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ABSTRACT In recent years, Explainable Artificial Intelligence (XAI) has attracted considerable attention
from the research community, primarily focusing on elucidating the opaque decision-making processes
inherent in complex black-box machine learning systems such as deep neural networks. This spike in interest
originates from the widespread adoption of black-box models, particularly in critical domains like healthcare
and fraud detection, highlighting the pressing need to understand and validate their decision-making
mechanisms rigorously. In addition, prominent XAI techniques, including LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (Shapley Additive exPlanations), rely on heuristics and cannot
guarantee the correctness of the explanations provided. This article systematically addresses this critical issue
associated with machine learning and deep learning models, underscoring XAI’s pivotal role in promoting
model transparency to enhance decision-making quality. Furthermore, this study advocates integrating
Formal Methods to provide correctness guarantees for black-box internal decision-making. The proposed
methodology unfolds in three pivotal stages: firstly, training black-box models using neural networks to
generate synthetic datasets; secondly, employing LIME and SHAP techniques to interpret the models and
visualize their internal decision-making processes; and finally, training decision trees on the synthetic
datasets to implement Formal Methods for ensuring the correctness of the black-box model’s decision-
making. To validate this proposed approach, experimentation was conducted on four widely recognized
medical datasets, including the Wisconsin Breast Cancer and Thyroid Cancer (TC) datasets, which are
available in the UCI Machine Learning Repository. Specifically, this research represents a significant
contribution by pioneering a novel approach that seamlessly integrates XAI and Formal Methods, thereby
furnishing correctness guarantees for internal decision-making processes within the healthcare domain.

INDEX TERMS Black-box machine learning, neural networks, interpretable machine learning, cancer
prognosis, decision-making, formal methods, formal verification, colored petri nets.
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I. INTRODUCTION
Explainable Artificial Intelligence (XAI) has attracted signif-
icant attention within the scientific community to enhance the
comprehension of the internal decision-making processes in
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black-box machine learning systems [1], [2], [3], [4], [5], [6],
[7]. The lack of transparency of ML and deep learning-based
models is a major issue in their implementation and is
criticized due to their black-box nature [8], [9], [10]. XAI
is the subdomain under AI to improve transparency by
explaining the internal decision-making of such models [11].
In literature, few known efforts to explain the black-box
models include SHAP [12] and LIME [13]. Numerous
taxonomies have emerged in the research to categorize
various methods for explaining AI models as model-specific
and model-agnostic, either locally or globally, to explain
models [14], [15]. Unfortunately, these methods lack direct
access to the structural parameters or internal model
weights. Most notably, model-agnostic XAI techniques
lack assurances of thoroughness and can yield logically
flawed explanations. The constraints embedded within these
informal XAI methods present a significant hurdle to the
reliability of explanations, especially in scenarios categorized
as high-risk or crucial for safety [16]. Recent research in
explainability focuses on revealing the primary features that
have the most significant impact on a model’s decision-
making process [17]. As AI-based systems only make
predictions without explaining their rationale, there is a need
for mechanisms to explain and interpret their decisions. The
lack of adequate tools for inspecting the functioning of the
black-box model implementation and criticized due to its
black-box nature, evenwith such tremendous results [9].With
their implementation in safety-critical domains, including
healthcare, finance, and self-driving cars, it is also vital
to provide correctness guarantees for the internal decision-
making process. In such domains, trust from end-users
majorly depends on explainability and reliability, making it
crucial to address this limitation [18], [19], [20], [21].
According to recent studies, XAI methods rely on heuris-

tics and cannot guarantee the correctness of the explanations.
However, recent endeavors demonstrate the potential of
Formal Methods to deliver verifiably correct explanations.
While these formal approaches are theoretically sound, their
scalability is hindered by the computational complexity
of verification. Additionally, the explanations they provide
may occasionally become excessively complex [22], [23].
In response to these challenges, this article introduces an
approach based on SHAP, LIME, and Formal Methods.
In addition, it also leverages formal correctness assurances
of internal decision-making.

LIME and SHAP are highly effective for explainable
AI because they are model-agnostic, meaning they can
be applied to any machine learning model. They provide
clear, human-interpretable explanations by highlighting the
contribution of each feature to individual predictions (LIME)
or consistently across the entire model (SHAP). Their
ability to align with human intuition and visualize feature
importance makes them invaluable tools for understanding
and trusting AI decisions.

Formal Methods are tools and techniques for speci-
fying, verifying, and mathematically validating complex
systems. Accordingly, they are used for specifying, mod-
eling, and formal verification in fields ranging from
medicine to finance [24], [25]. Formal Methods have two
main techniques: model checking and theorem proving.
Model checking constructs the system’s traceable model
to explore the entire system state space [26]. Theorem
proving utilizes complex mathematical equations to prove
the system specifications are correct mathematically. The
Formal Methods can assist in validating and explaining the
internal decision-making of complex systems [27], [28],
[29]. Coloured Petri nets (CP-Nets) [30] are formal tools
based on Petri nets [31]. They are useful for modeling
non-deterministic and stochastic processes. They enable a
systematic and exhaustive exploration of the mathematical
model to prove, refute, or analyze the correctness of complex
systems [32]. CP-Nets come with a graphic interface that
makes it easy to operate and understand the model [33].

This article introduces an approach to explain the
black-box ML Model of internal decision-making with
formal correctness guarantees. The major advantage of this
work is the proposal of a method that explains diagnostic
decisions made by black-box machine learning models and
provides formal correctness guarantees. This capability is
critical for ensuring the reliability and trustworthiness of
AI-driven diagnostics in sensitive fields such as healthcare.
By integrating explainability with formal verification, the
proposed method addresses both the interpretability and
accuracy requirements, thereby enhancing the robustness
and acceptance of AI-based diagnostic tools. This research
will assist medical practitioners in making decision-making
during prognostic decisions. This work presents visual
explanations that align with established prior beliefs and gain
best practices in providing general explanations. The explain-
ability of the model significantly improves its suitability for
practical use in clinical decision-making.

This research is different from the existing literature on the
explanation of black-box ML Models in that it proposes the
use of Formal Methods to explain and provide correctness
guarantees of internal decision-making. This article focuses
on interpreting prognostic decisions made by black-box ML
models to improve early cancer detection and help healthcare
professionals. The correctness of these prognostic rules is
verified using CP-Nets state space analysis. The specificity,
sensitivity, and accuracy are the principal performance
measures used to demonstrate the efficacy of the proposed
approach. The research results will help physicians identify
life-threatening diseases in the early stages and facilitate a
healthier society.

In summary, we introduced an approach for improved
understanding of decision-making through the integration of
XAI and Formal Methods. The main contributions of this
research work are:
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1) A novel approach to ensure the correctness of internal
decisions made by black-box ML algorithms using
formal methods.

2) It involves using decision tree induction over a syn-
thetic dataset generated by a black-box algorithm to
facilitate the explanation of its internal decision-making
processes.

3) It uses CP-Nets to validate the accuracy and reliability
of black-boxmodel predictions, ensuring they align with
formally specified preferences.

4) The effectiveness of the proposed approach is demon-
strated by the empirical results of four real-world cancer
datasets.

The paper is organized as follows. Section II presents the
background. Then, the literature review is discussed in
Section III. Afterward, Section IV discusses the materials and
methods, and finally, the conclusion is presented in SectionV.

II. BACKGROUND
A. EXPLAINABLE AI FRAMEWORKS
The domain of XAI aims to study and developAI systems that
provide clear and intelligible explanations for predictions and
decision-making [6]. This interdisciplinary domain seeks to
enhance the human understandability of black-box machine
learning models by employing techniques that generate
explanations [34]. Some common methods for explaining
machine learning models include SHAP [12],LIME [13],
Grad-CAM [35] and Grad-CAM++ [36], [37].
LIME employs a post-hoc method applied after the model

has been trained. It is model-agnostic, meaning it is not
tied to any specific ML algorithm. LIME operates by
using input features and model outputs without interacting
with the internal weights and layers of the model. This
broad applicability allows LIME to provide interpretable
explanations for various types of machine learning models
by approximating the behavior of the model locally around
the prediction of interest [38]. Its results have interpretability
and are also beneficiary for alerts generated by a classifier
compared to model confidence scores [39].
SHAP is a popular XAI technique known for aligning

well with practitioners’ intuitions, especially with decision
tree models. It enhances interpretability and aids alert
processing more effectively than relying solely on model
confidence scores by decomposing predictions into under-
standable contributions from individual features. This makes
SHAP particularly valuable in critical fields like medical
diagnosis, banking, and fraud detection, where it improves
task efficiency and highlights key decision-making features
through domain knowledge. By using SHAP, practitioners
can determine the most important features in predictions
and their impacts, aiding in informed decision-making
without compromising predictive accuracy. This increased
interpretability helps identify potential immunotherapies to
improve patient survivability rates and provides transparent
reasoning [9], [40].

In general, SHAP is slower but suitable for deep
learning applications, particularly when using optimized
variations like deep and gradient explainers. Conversely,
results indicate that LIME demonstrates superior repro-
ducibility and execution time compared to the SHAP gradient
explainer [41]. The success of LIME has spurred numerous
enhancements to its capabilities as a prominent image
explainer. Notable examples include Anchor LIME [42],
which employs anchors for high precision and coverage
in generating interpretable explanations; KL-LIME [43],
which focuses on local interpretability; NormLIME [44],
which incorporates normalization techniques for improved
performance; and the most recent BMB-LIME [45], which
aims to provide more robust explanations. Each of these
efforts contributes additional value to the existing LIME
methodology, underscoring its versatility and effectiveness in
the field of explainable AI [42].
The field of XAI focuses on developing AI systems that

offer transparent explanations for predictions and decision-
making, employing methods like SHAP, LIME, Grad-CAM,
and Grad-CAM++. SHAP, a model-agnostic technique,
improves interpretability by revealing key features influ-
encing predictions and aiding decision-making in various
domains like medical diagnosis and fraud detection. While
SHAP enhances understanding and reasoning, LIME stands
out for its reproducibility and execution time, with ongoing
efforts to enhance its capabilities through methodologies like
Anchor LIME.

B. ARTIFICIAL NEURAL NETWORKS
ANNs are a type of supervised ML algorithm inspired by the
functioning of the human brain and formed by an intercon-
nection of neurons. A neuron is a single processing unit of
the human brain. Billions of neurons are interconnected in a
complex way in the human brain. Hence, ANNs are formed
by complex interconnections of the artificial neurons [46].
ANNs have high accuracy with the ability to provide fault
tolerance for big datasets. Their self-organized and adaptive
learning behaviors make them suitable for a large set of
applications, including industrial process control, sensory
data recognition, medical diagnosis, weather forecasting,
image and text classifications, and pattern recognition [47].
ANNs leverage the rapid information processing, mapping
capabilities, fault tolerance, generalization, and robustness
that make ANNs smart and powerful modeling and forecast-
ing tools [48], [49]. However, despite the aforementioned
characteristics, the internal decision-making of these models
is not easily understood. With their use in security-sensitive
areas, the focus is on reliable validation to avoid disaster
situations.

In general, ANNs consist of one input layer, several hidden
layers, and one output layer [50]. The neurons of each layer
are connected to the neurons of the next layer, but the neurons
of the same layer are not interconnected. The input layer
neurons receive the data and then pass it into subsequent
layers until they reach the output layer.
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C. COLOURED PETRI NETS
Coloured Petri nets (CP-Nets) are a type of Petri nets that are
used in modeling systems that contain discrete, concurrent,
and scattered events. CP-Nets are directed graphs containing
two kinds of nodes: places represented by ellipses or circles
and transitions represented by rectangular boxes [51]. In CP-
Nets, the edges connect nodes of different types and are
represented as arcs. CP-Nets have strong mathematical
logic associated with Standard ML [52] programming
language. CP-Nets support a strong mathematical foundation
for the state space analysis and reachability analysis to
verify numerous properties, including boundedness, liveness,
fairness, terminating, and cycles in the model [53]. CP-
Nets suffer from the problem of state space explosion when
the number of states greatly increases. To overcome the
state explosion problem, state space reduction methods are
implemented through Linear-time Temporal Logic (LTL)
[54] or Computation Tree Logic (CTL) [55].

III. LITERATURE REVIEW
A. XAI AND BLACK-BOX MODELS
The black-box issue in ML algorithms has been present
in literature for decades [56], [57], [58]. The use of rule
extraction to overcome this issue for neural networks is
being discussed by research community [3], [59], [60], [61],
[62], [63], [64], [65], [66]. However, there is very little
work done on guaranteeing the correctness of these extracted
rules. This research emphasizes visualizing the internal
decision-making processes of black-box models using LIME
and SHAP techniques. Additionally, it focuses on providing
correctness guarantees for these internal decisions through
the application of formal methods. This dual approach
ensures not only the interpretability of the models’ outputs
but also the reliability and accuracy of their decision-
making processes, thereby enhancing the trustworthiness and
robustness of AI systems.

Wang et al. [67] proposed a rule extraction method to
derive interpretable classification rules using the ensemble
decision tree technique for the diagnosis of breast cancer. The
Random Forest algorithmwith a multi-objective evolutionary
algorithm was used for the optimal classification rule to
find the best trade-off between accuracy and interpretability.
In [65], a shallow Artificial Neural Network model was
proposed for breast cancer diagnosis. In [66], a hybrid
approach called CWV-BANNSVMwas proposed, combining
boosting ANNs and two SVMs.

Jia et al. [68] proposed an approach to transform black-box
conventional neural network models to decision trees using
rule extraction. The authors have decomposed conventional
neural networks into a feature extractor and a classifier.
A human-readable decision tree was extracted from the
classifier. They have built a visual tool to enable users
to explore surrogate decision trees. Our work provides
the formal guarantee of model correctness using Formal
Methods. In [69], the design space of explainable artificial

intelligence is explored to enhance the best design practices
and future opportunities in the domain. A question bank
is discussed on creating user-centered explainable artificial
intelligence.

Bhatt et al. [70] discussed explainable ML in deployments
and argued that ML algorithms are explained only to ML
engineers but not to the end users of these algorithms.
Roscher et al. [71] explored the recent scientific works
and the contributions towards explainable ML in several
application domains. In [72] a Dynamic Cell Structure neural
network is proposed to build predictive models for forest fire
detection and analyze environmental factors leading to forest
fires. The rule extraction algorithms were applied to extract
fire prediction rules.

Sultana et al. [73] used deep learning techniques to
discover the knowledge from Twitter data for analyzing
public sentiment towards education. The neural network
model predictions were used to construct decision trees
to extract rules. Ueno and Zhao [74] interpreted neural
networks-based decision layers using decision trees. The
research work focused on extracting interpretable knowledge
from the hidden layers. Empirical results have demonstrated
that accurate decision trees may be extracted from hidden
layers.

Augasta and Kathirvalavakumar [75] presented a rule
extraction algorithm RxREN to explain the predictive rules
for trained neural networks. The presented algorithm relies
on reverse engineering techniques for an explanation of
neural network rules. In [76], the author proposed a rule
extraction algorithm to extract rules from a neural network
that contains continuous and discrete literals. The neural
network decomposed by creating decision trees to obtain
the production rules. These rules were merged to interpret
the neural network. In [77], a rule extraction algorithm
neural-network decision tree algorithm (ANN-DT) was
proposed to extract binary decision trees from a trained neural
network. It extracts rules from feed-forward neural networks
with continuous output. The IF-THEN rules extraction
algorithm from sample training data is presented in [78]. The
dataset contained different attributes, values, and classes to
cover a wide range of problems. Arslan et al. [79] proposed a
web-based approach based on classification associations rule
extraction using the R programming language.

B. XAI AND FORMAL METHODS
The integration of XAI and Formal Methods for proving the
correctness has been attracting attention from the research
community recently [23], [80], [81], [82], [83], [84].

Marques-Silva [80] emphasized that formal XAI, despite
scalability challenges, offers more accurate and dependable
alternatives to current XAI practices. Antonio et al. [81]
highlighted the importance of integrating nonmonotonic
reasoning and typicality-based logic to create explainable AI
systems that cater to diverse user needs, aiming to overcome
the limitations of traditional recommendation systems, which
often reinforce user biases.
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FIGURE 1. Proposed research methodology for guaranteeing correctness in AI-based medical decisions.

In [82], the authors formulate the creation of these mimic
programs as a SyGuS problem, using if-then-else grammars
to construct decision tree-like structures that replicate the
model’s decisions on given data points. They demonstrate
their method’s effectiveness through experiments on neural
networks trained on the MNIST and Pima Indians diabetes
datasets, showing that the synthesized mimic programs
are both accurate and interpretable. They also highlight
the potential of Formal Methods in providing reliable and
comprehensible explanations for AI decision-making, partic-
ularly in critical applications like healthcare and autonomous
systems.

Bassan and Katz [22] proposed a new method for efficient,
verification-basedminimal explanations that approximate the
global minimum explanation. They also introduced heuristics
to improve scalability and suggested using ‘‘bundles’’
for more interpretable explanations. In [84], the authors
discussed the need for trustworthy AI in high-risk settings.
They proposed formal XAI approaches that provide sound
and irredundant explanations with formal guarantees of rigor.

Bassan et al. [85] discussed a novel approach for provid-
ing formal explanations of Deep Neural Networks within
reactive systems, addressing the challenge of opacity and
the limitations of existing heuristic-based Explainable AI
techniques. The authors proposed a verification-based XAI
technique that leveraged the system’s transition constraints
to efficiently compute minimal and minimum explanations,
demonstrating significant improvements over state-of-the-art
methods in terms of efficiency and reliability of explanations.
The approach was evaluated using automated naviga-
tion benchmarks, highlighting its potential for enhancing
trustworthiness and reliability in critical systems where
DNNs are controllers.

In [86], the authors discuss the limitations of Shapley
values, commonly known as SHAP scores, in XAI. They
highlight that SHAP scores can provide misleading infor-
mation about the importance of features in ML model
predictions. The paper presents theoretical and empirical
evidence showing that SHAP scores may incorrectly rank
the significance of features, leading to potential misinter-
pretations by decision-makers. The authors analyze simple
classifiers to demonstrate these issues and suggest that exact
definitions of SHAP scores do not accurately reflect feature
relevancy.

In conclusion, the body of work underscores the critical
role of Formal Methods in advancing the field of explainable
AI. By addressing the inherent limitations of current XAI
practices, such as the opacity of deep neural networks and
the potential misinterpretations of feature importance through
methods like SHAP, these studies collectively advocate for
more rigorous, scalable, and reliable approaches. Integrating
formal guarantees, nonmonotonic reasoning, and novel tech-
niques like syntax-guided synthesis and verification-based
explanations significantly contribute to developing trustwor-
thy AI systems, particularly in high-stakes environments such
as healthcare and autonomous systems.

C. XAI IN CANCER DIAGNOSTIC
The recent research community has started to focus on
the use of XAI in explaining medical diagnostics decisions
[14], [15], [58], [87], [88], [89]. Khater et al. [58] devised
machine-learning models to classify breast cancer and
elucidate the model outcomes. Their research advanced the
comprehension of breast cancer diagnosis and treatment by
pinpointing crucial tumor features through the utilization of
the SHAP algorithm. The results underscore the capacity
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of machine learning to augment breast cancer diagno-
sis and therapy planning, underscoring the significance
of interpretability and transparency in healthcare systems
driven by artificial intelligence. Silva-Aravena et al. [15]
presented a decision-support methodology for healthcare
teams leveraging ML and explainability algorithms. Their
investigation assessed diverse ML algorithms for patient
classification into cancer and non-cancer groups, with
XGBoost demonstrating the highest accuracy. Furthermore,
employing the SHAP algorithm enabled the identification of
significant variables, facilitating personalized early alerts for
patients and augmenting clinical decision-making processes.

Hurtado et al. [89] conducted a study using a melanoma
detection dataset to evaluate the effectiveness of the exist-
ing explainer against LIME. Their analysis conclusively
demonstrated that LIME surpasses SHAP in diagnosing
melanoma. This research underscores the advantages of
employing XAI methods for interpreting model outcomes in
melanoma image classification. Specifically, LIME exhibits
superior performance compared to SHAP gradient explainer
in terms of reproducibility and execution time. In [88],
the authors introduced a two-stage XAI-MethylMarker
framework, which is an explainable AI-based approach for
biomarker discovery applied to DNA methylation data to
identify a concise set of biomarkers for breast cancer clas-
sification. In the initial stage, they developed a deep-learning
network incorporating an autoencoder for dimensionality
reduction and a feed-forward neural network for breast cancer
subtype classification. In the subsequent stage, they proposed
a biomarker discovery algorithm utilizing various explainable
techniques to analyze the model and identify a compact
set of 52 biomarkers. Through 5-fold cross-validation, they
attained a classification accuracy of 0.8145 Â± 0.07 with a
95% confidence interval. To validate the clinical significance
of the discovered biomarkers, they conducted a gene set
analysis, revealing 14 druggable genes, nine genes associated
with prognostic outcomes, and several enriched pathways
known to be significantly correlated with distinct breast
cancer subtypes.

IV. MATERIALS AND METHODS
The proposed approach to interpret and provide formal cor-
rectness guarantees of the internal decision-making processes
of black-box models is illustrated in Fig. 1. In this work,
the internal decision-making is visualized using LIME and
SHAP. The presented approach has three major steps: first,
training black-box models using neural networks; second,
employing LIME and SHAP techniques to interpret the mod-
els and visualize their internal decision-making processes;
and finally, training decision trees on the synthetic datasets
to employ Formal Methods for providing the correctness
guarantees of internal decision-making process.

A. DATA COLLECTION
To illustrate our research methodology, experiments were
performed with Wisconsin cancer and Thyroid cancer

datasets available in the UCI ML repository [90]. The detail
of these datasets is shown in Table 1.
The Wisconsin diagnosis cancer (WDBC) dataset includes

569 cases, including 32 attributes, with 212 malignant
(M) and 357 benign (B) cases, respectively. Features are
computed from a digitized image of a fine needle aspirate
(FNA) of a mass and describe characteristics of the cell
nuclei present in the image. The Wisconsin prognosis cancer
(WPBC) dataset includes 198 instances with 34 features and
contains 47 malignant and 151 benign cases, respectively.
The WDBC and WPBC have the same fetuses, except
WPBC has two extra features: tumor size and lymph node
status. Tumor size is the diameter of the excised tumor
in centimeters, and lymph node status is the number of
positive axillary lymph nodes observed at the time of surgery.
The feature values for the WDBC and WPBC datasets are
shown in Table 2. The Wisconsin cancer (DSBC) dataset
has 286 records, each with nine attributes excluding the ID
number and classification label. It has 85 malignant and
201 benign cases, respectively. The feature values for the
DSBC datasets are shown in Table 3.

The thyroid cancer (TC) dataset comprised 12 clinical and
demographic patient attributes, except for the ATA risk score,
which included 383 cases. It contains 108 malignant and
275 benign cases. The feature values for the TC dataset are
shown in Table 4.

B. PRE-PROCESSING
Pre-processing steps were applied to a dataset before
applying ML algorithms to enhance the learning process of
the training model [91]. The pre-processed data was divided
into training and test data using a 10-fold cross-validation
methodology.

In the case of the WDBC, the patient’s ID feature does
not have a major impact on the diagnosis of the disease and
thus has been removed. No additional pre-processing was
conducted for WDBC, as no missing values were found.

In the case of the DSBC dataset, 9 instances with missing
values were found and removed. In ML models, it is often
necessary to convert categorical text features into their
numeric representation. Consequently, the categorical values
were converted into numerical values. In the WPBC dataset,
4 instances with missing feature ‘‘Lymph node status’’ values
were found and removed. No additional pre-processing was
conducted for the WPBC dataset. In the case of the TC
dataset, the categorical values were converted into numerical
values.

Additionally, the data is normalized and scaled to ensure
that the features are on a consistent scale. This normalization
process helps prevent any particular feature from dominating
the model’s training process due to its larger magnitude.

C. BLACK-BOX MODELS
Black-box neural network models were trained on WDBC,
DSBC, WPBC, and TC datasets. The architecture of these
black-box ANN models is shown in Table 5, and the neural
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TABLE 1. Wisconsin breast cancer datasets.

TABLE 2. Description of the features in WDBC and WPBC.

TABLE 3. Description of the features in DSBC.

TABLE 4. Description of the features in TC.

network trained on the DSBC dataset is demonstrated in
Fig. 2. To reduce the features, the final input features were
selected using the Pearson correlation coefficient to enhance
performance. This method involves calculating the linear
correlation between pairs of features and eliminating those
that exhibit high redundancy, thereby retaining only the most
informative and uncorrelated features for model training.

By applying this technique, we aim to improve model
accuracy and generalization by minimizing multicollinearity
and ensuring that each feature contributes unique information
to the predictive process.

The number of features selected using the Pearson
correlation coefficient algorithm for the DSBC dataset was
4. The neural network’s architecture trained on the DSBC
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FIGURE 2. Breast cancer classification using neural networks on DSBC data.

TABLE 5. Architectural details of Black-Box neural networks for cancer classification.

dataset has 4 neuron units in the input layer and hidden
layers with 128, 56, and 32 neurons. Similarly, the number of
features selected for the WDBC dataset was 15. Accordingly,
the neural network trained on WDBC has 15 neurons on
the input layer and hidden layers with 256, 128, 56, and
32 neurons.

On the other hand, the architecture of the neural network
trained on the WPBC dataset has 12 neuron units in the input
layer, and the hidden layers have 56, 32, and 16 neurons.
Moreover, all the neural networks have a single neuron at the
output layer with the rectified linear unit (ReLU) activation
function to classify the input as malignant or benign.

D. EXPLAINING BLACK-BOX DECISION-MAKING
1) LIME
At this phase, we utilize the LIME framework, a method
crafted to clarify specific predictions through the creation of

a local, understandable model that approximates the behavior
of any complex machine learning model. This procedure
entails modifying the original data points, feeding them into
an inscrutable ML model, and examining the outcomes of
these predictions. Fig. 3 (a), (b), (c), and (d) illustrate the
discovery of features for the WDBC, WPBC, DSBC, and
TC datasets using LIME. LIME has effectively highlighted
the most crucial characteristics contributing to the expected
diagnostic outcomes.

2) SHAP
Upon choosing the ANN algorithm, we decided to enhance
the tool provided to doctors and administrative health teams
by integrating an interpretability algorithm. This addition
is designed to clarify the model’s patient classification
process. Fig. 4 (a) and (c) showcase the identification of
the most impactful variables within the ANN model based
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FIGURE 3. LIME local explanations for cancer datasets.

on the patient data at hand. Notably, ‘‘Worst Area’’ and
‘‘Time’’ emerge as crucial variables, enabling the model to
distinguish between healthy individuals and those diagnosed
with cancer. Figure 4 (b) highlights the significance of the
‘‘inv-nodes’’ feature, which plays a key role in enhancing
the model’s interpretability. Similarly, fig. 4 (d) highlights
the significance of the ‘‘Response’’ and ‘‘RISK’’ features,
which play a key role in enhancing the model’s interpretabil-
ity. Thus, the combination of the ANN model with the
SHAP interpretability algorithm significantly enriches the
information available for healthcare teams’ decision-making
processes.

E. CORRECTNESS GUARANTEES
Most existing XAI techniques rely on heuristics and fail
to ensure the correctness of their explanations. In contrast,
recent advancements have shown that formal methods can
generate explanations with provable correctness, signifi-
cantly improving the reliability and trustworthiness of AI
systems [22]. The main advantage of the approach presented
is the application of CP-Nets to demonstrate the correctness
of prognostic decisions. The decision trees were induced
from the synthetic datasets and produced using original
input features with the classification predictions of the
black-box models to mimic the transparency of equivalent

VOLUME 12, 2024 90307



N. Khan et al.: Guaranteeing Correctness in Black-Box Machine Learning

FIGURE 4. SHAP summary plots for cancer datasets.

internal decisions. The prognostic decisions were derived
by traversing the path from the root node to the leaf nodes
as described in [92]. The Hierarchical CP-Nets model used
for formal verification is shown in Fig. 6. To confirm the
correctness of CP-Nets colour tokens were constructed using
cancer datasets.

More precisely, the following steps were performed to
extract decision choices and provide formal correctness
guarantees of decision-making for black-box models.

1) DECISION CHOICE AND CP-NETS TRANSFORMATIONS
In literature, the decision tree has emerged as a useful
tool to transform black-box models into transparent models
using the synthetic datasets [68]. The synthetic datasets
consisted of original input features with corresponding output
classification labels produced by the black-box models.
To induce decision trees, an open-source implementation of
C4.5 [93] in WEKA [94] was used with a ten-fold cross-
validation. The decision tree in Fig. 5 exhibits decision points
for the cancer datasets in the tree structure.

Decision choices in the models needed to be identified
to transform black-box models into the CP-Nets model.
The transparent decision trees were induced using synthetic
datasets to identify decision choices. From these transparent
decision trees, predictive decision decisions were extracted
using a path traversing through the root to the leaf nodes

Algorithm 1 Decision Tree to CP-Nets Model
Transformations
Input: Decision Tree
Output: CP-Net Sub-module

1 for Decision Paths in Decision Tree do
2 Create a Decision Rule for the Decision Path Add

CP-Net Transition for Decision Rule
3 for Attributes in Decision Rule do
4 Add Guard to transition for Attribute
5 end
6 end

using transformation algorithm 1. To be more specific,
to guarantee the correctness of prognostic decisions for a
particular patient, which needs to be either classified as
malignant or benign, CP-Nets models were constructed for
all paths in decision trees.

2) CORRECTNESS GUARANTEES FOR INTERNAL
DECISION-MAKING
CPN tools [95] provide mechanisms to simulate models
and construct state space reports. The presence of errors in
the models can be analyzed via simulations, but it cannot
guarantee its absence. On the other hand, the state space
analysis can be exploited to check the absence of an error in
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FIGURE 5. Decision trees trained on synthetic cancer datasets.

the model. CP-Nets, as a representation of the equivalent of
prognostic decisions, was selected because of the expressive
support it provides and the strong simulation capabilities.
Furthermore, it also leverages the hierarchy concept to
allow the composition in a modular way. In addition, the
availability of probability distribution support allows for
modeling performance aspects. Finally, data-related aspects
are supported by the introduction of colour tokens.

The model’s formal verification begins at the start of the
simulation from the first transition state, which is called
initial marking. Every prognosis decision was modeled as
a transition in CP-Nets. Prognostic decision-making choices
were verified in a three-stage process. First, all the color
tokens were loaded on the initial marking. Second, the simu-
lation tool was used to simulate the color tokens. In the third
and final stage, the colour tokens’ reachability was analyzed
for the transition Correctness_Verification. The sub-module
Predicted_Diagnosis_Verifier was used to analyze and
compare colour tokens with actual and predicted labels. This
comparison on the transition place Correctness_Verification

provided the correctness profs for the prognostics decision-
making choices. All CP-Nets models are accessible on the
link.1

Fig. 6 demonstrates the hierarchical CP-Nets model pro-
posed in this research work. The CP-Nets model architecture
consists of three sub-models, namely Diagnosis_M_Model,
Diagnosis_B_Model, and Predicted_Diagnosis_Verifier .
The Diagnosis_M_Model and Diagnosis_B_Model sub-
modules were responsible formodelingmalignant and benign
prognostic choices, respectively. The third sub-module,
namely Predicted_Diagnosis_Verifier , is responsible for
verifying the colour tokens with predicted and actual labels
to confirm the correctness of diagnostic choices.

In addition, the reachability graph computed by the CPN
tool is analyzed for formal verification of specific properties
and discussed in the section below.

1https://drive.google.com/file/d/11ivjh4CsBFoz5UGM_rg5N9hiOxW3
28VJ/view?usp=sharing
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FIGURE 6. Hierarchical colored petri nets model for formal correctness proofs.

FIGURE 7. CP-Net Sub-Model: ensuring correctness of prognostic decisions for malignancy.

3) MALIGNANT CASES VERIFICATION
Property 1: Malignant sub-module always predicts the
correct label. The decision specifies that when a token
satisfies the criteria for the ‘‘M’’ classification, then the
model is expected to assign a ‘‘M’’ prediction label and direct
it to the Patient_Predicted_Label place. The labeling within
the Patient_Predicted_Label ensures that all tokens that
pass through transitions guarded with decision-making logic
within the Classifier_M_Labels sub-modules, are classified
as ‘‘M’’.

Property 2: Classifiers put ‘‘M’’ label on colour tokens
for labeling them according to decision choice. Marking
the place Label_M on transition Label_Patient_M confirms
that colour tokens are always labeled as ‘‘M’’ at the
Patient_Predicted_Label place.

4) BENIGN CASES VERIFICATION
Property 1: Benign sub-module always predicts correct
labels. The property indicates that if a token fulfills
the criteria for the ‘‘B’’ classification, the model is
expected to apply a ‘‘B’’ predictive label and pass to
the Patient_Predicted_Label place. The labeling within

the Patient_Predicted_Label ensures that all tokens that
pass through transitions guarded with decision-making logic
within the Patient_B_Labels sub-modules are classified as
‘‘B’’.

Property 2: Classifiers put a ‘‘B’’ label on colour tokens
to label them according to classification decision choice.

The marking of the place Label_B during the transition
Label_Patient_B confirms that colour tokens are always
labeled as ‘‘B’’ at the Patient_Predicted_Label place.

5) ACTUAL AND PREDICTED LABELS VERIFICATION
SUB-MODULE
Property 1: The colour tokens with actual and predicted
labels must reach Compare_Actual_Predicted_Labels
place.

The property asserts that colour tokens, influenced
by classification decision-making, ought to arrive at
Compare_Actual_Predicted_Labels place for the compari-
son of actual and predicted labels. It’s important to highlight
that, at this point, a comparison of labels is employed
to confirm the correctness of the decisions made by the
classifiers.
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FIGURE 8. CP-Net Sub-Model: verification of prognostic decisions for benign cases.

FIGURE 9. CP-Net Sub-Model: verifying prognostic decisions.

F. PERFORMANCE METRICS
The ML models were trained to predict the patient’s cancer
status, either as malignant or benign. The Confusion Matrix
was calculated to classify cases as shown in Table 6. The
performance of the proposed approach is evaluated according
to Accuracy (ACC), Sensitivity(TPR), and Specificity(TNR).
Here, the total number of instances is represented as N and
computed such as:

N = TP+ TN + FP+ FN . (1)

Accuracy (ACC): ACC specifies the accuracy of the classifi-
cation model such that:

ACC = (TP+ TN )/N . (2)

Sensitivity (TPR): TPR specifies the correct classification
rate of positive instances such as:

TPR = TP/(TP+ FN ). (3)

Specificity (TNR): TNR specifies the correct classification
rate of negative instances such as:

TNR = TN/(TN + FP). (4)

G. RESULTS
Once the performance of the ML model has been evaluated,
it becomes imperative to elucidate and scrutinize the findings
to gain insights into the model’s performance. This involves

TABLE 6. Confusion matrix.

discerning the crucial features influencing the model’s
predictions, comprehending the relationships between these
features and the target variable, and identifying any pertinent
patterns or trends within the dataset. This study employed two
model-agnostic techniques, namely LIME and SHAP, for this
purpose. Additionally, the proposed approach implemented
CP-Nets formalism to provide correctness guarantees for
diagnostic decision-making.

The effectiveness of the proposed approach is illustrated
using cancer datasets from the University of Wisconsin. The
black-box ANN models were trained on the cancer dataset.
LIME and SHAPwere employed to provide interpretations of
internal decision-making. The results of Table 7 and Table 8
empirically demonstrate that our approach has improved
performance as compared with the baseline classifiers in
terms of accuracy, sensitivity, and specificity. The analysis
of Table 7 and Table 8 reveals that the true negative rate
(TNR) attains a value of 100% for the WPBC dataset.
This observation substantiates the assertion that the proposed
approach effectively safeguards benign instances with high
accuracy.
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TABLE 7. Comparisons of the proposed approach with other supervised ML methods.

TABLE 8. Comparisons of the proposed approach with other decision extraction methods.

1) LIME
In our investigation, we utilized LIME as a potent tool
for interpretability to delve into the predictions generated
by our ML models. The model-agnostic characteristic of
LIME enabled us to deploy it across diverse ML models,
regardless of their architectures or training algorithms [96].
Leveraging LIME, we elucidated the predictions of binary
classifications concerning cancer datasets. Through a focus
on the key relevant features identified by LIME, we presented
visual confirmation of our MLmodel’s efficacy and provided
insights into the underlying patterns associated with different
classes of cancer. To summarize, our research harnessed
LIME’s capabilities to uncover the decision-making mech-
anisms of our ML models in the realm of cancer diagnostics.

Fig. 3 (a), (b), (c), and (d) illustrate the discovery
of features for WDBC, DSBC, WPBC, and TC datasets
using LIME. LIME has effectively highlighted the most
crucial characteristics contributing to the expected diagnostic
outcomes. Among the top relevant features in the WDBC
dataset, the ‘‘Worst Concave Point’’ feature exhibited the
highest impact on the model’s estimation capability. Fig 3 (c)
indicates that ‘‘TIME’’ and ‘‘Texture SE’’ features have
the most significant influence. Similarly, Figure 3 (b)
demonstrates that ‘‘inv-nodes’’ is the top impacting feature
for DSBC dataset. Through LIME, it becomes evident that
these attributes play essential roles in cancer diagnosis.

2) SHAP
SHAP method [97] relies on Shapley values, which offer
explanations for individual instances rather than overarching
ones. By leveraging Shapley values, we can ascertain the

significance of each feature in a specific prediction. When
our primary concern is understanding the importance of
features for a particular prediction rather than gaining
insight into the model’s general behavior, SHAP proves
valuable. Utilizing SHAP [98], the prediction for a given
instance ‘x’ is elucidated by computing the contribution of
each feature. In this study, the SHAP summary plot was
generated to evaluate the impact of various features on cancer
classification. As depicted in Fig. 4, the ‘‘Worst Area’’ feature
emerges as the most influential, corroborating findings from
permutation analysis for WDBC and WPBC datasets. The
feature ‘‘inv-nodes’’ is most influential for the DSBC dataset.

Shapley values were computed for selected top relevant
features identified through Pearson correlation to develop an
interpretable ML model. This approach aimed to discern the
impact of these features on predicting cancer classes. Con-
cerning interpretability, the feature ‘‘Worst Area’’ represents
the total area occupied by the nucleus and stands out as the
most influential factor in the classification of cancer. The
SHAP plot depicted in Fig. 4 demonstrates that larger values
of the area feature positively impact the classification task.
In other words, as the area feature increases, the model tends
to predict a higher likelihood of cancer.

In previous literature, researchers typically utilize a single
XAI method to identify influential features within a dataset.
Contrary to this, our extensive research demonstrates the
efficacy of incorporating a diverse array of XAI techniques,
enabling a more thorough comprehension of the underlying
factors shaping the dataset and its predictive outcomes.
Furthermore, our study endeavors to establish formal correct-
ness guarantees for XAI results. This synergistic approach
not only enhances our understanding of cancer but also

90312 VOLUME 12, 2024



N. Khan et al.: Guaranteeing Correctness in Black-Box Machine Learning

potentially unveils novel findings that might otherwise
remain undiscovered when studying each dataset in isolation.

H. DISCUSSION
The effective use of ML in safety-sensitive applications like
the medical field has increased over the past several years.
It has raised a new challenge for the research community
to explain internal ML decisions for achieving a particular
outcome. The proposed methodology sought to explain
black-box ML models using SHAP and LIME. It also
proposed the use of CP-Nets formalism to guarantee the
correctness of internal decision choices of black-box ML
models. To be more precise, this research concludes that
the black-box ML model internal decision-making can be
verified using CP-Nets formalism.

Khater et al. [58] advocated for the adoption of the
SHAP algorithm to interpret ML models designed for cancer
classification. This method promises to deep understanding
of cancer diagnosis and treatment by identifying pivotal
tumor features crucial for accurate classification. The leading
ML model achieved a 97.7% accuracy employing k-nearest
neighbors, with a precision of 98.2%, utilizing the Wisconsin
cancer dataset. Additionally, an accuracy of 98.6% was
reached using an ANN, with a precision of 94.4%, based on
the Wisconsin diagnostic cancer dataset.

Confalonieri et al. [3] introduced an ontology-based
approach to improve human understanding of black-box
models using surrogate decision trees. The Trepan Reloaded
algorithm is introduced, which extracts the surrogate decision
trees from black-box models. In this work, CP-Nets with a
surrogate decision tree classifier were used to interpret the
internal functioning of the ANN black-box models and for-
mally prove the correctness of prognostic decisions. In [68],
a methodology is proposed to explain black-box deep neural
network models. It decomposed the convolutional neural
network into a feature extractor classifier and later extracted
the decision trees to explain the internal decision-making
of the black-box model. This work uses SHAP and LIME
to interpret the internal functioning of the ANN black-box
models and CP-Nets formalism is implemented to provide the
correctness proof of internal decision choices.

Gorzałczany and Rudziński [59] proposed a rule extraction
method to derive accurate and interpretable classification
rules using multi-objective evolutionary optimization algo-
rithms. Wang et al. [67] proposed a rule extraction method
to derive interpretable classification rules using the ensemble
decision tree technique for the diagnosis of cancer. The
Random Forest algorithmwith a multi-objective evolutionary
algorithm was used for the optimal classification rule to find
the best trade-off between accuracy and interpretability. The
approach showed an accuracy of 97%. In [65], a shallow
Artificial Neural Network (ANN) model was proposed to
diagnose and predict cancer using the Wisconsin breast
cancer datasets without employing feature optimization
or selection algorithms. The approach showed promising
performance with an average accuracy of 99.85%, specificity

of 99.72%, sensitivity of 100%, precision of 99.69%. In [66],
a hybrid approach called CWV-BANNSVM, combining
boosting ANNs and two SVMs, was proposed with an
accuracy of 99.7%. Our methodology has 98% accuracy
with an improved interpretation of decision choices and also
demonstrates the correctness of these prognostic decisions
with CP-Nets formalism.

To the best of our knowledge, this is the first attempt to
apply CP-Nets formalism to provide correctness guarantees
for ML-based prognostic decisions. The empirical results
demonstrate that the application of state space analysis not
only enhances the interpretability of these decisions but also
ensures the correctness of the medical prognosis process.
Consequently, our proposed approach significantly improves
the quality of the medical decision-making process, offering
a more reliable and accurate framework for healthcare
applications.

It should be noted that this study’s results are not
generalizable on a broader scale. Therefore, further work
on comparing the results with expanded datasets from other
medical datasets would be beneficial. Despite this limitation,
the findings remain important in medical data analysis.

V. CONCLUSION
The ML models pose black-box behaviors that reduce
the fidelity of internal decision-making rules. Therefore,
there is a need for a mechanism to explain, interpret,
and build correctness proofs for these black-box models.
In this research, a formal approach was developed to provide
correctness guarantees for the internal decision-making of
black-box models using Formal Methods. The black-box
models were interpreted by SHAP and LIME algorithms. The
primary aim of this research is to enhance the understanding
of black-box models and to provide guarantees of their
accuracy. By employing formal methods, this work ensures
that the internal decision-making processes of these models
are both interpretable and verifiably correct, thereby improv-
ing the reliability and trustworthiness of machine learning
applications in critical domains. The equivalent decision
trees were surrogated using the synthetic datasets to prove
the correctness of the black-box model’s internal decision-
making. In the proposed approach, black-box models were
first trained using neural networks to generate synthetic
datasets. Subsequently, SHAP and LIME techniques were
employed to interpret these models and visualize their
internal decision-making processes. Finally, decision trees
were trained on the synthetic datasets to implement Formal
Methods, ensuring the correctness of the black-box models’
decision logic. This multi-step process aims to enhance the
interpretability and reliability of machine learning models
by combining model-agnostic explainability techniques with
Formal Methods.

In this work, we explored only ANNs-based black-box
models using CP-Nets formalism. The proposed approach
has limitations and requires further investigation. In future
studies, we plan to examine other black-boxmachine learning
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techniques for interpretive decision-making, including SVM,
Random Forest, and Convolutional Neural Networks. Addi-
tionally, it is worth mentioning the potential for integrating
fuzzy techniques with CP-Nets formalism to enhance deci-
sion rule interpretations. While this work focused solely on
CP-Nets formalism, other formal verification techniques and
tools, such as UPPAAL, SAT solvers, and VDM, still need
to be investigated to validate the correct interpretations of
black-box models.
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