascular diseases through echocardiogra-
phy, suggesting a significant shift towards more automated
and precise diagnostic methods [11].

Another notable advancement was made by Zhang et al.
(2022), who developed a deep learning model capable of
detecting myocardial infarction with higher accuracy than
traditional methods. This study highlights the importance of
DL in analyzing complex cardiac imaging data to provide
early and accurate diagnoses [12].

Furthermore, the role of DL in enhancing cardiac MRI
analysis was explored by Liu et al. (2021), who implemented
a convolutional neural network (CNN) model to improve
the detection of cardiac structural abnormalities. Their
work emphasizes the growing reliance on DL technologies
to interpret cardiac MRI data, offering new avenues for
diagnosing heart diseases [13].

B. MULTIMODAL LEARNING

Multimodal learning, which involves integrating data from
multiple sources or modalities, has emerged as a crucial
approach within medical imaging, including cardiology. The
synergy between different types of medical imaging data,
such as echocardiography, MRI, and CT scans, provides
a more comprehensive view of the heart’s structure and
function.

Ghosh and Jayanthi (2021) presented a novel approach to
multimodal image fusion, combining images from different
modalities to enhance the diagnostic process. Their work
underscores the potential of multimodal learning to offer
more detailed and accurate insights into cardiac health [14].

Additionally, the application of multimodal learning
extends beyond image fusion. Hashmi et al. explored the
integration of text and image data in diagnosing cardiac
conditions, demonstrating the benefits of combining visual
information with clinical notes to improve diagnostic accu-
racy [15].

Multimodal learning’s significance is further highlighted
in the context of interventional cardiology. The fusion of real-
time imaging data with preoperative scans offers unparalleled
guidance during procedures, enhancing surgical outcomes
and patient safety [16], [17], [18].

C. STATE-OF-THE-ART MULTIMODAL MODELS

VisualBert has made significant strides in vision-language
tasks, enabling more nuanced interactions between visual
data and natural language. Oza and Kambli work, ‘““Pixels to
Phrases: Evolution of Vision Language Models,” highlights
its utility in understanding complex visual scenes through
natural language descriptions [19].Despite its advancements,
VisualBert’s limitations lie in its heavy reliance on large
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annotated datasets and potential biases inherited from pre-
training data [20], [21].

The combination of Residual Networks (ResNet) and
Multi-Layer Perceptrons (MLP) has been applied across
various domains, including medical imaging for disease
detection [22], [23]. Baybars et al. demonstrate the effec-
tiveness of ResNet combined with MLP in the detection of
tongue anomalies, showca [24]. However, this approach can
be computationally intensive and may require fine-tuning for
specific application

CLIP (Contrastive Language-Image Pre-training)offers
a versatile framework for understanding and generating
natural language descriptions of images, bridging the gap
between visual and textual data [25], [26]. It has shown
promise in diverse applications, from enhancing search
capabilities to aiding creative processes [27]. However,
CLIP’s performance can vary significantly across different
datasets and tasks, indicating a need for adaptive approaches
and broader training data [28].

MURAL (MUltimodal, MUltitask Representations
Across Languages) significantly advances multimodal
understanding and multitask learning, particularly in cross-
linguistic contexts. By leveraging both image-caption pairs
and billions of translation pairs, MURAL extends the
capabilities of ALIGN, a prior state-of-the-art dual encoder
learned from 1.8 billion noisy image-text pairs, to not only
match or exceed ALIGN’s performance on well-resourced
languages but also significantly improve performance on
under-resourced languages [29].Although MURAL advances
multimodal understanding across languages, its application
to medical imaging is limited. Specifically, MURAL’s
generalist approach might not capture the nuanced details
critical in medical diagnostics. The model’s reliance on
extensive, diverse datasets poses challenges in the medi-
cal field, where data privacy and the specificity of medical
terminologies are paramount. Adapting MURAL for medical
use requires significant customization, including integrating
domain-specific knowledge and ensuring high precision and
sensitivity crucial for medical diagnostics.

D. RESEARCH GAP

Despite these advancements, a significant gap remains in the
effective combination of radiographic and echocardiographic
data for cardiac disease prediction. Current models tend to
excel in either image analysis or textual data interpretation but
often fall short in seamlessly integrating these two modalities
[30]. The challenge lies in the development of models that
can not only analyze multimodal data concurrently but also
understand the intricate relationships between these data
types in the context of cardiac health [31].

A more effective method is needed to leverage the
complementary strengths of radiographic imaging, which
provides detailed anatomical information, and echocardiog-
raphy, which offers dynamic insights into cardiac function.
Such an approach would enable a more holistic and accurate
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prediction of cardiac diseases, moving beyond the limitations
of single-modality analysis [32].

lll. METHODOLOGY

A. DATA COLLECTION AND PREPARATION

1) DATA COLLECTION

The initial dataset comprised over 70,000 medical records
from Columbia University Irving Medical Center, spanning
from January 2013 to August 2018 [33]. This vast collection
encapsulated a diverse array of patient encounters, inclusive
of varying degrees of cardiac health and disease progres-
sion. Our selection criterion aimed at isolating instances
where patients had undergone both a chest X-ray and
an echocardiogram within a 12-month period, ensuring a
robust linkage between radiographic imagery and echocar-
diographic measurements. This filtration yielded 71,589
unique chest X-rays across 24,689 patients, each annotated
with echocardiographic insights into left ventricular hyper-
trophy and dilated left ventricle conditions, among other
pathologies.

2) DATA PREPARATION AND PREPROCESSING

The preparatory phase involved several critical steps to render
the data amenable to high-throughput deep learning analysis,
as seen in Figure 1:

®Exclusion of Single Visits: Records pertaining to
patients with only a single hospital visit were omitted to focus
on longitudinal health trajectories.

@Labeling for Disease Progression: The dataset was
stratified based on the patient’s transition across health
states—never sick to sick (labeled as Yes) and never sick
to not sick (labeled as No), providing a binary classification
framework essential for training predictive models.

®Temporal Grouping: To capture the subtle nuances
in the progression of diseases, we have stratified our data
into six subsets based on the time intervals calculated from
the initial detection of the disease to subsequent screenings.
These intervals are segmented into 0 to 90 days, 90 to
270 days, 270 to 540 days, 540 to 900 days, 900 to 1440 days,
and beyond 1440 days, with the division primarily influenced
by the right-skewed distribution of time intervals. Given
that our prognosis encompasses two distinct conditions,
namely Severe Left Ventricular Hypertrophy (SLVH) and
Left Ventricular Dilation (DLV), the dataset has been further
delineated into twelve unique subsets, each representing
different diseases across varying timeframes.

@®Addressing Data Imbalance: Given the preponderance
of non-disease instances (label No), we employed Synthetic
Minority Over-sampling Technique (SMOTE) to enrich
our dataset with 8,000 synthesized records mirroring the
characteristics of the disease-present instances (label Yes),
thereby rectifying the imbalance and enhancing the model’s
learning capacity.The following is the detailed usage process
of the SMOTE algorithm [34], [35].
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FIGURE 1. Image of the early-stage CXR structured data and chest X-ray image data preparation and preprocessing process.

For our dataset D consisting of N, minority class sam-
ples, the SMOTE algorithm generates S synthetic samples as
follows:

a) For each sample x; in the minority class, find its k
nearest neighbors in the minority class, forming a set
N (x7).

b) Synthetic Sample Generation: For each x; generate
si.synthetic samples using the formula:

Xpew = Xi + A - (xz — X;) (D

where x, is a randomly selected neighbor from Ny (x;)
and X is a random number between 0 and 1.

¢) Repetition:Repeat the process until S synthetic samples
are generated.

The choice of k (the number of nearest neighbors) and S
(the number of synthetic samples to be generated) are crucial
hyperparameters that influence the effectiveness of SMOTE
in addressing class imbalance [36].

For the subset of the data for each disease for each
time period, our objective was to balance the distribution
between positive (disease-present) and negative (disease-
absent) instances. Given the significant imbalance, with
positive instances being the minority, we applied SMOTE as
follows:

« Identification of Positive Instances: We identified all
instances labeled as (indicating the presence of either
SLVH or DLV) in the dataset.

o Nearest Neighbor Calculation: For each positive
instance, we calculated its nearest neighbors within the
positive class, utilizing the Euclidean distance in the fea-
ture space composed of age, sex, and echocardiographic
measurements (IVSd, LVIDd, LVPWa4).

o Synthetic Data Generation: Following the SMOTE
formula, we generated 8,000 synthetic positive instances
to augment the original dataset, ensuring a balanced
representation of both classes. This was achieved
by interpolating between each positive instance and
its nearest neighbors, introducing nuanced variations

within the positive class.
®lIntegration of Multimodal Data:The training set

was enriched with both image data (chest X-rays) and
structured data (patient age, sex, and echocardiographic
measurements—IVSd, LVIDd, LVPWd), laying the ground-
work for a comprehensive multimodal learning approach.
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B. EFFICIENTNETB3 FOR IMAGE PROCESSING
EfficientNet, introduced by Mingxing Tan and Quoc V.
Le in their landmark paper, represents a paradigm shift
in the design of convolutional neural networks (CNNs)
through systematic scaling of network dimensions. The
core principle of EfficientNet is to balance network depth,
width, and resolution, which are crucial factors affecting
the model’s performance and efficiency. This balance is
achieved by compound scaling, which uniformly scales these
dimensions with a set of fixed coefficients, derived from a
principled search using a simple yet effective compound coef-
ficient. Meanwhile,Chest X-rays are rich in detail, demanding
a model capable of discerning subtle patterns indicative of
cardiac conditions. EfficientNetB3’s depth and convolutional
operations are adept at capturing these intricacies, translating
into more accurate disease identification. Its architecture
facilitates a comprehensive feature extraction process, crucial
for the detection of conditions such as severe left ventricular
hypertrophy (SLVH) and dilated left ventricle (DLV).

The compound scaling method is encapsulated by the
formula:

depth :d = a? 2
width :w = g (3)
resolution :r = y¢ (@)

where:

e d, w, and r are factors to scale the network’s depth,
width, and resolution, respectively.

o ¢ is a user-specified coefficient that controls how much
the network’s resources are increased.

e «, B, and y are constants that determine how to allocate
resources efficiently to each of the dimensions, under the
constraintthat<>e~ﬂz~y2 ~2anda>1,>1,y > 1.

Applying EfficientNetB3 in our study, to the specific project
involves several key steps(as seen in Figure 2), tailored to
exploit the model’s efficiency and accuracy in analyzing
medical images:

@®Preprocessing and Input Configuration

EfficientNet models, including B3, are pre-trained on

ImageNet, requiring input images of a specific resolution.
For EfficientNetB3, the input resolution is 300 x 300 pix-
els. In our project, images are resized to 224 x 224 for
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FIGURE 2. The application process of EfficientNetB3 pre-training model in our model framework.

compatibility:
Image Preprocessing : Resizing to 224 x 224 5)

This step ensures that the input images match the network’s
expected input dimensions, allowing for optimal feature
extraction without unnecessary distortion or information loss.

@Feature Extraction Layer

The EfficientNetB3 model is utilized as a feature extractor
where the convolutional base is followed by custom top layers
designed for the specific task. The model’s output serves
as an enhanced feature representation of the input images,
capturing both high-level and fine-grained details relevant to
identifying cardiac conditions.

®@Integration with Attention Mechanisms

Post-EfficientNetB3 feature extraction, attention mecha-
nisms such as SE-Block and CBAM are applied. These
mechanisms refine the feature maps by emphasizing impor-
tant features and suppressing irrelevant ones, enhancing
the model’s focus on critical image areas indicative of
disease.

@Fusion with Structured Data

The extracted and attention-refined image features are
then concatenated with processed structured data (e.g.,
clinical parameters like IVSd, LVPWd, LVIDd). This
multimodal fusion leverages both the spatial character-
istics from the X-rays and the clinical insights from
structured data, providing a comprehensive feature set for
classification.

®Classification and Model Training

A classification head, consisting of fully connected
layers and activation functions, is appended to process the
combined features. The model is trained using a binary cross-
entropy loss function, with additional considerations for class
imbalance addressed through techniques like SMOTE or
class weighting.

Loss Function : Binary Cross — Entropy

1< A 5
L=—5 2 [yilog (3:) + (1 —ydlog (1=3)] (6)
i=1
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where:
o L is the loss function.

o N is the number of samples.
« y; is the true label.
« y; is the predicted label.

C. ATTENTION MECHANISM IMPLEMENTATION

The implementation of attention mechanisms such as
Squeeze-and-Excitation (SE) Blocks and Convolutional
Block Attention Module (CBAM) represents a sophisticated
approach to enhance the representational power of convo-
lutional neural networks (CNNs). These mechanisms focus
the model’s attention on relevant features within an image,
significantly improving performance for complex tasks.

1) SQUEEZE-AND-EXCITATION (SE) BLOCK

The SE block re-calibrates channel-wise feature responses
by explicitly modeling interdependencies between channels.
The process can be distilled into two key operations: squeeze
and excitation.

a: SQUEEZE OPERATION

The squeeze operation aggregates the spatial information of
each channel into a single descriptor by employing global
average pooling, reducing the feature map FER"HxW xC)
to a vector ze RC with its c-th element computed as:

1 H W
ZcszwzzFijc @)

i=1 j=1

b: EXCITATION OPERATION

The excitation operation captures channel-wise dependencies
through a self-gating mechanism, consisting of two fully
connected (FC) layers and a sigmoid activation:

s=0(g(z W)) =0 (W8 (Wi2) ®)

Here, o denotes the sigmoid activation function, § denotes
the ReLU activation, W eR¥*C and W, € RE* ¢ represent
the weights of the FC layers, and r is the reduction ratio,
controlling the capacity and computational cost.
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The final output of the SE block, X ,1s obtained by rescaling
the original feature map F with the activations s:

c " Sc )

X. =

2) CONVOLUTIONAL BLOCK ATTENTION MODULE (CBAM)
CBAM sequentially applies channel and spatial attention
mechanisms to refine the feature map based on inter-channel
and spatial relationships, enhancing the model’s focus on
informative features.

a: CHANNEL ATTENTION

Channel attention focuses on meaningful channels by exploit-
ing the global spatial information of feature maps. It is
computed as the sum of max-pooling and average-pooling
operations followed by a shared MLP:

M. (F) = o (MLP (AvgPool (F)) + MLP (MaxPool (F)))
(10)

where AvgPool and MaxPool are global average and max
pooling operations across spatial dimensions, respectively,
and o is the sigmoid function.

b: SPATIAL ATTENTION
Spatial attention highlights informative spatial locations by
using the channel-wise aggregated information:

M,(F)=o (f7x7 (AvgPool.. (F) @ MaxPool, (F))) (11)

where f7*7 represents a convolution operation with a filter
size of 7 x 7, AvgPool. and MaxPool,. are average and max
pooling operations along the channel axis, and & denotes
concatenation

In our study, SE-Block and CBAM are integrated right after
the feature extraction layer of EfficientNetB3. This strategic
placement ensures that the refined feature maps, emphasizing
critical regions and channels relevant to identifying cardiac
conditions, are utilized for subsequent analysis and classifi-
cation. The combination of these attention mechanisms not
only boosts the model’s interpretative ability but also aligns
with the intricate requirements of medical imaging tasks,
where discerning subtle features can be crucial for accurate
diagnosis.

D. TRANSFORMER ENCODER FOR STRUCTURED DATA
The adaptation of Transformer encoders for processing
structured echocardiographic data in our projects described
encapsulates a pivotal advancement in leveraging deep
learning to capture complex patterns within multimodal
datasets. The Transformer encoder, initially conceived for
natural language processing tasks, has been reimagined for
its utility in analyzing structured medical data, offering a
nuanced approach to understanding the intricate relationships
between different clinical measurements.

The Transformer encoder is built upon the principle of
self-attention, enabling the model to weigh the importance
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FIGURE 3. The schematic diagram of transformer encoder processing
structured data.

of different input features dynamically. This mechanism is
particularly adept at handling sequential or structured data,
where the inter-feature relationships contribute significantly
to the predictive outcome.

Formulation of Transformer Encoder for Structured Data:

Given a set of structured input features X eRY *¥' where N
is the number of samples and F is the number of features (e.g.,
echocardiographic measurements such as IVSd, LVPWd,
LVIDd), the Transformer encoder processes this data through
the following stages (as seen in Figure 3):

@®Input Linear Transformation:The input features are
first linearly transformed to higher-dimensional space to
facilitate more complex interactions:

X =XW° +b° (12)
where W¢ e RF*P and b°eRP are the weights and
bias of the linear transformation, respectively, and D is the
dimensionality of the transformed space.

@Self-Attention Mechanism:The core of the Transformer
encoder is the self-attention mechanism, which allows each
feature to interact with every other feature, weighted by their

CalCulated SlgnlfiC ance:
)
'\/Ek

Here, 0 = X'W2, K = X'WK, and V. = X'WV are
the query, key, and value matrices obtained by projecting X’
onto different spaces, and dj is the dimensionality of the key
vectors, used for scaling.

®Position-wise Feed-forward Networks:The output
from the self-attention mechanism is then passed through a
position-wise feed-forward network (FFN) for each position
separately and identically:

Attention (Q, K, V) = softmax ( (13)

FFN (x) = max (0,.xW; + by) Wa + by (14)

This non-linear transformation further enhances the model’s
ability to learn complex patterns.

@Layer Normalization and Residual Connections:Both
the attention outputs and the FFN outputs are supplemented

with residual connections followed by layer normalization:
LayerNorm (x + Sublayer (x)) (15)

These components help in stabilizing the learning process and
improving the model’s convergence.
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In the context of analyzing echocardiographic mea-
surements, the Transformer encoder’s capacity to discern
intricate patterns and relationships among the structured
data becomes invaluable. By treating each echocardiographic
measurement as a distinct feature within the input space,
the Transformer encoder can effectively identify and amplify
the salient signals predictive of cardiac conditions.The prac-
tical implementation involves feeding the preprocessed and
standardized echocardiographic measurements as input to the
Transformer encoder, configured with an appropriate number
of heads and dimensionality to match the complexity of the
data. The encoder’s output serves as a rich, contextualized
representation of the structured data, which is then concate-
nated with features extracted from corresponding chest X-ray
images via models like EfficientNetB3, further augmented
with attention mechanisms such as SE-Blocks and CBAM.

E. VARIATIONAL AUTOENCODER EMBEDDING
The integration of Variational Autoencoders (VAEs) into our
projects represents a significant leap in embedding high-
dimensional data into a more tractable, low-dimensional
latent space. This process is crucial for the nuanced fusion
of multimodal data, enabling a more effective amalgamation
of features from distinct data sources. VAEs, by design,
offer a probabilistic manner for describing an observation in
latent space, thereby facilitating this dimensional reduction
with an emphasis on generating new data points with similar
characteristics

VAEs consist of two main components: an encoder and
a decoder. The encoder maps inputs to a latent distribu-
tion parameterized by mean (x) and variance (o?), while
the decoder reconstructs the input data from this latent
representation

1) ENCODER

Given an input x, the encoder produces two parameters in a
latent space, z, which are p and o2, representing the mean
and variance, respectively:

Wy 0 = fencoder (X) (16)
where foncoder 1S @ neural network.
2) REPARAMETERIZATION TRICK
To enable backpropagation through random nodes, VAEs

employ the reparameterization trick, where a sample z from
the latent space is expressed as:

I=pu+oQe a7
Here, € is an element-wise product with a random noise

sampled from a standard normal distribution, A/ (0, I).

3) DECODER
The decoder part of the VAE takes the latent representation z
and reconstructs the input x’:

x' = Jdecoder () (18)

where fyecoder 1S another neural network.
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TABLE 1. Specific parameters of the VAE module.

Module Layer Actlva.tlon Number of
function neurons
Encoder first layer Dense 1 Relu 128
Encoder second layer Dense 2 \ 128(latent
dim*2)
Decoder first layer Dense 1 Relu 128
Decoder second layer Dense 2 \ Input
dimension

4) LOSS FUNCTION

The VAE is trained to minimize the reconstruction loss
between the input and output and a regularization term given
by the Kullback-Leibler (KL) divergence, which enforces the
latent space to approximate a standard normal distribution:

L (x,x") = ~Egq» [logp (x| 2] + KL (g z[%) | p (2)
19)

where:

1) The first term is the reconstruction loss (e.g., binary

cross-entropy or mean squared error).

2) The second term, KL(g(z|x) ||p(z)), is the KL diver-

gence between the learned latent distribution g(z|x) and
the prior distribution p(z), typically assumed to be a
standard normal distribution N/ (0, I).

Design Method of the VAE Model (Module parameters can
be seen in Table 1):

« Latent Space Dimension (latent_dim):64 is chosen as the
dimension of the latent space to ensure that the latent
variables can effectively represent the input data while
controlling the complexity of the model.

o Encoder Design:The encoder is designed with two fully
connected layers (Dense Layers). The first layer is used
to extract high-dimensional features, and the second
layer generates the mean and logarithm of the variance
for the latent space.

o Reparameterization Trick:Sampling is performed based
on the mean and logarithm of the variance output by the
second layer, which is essential for implementing the
core functionality of the variational autoencoder.

o Decoder Design:The decoder uses fully connected
layers symmetric to the encoder. It restores the variables
in the latent space to the same dimensions as the input
data, ensuring that the input data can be reconstructed.

« KL Divergence Loss Calculation:KL divergence loss is
added to the total loss of the model to ensure that the
distribution of the latent space approaches a standard
normal distribution.

In the context of our study, VAEs are employed to
embed both the high-dimensional features extracted from
chest X-ray images and structured echocardiographic mea-
surements into a cohesive, low-dimensional latent space.
This embedding process allows for the efficient integration
of heterogeneous data modalities, enhancing the model’s
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capacity to capture and leverage complex, multimodal
patterns indicative of cardiac conditions (as seen in Figure 4).

F. FORMULATION OF THE MULTIMODAL FUSION
STRATEGY

The Innovative Multimodal Fusion Strategy in the context
of deep learning leverages the strengths of Variational
Autoencoders (VAEs), Transformer Encoders, and attention
mechanisms (such as SE-Blocks and CBAM) to create a
sophisticated method for combining and processing multi-
modal data. This strategy is pivotal for tasks like disease risk
prediction, where integrating high-dimensional image data
with structured clinical measurements is crucial for accurate
medical diagnosis.

The multimodal fusion strategy involves several key com-
ponents (as seen in Figure 5), each contributing uniquely to
the model’s ability to understand and synthesize information
from diverse data sources effectively. The data structure and
dimension of each neural network module can be seen in
Table 2.

@®Variational Autoencoder (VAE) Embedding

VAEs are employed to map both image features and
structured data into a latent space. The encoder part of the
VAE for each modality is defined as follows:

For image data (x;yg) and structured data (Xfeq):

1) ENCODER
4 @10 =N (1), 0% () 0)

where 1(x) and logo(x) are outputs of dense layers applied
to the input data x, representing the mean and log variance of
the latent distribution.

2) REPARAMETERIZATION

z=u+o0ee~N(@OI) 21
3) KL DIVERGENCE LOSS
1 K 2 2 2
Lr=—5 D fe (1+10g (o) ~ut-a2) @

@Attention Mechanisms

SE-Block recalibrates channel-wise features by applying
a squeeze and excitation operation, effectively allowing
the network to perform dynamic channel-wise feature
recalibration.

CBAM sequentially applies channel and spatial attention
mechanisms, enhancing the representation of important
features while suppressing less useful ones.

@Transformer Encoder for Structured Data

The Transformer encoder captures complex patterns and
relationships within the structured data through self-attention
mechanisms:

Self-Attention:

oK™
Vi

Attention (Q, K, V) = softmax ( ) \% (23)
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where Q, K, and V are the query, key, and value matrices
derived from the input data, and dj, is the scaling factor.

Position-wise Feed-forward Networks: Enhance the rep-
resentation capability for each position in the sequence
independently.

@Fusion of Embedded Features

The latent representations from the VAES (zjmg and zfear)
are concatenated to form a unified feature vector:

Combined Embedding:

Zcombined = [Zimg; Zfeat] (24)

This combined embedding is then passed through dense
layers for classification.

In our study, this fusion strategy is meticulously applied as
follows:

o Image Features: Extracted via EfficientNetB3,
enhanced by SE-Block and CBAM for attention-focused
feature refinement.

o Structured Data: Processed through a Transformer
Encoder to capture complex patterns in clinical
measurements.

o VAE Embeddings: Both sets of features are embedded
into a latent space using VAEs, ensuring that the
multimodal data is represented in a form that facilitates
effective fusion.

« Fusion and Classification: The concatenated embed-
dings form a comprehensive feature set, which is then
utilized for the final classification task, predicting the
presence of cardiac conditions.

This innovative fusion strategy not only capitalizes on
the unique strengths of each component—VAE embeddings
for dimensionality reduction and generative representation,
attention mechanisms for feature refinement, and Trans-
former encoders for capturing sequential relationships—but
also harmonizes these elements to maximize the predictive
performance of the our model.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENT 1: SINGLE DATA SOURCE MODELS

The aim of Experiment 1 was to methodically assess
the predictive performance of models using singular data
sources—namely structured clinical data and chest X-ray
(CXR) images—for the classification of markers indicative
of early-stage cardiac diseases, specifically Severe Left
Ventricular Hypertrophy (SLVH) and Dilated Left Ventricle
(DLV), within a delineated timeframe of 90 to 270 days.

A bifurcated analytical approach was adopted:

o Structured Data Model:This model was architected
employing a neural network framework [37] tailored
to process structured clinical variables (age, sex, inter-
ventricular septal thickness at end-diastole [IVSD], left
ventricular posterior wall diameter [LVPWD], and left
ventricular internal diameter at end-diastole [LVIDD]).
The model’s design was oriented towards extracting
predictive insights from clinical parameters critical in
the early diagnosis of cardiac pathologies.
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FIGURE 4. Schematic diagram of variational autoencoder (VAE) embeddings encoding image features and reconstructed data features.
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FIGURE 5. Framework diagram of multi-modal deep learning fusion strategy.

+ Image Data Model:For the analysis of CXR images,
the EfficientNet architecture was employed, chosen for
its demonstrated efficacy in balancing model depth
with computational efficiency [38], [39]. This model
was expected to leverage the nuanced visual indicators
present in CXR images that signify early cardiac
abnormalities.

Both models were subjected to a comprehensive evaluation
regimen encompassing training, validation, and testing to
ensure statistical rigor and generalizability of the findings.

1) RESULTS

Analysis: The structured data model showcased robust
predictive capabilities across both disease conditions, under-
pinned by high accuracy values, indicative of the model’s
discriminative power between disease and no-disease states.
Conversely, while the image data model exhibited superior
precision, particularly in the context of SLVH disease,
it manifested limitations in recall. This discrepancy under-
scores a critical shortfall in using image data in isolation: a
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propensity to overlook positive cases, thereby necessitating
the exploration of integrative approaches that amalgamate
the strengths of both data modalities (as seen in Table 3,
Figure 6, 7).

The differential performance of the models, especially in
recall metrics, accentuates the inherent challenge in singular
data source utilization for early disease detection. Structured
data, while offering a broad spectrum of clinical insights, may
lack the specificity afforded by the granular visual details in
CXR images. However, the image data model’s lower recall
rate signals a crucial need for augmenting specificity without
compromising sensitivity.

2) CONCLUSION

Experiment 1 revealed the comparative limitations of using
single-source data models, underscoring the complexity of
cardiac disease markers which cannot be fully captured
through either structured data or image data alone. While
structured data models exhibited high accuracy, they lacked
the nuanced visual analysis capability that image data models
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TABLE 2. Structure, dimensions, and meanings of input and output signals for each neural network module.

Input Signal

Module Name Input Signal Structure Dimension Output Dimension Meaning
EfficientNetB3 Image Input (224,224, 3) (7,7, 1536) 7x7 feature map, 1536
channels
SE-Block EfficientNetB3 Output (7,7, 1536) (7,7,1536) Same as above
CBAM-Block SE-Block Output (7,7, 1536) (7,7, 1536) Same as above
GlobalAveragePooling2D CBAM-Block Output (7,7,1536) (1536,) Vector, 1536 elements
Dense (x_feat 1) Feature Input @3,) (64,) Vector, 64 elements
BatchNormalization Dense (x_feat 1) Output (64, (64, Vector, 64 elements
Dropout BatchNormalization Output (64, (64,) Vector, 64 elements
Reshape Dropout Output (64,) (1, 64) Matrix, 1x64
Transformer Encoder Reshape Output (1, 64) (1, 64) Same as above
Flatten Transformer Encoder Output (1, 64) (64,) Vector, 64 elements
VAE Encoder (Image) GlobalAveragePooling2D (1536,) (64, Vector, 64 elements
Output
VAE Encoder (Feature) Flatten Output (64,) (64,) Vector, 64 elements
Concatenate VAE Encoder (Image) and [(64,), (64,)] (128,) Vector, 128 elements
(Feature) Output
Dense Concatenate Output (128,) (256,) Vector, 256 elements
(combined_embedded)
BatchNormalization Dense (combined_embedded) (256,) (256,) Vector, 256 elements
Output
Dropout BatchNormalization Output (256,) (256,) Vector, 256 elements
Dense (predictions) Dropout Output (256,) (1,) Scalar, 1 element
(classification probability)
TABLE 3. Predicting 90 to 270-day SLVH and DLV disease model outcomes Training and Valdaton Loss Traiing and Valdation Accursey
using a single data source. ///——’—-‘_
Data Accuracy Recall Precision F1 ;
SLVH 0.9467 0.9424 0.9034 0.9225
Structured data Coe e
SLVH 09680 09155 0.9886  0.9507 | i —
CXR images
DLV 0.9467 0.9424 0.9034 0.9225
Structured data
DLV 0.9680 0.9155 09886 0.9507
CXR images o

FIGURE 6. Loss and accuracy trends during model training using
structured data to predict the disease risk of SLVH disease (top image)
and DLV disease (bottom image) from 90 to 270 days.

provided, albeit with lower recall rates. This discrepancy
highlights the complementary nature of the two data types and
the necessity for their integration to achieve comprehensive

diagnostic performance.

disease detection within the specified temporal window of
90 to 270 days for SLVH and DLV diseases.

B. EXPERIMENT 2: ABLATION STUDY

The crux of our ablation study lies in deconstructing our 1) OBJECTIVE

composite model to elucidate the individual contributions This study meticulously dissects our model to validate the
of its core components towards the overall predictive indispensability and efficacy of its architectural innovations,
performance, particularly in the nuanced realm of cardiac namely the SE-block and CBAM attention mechanisms, the
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FIGURE 7. Loss and accuracy trends during model training using CXR
image data to predict the disease risk of SLVH disease (top image) and
DLV disease (bottom image) from 90 to 270 days.

Transformer Encoder layer, and the Variational Autoencoder
(VAE)-based feature embedding.

2) METHODOLOGY

Adopting a methodical approach, we sequentially dismantled
each aforementioned component from our full-fledged model
to discern their singular effects on the model’s precision,
recall, and F1 score. This systematic removal not only sheds
light on the functionality and performance enhancement
attributed to each component but also underscores their
collective synergy in achieving state-of-the-art results.

3) RESULTS AND DISCUSSION

Conclusion: Experiment 2’s ablation study provided con-
crete evidence of the integral roles played by each component
of our model’s architecture. The omission of SE-Block and
CBAM significantly impacted the model’s ability to focus
on and refine critical features within X-ray images, resulting
in a notable decrease in recall and precision. Similarly, the
exclusion of the Transformer Encoder and VAE embeddings
compromised the model’s ability to synthesize contextual
information from structured data and efficiently encode
multimodal data into a cohesive feature space, respectively(as
seen in Table 4, 5). These findings affirm the architectural
choices made in developing our model, each contributing
uniquely to its overall efficacy.

C. EXPERIMENT 3: COMPARISON WITH POPULAR
MULTI-MODAL MODELS

In the context of leveraging multimodal data for early
cardiac disease detection, this study introduces a novel deep
learning architecture that significantly advances the state of
the art. Our model is meticulously evaluated against four
established multimodal models: VisualBert, Resnet+MLP
and CLIP model. This comparative analysis spans two
distinct datasets, corresponding to Severe Left Ventricular
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TABLE 4. Model results from an ablation experiment using multi-source

data to predict 90- to 270-day SLVH disease risk.

Ablation

Accuracy Recall Precision Fl
component
SE-Block & 0.9641 0.8992 0.9936 0.9441
CBAM
Transformer 0.9353 0.8534 0.9834 0.9245
Encoder
VAE feature 0.9409 0.8647 0.9555 0.9078
embedding
Our complete 0.9952 0.9923 0.9933 0.9928

model

TABLE 5. Model results from an ablation experiment using multi-source
data to predict 90- to 270-day DLV disease risk.

Ablation Accuracy Recall Precision Fl1
component
SE-Block & 0.9667 0.8958 0.9945 0.9448
CBAM
Transformer 0.9347 0.8633 0.9743 0.9487
Encoder
VAE feature 0.8551 0.9647 0.6985 0.8103
embedding
Our complete 0.9964 0.9899 0.998 0.9944

model

Hypertrophy (SLVH) and Dilated Left Ventricle (DLV)
within a critical timeframe of 90 to 270 days.

Methodological Overview: VisualBert integrates visual
and textual cues using a transformer-based approach, lever-
aging the inherent strengths of transformers in handling
sequential data. Despite its proficiency in extracting complex
inter-modal relationships, its application to clinical imagery
and structured data presents challenges in terms of computa-
tional intensity and adaptability to specific medical contexts.

Resnet+MLP combines the deep feature extraction capa-
bilities of Resnet with the versatility of MLPs to process
structured data. While effective, this approach often falls
short in fully capturing the nuanced correlations between
clinical parameters and visual markers inherent in medical
images.

CLIP employs contrastive learning to align image and text
representations in a shared embedding space. Although CLIP
demonstrates remarkable generalization across diverse visual
tasks, its performance in medical applications is constrained
by the specificity and complexity of clinical images and
annotations.

Our proposed model outstrips the aforementioned frame-
works across key performance metrics—accuracy, precision,
recall, and F1 score—while maintaining exemplary compu-
tational efficiency(as seen in Table 6, 7). Distinct advantages
of our model include:
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TABLE 6. Comparative results with other models for predicting 90 to
270-day SLVH disease risk using multi-source data.

Model Accuracy Recall Precision F1
Visual Bert 0.9512 0.9368 0.9535 0.9444
Resnet+tMLP 0.9221 0.9041 0.8599 0.8815
CLIP 0.9802 0.9827 0.9597 0.9710
Our model 0.9958 0.9933 0.9942 0.9938

TABLE 7. Comparative results with other models for predicting 90 to
270-day DLV disease risk using multi-source data.

Model Accuracy Recall Precision F1
Visual Bert 0.9757 0.9634 0.9743 0.9688
Resnet+MLP 0.9134 0.9042 0.8601 0.8911
CLIP 0.9896 0.9879 0.9800 0.9839
Our model 0.9964 0.9899 0.9980 0.9942

« Elevated Performance Metrics: Across both SLVH and
DLV conditions, our model consistently achieves supe-
rior performance. This is attributable to its innovative
data fusion strategy, which effectively integrates dis-
parate data modalities, enhancing the model’s predictive
accuracy and reliability(as seen in Figure 8, 9, 10)

o Computational Efficiency: Unlike the Multimodal
MURAL Model, our architecture is optimized for
reduced computational load without sacrificing per-
formance. This efficiency enables its application in
real-time clinical diagnostics, a crucial factor for early
disease detection and intervention.

« Enhanced Data Integration: By synthesizing insights
from both structured clinical data and medical imagery,
our model captures a comprehensive view of disease
markers. This holistic approach ensures a nuanced
analysis, pivotal for accurate disease characterization.

o Generalizability and Scalability:The utilization of
pre-trained networks, tailored through fine-tuning to
specific medical datasets, endows our model with robust
generalizability. This facilitates its application across
various cardiac conditions, underscoring its potential for
broader clinical adoption.

Experiment 3 set our model in comparison with existing
multi-modal models, including VisualBert, Resnet+MLP,
and the CLIP model. Our model demonstrated superior
performance across all metrics, with marked improvements in
precision, recall, and F1 scores. Notably, our model achieved
these results with significantly greater computational effi-
ciency than the CLIP model, highlighting its suitability for
real-world clinical applications where both accuracy and
processing time are critical considerations.
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D. EXPERIMENT 4: MULTIMODAL MODEL PERFORMANCE
ACROSS VARIOUS DISEASE STAGE

Objective: This experiment aims to evaluate the robustness
and adaptability of our proposed multimodal deep learning
model, across different stages of two specific cardiac
conditions: Severe Left Ventricular Hypertrophy (SLVH)
and Dilated Left Ventricle (DLV). By assessing model
performance over varied disease timelines, we seek to
establish the model’s efficacy in providing consistent and
reliable risk predictions across progressive stages of cardiac
diseases.

Data for both SLVH and DLV diseases were categorized
into six distinct time intervals ranging from O to over
1440 days. The model was trained separately on each
subgroup to predict the risk of disease progression. The
model integrated structured clinical data with chest X-ray
(CXR) imaging data, utilizing our established framework
of SE-blocks, CBAM attention mechanisms, Transformer
Encoder layers, and VAE-based feature embeddings. Model
performance was quantitatively evaluated using the Area
Under the Receiver Operating Characteristic Curve (AUC),
a robust indicator of diagnostic accuracy.

Results: The AUC values obtained from our model
across different time intervals are visualized in Figure 3,
providing a comparative insight into the model’s performance
across early to late stages of disease progression. The
visualization highlights consistent high AUC scores(as seen
in Figure 11), underscoring the model’s capability to maintain
high diagnostic precision irrespective of disease stage.

The analysis of the AUC trends revealed several key
insights:

o Consistency Across Stages: Our model demonstrated

robust performance with AUC values consistently above
0.98 across all time intervals for both diseases. This
consistency is indicative of the model’s strong generaliz-
ability and its effectiveness in capturing relevant disease
markers at various stages of progression.

« Early Detection Capabilities: Notably, the model exhib-
ited particularly high accuracy(as seen in Table 8) in the
early stages (0-270 days), crucial for timely intervention
and management of cardiac conditions. This suggests
that the integrative data approach effectively captures
early subtle changes in clinical and imaging markers.

o Performance in Chronic Stages: In the later stages
(over 900 days), where clinical manifestations might be
more pronounced, the model similarly maintained high
accuracy, demonstrating its utility in ongoing disease
monitoring and management.

Experiment 4 demonstrated the robustness of our model,
across various stages of cardiac diseases, from acute to
chronic phases. The model consistently achieved high AUC
values, indicating its efficacy in detecting and monitoring
Severe Left Ventricular Hypertrophy (SLVH) and Dilated
Left Ventricle (DLV) over extended periods. This perfor-
mance suggests our model’s capability to adapt to evolving
disease markers.
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FIGURE 8. Each model (the first row is the VisualBert model, the second row is the Resnet+MLP model, the third row is the CLIP model, and
the fourth row is our model) uses multimodal data to predict SLVH disease (left) and DLV disease (left) within 90 to 270 days ( Right) Loss and
accuracy trends during model training for disease risk.

V. DISCUSSION learning model designed for early detection of cardiac
The comprehensive suite of experiments conducted in this diseases such as Severe Left Ventricular Hypertrophy (SLVH)
study delineates the efficacy of a novel multimodal deep and Dilated Left Ventricle (DLV). The integrated approach
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FIGURE 9. Mixture matrix of individual models predicting SLVH disease risk over 90 to 270 days

using multimodal data.

TABLE 8. Model performance of our model at different disease stages in SLVH and DLV.

Se.gmented Accuracy Recall Precision F1 Accuracy  Recall Precision F1
interval
SLVH DLV

0-90 days 0.9987 09976  0.9976  0.9976 | 0.9971 0.9943  0.9929  0.9936
90-270 days 0.9952 09923  0.9933  0.9928 | 0.9964 0.9899 0.998 0.9944
270-540 days 0.9901 09780  0.9935  0.9935 | 0.9949 09878  0.9944 09911
540-900 days 0.9928 09866  0.9958  0.9912 | 0.9934 0.987 0.9953  0.9911
900-1440 days 0.9927 09862  0.9967 0.9914 | 0.9961 0.9907  0.9991  0.9949
Over 1440 days | 0.9958  0.9953  0.9969  0.9961 | 0.9954 0.9916  0.9968  0.9942

employing Variational Autoencoders (VAEs) for data fusion
underscores a significant advance in the field, enabling the
nuanced integration of heterogeneous data types—namely
structured clinical data and chest X-ray imagery.

A. DISCUSSION OF RESULTS

Our findings highlight the model’s superior diagnostic
accuracy compared to traditional single-source and other
advanced multimodal models. This is evidenced by its
consistently higher performance metrics across various
datasets and disease stages. The integration of SE-Block
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and CBAM attention mechanisms, along with Transformer
Encoders, effectively enhances the model’s capability to
discern and synthesize critical features from both structured
and image data. The VAEs play a crucial role in encoding
this information into a low-dimensional latent space, thereby
preserving essential diagnostic details while facilitating an
efficient computational process.

B. ADVANTAGES AND INNOVATIONS
The model’s architecture leverages the strengths of each
component to address previous limitations seen in cardiac
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FIGURE 11. Visualization of AUC values for our model across different
disease stages for SLVH and DLV.

diagnostics. By combining attention-driven feature refine-
ment and sophisticated data embedding strategies, it achieves
a significant improvement in accuracy and precision. On the
other hand, the model demonstrates robust adaptability and
reliability in predicting disease progression across different
stages, which is vital for timely clinical intervention and
ongoing patient management.

C. LIMITATIONS AND FUTURE WORK

1) LIMITATIONS

Despite achieving significant advancements in multimodal
deep learning for medical diagnostics, our study encounters
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several limitations that warrant discussion. Firstly, the dataset
utilized, while comprehensive, represents a confined scope,
predominantly focusing on cardiac diseases within specific
demographic and clinical settings [40],. The potential for
model generalization across diverse populations and varied
clinical conditions remains to be thoroughly evaluated
through external validation [41].

Moreover, the study acknowledges the inherent challenge
of potential biases within the dataset, which may arise
from skewed distributions of disease prevalence, imaging
techniques, or demographic characteristics. Such biases
could inadvertently influence model training, leading to
disparities in diagnostic performance across different patient
groups [42].

2) FUTURE DIRECTIONS

Future research endeavors should aim to address these
limitations while pushing the boundaries of multimodal
recognition in medicine. Expanding the dataset to encompass
a broader spectrum of diseases, patient demographics, and
clinical scenarios would not only enhance the model’s
generalizability but also facilitate its application in diverse
medical contexts.

Further architectural refinements are anticipated, with an
emphasis on exploring novel Al methodologies such as graph
neural networks (GNNs) for more effective data integration
and Generative Adversarial Networks (GANSs) for enriched
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data augmentation [43]. The exploration of additional data
modalities, including genomic, proteomic, and electronic
health record (EHR) data, could unveil deeper insights
into disease mechanisms and patient health, enriching the
multimodal analysis framework.

Moreover, the translational potential of the proposed model
extends beyond cardiac diseases to encompass a wide array of
clinical conditions, from oncology to neurodegenerative dis-
eases. Leveraging emerging Al techniques such as federated
learning could further refine the model’s diagnostic accuracy
while ensuring data privacy and security in multi-institutional
collaborations [44].

VI. CONCLUSION

In concluding our exploration into multimodal deep learning
for early cardiac disease detection, we presented a model that
integrates structured and image data through advanced deep
learning techniques. This study demonstrated the potential of
combining SE-Block and CBAM for attention-driven feature
enhancement, Transformer Encoders for integrating struc-
tured data, and VAE embeddings for efficient feature fusion,
resulting in a model that exhibits significant improvements
in accuracy, precision, recall, and F1 scores compared to
existing benchmarks.

Our findings indicate that attention mechanisms are
crucial for emphasizing important features within images,
Transformer Encoders effectively synthesize structured data
for a comprehensive analysis, and VAE embeddings provide
a robust method for data representation. However, the study
acknowledges limitations, including the dataset’s specificity
and the need for broader validation, which points to future
research directions.

Future work will aim to refine the model architecture,
explore additional data modalities, and extend the applicabil-
ity of the model to other clinical conditions. The potential of
integrating emerging Al techniques to enhance the model’s
diagnostic accuracy remains an exciting avenue for research.

This study contributes to the field of medical diagnostics by
providing a more accurate and efficient tool for early disease
detection, which could significantly impact patient care. The
advancement of multimodal deep learning models offers
promising prospects for improving diagnostic processes and
patient outcomes in healthcare.
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